New techniques for trail bounds and application to differential trails in Keccak

Silvia Mella^{1,2} Joan Daemen^{1,3} Gilles Van Assche¹

¹STMicroelectronics ²University of Milan ³Radboud University

Fast Software Encryption March 5-8, 2017

Outline

- 1 Introduction
- 2 Generating trails
- 3 Scanning space of trails in Keccak-f
- 4 Experimental results
- 5 Conclusions

Outline

- 1 Introduction
- 2 Generating trails
- 3 Scanning space of trails in Keccak-
- 4 Experimental results
- 5 Conclusions

Differential trails in iterated mappings

$$DP(Q) \approx DP_{0,1} \times DP_{1,2} \times DP_{2,3} \times DP_{3,4} \times DP_{4,5} \times DP_{5,6}$$

$$Q: q_0 q_1 q_2 q_3 q_4 q_5 q_6$$

- ► Trail: the sequence of differences after each round
- DP(Q): fraction of pairs that exhibit q_i differences

Differential trails and weight

$$w = -\log_2(DP)$$

$$w(Q) = w_{0,1} + w_{1,2} + w_{2,3} + w_{3,4} + w_{4,5} + w_{5,6}$$

$$Q: q_0 q_1 q_2 q_3 q_4 q_5 q_6$$

- ► The weight is the number of binary conditions that a pair must satisfy to exhibit q_i differences
- ▶ If independent conditions and $\mathrm{w}(Q) < b$: $\#\mathsf{pairs}(Q) \approx 2^{b-\mathrm{w}(Q)}$

Given a trail, we can extend it

- forward: iterate over all differences R-compatible with q_5
- **b** backward: iterate over all differences R^{-1} -compatible with q_1

Given a trail, we can extend it

- ▶ forward: iterate over all differences R-compatible with q_5
- **b** backward: iterate over all differences R^{-1} -compatible with q_1

Given a trail, we can extend it

- forward: iterate over all differences R-compatible with q_5
- **b** backward: iterate over all differences R^{-1} -compatible with q_1

Given a trail, we can extend it

- ▶ forward: iterate over all differences R-compatible with q_5
- **b** backward: iterate over all differences R^{-1} -compatible with q_1

Trail cores

Minimum reverse weight:

$$\mathbf{w}^{\mathrm{rev}}(q_1) \triangleq \min_{q_0} \mathbf{w}(q_0, q_1)$$

- Can be used to lower bound set of trails
- ▶ Trail core: set of trails with $q_1, q_2, ...$ in common

Goals of this work

- Present general techniques to generate trails
- Improve bounds of differential trails in Keccak-f
 - ▶ By extending the space of trails in Keccak-f that can be scanned with given computation resources

rounds	Keccak-f[200]	Keccak-f[400]	Keccak-f[800]	Keccak-f[1600]
2	8	8	8	8
3	20	this work	this work	32
4	46	this work	this work	this work
5	this work	this work	this work	this work
6	this work	this work	this work	this work

Outline

- 1 Introduction
- 2 Generating trails
- 3 Scanning space of trails in Keccak-
- 4 Experimental results
- 5 Conclusions

Generation of n-round trails of weight $\leq T$

First-order approach

Starting from 1-round differentials with weight $\leq \lfloor \frac{T}{n} \rfloor$

Second-order approach

Starting from 2-round trails with weight $\leq \lfloor \frac{2T}{n} \rfloor$

Fact

The number of 2-round trails with weight $\leq 2L$ is much smaller than the number of 1-round differentials with weight $\leq L$.

Example: AES

AES has more than 10^{11} round differentials with weight ≤ 15 , but no 2-round trail with weight ≤ 30

Generating 2-round trails as tree traversal

- 2-round trails are arranged in a tree
- Children are generated by adding groups of active bits without removing bits already added
- Pruning by lower bounding the weight of a node and its children

Outline

- 1 Introduction
- 2 Generating trails
- 3 Scanning space of trails in Keccak-f
- 4 Experimental results
- 5 Conclusions

Operates on 3D state:

y z

- ▶ (5×5) -bit slices
- ≥ 2^ℓ-bit lanes
- parameter $0 \le \ell < 7$

Round function with 5 steps:

