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Abstract. We study a generalization of the k-list problem, also known as the General-
ized Birthday problem. In the k-list problem, one starts with k lists of binary vectors
and has to find a set of vectors – one from each list – that sum to the all-zero target
vector. In our generalized Approximate k-list problem, one has to find a set of vectors
that sum to a vector of small Hamming weight ω. Thus, we relax the condition on
the target vector and allow for some error positions.
This in turn helps us to significantly reduce the size of the starting lists, which
determines the memory consumption, and the running time as a function of ω. For
ω = 0, our algorithm achieves the original k-list run-time/memory consumption,
whereas for ω = n

2 it has polynomial complexity.
As in the k-list case, our Approximate k-list algorithm is defined for all k = 2m, m > 1.
Surprisingly, we also find an Approximate 3-list algorithm that improves in the run-
time exponent compared to its 2-list counterpart for all 0 < ω < n

2 . To the best of
our knowledge this is the first such improvement of some variant of the notoriously
hard 3-list problem.
As an application of our algorithm we compute small weight multiples of a given
polynomial with more flexible degree than with Wagner’s algorithm from Crypto
2002 and with smaller time/memory consumption than with Minder and Sinclair’s
algorithm from SODA 2009.
Keywords: nearest neighbor problem · approximate matching · k-list problem ·
birthday problem · collision search · low weight polynomials

1 Introduction
Birthday-type attacks and their generalization by Wagner in 2002 [Wag02] to the so-called
k-list algorithm are one of the most fundamental tools in cryptanalysis, and therefore
of invaluable importance for assessing secure instantiations of cryptographic problems.
Wagner’s algorithm and its variations found numerous applications, e.g. for attacking
problems like e.g. hash function constructions [CJ04], LPN [LF06, GJL14, ZJW16],
codes [MO15, BJMM12, MMT11], lattices [AKS01, KS01] and subset sum [Lyu05, BCJ11,
HGJ10]. Furthermore the famous BKW algorithm [BKW00, AFFP14] – that was proposed
2 years before Wagner’s algorithm – can be considered as a special case of Wagner’s
algorithm with a limited number of lists.

In Wagner’s original k-list problem one receives lists L1, . . . , Lk with independent
random vectors from Fn

2 . The goal is to find (x1, . . . , xk) ∈ L1 × . . . Lk such that x1 +
. . .+ xn = 0n over Fn

2 . Notice that one can freely choose the list sizes |Li|. Information
theoretically, a solution exists whenever |Li| ≥ 2 n

k . Wagner showed that one can also
compute a (special type) solution, whenever |Li| ≥ 2

n
log k+1 for all i, and k a power of two.

The run-time and memory consumption of Wagner’s algorithm is up to polynomial factors
the input size of the k lists. For non-powers of two k = 2m + i, i < 2m one randomly
chooses an element (x2m+1, . . . , xk) ∈ L2m+1 × . . . × Lk, defines c := x2m+1 + . . . + x2k
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and runs the k′ = 2m-list algorithm on the lists L1, . . . , Lk′−1, (Lk′ + c) with (Lk′ + c) :=
{xk′ + c|xk′ ∈ Lk′}. It is a long-standing open problem to improve the running time for
the k-list problem between any two consecutive powers of 2.

If in practical applications one does not have sufficiently many elements to fill each
list with |Li| = 2

n
log k+1 elements, then one can use Minder and Sinclair’s variant [MS09] of

the k-list algorithm. This variant first expands the lists in a tree-based fashion up until a
certain stage, where Wagner’s original algorithm can be applied. Moreover, there exist
time-memory tradeoffs [Ber07, NS15] to reduce the large and often impractical memory
consumption of the k-list algorithm.

Interestingly in some recent applications, the requirement that the sum of all xi

exactly matches to the target vector 0n is too strong. In fact, in many recent advances
in cryptanalysis – e.g. for the LPN/LWE [GJL14, GJS15, KF15] and decoding [MO15,
BJMM12, MMT11] problem – the authors relax their algorithms to allow for sums that
match to some low Hamming weight. A similar situation appears for the search of near
collisions of a hash function [LR11, Leu12]. Thus, we belief that a more flexible treatment
of the k-list problem, where one additionally allows for some error positions in the target,
will find various further applications.

This motivates our Approximate k-list problem, parameterized by some error ω, in
which one has to find (x1, . . . , xk) ∈ L1 × . . . Lk such that |x1 + . . .+ xn| ≤ ω, where | · |
denotes the Hamming weight. Intuitively, this problem should be easier to solve than
the original k-list problem, since we obtain more potential solutions for growing error
ω. Information theoretically, the Approximate k-list problem has a solution, whenever
|Li| ≥ (2n

(
n
ω

)
) 1

k ≈ 2
(1−H(ω))n

k , where H(p) = −p log(p)− (1− p) log(1− p) with p ∈ (0, 1)
is the binary entropy function.

Our results: In Section 2.1, we start with an algorithm for the Approximate 2-list problem.
Notice that in this case one has to find (x1, x2) ∈ L1 × L2 having a Hamming distance of
at most ω. Therefore, we can directly apply the algorithm of May-Ozerov [MO15] from
Eurocrypt 2015 to find Nearest Neighbors in the Hamming distance. This results in an
algorithm whose run-time/memory is a strictly decreasing function for growing ω in the
relevant interval 0 ≤ ω ≤ n

2 . For ω = 0, we receive as a special case the original complexity
2 n

2 of the 2-list problem.
Next, we give an Approximate 3-list algorithm in Section 2.2. As in the original k-list

algorithm, our algorithm starts to match the elements in the first two lists L1, L2 exactly on
` coordinates, for some parameter `. In the list L3, we only filter the candidates for small
relative Hamming weight ω

` on these ` coordinates. This technique is somewhat similar to
the approach from Nikolic, Sasaki [NS15], but in the approximate k-list scenario such a
combination of matching and filtering achieves an exponential speedup in the run-time in
comparison to the 2-list algorithm, whereas Nikolic and Sasaki gain only some polynomial
speedup in the original k-list scenario. Eventually, we match the two resulting lists again
via a Nearest Neighbor search.

