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Abstract. Whitebox cryptography aims to ensure the security of cryptographic
algorithms in the whitebox model where the adversary has full access to the execution
environment. To attain security in this setting is a challenging problem: Indeed, all
published whitebox implementations of standard symmetric-key algorithms such as
AES to date have been practically broken. However, as far as we know, no whitebox
implementation in real-world products has suffered from a key recovery attack. This
is due to the fact that commercial products deploy additional software protection
mechanisms on top of the whitebox implementation. This makes practical attacks
much less feasible in real-world applications.
There are numerous software protection mechanisms which protect against standard
whitebox attacks. One such technique is control flow obfuscation which randomizes
the order of table lookups for each execution of the whitebox encryption module.
Another technique is randomizing the locations of the various Look up tables (LUTs)
in the memory address space. In this paper we investigate the effectiveness of these
countermeasures against two attack paradigms. The first known as Differential
Computational Analysis (DCA) attack was developed by Bos, Hubain, Michiels and
Teuwen in CHES 2016. The attack passively collects software execution traces for
several plaintext encryptions and uses the collected data to perform an analysis
similar to the well known differential power attacks (DPA) to recover the secret key.
Since the software execution traces contain time demarcated physical addresses of
memory locations being read/written into, they essentially leak the values of the
inputs to the various LUTs accessed during the whitebox encryption operation, which
as it turns out leaks sufficient information to perform the power attack. We found
that if in addition to control flow obfuscation, one were to randomize the locations
of the LUTs in the memory, then it is very difficult to perform the DCA on the
resultant system using such table inputs and extract the secret key in reasonable
time. As an alternative, we investigate the version of the DCA attack which uses the
outputs of the tables instead of the inputs to mount the power analysis attack. This
modified DCA is able to extract the secret key from the flow obfuscated and location
randomized versions of several whitebox binaries available in crypto literature.
We develop another attack called the Zero Difference Enumeration (ZDE) attack. The
attack records software traces for several pairs of strategically selected plaintexts and
performs a simple statistical test on the effective difference of the traces to extract
the secret key. We show that ZDE is able to recover the keys of whitebox systems.
Finally we propose a new countermeasure for protecting whitebox binaries based
on insertion of random delays which aims to make both the ZDE and DCA attacks
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practically difficult by adding random noise in the information leaked to the attacker.

Keywords: Whitebox Cryptography, differential computational analysis, zero enumer-
ation attack. control randomization, dummy operation

1 Introduction
Whitebox cryptography was introduced by Chow et al. in 2002 [CEJvO02a] as a technique
to protect software implementations of cryptographic algorithms in untrusted environments.
An increasing number of applications are emerging that require substantial security in
purely software environments, e.g. set-top boxes, PCs, tablets, smartphones, HCE, digital
rights management (DRM) systems, or client software running in the cloud. The major goal
of whitebox cryptography is to protect the confidentiality of secret keys when the adversary
has full access to the execution environment with the aid of a decompiler, debugger tools
and dynamic binary analysis tools, e.g. IDA Pro, IL DASM, Valgrind and PIN. In the
wake of this seminal paper, several further variants of whitebox implementations for AES
were proposed [BCD06, XL09, Kar10, LN05].

The whitebox setting assumes that the executable of the encryption module would run
on untrusted and often malicious platforms over which an adversary has total control. As
such, potentially every intermediate value computed by the executable is liable to be leaked
and would provide the adversary a channel of additional information for cryptanalysis.
Thus, for a given scheme to be whitebox secure, it has to withstand key recovery attack, even
under the assumption that every temporary/intermediate value it calculates is available
to the adversary. Although, all published whitebox solutions for AES to date have
been practically broken [BGE04, WMGP07, MWP10, MRP12, LRM+13, Mul14], due to
increasing demand, a large number of companies still sell and deploy whitebox AES products
and solutions. The reason for this is that the security model of whitebox cryptography is
too strong in many real-world applications. In practice white box cryptography is often
only a small part of the software protection mechanism, where it is used in conjunction
with additional protection techniques like [ARX14, whi15, Mic15]

• Control flow obfuscation: For each execution, the path of the computation is ran-
domized to confuse and force an adversary to reverse engineer a complex node graph,
including a runtime randomization and dummy operations.

• Tamper resistance: Integrity protection to ensure that the application code and
read-only data are not modified.

• Device binding: Binding the code/binary to the current device, and therefore
preventing it from executing in the adversaries environments.

• Anti-debug protection: Detecting whether the binary is executed under a debugger,
and performing counteractions.

The device binding and the anti-debug protection hamper the usage of disassembler/de-
bugging and binary analysis tools, and it defends the adversary from the full control of the
execution environments and lifting the code/binary. The control flow randomization and
the tamper resistance prevent the adversary from performing attacks which may require
finding a correct byte position and overwriting it. To bypass these protections, considerable
reverse engineering efforts by means of analysis tools with high skills and experience are
required on the adversary’s side [Wys12].

A number of other practical key recovery attacks against whitebox AES implementations
have been proposed [BGE04, MWP10, MRP12, LRM+13, Mul14] in which, by decomposing
the obfuscated table, the secret key is derived with practical time complexity. These attacks
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require read/write access to correct internal states during the execution to exploit the
relation between input and output of the target obfuscated table. Sanfelix et al. propose
a differential fault analysis on whitebox AES and DES [SMdH15] in which faults are
injected into the cryptographic process at the correct locations within the algorithm.
This attack also requires write access to the specific state where faults are injected. The
integrity protection and the control flow randomization make these attacks infeasible in
the real-world products with a barrier to the full control by the device binding and the
anti-debug protection. In fact, until now, no white-box implementation in a real-world
product has suffered from a key recovery attack. There is a clear gap between theory and
practice.

In summary, it is still questionable if previous attacks work for the real-world products
where additional countermeasures are deployed and the adversary has limited control of
the environment.

1.1 Contributions and Organization
In this paper we investigate the effectiveness of countermeasures against side-channel attacks
on whitebox implementations (Section 4). These countermeasures are similar to some
of the software protection mechanisms that protect real-world whitebox systems[ARX14,
whi15, Mic15]. We perform and verify the DCA proposed by Bos et. al., which uses
techniques from power side-channel attacks on hardware to recover the key of software
systems. Since the attack is feasible by passively collecting software execution traces for
several plaintext encryptions, integrity check protections is useless against this attack
unlike previous attacks. The techniques are verified on a challenge1 released for CHES
2016, in several variants that also include protection mechanisms (Section 6):

• Control flow obfuscation: We created an implementation of the CHES 2016 code
that randomly shuffles the order of the instructions in each run without changing
the result of the encryption.

• Randomization of table locations: We used a PRNG to randomly disperse lookup
tables in the memory address space.

