On the Exact Security of Message Authentication using Pseudorandom Functions

Fast Software Encryption '17, Tokyo

<u>Ashwin Jha</u>¹, Avradip Mandal², Mridul Nandi¹

¹Indian Statistical Institute, Kolkata, India

²Fujitsu Laboratories of America, Sunnyvale, USA

Overview

Preliminary

Motivation

Contributions

Preliminary

Cipher Block Chaining

CBC function

For a length-preserving function $\mathcal{F}: \{0,1\}^n \to \{0,1\}^n$ and input $M:=(M_1,M_2,\cdots,M_b)\in \{0,1\}^{nb}$ CBC is defined as,

• For all $i \in \{1, ..., b\}$, in are called internal inputs.

3

Cipher Block Chaining

CBC function

For a length-preserving function $\mathcal{F}: \{0,1\}^n \to \{0,1\}^n$ and input $M:=(M_1,M_2,\cdots,M_b)\in \{0,1\}^{nb}$ CBC is defined as,

- For all $i \in \{1, ..., b\}$, in are called internal inputs.
- For prefix-free queries: secure MAC/PRF when ${\cal F}$ is a good pseudorandom permutation/function.
- The input space is restricted to $(\{0,1\}^n)^+$.

Some Variants of CBC-MAC

Construction

$M \longrightarrow CBC^{\mathcal{F}_1} \longrightarrow \mathcal{F}' \longrightarrow EMAC^{\mathcal{F}_1,\mathcal{F}'}(M)$

$$\overline{M} \longrightarrow \boxed{ CBC^{\mathcal{F}_1} \longrightarrow \boxed{\mathcal{F}'} \longrightarrow ECBC^{\mathcal{F}_1,\mathcal{F}'}(M) }$$

Multiple of n/Otherwise

$$\mathcal{F}'=\mathcal{F}_2/\mathsf{not}$$
 defined

$$\mathcal{F}'=\mathcal{F}_2/\mathcal{F}_3$$

Some Variants of CBC-MAC

Construction

Multiple of n/Otherwise

Motivation

PRP based CBC-MACs

	Don dono Dornoutation		
CBC-MACs	Random Permutation		
	Lower Bound	Upper Bound	
CBC-MAC (Equal Length)	$\Omega\left(\frac{q^2}{2^n}\right)$	$O\left(\frac{\ell q^2}{2^n}\right)$ [BPR05, JN16]	
CBC-MAC (Prefix Free)	$\Omega\left(\frac{q^2}{2^n}\right)$	$O\left(\frac{\ell q^2}{2^n}\right)$ [BPR05]	
EMAC, ECBC, FCBC	$\Omega\left(\frac{q^2}{2^n}\right)$	$O\left(\frac{q^2}{2^n}\right)$ [Pie06, JN16]	
XCBC, TMAC	$\Omega\left(\frac{q^2}{2^n}\right)$	$O\left(\frac{\sigma^2}{2^n}\right)$ [IK03b], $O\left(\frac{\ell q^2}{2^n}\right)$ [MM07]	

6

PRF based CBC-MACs

Upper Bound

- PRF-PRP switching gives an upper bound of $O\left(\frac{\sigma^2}{2^n}\right)$.
- $O\left(\frac{\sigma^2}{2^n}\right)$ bound is rather loose. Can it be reduced?

PRF based CBC-MACs

Upper Bound

- PRF-PRP switching gives an upper bound of $O\left(\frac{\sigma^2}{2^n}\right)$.
- $O\left(\frac{\sigma^2}{2^n}\right)$ bound is rather loose. Can it be reduced?

Lower Bound

- Berke showed an attack on prefix-free CBC-MAC with $\frac{\ell^2q^2}{2^n}$ distinguishing advantage.
- Berke's attack doesn't extend to CBC-MAC variants.
- A lower bound of $\frac{q^2}{2^n}$ is trivially achievable. Can we have a better attack?

Contributions

Summary of Our Results

- Tight PRF bounds for PRF based EMAC, ECBC, FCBC, XCBC and TMAC.
- Lower bound applicable to CBC-MAC (equal length), OMAC, and iterated random function.

	Random Function		
	Lower Bound	Upper Bound	
CBC-MAC (Equal Length)	$\Omega\left(rac{q\sigma}{2^n} ight)$	-	
EMAC, ECBC	$\Omega\left(rac{q\sigma}{2^n} ight)$	$O\left(\frac{q\sigma}{2^n}\right)$	
FCBC	$\Omega\left(rac{qoldsymbol{\sigma}}{2^n} ight)$	$O\left(\frac{q\sigma}{2^n}\right)$	
XCBC, TMAC	$\Omega\left(rac{q\sigma}{2^n} ight)$	$O\left(\frac{q\sigma}{2^n}\right)$	

Upper Bound on PRF Security of MAC

For a tuple of $q \ge 2$ distinct messages $\mathcal{M} = (M_1, \dots, M_q)$,

· $\mathsf{INcoll}^{\mathcal{F}}(\mathcal{M})$ denotes the event

$$\exists i, j, 1 \leq i < j \leq q$$
, such that $in_{i,m_i} = in_{j,m_j}$.