Notice that it is widely believed that the 3-list problem cannot be solved faster than the
2-list problem. This belief is directly linked to the famous 3SUM-problem in complexity
theory [KPP14], where it is conjectured that any algorithm for the 3-list problem requires
running time at least quadratic in the list sizes. This means that every algorithm basically
has to look at every pair of L1 × L2 and compare with the elements in L3.

In our Approximate 3-list setting we can work around this restriction, since Nearest
Neighbor search already works in sub-quadratic time, i.e., without looking explicitly at
every pair in two lists. To the best of our knowledge our approximate 3-list algorithm is
the first exponential improvement to some variant of the 3-list problem.

In Section 2.3, we generalize our Approximate k-list algorithm for powers of two,
k = 2m,m > 2. In a nutshell, our general k = 2m-algorithm first applies exact matchings



382 The Approximate k-List Problem

(like in Wagner’s algorithm) and some filtering for small weight up until we reach two
lists, and then applies a Nearest Neighbor search. We first give a non-optimized version
of our algorithm that allows for explicitly stating the original lists sizes |Li| and the
run-time/memory consumption as a closed formula of the parameters (n, k, ω). Such a
closed formula is certainly useful for direct application by cryptanalysts – although our
formula is somewhat less handy than Wagner’s formula for the k-list problem.

In Section 2.4 we do a more refined analysis to minimize the running time or the
memory consumption. This however requires some parameter optimization, which prevents
us from obtaining a closed formula. Of course, we are still able to illustrate our further
improvements from optimization in form of tables and run-time graphs as a function of ω.

In Section 2.5 we give algorithms for the cases k = 2m +2m−1,m > 2 which are in some
sense a combination of the 3-list and the 2m-list algorithms. We would like to point out
that we cannot get improved complexities for other choices of k, e.g. for k = 5, 7, 9, 10, 11.

In Section 3 we give a simpler and easy to implement variant of our algorithm, which
we call Match-and-Filter, with only slightly larger running times. Our Match-and-Filter
algorithm is inspired by near collision search for hash functions [Leu12].

As an application of our approximate k-list problem, we show how to compute small
weight multiples of a given polynomial P (x) ∈ F[x] of degree n. This is a problem
that directly arises in the context of fast correlation attacks [MS89, CT00, CJM02, LJ14,
ZXM15]. If one wants to find a weight-d, d = 2m + i, i < 2m multiple Q(x) of P (x),
one usually has to run the non-optimal k = 2m-algorithm. However in the approximate
scenario, we can now put the remaining i-coordinates into the error ω, and thus allow for
more flexible parameter settings. See Section 4.1 for further details.

2 Solving the Approximate k-list Problem
Throughout this section, we will omit polynomial factors in our exponential running
times. I.e., when we sort a list of size 2cn for some constant c, we will for simplicity of
notation write that this can be done in time 2cn instead of O(n2cn) or 2cn(1+o(1)). We will
however take care of all polynomial factors in our theorem statements, where these factors
contribute to some error term ε. Hence, in our notation sorting can be done in 2cn(1+ε)

for any ε > 0.
Furthermore, we will throughout this section assume that k is a constant and does not

depend on n, which is the usual application scenario in crypto. We will also assume that
w = cwn for some constant cw, i.e., the target weight is linear in n.

For completeness, let us also formally define the approximate k-list problem.

Definition 1. In the k-list problem with approximation cw ∈ [0, 1
2 ], one has to find in

k lists L1, . . . , Lk ⊂ Fn
2 an element (x1, . . . , xk) ∈ L1 × . . . × Lk such that x1 + . . . + xk

has Hamming distance |x1 + . . .+ xk| ≤ cwn. Here the entries in each Li are randomly
and independently chosen from Fn

2 , the list sizes can be chosen freely. We say that an
algorithm A in expectation solves the k-list problem with approximation cw, if A finds in
expectation a solution, where the probability space is taken over the k-list instance and
A’s internal coin tosses.

2.1 An Algorithm for the Approximate 2-list Problem
The basic idea of our approximate 2-list algorithm is to start with two lists L1, L2 of equal
size such that there exists in expectation an element (x1, x2) ∈ L1 × L2 with Hamming
distance |(x1, x2)| ≤ cwn. Such an element can with overwhelming probability be found in
subquadratic time in the list size |Li| with the May-Ozerov Nearest Neighbor algorithm.
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Theorem 1 (May-Ozerov [MO15]). Let L1, L2 ⊂ Fn
2 be two lists of size 2c with uniform

and pairwise independent vectors. For any constant ε > 0, one can find some pair
(x1, x2) ∈ L1 × L2 with Hamming distance |(x1, x2)| ≤ cwn ∈ N, cw ∈ [0, 1

2 ] in time

Õ
(

2(y+ε)n
)

with y := (1− cw)
(

1−H
(
H−1(1− c

n )− cw

2
1− cw

))
with overwhelming probability, provided that the restriction c

n < 1−H( cw

2 ) holds.