We find that if one were to randomize the locations of the whitebox tables in the
memory, then it is very difficult to perform the DCA on the resultant system and extract
the secret key in reasonable time. As an alternative, we investigate the version of the
DCA attack which uses the outputs of the tables instead of the inputs to mount the
power analysis attack. This modified DCA is able to extract the secret key from the flow
obfuscated and location randomized versions of the whitebox binaries. We propose a new
countermeasure for protecting whitebox binaries based on insertion of random dummy
operations, which aims to make DCA attacks practically difficult by adding random noise
in the information leaked to the attacker.

Finally we propose and implement another attack paradigm called the Zero Difference
Enumeration Attack (ZDE, Section 5). We show that the ZDE attack can recover the key
of whitebox systems, by applying it to publicly available whitebox challenges:

• The Hack.lu challenge of 2009.

• A public implementation of the Chow whitebox available on the Internet2.

We then show that the ZDE attack is applicable to any combination of the counter-
measures listed above. Finally we propose a new countermeasure for protecting whitebox

1Found at https://ctf.newae.com/flags/
2at https://github.com/ph4r05/Whitebox-crypto-AES

https://ctf.newae.com/flags/
https://github.com/ph4r05/Whitebox-crypto-AES
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binaries based on the “random disarrangement of time” countermeasure, originally pro-
posed in [Man04] to counteract power attacks against symmetric ciphers. This measure
essentially aims to make both the ZDE and DCA attacks practically difficult by adding a
random number of dummy operations before performing table accesses.

The rest of the paper is organized in the following manner. In Section 2, we give a brief
description of the AES-128 block cipher and Chow’s whitebox scheme. In Section 3, we
describe the Differential Computation Attacks (DCA) introduced in [BHMT16] and further
introduce the notions of address and value based attacks, (ADCA and VDCA respectively).
In Section 4, we describe in brief the software countermeasures we have considered in this
paper. In Section 5, we introduce the concept of Zero Difference Enumeration attacks. All
experimental results are included in Section 6. Section 7 concludes the paper.

2 Whitebox AES Implementations
This section first describes the algorithm of AES, and fixes notations of the whitebox AES
that we will use throughout the paper.

2.1 Description of AES
AES-128 is a block cipher with a 128-bit internal state and a 128-bit key K. The internal
state S and the key are represented by two 4× 4 byte matrices. For example, the internal
state after round r is represented as follows (where s(r)

i,j are byte values).

S(r) =


s

(r)
0,0 s

(r)
0,1 s

(r)
0,2 s

(r)
0,3

s
(r)
1,0 s

(r)
1,1 s

(r)
1,2 s

(r)
1,3

s
(r)
2,0 s

(r)
2,1 s

(r)
2,2 s

(r)
2,3

s
(r)
3,0 s

(r)
3,1 s

(r)
3,2 s

(r)
3,3


AES consists of a data processing part and a key schedule. The data processing part

adopts a substitution-permutation network whose round function consists of four layers:
SubBytes, ShiftRows, Mixcolumns and AddRoundKey. Subkeys are generated by a key
schedule. 128-bit subkeys are denoted as K(r), 1 ≤ r ≤ 11, and each byte is indexed by i
and j as k(r)

i,j in the same manner of the state S. For the details of the key schedule of
AES, we refer to [oST01].

SubBytes is a set of sixteen 8-bit nonlinear transformation Sb: {0, 1}8 → {0, 1}8

applying a 8-bit S-box to each cell. ShiftRow rotates four bytes in the a-th row by a
positions to the left. MixColumns is a linear transformation MC: {{0, 1}8}4 → {{0, 1}8}4

which multiplies each column by a 4× 4 diffusion matrix with branch number 5. Let the
coefficients of the matrix be denoted by mci,j , 0 ≤ i, j ≤ 3. AddRoundKey adds a 128-bit
subkey K(r) to a 128-bit state by an XOR operation. Note that AddRoundKey is also
performed before the first round as whitening and that MixColumns is omitted in the last
round.

We define a 32-bit function Subround as follows. Let K̂(r) and Ŝ(r) denote the key
and the state obtained after applying ShiftRows to K(r) and S(r), respectively. k̂

(r)
i,j ,

ŝ
(r)
i,j are respectively each byte of K̂(r) and Ŝ(r). T

(r)
i,j : {0, 1}8 → {0, 1}8 is defined as

T
(r)
i,j (x) = Sb(x⊕ k̂(r)

i,j ).

Definition 1. (Subround) Subround(r)
j : {{0, 1}8}4 → {{0, 1}8}4 for 1 ≤ r ≤ R and

0 ≤ j ≤ 3 is defined as (y0, y1, y2, y3) = Subround(r)
j (x0, x1, x2, x3) (note R = 10 for

AES-128) with
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• 1 ≤ r ≤ R− 1

yi = (mci,0 ⊗ T (r)
0,j (x0))⊕ (mci,1 ⊗ T (r)

1,j (x1))

⊕(mci,2 ⊗ T (r)
2,j (x2))⊕ (mci,3 ⊗ T (r)

3,j (x3)), 0 ≤ i ≤ 3.

• r = R

yi = (k(R+1)
i,j ⊕ T (r)

i,j (xi)), 0 ≤ i ≤ 3.

Here ⊗ denotes finite field multiplication in GF (28) represented in the polynomial
basis x8 + x4 + x3 + x+ 1. As an intended consequence of the design of AES, the structure
of the data processing function can be rewritten such that each round uses four Subround
modules. The data processing par of the AES-128 is described as Algorithm 1.

Algorithm 1 AES-128 implementation (data processing part)
S(0) ← Plaintext
/* Round 1 to 10 */
for r = 1 to 10 do
Ŝ(r−1) ← ShiftRow(S(r−1))
for j = 0 to 3 do

(s(r)
0,j , s

(r)
1,j , s

(r)
2,j , s

(r)
3,j)← Subround(r)

j (ŝ(r−1)
0,j , ŝ

(r−1)
1,j , ŝ

(r−1)
2,j , ŝ

(r−1)
3,j )

end for
end for
Ciphertext← S(10)

2.2 Chow et al’s Whitebox Implementation
Whitebox implementations of AES were first proposed by Chow et al. in [CEJvO02b].
The basic idea is to combine the key and the algorithm by partial evaluation of parts of
the cipher. The approach was to find a representation of the algorithm as a network of
look-ups in randomized and key-dependent tables. These tables are protected with secret
mappings, with the aim of making extracting the key from them difficult. A trivial (but
not practical) example of this is to simply precompute a full mapping from all plaintexts to
their corresponding ciphertexts. Encryption is then a single table lookup on the plaintext,
and recovering the key should be as hard as attacking the cipher in a black-box scenario.
However such a lookup table will need at least 2128 entries (one for every plaintext) and
hence it is infeasible.