 \cdot inCP(\mathcal{M}) = $Pr_{\mathcal{F}}[INcoll^{\mathcal{F}}(\mathcal{M})]$ and $inCP_{q,\ell,\sigma} = max_{\mathcal{M}} inCP(\mathcal{M})$.

Upper Bound on PRF Security of MAC

Lemma

For $q, \ell, \sigma \geq 1$ we have,

- 1. $\mathsf{Adv}_{\mathsf{EMAC}/\mathsf{ECBC}}(q,\ell,\sigma) \leq \mathsf{inCP}_{q,\ell,\sigma} + \frac{q(q-1)}{2N}$.
- 2. $\mathsf{Adv}_{\mathsf{FCBC}}(q,\ell,\sigma) \leq \mathsf{inCP}_{q,\ell,\sigma} + \frac{q(q-1)}{2N}$.
- 3. $\mathsf{Adv}_{\mathsf{XCBC/TMAC}}(q,\ell,\sigma) \leq \mathsf{inCP}_{q,\ell,\sigma} + \frac{q\sigma}{N} + \frac{q(q-1)}{2N}$.

Form here onwards MAC denotes EMAC, ECBC, FCBC, XCBC and TMAC. N denotes 2^n .

• 1 and 2 follows from the (delta) universal property of CBC-MAC.

Upper Bound on PRF Security of MAC

Lemma

For $q, \ell, \sigma \geq 1$ we have,

1.
$$\mathsf{Adv}_{\mathsf{EMAC}/\mathsf{ECBC}}(q,\ell,\sigma) \leq \mathsf{inCP}_{q,\ell,\sigma} + \frac{q(q-1)}{2N}$$
.

2.
$$\mathsf{Adv}_{\mathsf{FCBC}}(q,\ell,\sigma) \leq \mathsf{inCP}_{q,\ell,\sigma} + \frac{q(q-1)}{2N}$$
.

3.
$$\mathsf{Adv}_{\mathsf{XCBC/TMAC}}(q,\ell,\sigma) \leq \mathsf{inCP}_{q,\ell,\sigma} + \frac{q\sigma}{N} + \frac{q(q-1)}{2N}$$
.

Form here onwards MAC denotes EMAC, ECBC, FCBC, XCBC and TMAC. N denotes 2^n .

- 1 and 2 follows from the (delta) universal property of CBC-MAC.
- · 3 is derived by application of Coefficient H technique.

Let $\mathcal{M} = (M_1, \dots, M_q)$ be a q-tuple of distinct messages such that $M_i \in \{0,1\}^{nm_i}$, $1 \le m_i \le \ell$ for all $i \in \{1,\dots,q\}$, and $\sum_{i=1}^q m_i \le \sigma$.

Theorem: Upper Bound Theorem

For $\ell = O(q), \frac{q^2\ell}{N} \le 1$ we have,

$$\mathsf{inCP}_{q,\ell,\sigma} = O\left(\frac{q\sigma}{N}\right).$$

- Graph [BPR05] based representation of collision pattern in CBC computation.
- Internal inputs => vertices and transition from in_i to in_{i+1} => directed edge from in_i to in_{i+1}.

- bad₁: all graphs where walk corresponding to any message is cyclic. Bounded by $\sum_{i=1}^{q} \frac{m_i^2}{N}$.
- bad₂: all graphs where walks corresponding to any two messages have at least two non-trivial collisions. Bounded $\sum_{1 \leq i < j \leq q} \frac{(m_i + m_j)^4}{N^2}$.

$$M_1 = (A, B, C, D, E, F, G, H)$$
 and $M_2 = (A, B, C', D', E', F', G, H)$

- bad₁: all graphs where walk corresponding to any message is cyclic. Bounded by $\sum_{i=1}^{q} \frac{m_i^2}{N}$.
- bad₂: all graphs where walks corresponding to any two messages have at least two non-trivial collisions. Bounded $\sum_{1 \leq i < j \leq q} \frac{(m_i + m_j)^4}{N^2}$.

$$M_1 = (A, B, C, D, E, F, G, H)$$
 and $M_2 = (A, B, C', D', E', F', G, H)$

- bad₁: all graphs where walk corresponding to any message is cyclic. Bounded by $\sum_{i=1}^{q} \frac{m_i^2}{N}$.
- bad₂: all graphs where walks corresponding to any two messages have at least two non-trivial collisions. Bounded $\sum_{1 \leq i < j \leq q} \frac{(m_i + m_j)^4}{N^2}$.

$$M_1 = (A, B, C, D, E, F, G, H)$$
 and $M_2 = (A, B, C', D', E', F', G, H)$

- The probability of collision event over the remaining graphs is bounded by $\sum_{1 \le i < j \le q} \frac{\min\{m_i, m_j\}}{N}$.
- · Combining all three we get the result.