The restriction 1− c
n > H( cw

2 ) guarantees that in the definition of y the argument of
H(·) is positive. We would also like to remark that in [MO15], May and Ozerov originally
showed Theorem 1 for the case |(x1, x2)| = cwn, but it is not hard to see that it also
holds for |(x1, x2)| ≤ cwn. Namely, y is for constant c

n a strictly increasing function
in cw. Therefore, we can run the May-Ozerov algorithm for all O(n) integers in the
interval [0, cwn] that are candidates for |(x1, x2)|. The largest running time appears for
the maximum value, and thus we get an additional polynomial overhead of at most O(n),
which can be subsumed in the run time’s ε-term.

Together with the basic idea of our approximate 2-list algorithm described above, we
get the following immediate result for the approximate 2-list problem, which will also serve
as a building block for analyzing the approximate k-list problem for all k > 2.

Theorem 2. For all ε > 0, the 2-list problem with approximation cw ∈ [0, 1
2 ] can in

expectation be solved in time

T = 2(T∗(cw)+ε)n with T ∗(cw) := (1− cw)
(

1−H
(
H−1( 1+H(cw)

2 )− cw

2
1− cw

))
,

using memory M = 2
1−H(cw)

2 n(1+o(1)) and two lists of size M .

Proof. Let 2c be the size of the two initial lists. We set c = 1−H(cw)
2 n. The size of L1 ×L2

is 22c. Let Si,j be an indicator variable that takes value 1 iff the i-th element in L1 and
the j-th element in L2 have Hamming distance at most cwn. Then

E[Si,j ] = Pr(Si,j = 1) =
∑cwn

i=0
(

n
i

)
2n

≥
(
n

cwn

)
· 2−n ≥ 2(H(cw)−1)n

n+ 1 ,

where H(·) is the binary entropy function and the last inequality can be found as Lemma
9.2 in [MU05]. Therefore, the expected number of solutions satisfies

E[S] = E

∑
i,j

Si,j

 =
∑
i,j

E[Si,j ] ≥ 22c+(1−H(cw))n

n+ 1 = 1
n+ 1 .

Thus if we increase the initial sizes |L1|, |L2| by only a polynomial factor of θ(
√
n), we get

a solution in expectation.
Notice that the restriction of Theorem 1 is satisfied since

c

n
= 1−H(cw)

2 < 1−H(cw) < 1−H(cw

2 ).

Thus, by Theorem 1 our Nearest Neighbor search finds a solution with overwhelming
probability in time 2(T∗(cw)+ε)n.

Remark 1. We would like to point out that our analysis does not rely on a specific Nearest
Neighbor algorithm but works for any Nearest Neighbor routine. We just choose May-
Ozerov because it currently provides the best asymptotical running-time. In practical
applications one might replace May-Ozerov with a simpler Nearest Neighbor routine, see
e.g. Section 3.
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2.2 An Algorithm for the Approximate 3-list Problem
In this section, we propose an algorithm for the approximate 3-list problem, which gives a
(small, but remarkable) exponential improvement for all approximations 0 < cw < 1

2 .
Our algorithm, illustrated in Figure 1, works as follows. We start with two lists L1, L2

of size 2c1 and one list L3 of size 2c2 . In the first step we do a usual 2-list join of L1, L2
by finding and adding elements that agree on ` bits. This gives us a new list L12 with `
bits cancelled out. For L3 we filter out all but those elements, whose ` bits in the same
positions have a Hamming weight of ≤ c′w`, resulting in a list L′3.

Eliminate ` bits

Nearest neighbor

L1 L2 L3

2c1 2c1 2c2

0
|.|  c0w`

|.|  cwn

Find low weight

Figure 1: The Approximate 3-List Algorithm

Hence, if we add elements from L12 and L′3, their sum will also have a relative Hamming
weight of c′w in these ` positions. We now start a Nearest Neighbor search on the remaining
(n− `) bits that guarantees the correct Hamming weight for the whole vector.
Theorem 3. For all ε > 0, the 3-list problem with approximation cw ∈ [0, 1

2 ] can in
expectation be solved in time and memory

T = M = 2(y·T∗(cw)+ε)n with y :=
{ 2−2H(cw)

2T∗(cw)−H(cw)+1 cw ≤ c∗w
2

H(cw)+4T∗(cw)+1 cw ≥ c∗w
,

where T ∗(cw) is as defined in Theorem 2, and c∗w ≈ 0.241 satisfies T ∗(cw) = H(cw)−H(cw)2

4H(cw)−2 .

Proof. Let cw ≤ c∗w. We use the previously described algorithm and set

c1 := H(cw)2−H(cw)+2T∗(cw)
4T∗(cw)−2H(cw)+2 n, c2 := y · T ∗(cw)n,

` := H(cw)+2T∗(cw)−1
2T∗(cw)−H(cw)+1n, c′w = cw.

The lists L12, L′3 now satisfy

log (E[|L12|]) = 2c1 − ` = 1−H(cw)
2 (n− `)

log (E[|L′3|]) = c2 + (H(c′w)− 1) · ` = 1−H(cw)
2 (n− `),

i.e. they are of equal size. Let T1 = max{2c1 , |L12|}, T2 = 2c2 be the running time to
compute L12, L

′
3, respectively.

An application of the approximate 2-list algorithm from Theorem 2 on the n − `
right-most bits yields a solution in expectation in time T3 = 2T∗(cw)(n−`). Notice that by
our definition of `

T3 = 2T∗(cw)(n−`) = 2
2−2H(cw)

2T∗(cw)−H(cw)+1 T∗(cw)n = 2c2 = T2.

