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Cipher Block Chaining

CBC function
For a length-preserving function F : {0,1}" — {0,1}" and input
M := (M, M,,--- M) € {0,1}"° CBC is defined as,
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- Forallie {1,...,b}, in; are called internal inputs.
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CBC function
For a length-preserving function F : {0,1}" — {0,1}" and input
M := (M, M,,--- M) € {0,1}"° CBC is defined as,
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- Forallie {1,...,b}, in; are called internal inputs.

- For prefix-free queries: secure MAC/PRF when F is a good
pseudorandom permutation/function.

- The input space is restricted to ({0,1}")".



Some Variants of CBC-MAC

Construction Multiple of n/Otherwise
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Some Variants of CBC-MAC

Construction Multiple of n/Otherwise
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Motivation



PRP based CBC-MACs

CBC-MACs Random Permutation

Lower Bound Upper Bound

CBC-MAC (Equal Length) (i) 0 (‘;i) [BPRO5, JN16]
CBC-MAC (Prefix Free) (%) 0 (%) [8PRoS]

EMAC, ECBC, FCBC (%) 0 (%) [Pie0s, IN16]

XCBC, TMAC (%) 0 () liko3bl, 0 (4 ) [MMo7]




based CBC-MACs

Upper Bound

- PRF-PRP switching gives an upper bound of O (‘;—f)

-0 (;’—f) bound is rather loose. Can it be reduced?
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Upper Bound

- PRF-PRP switching gives an upper bound of O (‘;—f)

-0 (%ﬁ) bound is rather loose. Can it be reduced?

Lower Bound

- Berke showed an attack on prefix-free CBC-MAC with ‘iﬁz
distinguishing advantage.

- Berke's attack doesn't extend to CBC-MAC variants.

- A lower bound of;i; is trivially achievable. Can we have a better
attack?
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Summary of Our Results

- Tight PRF bounds for PRF based EMAC, ECBC, FCBC, XCBC and
TMAC.

- Lower bound applicable to CBC-MAC (equal length), OMAC, and
iterated random function.

Random Function

Lower Bound Upper Bound
CBC-MAC (Equal 4o _
Length) (%)
EMAC, ECBC Q (%) 0 (%)
FCBC Q (%) 0 (%)
XCBC, TMAC Q(%7) 0 (%)




Upper Bound on PRF Security of MAC

For a tuple of g > 2 distinct messages M = (M,...,My),
M Mo L M; m

i ...... ‘l -
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CBCT (M)

- INcoll” (M) denotes the event

3i,j, 1<i<j<q, suchthatin, =injm.

- inCP(M) = Prx[INcoll”(M)] and inCP, ¢, = max inCP(M).



Upper Bound on PRF Security of MAC

Lemma
For g,¢,c > 1 we have,

q(g—1)
2N
q(qg —1)
2N

o o _1
3. Advxcec/muac(d, ¢, 0) < inCPq ¢, + CIW n Q(CI2N )

1. AdVewac/ecec(g, £, 0) < inCPq 4, +

2. Advecae(g, 4, 0) < InCPqy » +

Form here onwards MAC denotes EMAC, ECBC, FCBC, XCBC and TMAC.
N denotes 2".

- 1and 2 follows from the (delta) universal property of CBC-MAC.
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Lemma
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3. Advxcec/muac(d, ¢, 0) < inCPq ¢, + CIW n Q(CI2N )

1. AdVewac/ecec(g, £, 0) < inCPq 4, +

2. Advecae(g, 4, 0) < InCPqy » +

Form here onwards MAC denotes EMAC, ECBC, FCBC, XCBC and TMAC.
N denotes 2".

- 1and 2 follows from the (delta) universal property of CBC-MAC.
- 3is derived by application of Coefficient H technique.



Upper Bound on CBC Collision Probability

Let M = (My,..., Mg) be a g-tuple of distinct messages such that
M; € {0,1}"™, 1< m; < (forallie {1,...,q}, and 37, m; < o.

Theorem: Upper Bound Theorem
For ¢ = 0(q), % < 1 we have,
i —_o(9°
m@wﬂ_o(N)
Proof Sketch:

- Graph [BPRO5] based representation of collision pattern in CBC
computation.

- Internal inputs => vertices and transition from in; to inj,, =>
directed edge from in; to inj 4.
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Upper Bound on CBC Collision Probability

Proof Sketch:

- bads: all graphs where Wagk corresponding to any message is
cyclic. Bounded by 37, T
- bad,: all graphs where walks corresponding to any two

messages have at least two non-trivial collisions. Bounded
(mit+m;)*
ZWﬁK}'Sq N2

M; = (A,B,C,D,E,F,G,H) and M, = (A,B,C', D', E', F', G, H)
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Upper Bound on CBC Collision Probability

Proof Sketch:

- bads: all graphs where Wagk corresponding to any message is
cyclic. Bounded by 37, T
- bad,: all graphs where walks corresponding to any two

messages have at least two non-trivial collisions. Bounded
(mit+m;)*
ZWgK}'Sq N2

M; = (A,B,C,D,E,F,G,H) and M, = (A,B,C', D', E', F', G, H)

inis

inl,b D E mr,6

inj 4 o inj e
injs

- The probability of collision event over the remaining graphs is
min{m;,m;}

bounded by > icijcq —
- Combining all three we get the result.



Lower Bound on PRF Security of MAC

Collision Distinguisher for MAC

1. Let M; :X,'HOH(K_U,X; € {0,1}".
2. A queries M; and observes the output t;.

3. If t; =t; for some j < ithen A returns 1.

Lemma (PRF-CBC Lower Bound)

Advisc(q, £) > inCP(M) (1 - Q(QZI\_I ”).



Lower Bound on CBC Collision Probability

Theorem: Lower Bound Theorem

0 N3 : i
For &= < 1and ¢ < %= we have, inCP(M) > .

Proof Sketch:

- Using Bonferroni Inequality,

inCP; ;

inCP(M) > >~ Iz__r[INcollf(M,-;M,-)]
i<j
inCP; ; 1

-3 ”Zk PrIINCOTL” (M;; M;) N INCOLL” (Mj; My)]
i<j<

inCP; ; p.m

> Ijrr[INcollf(M,-;/\/l,)mINcollf(/\/lk;Mm)]

N —

i<j,k<m
{ij3n{k,m}=0

14



Lower Bound on CBC Collision Probability

Proof Sketch: Bounding inCP; ;
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Case 1. Case 2.

Pr[Case 1] < 2Nizz Pr[Case 2] < %ﬁ

. 20> 640
InCP,'JJ? < W + F




Lower Bound on CBC Collision Probability

Proof Sketch: Bounding inCP; ;.

Xi e—>e — — Xi e—>e — — Xi e—>e — — { »
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Lower Bound on CBC Collision Probability
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Lower Bound on CBC Collision Probability

Proof Sketch: Bounding inCP;;

- cycle denotes the event that at least one of the walks
(corresponding to M; or M;) has a cycle.

. 2
iNCP; jl—cycle = & Prlcycle] < 2.

incp,, > (1= 20).

@l

- Combining all the cases we have, for i,f <land/< NT

inCP(M) > Z£.



Tight PRF Security Bound for MACs

Theorem: PRF Bound

For i,f <1,9< VN, £<min {CI, Nf} we have,

AdVyac(q, £, o) = e(qﬁ).

“For CBC-MACs, PRP is a provably better choice than PRF”

19



Questions?
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