Lower Bound on PRF Security of MAC

Collision Distinguisher for MAC

- 1. Let $M_i = x_i || 0^{n(\ell-1)}, x_i \in \{0, 1\}^n$.
- 2. A queries M_i and observes the output t_i .
- 3. If $t_i = t_j$ for some j < i then \mathcal{A} returns 1.

Lemma (PRF-CBC Lower Bound)

$$Adv_{MAC}(q,\ell) \ge inCP(\mathcal{M}) \left(1 - \frac{q(q-1)}{2N}\right).$$

Theorem: Lower Bound Theorem

For $\frac{q^2\ell}{N} \leq 1$ and $\ell \leq \frac{N^{\frac{1}{3}}}{4}$ we have, $\mathsf{inCP}(\mathcal{M}) \geq \frac{q^2\ell}{12N}$.

Proof Sketch:

· Using Bonferroni Inequality,

$$\begin{split} & \mathsf{inCP}(\mathcal{M}) \geq \sum_{i < j} \overbrace{\Pr_{\mathcal{F}}[\mathsf{INcoll}^{\mathcal{F}}(M_i; M_j)]}^{\mathsf{inCP}_{i,j}} \\ & - 3 \sum_{i < j < k} \overbrace{\Pr_{\mathcal{F}}[\mathsf{INcoll}^{\mathcal{F}}(M_i; M_j) \cap \mathsf{INcoll}^{\mathcal{F}}(M_j; M_k)]}^{\mathsf{inCP}_{i,j,k}} \\ & - \frac{1}{2} \sum_{\substack{i < j,k < m \\ \{i,j\} \cap \{k,m\} = \emptyset}} \overbrace{\Pr_{\mathcal{F}}[\mathsf{INcoll}^{\mathcal{F}}(M_i; M_j) \cap \mathsf{INcoll}^{\mathcal{F}}(M_k; M_m)]}^{\mathsf{incP}_{i,j,k}} \end{split}$$

Proof Sketch: Bounding inCP_{i,j,k}

$$\Pr[\mathsf{Case} \ \mathbf{1}] \leq \frac{2\ell^2}{N^2}$$

$$\Pr[\textbf{Case 1}] \leq \tfrac{2\ell^2}{N^2} \qquad \qquad \Pr[\textbf{Case 2}] \leq \tfrac{6\ell^6}{N^3}$$

$$\mathsf{inCP}_{i,j,k} \leq \frac{2\ell^2}{N^2} + \frac{6\ell^6}{N^3}.$$

Proof Sketch: Bounding inCP_{i,i,k,m}

$$\Pr[\mathsf{Case} \ \mathsf{4}] \leq \frac{\ell^2}{N^2}$$

$$\Pr[\textbf{Case 4}] \leq \tfrac{\ell^2}{N^2} \qquad \Pr[\textbf{Case 2}] \leq \tfrac{6\ell^3}{N^3} \qquad \Pr[\textbf{Case 3}] \leq \tfrac{2\ell^5}{N^3}$$

$$\Pr[\mathsf{Case} \ \mathbf{3}] \leq \frac{2\ell^5}{N^3}$$

$$\Pr[\mathsf{Case} \ \mathsf{4}] \leq \tfrac{24\ell^8}{N^4}$$

$$\Pr[\mathsf{Case} \ 5] \leq \tfrac{4\ell^8}{N^4}.$$

$$| \text{inCP}_{i,j,k,m} \le \frac{\ell^2}{N^2} + \frac{6\ell^3 + 2\ell^5}{N^3} + \frac{28\ell^8}{N^4}.$$

Proof Sketch: Bounding in $CP_{i,j}$

• cycle denotes the event that at least one of the walks (corresponding to M_i or M_j) has a cycle.

$$\begin{split} \mathsf{inCP}_{i,j|\neg\mathsf{cycle}} &= \frac{\ell}{N} & \mathsf{Pr}[\mathsf{cycle}] \leq \frac{2\ell^2}{N}. \\ \\ & \boxed{\mathsf{inCP}_{i,j} \geq \frac{\ell}{N} \Big(1 - \frac{2\ell^2}{N}\Big).} \end{split}$$

• Combining all the cases we have, for $\frac{q^2\ell}{N} \le 1$ and $\ell \le \frac{N^{\frac{1}{3}}}{4}$, inCP $(\mathcal{M}) \ge \frac{q^2\ell}{12N}$.

Tight PRF Security Bound for MACs

Theorem: PRF Bound

For
$$\frac{q^2\ell}{N}<1,\ q\leq \sqrt{N},\ \ell\leq \min\left\{q,\frac{N^{\frac{1}{3}}}{4}\right\}$$
 we have,
$$\mathsf{Adv}_{\mathsf{MAC}}(q,\ell,\sigma)=\Theta\Big(\frac{q\sigma}{N}\Big).$$

"For CBC-MACs, PRP is a provably better choice than PRF"