Since certainly T3 ≥ |L12|, we can conclude that T1 ≤ max{2c1 , T3}. Using cw ≤ c∗w, we
further conclude

T ∗(cw) ≤ H(cw)−H(cw)2

4H(cw)− 2

⇒ 2−2H(cw)
2T∗(cw)−H(cw)+1T

∗(cw) ≥ H(cw)2 −H(cw) + 2T ∗(cw)
4T ∗(cw)− 2H(cw) + 2

⇒ c2 ≥ c1
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Therefore the overall run-time is

T = T2 = 2c2 = 2
2−2H(cw)

2T∗(cw)−H(cw)+1 T∗(cw)n, if cw ≤ c∗w.

This already proofs the run-time for the first case of Theorem 3. Now assume cw ≥ c∗w
and let us choose

c1 := y · T ∗(cw)n, c2 := (1−H(cw))(H(cw)+4T∗(cw))
H(cw)+4T∗(cw)+1 n,

` := H(cw)+4T∗(cw)−1
H(cw)+4T∗(cw)+1n, c′w = cw.

Analogously to the reasoning before, we can show that this implies c1 ≥ c2 and

T = T1 = 2c1 = 2
2

H(cw)+4T∗(cw)+1 T∗(cw)n, if cw ≥ c∗w.

For both cases the memory consumption is

M = max(2c1 , 2c2 ,E[|L12|],E[|L3′ |]) = max(T1, T2, T2 · 2(H(cw)−1)`)︸ ︷︷ ︸
≤1

) = T.

Remark 2. It is not hard to calculate that both running times are equal for cw = c∗w, making
the run-time exponent as a function of cw a smooth curve, see the graph in Figure 2.

In the proof of Theorem 3 we chose c′w = cw. The only reason for this choice is to
achieve a closed formula for runtime and memory. Via numerical optimizations of c′w we
can further minimize the running time, see the table in Figure 2.

Figure 2 shows the run-time improvement in the exponent of our approximate 3-list
algorithm in comparison with the 2-list algorithm.

cw k = 2 k = 3 c′w = cw

0.1 0.3004 0.2818 0.2819
0.2 0.1774 0.1558 0.1559
0.3 0.0861 0.0721 0.0774
0.4 0.0244 0.0210 0.0236

c∗w cw

log(T )/n

Figure 2: Running time exponent log T
n of the approximate 3-list algorithm (solid) compared

to its approximate 2-list counterpart (dashed).

2.3 The Approximate k-List Algorithm
For generalizing our approximate k-list algorithm to arbitrary powers of two k = 2m, let
us first look at the easiest case k = 4 (see Figure 3).
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2.3.1 The Case k = 4.

We start with L1, L2, L3, L4 of length 2c. In the first phase we look for x1 ∈ L1, x2 ∈ L2
s.t. their `1 + `2 left-most bits sum to zero. We further look for x3 ∈ L3, x4 ∈ L4 s.t. their
`1 left-most bits as well as the bits in position `1 + `2 + 1, . . . , `1 + 2`2 sum to zero. The
sums x1 + x2, x3 + x4 are stored in lists L12, L34.

Now we filter L12 (resp. L34) for elements whose bits in positions `1 +`2 +1, . . . , `1 +2`2
(resp. `1 + 1, . . . , `1 + `2) are of relative Hamming weight ≤ cw. Let L′12 (resp. L′34) denote
the resulting list. The sum of all elements x ∈ L′12, y ∈ L′34 is now zero on the `1 left-most
bits and has relative Hamming weight ≤ cw on the bits `1 + 1, . . . , `1 + 2`2. In the last
phase we apply Nearest Neighbor search with target weight c′w on the remaining bits
`1 + 2`2 + 1, . . . , n. It remains to determine c, `1, `2, c

′
w in order to minimize the run-time.

00

L1 L2 L3 L4

00

00 00

0

Eliminate `1 + `2 bits

Filter for | · |  cw

 c0w

 cw  cw

`1 `2`1`2

Nearest neighbor
search for | · |  c0w

Figure 3: The Approximate k-List Algorithm, k = 4

2.3.2 The Case k = 2m.

For bigger k the algorithm consists of three phases (see Figure 4) determined by parameters
`1, `2, `3, `4 ∈ N. We start with k = 2m lists of length 2c each. In the first step of the
first phase the algorithm pairwise merges the lists into new lists by combining elements
x ∈ Li−1, y ∈ Li, i = 2, 4, . . . , k s.t. x+y is zero on all bits of the sets Ai,1, where

Ai,j =
{
{1, . . . , j`1, (m − 2)`1 + `2 + 1, . . . (m − 2)`1 + `2 + j`3} i ≤ k/2j

{1, . . . , j`1, (m − 2)(`1 + `3) + `2 + `4 + 1, . . . (m − 2)(`1 + `3) + `2 + `4 + j`3} i > k/2j ,

j = 1, . . . ,m− 2. Let Li−1,i, i = 2, 4, . . . , k denote the resulting lists.
This step is repeated m − 2 times, until we end up with four lists containing only

elements whose (m− 2)(`1 + `3) bits determined by the sets Ai,m−2 are zero.
In the second phase we do one more k-list step eliminating `2+`4 bits which results in two

lists L′1 and L′2. L′1 contains elements with zeros on the bits 1, . . . , (m−2)(`1 +`3)+`2 +`4,
while L′2 contains elements with zeros on the bits 1, . . . , (m− 2)`1 + `2, (m− 2)(`1 + `3) +
`2 + `4 + 1, . . . , (m − 2)(`1 + 2`3) + `2 + 2`4. Now we filter L′1 for elements whose bits
(m−2)(`1 +`3)+`2 +`4 +1, . . . , (m−2)(`1 +2`3)+`2 +2`4 have a relative Hamming weight
≤ cw and do the same for L′2 on the bits (m− 2)`1 + `2 + 1, . . . (m− 2)(`1 + `3) + `2 + `4
to create two lists L′′1 , L′′2 . An application of Nearest Neighbor search with target weight
c′w on the remaining bits, for some c′w that we will define later, results in a proper solution
of total Hamming weight ≤ cwn .