The main idea in the paper by Chow et. al. is a method for constructing a set of
randomized key-dependent tables that have a practical size, allowing whitebox AES to
be implemented in practice. For a detailed description of Chow’s whitebox we refer to
[CEJvO02b] and an excellent tutorial available at [Mui13]. However for the completeness
of the paper we provide a small structural description.

In the case of the Chow et. al. whitebox design, the principal idea is to create an
encoded subround function EnSubround. Specifically, the whitebox implementation adds
nonlinear bijection functions P (r)

i,j and Q(r)
i,j : {0, 1}8 → {0, 1}8, 0 ≤ i ≤ 3 before and after

Subround(r)
j as shown in Fig. 1. The first and last rounds disregard input and output

encodings, respectively. Define an encoded subround EnSubround(r)
j as follows.

Definition 2. (Encoded Subround)
EnSubround(r)

j : {{0, 1}8}4 → {{0, 1}8}4 for 2 ≤ r ≤ 9 and 0 ≤ j ≤ 3 is defined as
(y0, y1, y2, y3) = EnSubround(r)

j (x0, x1, x2, x3) with
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P0P0 P1P1 P2P2 P3P3

SubroundSubround

Q1Q1 Q2Q2 Q3Q3 Q4Q4

Figure 1: High-level view of an encoded subround of the Chow et. al. AES.

• r = 1 (first)

(y0, y1, y2, y3) = (Q(r)
0,j(z0), Q(r)

1,j(z1), Q(r)
2,j(z2), Q(r)

3,j(z3)),

where (z0, z1, z2, z3) = Subround(r,j)(x0, x1, x2, x3), zi ∈ {0, 1}8

• 2 ≤ r ≤ R− 1

(y0, y1, y2, y3) = (Q(r)
0,j(z0), Q(r)

1,j(z1), Q(r)
2,j(z2), Q(r)

3,j(z3)),

where (z0, z1, z2, z3) = Subround(r,j)(P (r)
0,j (x0), P (r)

1,j (x1), P (r)
2,j (x2), P (r)

3,j (x3)), zi ∈ {0, 1}8

• r = R (last)

(y0, y1, y2, y3) = Subround(r,j)(P (r)
0,j (x0), P (r)

1,j (x1), P (r)
2,j (x2), P (r)

3,j (x3)).

The output encodings Qi and input encodings Pi of successive rounds are pairwise
annihilating between ShiftRows to maintain the functionality of AES. For the first and
last round there are no input and output encodings, respectively. Chow et al’s whitebox
implementation of AES-128 is provided as Algorithm 2.

Algorithm 2 Chow et al’s Whitebox AES implementation
S(0) ← Plaintext
for r = 1 to 10 do
Ŝ(r−1) ← ShiftRow(S(r−1))
for j = 0 to 3 do

(s(r)
0,j , s

(r)
1,j , s

(r)
2,j , s

(r)
3,j)← EnSubround(r)

j (ŝ(r−1)
0,j , ŝ

(r−1)
1,j , ŝ

(r−1)
2,j , ŝ

(r−1)
3,j )

end for
end for
Ciphertext← S(10)

2.2.1 Composition of Encoded Subround

In practice, each EnSubround is created from four types of smaller lookup tables (LUTs):
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• Level 1 T-boxes (Table A): These LUTs combine the effect of AddRoundKey and
SubBytes, ShiftRows and a part of the Mixcolumns transformations. Each round
consists of 16 such T-boxes that map a byte value to a 4-byte (i.e 32 bit) value. Hence
there are essentially 160 such T-boxes in total. In order to diffuse the information,
the 32 bit output of partial MixColumns layer is subject to an invertible linear
transformation called Mixing bijection. Table A consists of R(r)

j ◦MCi◦T (r)
i,j ◦(L

(r)
i,j )−1,

where MCi: {0, 1}8 → {0, 1}32 is the i-th column operation of MixColumn. (L(r)
i,j )−1:

{0, 1}8 → {0, 1}8 is a secret 8-bit linear bijection and R(r)
j : {0, 1}32 → {0, 1}32 is

the Mixing bijection, referred to previously. Note that for each of the 4 bytes input
EnSubround modules in one AES round, only a partial Mixcolumn multiplication
with the ith column of the MDS matrix is done. In order to complete the Mixcolumn
operation, the results of the multiplication needs to be summed. This is precisely
what is done in the tables of the next level.

• Level 2 Xor-tables (Table C1): These tables are essentially used to perform the addi-
tion operations of the MixColumns layer that were not performed in the construction
of the Level 1 T-boxes. Table C is an 8 to 4 bits XOR table. 32-bit XOR operation
is realized by 2-layer six Table C1 calls.

• Level 3 T-boxes (Table B): These LUTs partially cancel the effect of Mixing bijections
applied in the level 1 T-boxes, by multiplying each byte input with one column of
the inverse Mixing bijection matrix. As a result these tables also map byte values to
4-bytes. Table B comprises L(r+1)

j ◦ (R(r)
i,j )−1. (R(r)

i,j )−1: {0, 1}8 → {0, 1}32 basically
represents multiplication by the 8i− 8i+ 7th columns of the inverse matrix of R(r)

j .
Since only a partial multiplication is done with the (R(r)

j )−1 matrix, as in level 1, the
addition operations omitted in this level is performed in the tables of the next level.
L

(r+1)
j : {0, 1}32 → {0, 1}32 is a 32 bit linear bijection which is chosen to cancel the

effect of (L(r+1)
i,j )−1. In fact functionally, it is simply the concatenation of the 8-bit

bijections L(r+1)
0,j ||L(r+1)

1,j ||L(r+1)
2,j ||L(r+1)

3,j .

• Level 4 Xor-tables (Table C2): These tables are essentially used to perform the
addition operations that are not performed in the construction of the Level 3 T-boxes.

Thus each round in Chow’s whitebox AES consists of a number of Level 1 to 4 lookup
tables. Of these, only the level 1 tables are key-dependent. To be more precise, each round
r can be seen as a parallel application of 4 encoded subrounds EnSubroundr

j for 0 ≤ j ≤ 3.
Each EnSubroundj would operate on a quarter of the 128 bit state i.e. 32 bits and produce
a 32 bit output. Each EnSubroundj is thus composed of the four types of tables (Table A,
B, C1, C2) as shown in Figure 2.

2.2.2 Visible States.

We use the following notations. For each EnSubroundj

• Let the 128-bit states after Table A and B in round r be denoted as TA(r)
j =

{TA(r)
j [0], . . . , TA(r)

j [15]} and TB(r)
j = {TB(r)

j [0], . . . , TB(r)
j [15]}, TA(r)

j [i] ∈ {0, 1}8

and TB(r)
j [i] ∈ {0, 1}8, respectively.