- \triangleright θ : mixing layer
- \triangleright ρ : inter-slice bit transposition
- \blacktriangleright π : intra-slice bit transposition
- $\triangleright \chi$: non-linear layer
- ι: round constants

- ▶ 12 rounds in Keccak-*f* [25]
- ▶ 24 rounds in Keccak-*f* [1600]

Operates on 3D state:

- ▶ (5×5) -bit slices
- ≥ 2^ℓ-bit lanes
- ▶ parameter $0 \le \ell < 7$

Round function with 5 steps:

- θ: mixing layer
- \triangleright ρ : inter-slice bit transposition
- \blacktriangleright π : intra-slice bit transposition
- $\triangleright \chi$: non-linear layer
- ι: round constants

- ▶ 12 rounds in Keccak-*f* [25]
- ▶ 24 rounds in Keccak-*f* [1600]

Operates on 3D state:

- ▶ (5×5) -bit slices
- ≥ 2^ℓ-bit lanes
- parameter $0 \le \ell < 7$

Round function with 5 steps:

- \triangleright θ : mixing layer
- ho: inter-slice bit transposition
- \blacktriangleright π : intra-slice bit transposition
- $\triangleright \chi$: non-linear layer
- ι: round constants

- ▶ 12 rounds in Keccak-*f* [25]
- ▶ 24 rounds in Keccak-*f* [1600]

Operates on 3D state:

- ▶ (5×5) -bit slices
- ≥ 2^ℓ-bit lanes
- parameter $0 \le \ell < 7$

Round function with 5 steps:

- \triangleright θ : mixing layer
- ho: inter-slice bit transposition
- \blacktriangleright π : intra-slice bit transposition
- $\triangleright \chi$: non-linear layer
- ι: round constants

- ▶ 12 rounds in Keccak-*f* [25]
- ▶ 24 rounds in Keccak-*f* [1600]

Properties of θ

- ightharpoonup The heta map adds a pattern, that depends on the parity, to the state.
- Affected columns are complemented
- Unaffected columns are not changed

The parity Kernel

- \triangleright θ acts as the identity if parity is zero
- A state with parity zero is in the kernel (or in |K|)
- A state with parity non-zero is outside the kernel (or in |N|)

Differential trails in KECCAK-f

Round: linear step $\lambda = \pi \circ \rho \circ \theta$ and non-linear step χ

- $ightharpoonup a_i$ fully determines $b_i = \lambda(a_i)$
- $\triangleright \chi$ has degree 2: $w(b_{i-1})$ independent of a_i
- Minimum reverse weight:

$$\mathbf{w}^{\mathrm{rev}}(a_1) \triangleq \min_{b_0} \mathbf{w}(b_0)$$

Differential trails in KECCAK-f

Round: linear step $\lambda = \pi \circ \rho \circ \theta$ and non-linear step χ

- $ightharpoonup a_i$ fully determines $b_i = \lambda(a_i)$
- $\triangleright \chi$ has degree 2: $w(b_{i-1})$ independent of a_i
- Minimum reverse weight:

$$\mathbf{w}^{\mathrm{rev}}(a_1) \triangleq \min_{b_0} \mathbf{w}(b_0)$$

Differential trails in Keccak-f

$$w(Q) = w_{rev}(a_1) + w(b_1) + w(b_2) + w(b_3)$$

$$\xrightarrow{\lambda} \chi \xrightarrow{\lambda} \chi \xrightarrow{\lambda} \chi \xrightarrow{\lambda} \lambda \xrightarrow{\lambda} a_1 b_1 a_2 b_2 a_3 b_3$$

Round: linear step $\lambda = \pi \circ \rho \circ \theta$ and non-linear step χ

- $ightharpoonup a_i$ fully determines $b_i = \lambda(a_i)$
- $\triangleright \chi$ has degree 2: $w(b_{i-1})$ independent of a_i
- Minimum reverse weight:

$$\mathbf{w}^{\mathrm{rev}}(a_1) \triangleq \min_{b_0} \mathbf{w}(b_0)$$

$$w(Q) = w_{rev}(a_1) + w(b_1) + w(b_2)$$

$$\xrightarrow{\lambda} \chi \xrightarrow{\lambda} \chi \xrightarrow{\lambda} b_1$$

$$\xrightarrow{a_1} b_1 \xrightarrow{a_2} b_2$$

- Space split based on parity of a_i
- ▶ Four classes: |K|K|, |K|N|, |N|K| and |N|N|