Theorem 4. For all ε > 0 the approximate k-list problem, k = 2m, m > 1, with
approximation cw ∈ [0, 1

2 ] can in expectation be solved in time and memory

T = M = 2(y·T∗(cw)+ε)n with

y :=
{ 2−2H(cw)

2H(cw)T∗(cw)−H(cw)+2mT∗(cw)−2H(cw)mT∗(cw)+1 cw ≤ c∗w
2−H(cw)

2mT∗(cw)+1 cw ≥ c∗w
,

where c∗w satisfies H(cw) = 2mT∗(cw)−4T∗(cw)+1
2mT∗(cw)−2T∗(cw)+1 .
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L1 L2 L3 L4

Filter for | · |  cw  cw

`1

`2

 c0w

L5 L6 L7 L8

Eliminate `1 + `3 bits

Eliminate `2 + `4 bits

`3

`4

`1 `3 `1 `3 `1 `3

`2 `4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0

 cw

Nearest neighbor
search for | · |  c0w

Figure 4: The Approximate k-List Algorithm, k = 8

Proof. Let cw ≥ c∗w. We use the previously described algorithm and set

c = y · T ∗(cw)n `1 = `2 = 0 `3 = c c′w = cw

`4 = H(cw)+8T∗(cw)−4H(cw)T∗(cw)−2mT∗(cw)+2H(cw)mT∗(cw)−1
4mT∗(cw)+2 n.

Thus we eliminate c bits per step in the first phase, i.e. the list sizes stay the same in
expectation. We achieve the four resulting lists in time T1 = 2c. In the second phase `4
bits are eliminated in time max{2c, |L′i|}. The two remaining lists L′1 and L′2 satisfy

log(E(|L′i|)) = 2c− `4 = 1−H(cw)
2 n.

The filtering step takes time 2
1−H(cw)

2 n, resulting in two lists L′′1 and L′′2 satisfying

log(E(|L′′i |)) = 1−H(cw)
2 n+ (H(cw)− 1)((m− 2)`3 + `4)

= 1−H(cw)
2 (n− (m− 2)c− 2`4).

Thus the second phase overall takes time T2 = max{2c, 1−H(cw)
2 n}. Using the approximate

2-list algorithm of Theorem 2 on the remaining n−(m−2) ·(`1 +2`3)−`2−2`4 = n−2(m−
2)c − 2`4 bits yields one solution in expectation in time T3 = 2T∗(cw)(n−2(m−2)c−2`4) =
2c = T1. Note that all elements x ∈ L′′1 , y ∈ L′′2 sum up to a vector whose left-most
2(m− 2)c+ 2`4 bits are of relative Hamming weight ≤ cw. Therefore the found solution is
of Hamming weight ≤ cwn. Using cw ≥ c∗w we conclude

⇒ H(cw) ≥ 2mT ∗(cw)− 4T ∗(cw) + 1
2mT ∗(cw)− 2T ∗(cw) + 1

⇒ 2−H(cw)
2mT∗(cw)+1T

∗(cw)n ≥ 1−H(cw)
2 n

⇒ c ≥ 1−H(cw)
2 n

⇒ T1 = T2.

Therefore the overall run-time is

T = T1 = 2c = 2
2−H(cw)

2mT∗(cw)+1 T∗(cw)n, if cw ≥ c∗w
proving the second case. Assuming cw ≤ c∗w we choose

c = y · T ∗(cw)n
`1 = `2 = 1−2H(cw)mT∗(cw)+2mT∗(cw)+2H(cw)T∗(cw)−4T∗(cw)−H(cw)

(m−1)·(2H(cw)T∗(cw)−H(cw)+2mT∗(cw)−2H(cw)mT∗(cw)+1) n

`3 = `4 = H(cw)+2T∗(cw)−1
(m−1)·(2H(cw)T∗(cw)−H(cw)+2mT∗(cw)−2H(cw)mT∗(cw)+1)n.
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Note that `1 + `3 = c, i.e. we eliminate c bits per step in the first phase, again resulting
in stable list sizes in expectation and a run-time of T1 = 2c for this phase. In the second
phase another `2 + `4 = c bits are eliminated. The filtering step returns two lists L′′1 and
L′′2 satisfying

log(E(|L′′i |)) = c+ (H(cw)− 1)((m− 2)`3 + `4) = 1−H(cw)
2 (n− (m− 1)(`1 + 2`3)).

This phase takes time T2 = 2c = T1. Again Theorem 2 can be applied on the remaining
n − (m − 1)(`1 + 2`3) bits. Thus, we obtain one solution in expectation in time T3 =
2T∗(cw)(n−(m−1)(`1+2`3)) = 2c = T1, i.e. all phases have the same running time.

Note that all elements x ∈ L′′1 , y ∈ L′′2 sum up to a vector whose left-most (m− 1)`1
bits are zero, while the bits (m− 1)`1 + 1, . . . , (m− 1)(`1 + 2`3) are of relative Hamming
weight at most cw. Therefore the found solution is of Hamming weight at most cw(2(m−
2)`3) + cw(n− (m− 1)(`1 + 2`3)) = cw(n− (m− 1)`1) ≤ cwn.