• Let the 32-bit state of at the input of the Table B be layer TC(r)
j = {TC(r)

j [0], . . .,
TC

(r)
j [3]}, TC(r)

j [i] ∈ {0, 1}8 is the byte input to the ith Table B in EnSubroundj .
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(L2, j
(r))-1

T2, j
(r)

Table-A

s0,j
(r-1) s1,j

(r-1) s2,j
(r-1) s3,j

(r-1)

4

MC2

(L3, j
(r))-1

T3, j
(r)

4

MC3

(L0, j
(r))-1

T0, j
(r)

4

MC0

(L1, j
(r))-1

T1, j
(r)

4

MC1

Lj
(r+1) Lj

(r+1)Lj
(r+1)

(R{1, j}
(r))-1(R{0, j}

(r))-1 (R{2, j}
(r))-1 (R{3, j}

(r))-1

Lj
(r+1)

S1,j
(r) S2,j

(r) S3,j
(r)

Rj
(r) Rj

(r) Rj
(r) Rj

(r)

Table-C

TAj
(r) TAj

(r)[0]
TAj

(r)[15]

TBj
(r)

TBj
(r)[0]

TBj
(r)[15]

TCj
(r)[0]

Table-B

TCj
(r)[3]

TCj
(r)

TC1j
(r)[0]

TC2j
(r)[0]

TC-1j
(r)[15]

TC-2j
(r)[15]

Figure 2: Table-based composition of the encoded subround of the Chow et. al. AES.

• Define 64-bit internal states of table C1 and C2 as TC1(r)
j = {TC1(r)

j [0], . . .,
TC1(r)

j [15]}, TC1(r)
j [i] ∈ {0, 1}4, and TC2(r)

j = {TC2(r)
j [0], . . ., TC2(r)

j [15]}, TC2(r)
j [i]

∈ {0, 1}4 (see Fig. 2).

The internal states which appear in the memory during the computation are as follows:
S(r) for 1 ≤ r ≤ 9, and TA

(r)
j , TB(r)

j , TC(r)
j , TC1(r)

j and TC2(r)
j for 0 ≤ j ≤ 3 and

1 ≤ r ≤ 9. The total size of visible states is estimated as 16128 bits (= (128× 9) + ((128×
2 + 32 + 64× 2)× 4)× 9) bits, namely 2016 bytes. Essentially, the designer’s challenge is to
use protection techniques like obfuscation and randomization to ensure security assuming
that all these bytes are leaked to the adversary. Similarly, the adversary’s challenge would
be to use the information in the leaked bytes and counteract any additional protection
measure employed by the designer to recover the secret key.

2.2.3 External Encoding.

128-bit external encodings IN and OUT , which are randomly and uniformly selected
linear mixing bijections, are added to the input and output of AES, respectively, to protect
the tables of the first and last rounds and mitigate code lifting attacks. The action of
the composite transform is OUT ◦ EK ◦ IN−1. Thus, the algorithm becomes an encoded
variant of AES, i.e. a different cipher. The affects of IN−1 and OUT are canceled out in
the contents server and the user device, respectively. In real-world applications such as
banking or the standard DRM protocols such as Marlin, implementations without external
encodings are deployed for interoperability and standard-compliance. Also, as discussed in
the [BHMT16], in practice, at least one encoding usually is known to the adversary in the
whitebox model, because the external encodings are canceled locally by the software in
the same device. In this paper, we consider the variant without external encodings as with
recent results [BHMT16, BI15, SMdH15].
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3 Differential Computation Analysis (DCA)
A side channel attack called a differential computation analysis has been proposed by Bos
et al. [BHMT16] and Sanfelix et al. at Black Hat Europe [SMdH15]. This attack exploits
memory access patterns during the software execution of whitebox AES, and is essentially
the same as Differential Power Analysis (DPA) on block ciphers (for a complete analysis
of DPA, please refer to [KJJR11]). This is a form of side channel attack in which the
attacker studies the power consumption of a cryptographic hardware device and tries to
deduce the secret key by performing statistical analysis on the power traces.

DPA usually targets some intermediate variable signal of the cryptosystem that depends
on a small number of bits of the secret key and the plaintext. For example a simple DPA
on an unprotected version of AES-128 could target the byte of the state V = Sb(PT ⊕K)
just after the SubBytes layer in the first round.The attacker collects power traces Pi(t)
for numerous plaintexts PTi (the variable t in the parenthesis denotes the time index). In
order to do so the attacker selects a model for power consumption which tells him how
much power would be consumed if the internal variables change in a certain fashion. For
CMOS circuits the most realistic model is the Hamming weight model, since for CMOS
transistors switching a bit from 0 to 1 or from 1 to 0 requires the same amount of energy,
and usually all the machine bits handled at a given time consume the same energy. As a
result if one were to eavesdrop on the power signal on the CPU bus carrying the signal V ,
the power consumption would likely be proportional to HW (Sb(PT ⊕K)), where HW
denotes Hamming weight. However, there are two issues in this approach

• The power consumed is usually has an additive noise component. It is realistic to
assume that the noise is zero mean and cancels out over multiple traces.

• The power traces are obtained for each plaintext over the entire duration of the
encryption process. Therefore power consumed during the computation of V is likely
to be reflected in a small range of time.

For each guessKj of the key byteK, the attacker computes the valuesHij = HW (Sb(PTi⊕
Kj)) (where i ranges over all the plaintexts for which power traces are recorded). If Kj

is the true value of K then for some value of t, the sequence Pi(t) would be perfectly
correlated with the sequence Hij . Thus, the attacker can compute a simple correlation
coefficient (for all t)

ρj(t) =
∑

i(Hij −Hj) · (Pi(t)− Pt)√∑
i(Hij −Hj)2 ·

∑
i(Pi(t)− Pt)2

where Hj denotes the arithmetic mean of the Hij ’s for a particular keyguess Kj and Pt

denotes the arithmetic mean of the power traces Pi(t) for a particular time instance t.
The correct guess of Kj is likely to maximize ρj(t) for some value of t, and the attacker
deduces the value of the secret key byte in this manner.

In DCA the adversary instead monitors software execution to exploit side-channel
leakages. The program that is being analyzed is run using a binary instrumentation
framework such as PIN [LCM+05] or Valgrind [NS07]. These frameworks allow the
execution of a program to be observed and modified by inserting code into it during
runtime. In the case of the DCA tools, every memory operation is instrumented with a
function that records the values and addresses the operation reads or writes. This is done
while encrypting random plaintexts, and the recordings (referred to as software traces) are
then serialized as if they were power traces. In the context of whitebox encryption, the
memory address accesses leak revealing information. Since the memory address space is
used to store the several LUTs, the exact address of the memory accesses can be used to
extract the inputs to the LUTs. Any standard DPA tools expecting power traces can then
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be used to extract the key. Since the traces directly observe the values being read and
written, they are equivalent to power traces made directly on internal chip lines.