$$w(Q) = w_{rev}(a_1) + w(b_1)$$

$$\xrightarrow{a_1} b_1$$

- Generating (a_1, b_1)
- Extending forward by one round

$$W(Q) = W_{rev}(a_1) + W(b_1)$$

$$a_1 \qquad b_1$$

- Generating (a_1, b_1)
- Extending forward by one round

$$w(Q) = w_{rev}(a_2) + w(b_2)$$

$$\downarrow a_2 b_2$$

- Generating (a_2, b_2)
- Extending backward by one round

- Generating (a_2, b_2)
- Extending backward by one round

Generating trail cores in |K|

- ▶ To stay in |K| units are *orbitals* = pairs of active bits in the same column
- ▶ A state *a* is a set of orbitals $a = \{u_i\}_{i=1,...,n}$
- ▶ In the tree: the children of a node a are $a \cup \{u_{n+1}\}$

Order relation over units

- ► A total order relation over units allows avoiding duplicates
- ▶ With a total order ≺ over units, a state is an ordered list of units:

$$a = (u_i)_{i=1,\ldots,n}$$
 s.t. $u_1 \prec u_2 \prec \cdots \prec u_n$

▶ In the tree: the children of a node a are

$$a \cup \{u_{n+1}\} \ \forall \ u_{n+1} \text{ s.t. } u_n \prec u_{n+1}$$

▶ For orbitals: the lexicographic order $[z, x, y_1, y_2]$

Pruning by lower bounding the weight

- ▶ The weight is monotonic in the addition of orbitals
- The weight of a lower bounds the weight of all descendants of a
- As soon as the search encounters a with weight above the limit, a and all its descendants can be safely pruned

Parity-bare states

Parity-bare state: a state with the minimum number of active bits before and after θ for a given parity

- 0 active bits in unaffected even columns
- ▶ 1 active bit in unaffected odd column
- \triangleright 5 active bits in affected column either before or after θ

States in |N|

Lemma

Each state can be decomposed in a unique way in a parity-bare state and a list of orbitals

States in |N|

Lemma

Each state can be decomposed in a unique way in a parity-bare state and a list of orbitals

Orbital tree

- Root: a parity-bare state
- Units: orbitals in unaffected columns
- ▶ Order: the lexicographic order on $[z, x, y_1, y_2]$
- ▶ Bound: weight of the trail itself

Run tree

- Root: the empty state
- Units: column assignments
- Bound: by estimating maximum weight lost due to addition of new column assignments

- forward: iterate a_4 over all differences χ -compatible with b_3
- lacktriangle backward: iterate b_{-1} over all differences χ^{-1} -compatible with a_0
- ▶ in the kernel: restrict to differences with parity zero
- outside the kernel: restrict to differences with parity non-zero

Forward extension

- lacksquare Set of compatible states is an affine space $\mathcal{A}(b_r)=e+V$
- ▶ Basis transformation: $V = V_K + V_N$
- Extension in |K| by scanning $e_K + V_K$
 - ▶ possible $\Leftrightarrow e_K$ exists
- Extension in |N| by scanning $e + V_K + V_N$
- Scanning as a tree traversal
 - root: is the offset
 - children: by incrementally adding basis vectors
 - bound: by estimating the maximum weight lost due to addition of basis vectors not already added

Outline

- 1 Introduction
- 2 Generating trails
- 3 Scanning space of trails in Keccak-
- 4 Experimental results
- 5 Conclusions

Experimental results

► All 3-round trail cores with weight ≤ 45

No 6-round trail with weight ≤ 91

Outline

- 1 Introduction
- 2 Generating trails
- 3 Scanning space of trails in Keccak-
- 4 Experimental results
- 5 Conclusions

Conclusions

- General formalism to generate differential patterns as simple and efficient tree traversal
- ► New bounds for Keccak-f and new trails with the lowest known weight

rounds	b = 200	b = 400	b = 800	b = 1600
2	8	8	8	8
3	20	24	32	32
4	46	[48,63]	[48,104]	[48,134]
5	[50,89]	[50,147]	[50,247]	[50,372]
6	[92,142]	[92,278]	[92,556]	[92,1112]

Table: Current bounds for the minimum weight of differential trails

Thanks for your attention