The algorithm returns a valid solution in time

T = 2c = 2
2−2H(cw)

2H(cw)T∗(cw)−H(cw)+2mT∗(cw)−2H(cw)mT∗(cw)+1 T∗(cw)n

for the given parameters. Note that `1 ≥ 0 is equivalent to cw ≤ c∗w. Thus this is a
necessary condition for this choice of parameters.

Figure 5 visualizes the running times of our approximate k-list algorithm.

cw

log(T )/n

Figure 5: run-time exponent log T
n of the approximate k-list algorithm for k = 4 (solid),

k = 8 (dotted), k = 32 (dashed, upper), k = 1024 (dashed, lower).

2.4 Practical Optimizations
In the case cw ≤ c∗w our approximate k-list algorithm from Section 2.3 returns a solution
of weight strictly smaller than cwn for the given parameters. Obviously this is not optimal
– but we sacrificed optimality in Section 2.3 for the sake of obtaining a closed run time
formula in Theorem 4.

In this section we choose optimal parameters as follows

`1 = c `2 = ` `3 = `4 = 0
c′w = cwn

n−(m−2)c−` .

Our resulting algorithm consists of several k-list steps and a Nearest Neighbor search at
the end (see Figure 6 for the case k = 8), where the parameters c, ` remain to be specified.
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As we eliminate c bits per step in the first phase, the four resulting lists are of expected
size 2c. After eliminating another ` bits, we have two lists L′1, L′2 satisfying

log (E[|L′1|]) = log (E[|L′2|]) = 2 · c− `.

This takes time T1 = max{2c, 22c−`}. An application of Nearest Neighbor search on
L′1, L′2 takes time T2 = 2T∗2 (c′w)(n−(m−2)c−`). The resulting solution is of weight at most
c′w(n−(m−2)c−`) = cwn. In order to make the algorithm return a solution in expectation
and to optimize for run time, we need to solve

log (E[|L′i|]) = 1−H(c′w)
2 (n− (m− 2)c− `)

T1 = T2

which gives us

c = 2T∗2 (c′w)
H(c′w)+2mT∗2 (c′w)+1n

` = H(c′w)+4T∗2 (c′w)−1
H(c′w)+2mT∗2 (c′w)+1n.

|.|  w

L1 L2 L3 L4

|Li| = 2c

L5 L6 L7 L8

Eliminate `1 bits

Eliminate `2 bits

0 0 0 0

0 0

0Nearest neighbor search

Figure 6: The Approximate k-List Algorithm, k = 8

Unfortunately c′w is now a function of c and `, which prevents us from deriving a closed
formula for c, ` or T as in Section 2.3. Instead, we determine c, ` by numerical optimization
to minimize the run time T = 2c. Figures 7 and 8 give optimized run times for various k,
cw in comparison with the results of Section 2.3.

cw T. 4 c `
0.0 0.3333 0.3333 0.3333
0.1 0.2199 0.2001 0.2294
0.2 0.1349 0.1204 0.1504
0.3 0.0716 0.0611 0.0815
0.4 0.0228 0.0190 0.0268

(a) k = 4

cw T. 4 c `
0.0 0.2500 0.2500 0.2500
0.1 0.1803 0.1564 0.1862
0.2 0.1188 0.0961 0.1219
0.3 0.0635 0.0506 0.0680
0.4 0.0219 0.0167 0.0230

(b) k = 8

cw T. 4 c `
0.0 0.1667 0.1667 0.1667
0.1 0.1325 0.1077 0.1288
0.2 0.0960 0.0692 0.0893
0.3 0.0549 0.0381 0.0510
0.4 0.0202 0.0133 0.0189

(c) k = 32

cw T. 4 c `
0.0 0.0909 0.0909 0.0909
0.1 0.0797 0.0619 0.0755
0.2 0.0649 0.0417 0.0510
0.3 0.0430 0.0240 0.0313
0.4 0.0169 0.0092 0.0122

(d) k = 1024

Figure 7: Parameters for different k, cw, compared to the run-time exponents log(T )
n given

by Theorem 4 (last column).
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cw

log(T )/n

Figure 8: Run-time exponent log(T )
n of the approximate 32-list algorithm for minimal time

(dots) and given by Theorem 4 (curve)).

The above choice of parameters minimizes the run-time. If we want to minimize the
memory consumption, we can simply balance the list size over the whole algorithm through
setting ` = c. Figures 8 and 9 show the differences between the two optimizations.

min. time min. memory
cw c/n log(T )/n log(M)/n
0.0 0.3333 0.3333 0.3333
0.1 0.2001 0.2182 0.1876
0.2 0.1204 0.1374 0.1047
0.3 0.0611 0.0712 0.0481
0.4 0.0190 0.0218 0.0129

(a) k = 4

min. time min. memory
cw c/n log(T )/n log(M)/n
0.0 0.2500 0.2500 0.2500
0.1 0.1564 0.1735 0.1461
0.2 0.0961 0.1136 0.0847
0.3 0.0506 0.0612 0.0407
0.4 0.0167 0.0197 0.0117

(b) k = 8

min. time min. memory
cw c/n log(T )/n log(M)/n
0.0 0.1667 0.1667 0.1667
0.1 0.1077 0.1252 0.1021
0.2 0.0692 0.0857 0.0620
0.3 0.0381 0.0484 0.0316
0.4 0.0133 0.0168 0.0098

(c) k = 32

min. time min. memory
cw c/n log(T )/n log(M)/n
0.0 0.0909 0.0909 0.0909
0.1 0.0619 0.0764 0.0591
0.2 0.0417 0.0549 0.0379
0.3 0.0240 0.0327 0.0207
0.4 0.0092 0.0124 0.0072

(d) k = 1024

Figure 9: Comparisons of the run-time exponents log(T )
n and memory consumption expo-

nents log(M)
n between the time-minimized (c 6= `, T = M = 2c) and memory-minimized

(c = `, M = 2c, T = T2) choice of parameters.