For each guess of a key byte the attacker computes the hypothesized intermediate
values in the AES encryption of the plaintexts that were traced. If a key guess is correct,
then at some offset in the traces the hypothesized state would be perfectly correlated
with the sequence recorded values. Thus, the attacker can compute a simple correlation
coefficient to recover the key byte. At this point we categorize DCA attacks into two
paradigms

• Address based DCA (ADCA): This is basically the attack technique used in [BHMT16],
which uses the memory address accesses available in the software traces to construct
a power attack. As further pointed out in this paper, in a software setup all ob-
servations are made in the absence of measurement noise which is observed while
recording power traces in a hardware device, the attack can be performed efficiently
on every bit of information rather (which is akin to eavesdropping on every single
wire with a probe). However as we will show, if one were to randomize the locations
of the tables in the memory space, an attack using memory address accesses becomes
practically difficult.

• Value based DCA (VDCA): We observe that if table locations are randomized a more
useful source of information may be the values stored in the memory addresses, rather
than the addresses itself. Thus in such an event we can instrument the whitebox
binary to additionally include the values stored in memory locations in each software
trace. These are nothing but the table outputs which can similarly used to mount a
power analysis attack.

4 Software Countermeasures
Software countermeasures have become essential to counteract whitebox attacks. In absence
of any countermeasures, the whitebox encryption schemes of Chow et. al. [CEJvO02b],
Karroumi [Kar10], and Xiao-Lai [XL09] have all been broken in practical time complexity.
We test a number of software countermeasures to counteract the existing attacks, including
the one we propose in Section 5. These countermeasures are carried over from the literature
on side-channel analysis, where they play the same role in defending against DPA. In
previous articles on DCA it has been argued that these countermeasures do not add
complexity to the attacks, since they seem to be easy to defeat using automated tools.
However we argue that this might not always be the case. If the binary that is being
analyzed is protected using obfuscation and integrity checking, it can become prohibitively
difficult to fully analyze its functionality. Therefore side-channel attacks, where there is no
need to reverse-engineer the implementation to extract the key, are more interesting to
attackers. This means that attacks which are resistant to countermeasures are valuable
since they work even if the countermeasures cannot be defeated automatically.

4.1 Control flow obfuscation
One example of such a case is in control flow obfuscation (or randomization). Control flow
obfuscation essentially tries to shuffle the order of table accesses that are performed in the
execution of each round of the encryption operation. We know that each round in AES
can be seen as a parallel application of 4 encoded subrounds. The order of execution of
the 4 subrounds can be shuffled using a PRNG as it does not make any difference in the
final result. Furthermore, inside each subround the order of table accesses can be shuffled.
In the general case we can build a dependency graph for table accesses to assess which
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tables must be accessed before the others. The nodes that reside at the same level in the
graph, represent table accesses whose execution order can be randomly shuffled.

Listing 1: Example of data dependencies.
1 v0 = table_0 [ v1 ] ;
2 v1 = table_1 [ v0 ] ;
3 v2 = table_2 [ v0 ] ;
4 v0 = table_3 [ v3 ] ;

As an example of this technique, consider the simple example C code in Listing 1.
Note that the computation of lines 2 and 3 depend on line 1, since v0 is used as the offset
into the tables. For line 4 it is important that both lines 2 and 3 have run, since v0 is
overwritten. The corresponding dependency graph is illustrated in Figure 3. In this case
we may shuffle the order of lines 2 and 3, since they are independent.

v0 = table_0[v1];

v1 = table_1[v0]; v2 = table_2[v0];

v0 = table_3[v3];

Figure 3: Dependency graph of example program in Listing 1.

To counter this one might argue that the attacker can then remove the entropy to
the PRNG, rendering the control flow static. But this might not always be so simple.
Instead of relying on an external PRNG, the whitebox system can supply it’s own. The
generator can then be seeded with the plaintext, which ensures that no external entropy
is needed to randomize the control flow. If the binary is sufficiently obfuscated we find
this unlikely to be defeated by an automated tool. An alternative technique to defeat
control flow obfuscation is to automatically realign the traces using the addresses of the
instructions that were executed. If each leak of a byte from memory notes the current
instruction pointer, we can later reorder the traces such that the instruction addresses
match. However this will not work if the shuffled implementation runs only 1 basic block of
instructions, and instead randomizes a set of pointers that define the order of operations.

Most of the attacks present in cryptographic literature against whitebox schemes are
against binaries that do not employ software protection, and so control flow obfuscation
is an effective tool to counteract them. However as we will later show, binaries applying
only control flow shuffling as a software countermeasure are susceptible to both ADCA
and ZDE attacks. Thus one requires additional protection measures.

4.2 Table location randomization
This DCA attack described by Bos et. al. uses the memory address accesses available in
the software traces to construct a power attack. Since these memory addresses essentially
reveal the inputs to the various tables accessed, they reveal enough information to perform
a DCA. Table location randomization is akin to the masking countermeasure applied in
hardware architectures to thwart power attacks. The memory addresses are protected by
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Figure 4: Truncated differential characteristics of Chow et al’s whitebox AES-128 imple-
mentation

adding random offsets to them. This effectively disperses the tables at random locations
in the address space. Although this countermeasure protects against Address based DCA
(ADCA), it does not provide protection if a Value based DCA (VDCA) attack is employed.
The zero difference enumeration attack described in Section 5 is also able to attack binaries
employing location randomization.

4.3 Dummy operations
An effective way of thwarting power attacks was proposed in [Man04] that utilizes random
disarrangement of time. The idea works as follows: recall that in a standard DPA attack,
the attacker computes the correlation coefficient ρj(t) for each key guess Kj for all the
time range for which he obtains power traces. The internal variable V which the power
attack targets is usually computed in the first round itself, and thus the samples that
indicate the power consumption for V are likely to be located in a small time range at
the beginning of the power trace for each plaintext. For a system that does not employ
disarrangement the time range over which the intermediate variable V is calculated is
likely to align itself for each new plaintext for which traces are recorded. Thus it becomes
easy to compute the correlation coefficients. The correct key guess is likely the one which
maximizes ρj(t) for some t.

The idea of disarrangement is to randomize the time instance at which the intermediate
V is computed for each execution of the encryption operation. As a result for each new
plaintext, V is likely to be computed at different time instances. As a result, in the
power traces, the time instances at which V is computed no longer align with each other.
And so it becomes more difficult to mount a power attack. In the context of whitebox
encryption, disarrangement is achieved by adding random number of dummy table lookups
in between each legitimate table access. This essentially breaks the alignment pattern for
table accesses for each new plaintext for which traces are recorded.

