

A Note on 5-bit Quadratic Permutations' Classification

Dušan Božilov Begül Bilgin Hacı Ali Şahin

March 6, 2017

Motivation 2/14

- Permutations are main nonlinear part of symmetric primitives
- Quadratic permutations can be used to generate more complex S-boxes
- Affine equivalence preserves several important cryptographic properties
- 5-bit S-boxes: Keccak, Fides, Ascon

Preliminaries 3/14

- Algebraic normal form
- Differential distribution table
- Linear approximation table
- Multiplicative complexity
- Uniformity of Threshold Implementations
- Affine equivalence

Given vectorial Boolean function

$$S = [10365274]$$

Algebraic Normal Form (ANF) of S is given with

$$y_1 = 1 \oplus x_1$$

$$y_2 = x_2 \oplus x_1 x_3$$

$$y_3 = x_1 x_2 \oplus x_3 \oplus x_1 x_3$$

ullet S_{ANF} can be transformed into truth table matrix S_{TT}

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

- The difference distribution table (DDT)
 - DDT entries reveal how likely are we to guess output difference for a given input difference
 - The highest value in DDT, δ , is called differential uniformity
 - ullet S-boxes that achieve the theoretical minimal δ of 2 are referred to as almost perfect nonlinear (APN) permutations
- The linear approximation table (LAT)
 - LAT entries reveal if linear approximation can be used as a good estimate for given nonlinear S-box
 - ullet The highest value in LAT is denoted by λ
 - If λ achieves theoretical minimum of $2^{(n-1)/2}$, permutation is called an almost bent (AB) permutation

- Minimal number 2-input AND gates needed for implementation
 - Coarse estimate of the implementation cost

- Minimal number 2-input AND gates needed for implementation
 - Coarse estimate of the implementation cost

- MC is good for estimating cost of applying side-channel protection
 - Larger MC increase the size of protected implementation

- Boolean masking scheme
 - TI embodies several properties
- Uniformity ensures composability in first order designs

- Boolean masking scheme
 - TI embodies several properties
- Uniformity ensures composability in first order designs

- Boolean masking scheme
 - TI embodies several properties
- Uniformity ensures composability in first order designs

- Boolean masking scheme
 - TI embodies several properties
- Uniformity ensures composability in first order designs

- \circ S' = A \circ S \circ B
- Permutations that are affine equivalent form an equivalence class
- Affine equivalence preserves linear and differential properties
- There is an average $O(2^{3n})$ complexity algorithm to find affine representative of a class discovered by De Cannière
- For every n-bit permutation S there is a permutation S' where $S'(x) = x, x \in \{0, 1, 2, 4, \dots, 2^{n-1}\}$ such that S and S' are affine equivalent
- Affine equivalence classification is exponential problem
 - Boolean functions of up to 6 bits are classified
 - 3-bit and 4-bit permutations classified

- We focus only on coefficients that are linear or quadratic
- \bullet Using previous results from Leander and Poschmann we can fix several columns in S_{ANF}
- For one bit Boolean function all affine equivalence classes are of the form

$$y = x_i \oplus ax_j x_k \oplus bx_m x_n$$

- We limit number of quadratics in the first row using this constraint
- Balancedness enforced for each row, and any combination of rows

Up to two nonzero quadratic terms

- 10 balanced functions for the first row, 472 for each of the other rows
- Checking balancedness for combinations of all rows, we construct a bit over than 10 million $\sim O(2^{24})$ candidates
- We find representatives of all candidates and remove duplicates

Results 11/14

- 75 classes
- Two almost bent classes (δ : 2, λ : 4)
- 12 classes as good as Keccak S-box(δ : 8, λ : 8)
- Three non-AB classes with smaller differential uniformity than Keccak S-box (δ : 4, λ : 8)

Results 11/14

- 75 classes
- Two almost bent classes (δ: 2, λ: 4)
- 12 classes as good as Keccak S-box(δ: 8, λ: 8)
- Three non-AB classes with smaller differential uniformity than Keccak S-box (δ : 4, λ : 8)

Results 12/14

• Algebraic degree of the inverse permutation

• Uniform Threshold Implementations with three shares

Future work 13/14

- Improvements for 6-bit quadratic permutations
 - Current algorithm estimated at $\approx O(2^{70})$ permutations to investigate
- Adapting for non-quadratic classes
- Exploring possible compositions that can be obtained from the 75 quadratic classes

Thank you! Questions?