Remark 3. The analysis in Section 2 only holds when the initial list sizes can be freely
chosen. Minder and Sinclair [MS09] showed how to adapt Wagner’s k-list algorithm to the
case, where one starts with smaller sizes. The same techniques can be adapted here.

2.5 Improvements for k = 2m + 2m−1

We are also able to provide improved algorithms for k of the form k = 2m + 2m−1. In a
nutshell these algorithms are natural generalizations of the techniques used for k = 2m

and k = 3. Figure 10 and Figure 11 show our algorithms for k = 6 = 22 + 2 resp.
k = 12 = 23 + 22. Figure 12 compares their running-times to our approximate 4 and 8-list
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L1 L2 L3 L4

`1

 c0w

L5 L6

`3

0 0

0 00

0

0

0

`2

 cw1  cw2

Nearest neighbor
search for | · |  c0w

Elimination
and filtering

2c1 2c2

Figure 10: The Approximate k-List Algorithm, k = 6

L1 L2 L3 L4

 c0w

L5 L6

Nearest neighbor
search for | · |  c0w

Elimination
and filtering

2c1 2c2

L7 L8 L9 L10 L11 L12

0 0 0 0

00 00

000 000

0 0

0 0 0

0 0 0

0 0 0

 cwi

`i

0 0

Figure 11: The Approximate k-List Algorithm, k = 12

algorithms. Unfortunately we did not find improved algorithms for other choices of k, i.e.
we found no improvement for k = 5 over k = 4, no improvement for k = 7 over k = 6, and
so on. We leave it as an open problem whether improvements are possible in these cases.

cw k = 4 k = 6 k = 8 k = 12
0.0 0.3333 0.3333 0.2500 0.2500
0.1 0.2001 0.1975 0.1564 0.1532
0.2 0.1204 0.1152 0.0961 0.0926
0.3 0.0611 0.0573 0.0506 0.0479
0.4 0.0190 0.0180 0.0167 0.0159

Figure 12: Running time exponent log T
n for k = 4, 6, 8 and 12.

3 Match-and-Filter algorithm
In this section we give an alternative algorithm for the approximate k-list problem, which
we call Match-and-Filter. It has a simple description and is easy to implement. Moreover,
its running time is for k = 2, 3 better than the results from Section 2.1 and 2.2 (but
without closed formula for the run time), and for k ≥ 4 only slightly worse than the results
of Section 2.4.

The Match-and-Filter algorithm adapts ideas from Leurent’s near-collision search for
hash functions [Leu12] to our approximate k-list setting. Namely, we first match elements
via exact collisions on a fraction of all coordinates and we eventually hope that the
remaining (so far truncated) part contains vectors with small Hamming weight.

In more detail (see also Figure 13), Match-and-Filter starts with lists L1, . . . , Lk,
k = 2m with |Li| = 2c, and merges them pairwise by finding elements that agree on the c
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leftmost bits. This is repeated m times until only one list is left that contains elements
with zeros on the m · c leftmost bits. Then the algorithm searches for an element of weight
w on the remaining rightmost bits.

Note that this technique can also be adapted to the case k = 2m + 2m−1, similar to
Section 2.5.

L1 L2 L3 L4|Li| = 2c

0 0

0
Eliminate c bits

Eliminate c bits

0 |.|  wFind low weight

Figure 13: Match-and-Filter algorithm for k = 4

The expected size of the lists stays 2c throughout all but the final step of Match-and-Filter.
Therefore, in the final filtered list L′ the expected number of solutions is

E[|L′|] = 2c ·
∑w

i=0
(

n−m·c
i

)
2n−m·c .

Finding a value for c numerically that satisfies E[|L′|] = 1 gives us the run time T = 2c

and the memory consumption M = 2c. Figure 14 provides the run times for k =
2, 3, 4, 8, 32, 1024 in comparison to the results of Sections 2.1, 2.2 and 2.4.

For the cases k = 2, 3 the Match-and-Filter algorithm gives better running times. But
notice that Match-and-Filter is also slightly more restrictive in the sense that it fixes a
larger region of all-zero bits in the target vector. This might be an issue for applications,
where one searches for target vectors of a special form.

cw log(T )/n S. 2.1
0.0 0.5000 0.5000
0.1 0.2920 0.3004
0.2 0.1692 0.1774
0.3 0.0814 0.0861
0.4 0.0232 0.0244

(a) k = 2

cw log(T )/n S. 2.2
0.0 0.5000 0.5000
0.1 0.2769 0.2818
0.2 0.1590 0.1558
0.3 0.0778 0.0721
0.4 0.0221 0.0210

(b) k = 3

cw log(T )/n S. 2.4
0.0 0.3333 0.3333
0.1 0.2040 0.2001
0.2 0.1238 0.1204
0.3 0.0630 0.0611
0.4 0.0195 0.0190

(c) k = 4

cw log(T )/n S. 2.4
0.0 0.2500 0.2500
0.1 0.1576 0.1564
0.2 0.0984 0.0961
0.3 0.0518 0.0506
0.4 0.0170 0.0167

(d) k = 8

cw log(T )/n S. 2.4
0.0 0.1667 0.1667
0.1 0.1091 0.1077
0.2 0.0704 0.0692
0.3 0.0387 0.0381
0.4 0.0136 0.0133

(e) k = 32

cw log(T )/n S. 2.4
0.0 0.0909 0.0909
0.1 0.0623 0.0619
0.2 0.0418 0.0417
0.3 0.0241 0.0240
0.4 0.0092 0.0092

(f) k = 1024

Figure 14: Running time exponents log(T )
n for various k, cw in comparison to Section 2.