5 Zero Difference Enumeration (ZDE) attack
Since the countermeasures that randomize the control flow or insert dummy operations
will misalign the DCA memory traces, we may consider an attack model where this does
not matter. We propose the zero difference enumeration attack inspired by concepts of
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differential cryptanalysis of symmetric-key cryptosystems. The attack works by choosing
special pairs of plaintexts which are encrypted using the whitebox implementation. The
pairs are constructed such that if our key guess is correct, a significant number of byte
values in the two corresponding AES states will be identical during encryption. Because
whitebox implementations often use many tables to process the bytes of the state, this
will further amplify the number of such bytes. Determining which key is correct is then a
matter of testing which pairs have the highest number of equal bytes in the AES state
during the encryption.

The pair of plaintexts we will henceforth refer to as a β-plaintext pair. The attack
proceeds as follows:

• The attacker starts by guessing a small portion of the Secret key. In this case, he
begins by guessing 2 bytes of the key.

• For all possible values of the key guess Kj , the attacker prepares a β-plaintext pair
PT1, PT2 so that the difference PT1⊕PT2 = f(Kj) is some function of the keyguess.

• The function f is chosen in a manner so that, if the keyguess is correct, then many
internal state variables incurred during rounds 1, 2, 3 of the encryption module for
both PT1 and PT2 are the same.

• As a result, the corresponding table inputs and outputs accessed during the encryption
of PT1 and PT2 are the same if the keyguess Kj is correct.

• Using the above as a distinguisher, the attacker goes through all the possible
keyguesses and selects the keyguess for which the number of similar table inputs/out-
puts for the β-pair are maximized.

The main advantage of ZDE is that the attack seems robust to countermeasures like
control flow obfuscation and randomization of table locations in the memory.

5.1 How to get a key-dependent β-plaintext pair
We will now describe the process to obtain a β-plaintext pair for any given keyguess.
We will refer to the Figure 4 for this. Let states after SubBytes and MixColumns in
EnSubround(r) be S(r)

s and S(r)
M , respectively.

• First, the attacker guesses the first two key bytes {k̂(0)
0,0, k̂

(0)
0,1}.

• The attacker then chooses arbitrarily the entire first column, {s(1)
M0,0, . . . , s

(1)
M0,3}, of

the internal state SM which is the state just after the MixColumns layer of the first
round.

• The logic behind choosing the entire first column is as follows: it allows the the
attacker to invert the MixColumns layer on the first column and calculate the first
column of SS i.e. the state after the SubBytes layer.

• The SubBytes layer can be inverted to get the entire first column which is the state
just after the first AddRoundKey.

• Since the first 2 bytes of the key is already guessed, the attacker can thus compute the
first two bytes in the main diagonal of the plaintext PT1 by inverting AddRoundKey
and ShiftRow operations.

• For the plaintext PT2, we do the following: Generate any byte difference ∆, and add
the 32 bit difference {∆, 3∆, 0, 2∆} to the first column of SM to get the state S′M .
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Table 1: Probability-one zero for correct and wrong keys when encrypting β-plaintext
pair.

Correct key (307 bytes)
s

(1)
0,2, s

(1)
i,j , s

(2)
2,j (0 ≤ i ≤ 3, 1 ≤ j ≤ 3)

T A
(1)
0 [8 − 15], T A

(1)
j 1 ≤ j ≤ 3

T A
(2)
0 [4 − 15], T A

(2)
1 [0 − 11], T A

(2)
2 , T A

(2)
3 [0 − 3, 7 − 15],

T A
(3)
0 [7 − 11], T A

(3)
1 [4 − 7], T A

(3)
2 [0 − 3], T A

(3)
3 [11 − 15],

T B
(1)
0 [2, 6, 10, 14], T B

(1)
j (1 ≤ j ≤ 3), T B

(2)
2

T C
(1)
j (1 ≤ j ≤ 3), T C

(2)
2

T C1(1)
0 [3 − 7], T C

(1)
j (1 ≤ j ≤ 3)

T C1(2)
0 [3 − 7], T C

(1)
1 [0 − 3], T C

(2)
1 , T C

(3)
1 [3 − 7]

T C2(1)
0 [2, 6], T C2(1)

j (1 ≤ j ≤ 3), T C2(2)
2

Wrong key (244 bytes)
s

(1)
i,j (0 ≤ i ≤ 3, 1 ≤ j ≤ 3)

T A
(1)
0 [8 − 15], T A

(1)
j (1 ≤ j ≤ 3)

T A
(2)
0 [4 − 15], T A

(2)
1 [0 − 11], T A

(2)
2 [0 − 7, 12 − 15]

T A
(2)
3 [0 − 3, 7 − 15], T B

(1)
j , T C

(1)
j , T C2(1)

j (1 ≤ j ≤ 3)
T C1(1)

0 [3 − 7], T C
(1)
j (1 ≤ j ≤ 3)

T C1(2)
0 [3 − 7], T C

(1)
1 [0 − 3], T C

(2)
1 [0 − 3], T C

(3)
1 [3 − 7]

• Thereafter as before, the MixColumns, SubBytes, AddRoundKey, and ShiftRows
layers can be inverted to get the first two bytes in the diagonal of PT2 by using
guessed two key bytes {k̂(0)

0,0, k̂
(0)
0,1}.

• The remaining 14 bytes of PT1 and PT2 can be assigned with the all zero byte value
or the same random byte value. (Note that a similar exercise can be done for other
double byte values of the key).

Due to the property of the MDS matrix used for the linear MixColumns layer in AES-
128, the difference {∆, 3∆, 0, 2∆} between SM and S′M ensures that the difference between
the states SS and S′S is given by {∆,∆, 0, 0}. As described in Figure 4, if the two key
bytes are guessed correctly, then the β-plaintext pairs will produce a differential trail shown
by the upper half of of the figure. If not, the differential trail becomes unpredictable from
the second round onward. Note that the bytes in red indicate a probability 1 difference,
the bytes with ? indicate an unpredictable difference and a byte in white indicate that the
corresponding bytes in the internal state produced during the encryption of the β-pair are
same with probability 1.

5.2 Zero Difference Bytes
In essence the table accesses involving the white bytes in Figure 4 will lead to a larger
amount of equal values when tracing an encryption of the β-plaintext pair, when the 16-key
bits are guessed correctly. For the Chow et. al. AES encryption we found that if the
keyguess is correct we have 307 equal bytes, and if the keyguess is incorrect we only have
244 as shown in Table 1.