4 Applications
Our work was motivated by [BJMM12, MMT11] which solve some approximate k-list
problem (but with a unique solution) in the context of decoding linear codes.
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Wagner [Wag02] showed that his original k-list algorithm finds collisions for hash
functions that are based on sums, like e.g. AdHash or PCIHF hash. Our approximate
k-list algorithm can be used to find near collisions for those hash functions.

Another application from Wagner [Wag02] is the so-called Parity Check Problem. We
will show in the following that this problem is indeed rather an instance of the approximate
k-list problem, and thus our algorithms improve over the results obtained via the original
k-list algorithm.

4.1 Solving the Parity Check Problem
In the Parity Check Problem we are given an irreducible polynomial P (X) of degree n
over F2, and we want to find a multiple Q(X) of P (X) of weight smaller than d� n and
degree smaller than N � n. We show now how this problem relates to the approximate
k-list problem. As we cannot easily compute the polynomial overhead of May-Ozerov’s
nearest neighbor, we use our simpler algorithm from Section 3.

Let F := F2[X]/P [X] be a finite field of size 2n. |P (X)| denotes the weight of a
polynomial P (X), i.e. the number of non-zero coefficients. The sum of two elements
corresponds to the sum of their coefficient vectors. We choose k = 2m = 2blog dc as the
number of lists and fill them with 2c elements of the form

Xa mod P (X) ∈ F, a ∈ {1, 2, . . . , N}.

Now we run m k-list steps in order to eliminate c bits per step to eventually create one list
L. This list contains elements of the form Xa1 + . . .+Xak whose m · c leftmost coefficients
are zero. In our analysis in this section, we assume this takes time and memory (# number
of lists · size of a list) per step.

In the last step, we filter L to find a small-weight polynomial

Q1(X) := Xa1 ⊕ . . .⊕Xak = Q2(X) mod P (X),

where Q2(X), |Q2(X)| ≤ w := d − k. The number of solutions in the filter list L′ is on
expectation

E[|L′|] = E[|L|] ·
∑w

i=0
(

n−mc
i

)
2n−mc

= 2(m+1)c−n ·
w∑

i=0

(
n−mc

i

)
.

Furthermore it follows that

Q(X) := Q1(X)⊕Q2(X) = 0 mod P (X),

i.e. Q(X) is a multiple of P (X) and |Q(X)| ≤ |Q1(X)|+ |Q2(X)| ≤ d. We have ai ≤ N
and deg (Q2(X)) ≤ n, because Q2(X) is reduced modulo P (X). Hence, Q(X) is of degree
at most N , as required. Solving E[|L′|] = 1 gives us the required initial list size 2c and
therefore the degree N = d2ce.

4.2 Comparison with [Wag02] and [MS09].
Wagner’s k-list algorithm [Wag02] returns a polynomial of degree N = 2

n
log k+1 (=̂ the

initial list size) determined by the number of lists k in time and memory kN .
The extended k-list algorithm of Minder and Sinclair [MS09] works for smaller list sizes

than Wagner’s algorithm, automatically resulting in lower degree polynomials. Actually
the effects of using Minder-Sinclair for the parity check problem have not been discussed
in the cryptographic literature so far. We provide the results in Figure 15, where we also
compare to [Wag02] and our Match-and-Filter algorithm.
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For a fixed degree (to the value of Minder-Sinclair), our algorithm gives better run
time/memory consumptions. When we fix the time/memory complexity (again to the
value of Minder-Sinclair), our Match-and-Filter algorithm provides a better degree.

Furthermore, the Minder-Sinclair algorithm only achieves a minimum degree of 2n/k,
while we can go below this bound for d 6= 2m. The reason is that our search for approxi-
mations returns more solutions than an exact collision search, and therefore the initial
lists are usually smaller.

Wagner Minder-S. Match-and-Filter
fixed deg fixed T/M

d k deg T/M deg T/M deg T/M deg T/M
2 2 60 61 60 61 60 61 60 61
3 2 60 61 60 61 57 58 57 58
4 4 40 42 40 42 40 42 40 42
5 4 40 42 39 43 39 41 36 43
6 4 40 42 37 47 37 39 32 47
7 4 40 42 36 49 36 38 28 49
8 8 30 33 30 33 30 33 30 33
9 8 30 33 29 33 29 32 27 33
15 8 30 33 24 38 24 27 14 38

Figure 15: Comparison of the bit complexities of the algorithms k-list [Wag02], extended
k-list [MS09] and our Match-and-Find for finding a multiple of a polynomial of degree
n = 120.

The main application of the parity check problem is fast correlation attacks on stream
ciphers [MS89, CT00, CJM02, LJ14, ZXM15]. Here it is of major importance to obtain low
degree polynomials, because the degree determines the number of output bits an attacker
has to know. Thus investing more time for finding suitable polynomials usually pays off in
total. For this task our algorithm improves over Wagner and Minder Sinclair. Currently
most fast correlation attacks are restricted to weight 4 or 5, while our algorithm provides
more flexibility for the choice of weights.
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