The DBI techniques allow the attacker to plant β-pairs into the binary framework and
record software traces. The attack can be performed offline after sufficient traces have
been recorded. The attacker constructs multiple β-pairs for all possible keyguesses, and
the keyguess which results in the highest average number of equal table outputs for the
β-pairs in the first 3 encryption rounds is likely to be the correct key value.
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6 Experimental results
Along with the paper introducing the concept of DCA [BHMT16], a toolset for practical
analysis of binaries was provided by Bos et. al. The toolset can be used to record execution
traces of target binaries, and apply DPA attacks to trace files of AES and DES encryptions.
To evaluate the impact of hiding on DCA we apply this toolset to binaries containing
countermeasures, and use the number of traces required for key recovery as a measure of
complexity. Since each trace is an independent recording of an encryption of a random
plaintext, they may be collected in parallel. If the resources needed to perform one trace are
known, the final time requirement for the tracing can therefore be scaled to the hardware
available to an attacker. Unless otherwise noted we collected the traces on a laptop with a
1.7GHz Core i7 (I7-4650U, which has 2 cores) and 8GB of RAM. Since the DCA tools and
challenges run on linux, all the experiments were run in a linux virtual machine (VM).

For each set of recorded traces we attempt to recover the key by attacking the state
after the level one T-box in the first AES round. With the number of traces we have
available this might not always recover the whole key successfully, but it shows the effort
required to complete the whole attack. For our results we record the number of correct
key bytes that are returned as the top DCA candidate, ranked on the absolute value of the
bit correlations. Since some key bytes might rank slightly lower due to a too low number
of traces, we also note if the correct key bytes were found in the list of the top 10 results.

6.1 CHES 2016 whitebox challenge

Table 2: DCA on the CHES 2016 challenge.

Attack type Countermeasures Time per trace Size per trace # Traces # Key bytes # Key bytes Correlation time
(found in top 10) (found as best) (h:m:s)

ADCA

None 0.65 seconds 19,248 bytes 4,000 16 15 48:36

Shuffling 3.14 seconds 6,224 bytes 4,000 13 12 16:22
10,000 13 12 40:06

Shuffling and random offsets 3.35 seconds 51,680 bytes 10,000 0 0 6:41:59
Dummy operations 4.61 seconds 38,768 bytes 4,000 1 0 1:41:09

VDCA

None 0.65 seconds 19,248 bytes 4,000 11 4 49:15

Shuffling 3.14 seconds 6,224 bytes 4,000 5 0 16:34
10,000 5 1 41:08

Shuffling and random offsets 3.35 seconds 40,448 bytes 10,000 13 12 5:15:57
Dummy operations 4.61 seconds 38,768 bytes 4,000 0 0 1:49:29

Metrics for DCA on the CHES 2016 whitebox challenge with countermeasures. The time per trace is the
total time to record and store one execution trace. Address and value traces are recorded at the same
time, which is why the time per trace is equal in ADCA and VDCA. The size per trace is the bytes of
storage used per execution trace, when recording 1/3 of the encryption function with appropriate filtering
(see subsections). We record the number of correct key bytes that are ranked in the top 10 and best
position according to the correlation value. The time is the total time to run the DPA correlation tool on
the traces, excluding tracing.

For the CHES conference of 2016, which highlights new results in the design and
analysis of cryptographic hardware and software implementations, a set of challenges
were given as a competition. The challenges involve power analysis and creating secure
implementations of AES encryption, and an implementation of the Chow et. al. whitebox
scheme was included amongst these. The challenge is delivered as both a compiled linux
binary, and the corresponding C source code. When run the program encrypts an input
plaintext using AES and prints the resulting ciphertext. The goal is to recover the AES
key from the encryption function, which we do by applying the Bos et. al. DCA tools to
the compiled binary.

To determine the area to trace, one can perform a superficial analysis in a disassembler
such as IDA Pro. Since the binary is not obfuscated, it is easy to identify the address range
corresponding to the instructions in the encryption function. We may then choose to only
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Table 3: ZDE on the CHES 2016 challenge.

Attack type Countermeasures Time per trace Size per trace # Traces # Key bytes Total time
found (h:m:s)

ZDE

None 0.000012 seconds 2,048 bytes 500 · 217 2 0:3
Shuffling 0.001641 seconds 2,048 bytes 500 · 217 2 7:0
Shuffling and random offsets 0.003594 seconds 2,048 bytes 500 · 217 2 15:20
Dummy operations 0.071543 seconds 4,096 bytes 5000 · 217 0? 5:5:15

Metrics for ZDE on the CHES 2016 whitebox challenge with countermeasures. The attack was run as 256
parallel instances on a cluster, and the final scores of candidate keys was filtered to identify the top choice.
The time is the total time to run the attack, including tracing. Only 2 key bytes were attacked. ?: The
correct key bytes were ranked as number 2.

record when the binary is executing in this address range. Since the code for the challenge
consists of a long line of table lookups we have chosen to trace for approximately 1/3 of
the encryption function. We will be attacking the state after the level one T-box lookup in
the first round, so this gives us some margin of error when choosing the range. Because all
the whitebox tables used in the challenge are static, we can also narrow recording to only
values that are read and written from the data section. If this was not the case, one could
instead use the trace graphing tool that is provided as part of the toolkit. This tool allows
one to visualize the addresses that are read and written, and spot patterns corresponding
to the encryption algorithms. Narrowing the range of addresses to consider is then easy.
For all instructions referencing memory we record the lowest 8 bit of addresses and 8-bit

Table 4: Ranking for individual key bits when attacking the CHES 2016 challenge.

Key byte
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ar
ge
t
bi
t

0 244 212 255 0 0 0 0 255 249 255 0 0 250 0 233 255
1 255 243 255 255 0 255 255 252 0 255 255 0 254 255 235 0
2 135 204 244 171 0 173 240 1 0 203 186 80 0 237 0 204
3 0 0 254 199 209 219 0 0 128 191 0 202 243 0 206 130
4 255 0 0 0 250 0 236 255 0 0 242 253 245 247 0 249
5 251 41 250 216 129 0 0 244 251 228 60 157 251 153 0 215
6 255 211 194 82 255 179 254 220 0 135 4 0 179 232 249 0
7 0 255 0 255 0 248 254 0 255 255 0 232 0 253 0 1

Recovered X X X X X X X X X X X X X - X X

Here we show the rank of the correlation score for the individual key bits when solving the challenge using
4,000 address traces. The candidates are ranked according to the absolute value of the correlation. As also
noted in [BHMT16] the correct guesses tend to either be the top (0th) or bottom (255th) ranked
candidate. We recover 15/16 key bytes, as shown by the checkmarks.

data values separately, since both can be used to perform the DCA. When looking up
in a whitebox table the implementation uses the output of another table, thus memory
addresses will be correlated with the output data from another memory operation. In total
we collected 4,000 traces of encryptions, which took 43 minutes and 148MB of disk space.
We then searched for the key using the included DPA tool on the address traces, finding
what turned out to be 15/16 of the key bytes. After also running the attack on the traces
of values we complete the whole key, which we then verified by decrypting ciphertexts
again using openssl. The time taken for key recovery was 48 minutes of correlation on the
address traces, and 49 minutes on the value traces. For the traces of values the correlations
are not as strong, and we find only 4/16 bytes as the top 10 candidates. In Table 4 we
show the rank of the correlation score for each byte of the key, when attacking the state
after the level one T-box in the first round using address traces.
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Figure 5: Random offset of table in memory.

6.2 Shuffling of operations
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Figure 6: Data flow in the CHES 2016 challenge. The graph shows how the data flows from
4 bytes of the input plaintext through the tables of the CHES 2016 challenge whitebox.
Each node represents a line in the source code, and is annotated with the variable that is
modified followed by the line number. What is seen is part of a masked MixColumns step
on nibbles, followed by masked xor tables to combine the results.

To experiment with the effect of countermeasures in practice, we apply the techniques
to the CHES 2016 challenge and compare the difficulty of finding the key using DCA. The
C code contains 4048 static tables of data that implement the whitebox scheme, and which
are used in an encryption function that consists only of table lookups. To visualize the
actual structure of the encryption we have parsed the code and built a graph of the data
flow inside the encryption algorithm. A part of the this graph can be seen in Figure 6. If
it is compared with the description of the encoded AES algorithm, it is clear that this is
part of the masked calculation of the first column of the AES state.

The first countermeasure we want to test is shuffling the order of operations, and to do
this we built a dependency graph for the lines of the encryption function as previously
specified. The graph records which table lookups depend on data from previous lookups,
and which operations must be run before a line can overwrite the contents of a variable.
From Figure 6, it should be clear that some of the operations can be performed in arbitrary
order. However since only a few local variables are used to store the state, we must be
careful not to overwrite a result that is needed later. After constructing the dependency
graph the code can be transformed into a shuffled implementation. For each batch of
operations that may run in parallel we emit a block of C code that randomly shuffles their
order on each run using a random number generator. After compiling the code we then
apply the DCA attack to the resulting binary. Now 4,000 traces are no longer enough
to recover the correct key when taking the top 10 key byte candidates for each position.
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When we increased the number of recorded traces to 10,000, which took approximately 10
hours and used 120 MB of disk space, there was no significant increase in the number of
recovered key bytes.

6.3 Masking memory addresses
Since DCA attacks may rely on the addresses of memory lookups to perform correlations,
we also attempt to mask these in the CHES 2016 challenge. We have written a parsing
script to extract the 4048 tables in the C code and emit code to relocate them randomly
on each encryption call. This is done by allocating a large buffer that the tables are copied
to on each invocation of the encryption function. A table is randomly moved to any of
256 offsets in memory, such that the least significant byte of the addresses of lookups is
randomly chosen (see Figure 5). This is equivalent to adding a random constant modulo
256 to the addresses that are recorded for table lookups. After compiling the binary with
both random shuffling and masking of memory addresses, we again apply the DCA tools.

This time recording 10,000 traces takes approximately 12 hours, and the total size of
the traces is approximately 1 GB. This is because we cannot use the address range of the
data segment to limit recording. Now that the buffer is allocated on each run, all memory
accesses that have a size of 1 byte must be recorded. With these countermeasures, 10,000
traces of memory addresses result in no identified key bytes. As expected, using the data
instead of addresses has a higher success rate, since the values themselves are untouched.
The time taken to recover 1 key byte is approximately 25 minutes in both cases.

6.4 Dummy operations
In DPA attacks a common strategy is to hide the key-dependent operations in the time
dimension by inserting dummy operations. This can be done either with random sleeps, or
with actual operations using random data. Since DCA only records on memory accesses,
inserting sleeps into the algorithm will not change the recorded traces. Only insertion of
dummy operations which do irrelevant memory lookups is therefore possible. We parse
the CHES 2016 C code to extract all table lookups, and insert a block of random dummy
lookups after each one. For a simplified example of this transformation see Listing 2, where
only line 1 is doing real work.

Listing 2: Example of dummy lookups.
1 v0 = table_0 [ v1 ] ;
2 for ( int i = 0 ; i < rand ( ) % 16 ; i++)
3 dummy = table_0 [ rand ( ) % 12 8 ] ;

Recording 4,000 execution traces takes 5 hours 7 minutes, and results in trace files of
148 MB. We again attack the state after the first T-box substitution, and with the dummy
operations countermeasure we are unable to find any correct key bytes. All the results of
the DCA experiments on the CHES 2016 challenge are tabulated in Table 3.

Table 5: Zero-difference enumeration using PIN tool.

Method of attack Challenge, countermeasures Experiments Total number of traces Time per 28 key candidates

Source code
CHES 2016 challenge, none 500 500 · 217 3 seconds
CHES 2016 challenge, shuffling 500 500 · 217 7 minutes
CHES 2016 challenge, shuffling and random offsets 500 500 · 217 15 minutes

PIN tool Hack.lu 2009, protected AES 1,000 1, 000 · 217 18.75 seconds
Klinec, Chow et. al. AES 1,000 1, 000 · 217 115.78 seconds
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6.5 Zero-difference enumeration

Modify input 
using beta pair
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Figure 7: Modified control flow of instrumented binary. Our PIN tool changes the execution
flow of the analyzed binary using a state machine that runs the ZDE attack. The state
machine performs the required amount of experiments for each key candidate, and outputs
the guess with the highest number of equal bytes in the traces.

After having tested DCA against different countermeasures, we now consider applying
zero-difference enumeration attacks instead. Since these attacks only use values and not
addresses, it is clear that they will not be affected by any countermeasure that adds random
constants to table addresses. We can therefore focus on evaluating the random shuffling
and dummy operation countermeasures.

As a comparison point we have tested ZDE against the unprotected CHES 2016 source
code, recovering two key bytes as described in the section on ZDE attacks. Since all table
outputs are leaked every time, we may directly compare two leaks for equality of bytes.
We run the attack as 256 parallel processes that fix 8 bits of the key guess and test all
remaining 8 bits. The attack finds the correct value of the 2 key bytes, with a runtime of
approximately 3 seconds per 28 key guesses. Because the attack is trivially parallellizable,
this number can be scaled to the available computational resources. A total of 500 beta
pairs are tested per key candidate, which is enough to distinguish the correct key bytes.

We now tested the ZDE attack against the same source code with shuffling that was
used for the DCA experiments. Now that the order of returned values change on each
encryption, we will have to compare all leaked bytes in the two traces against each other.
We successfully find the 2 key bytes after spending 7 minutes per 256 key guesses. As a
sanity check we have also run the zero-difference attack on the table-offsetting version of
the CHES challenge. The attack time is then 15 minutes per 256 guesses, which is likely a
result of the implementation being slower. As expected the correct 2 key bytes are also
identified after 500 beta pairs are tested per key candidate. See Table 5 for the details
details on all attacks.

With dummy operations the runtime of the encryption is slowed up to 16 times. In
addition to this every random table lookup adds a leaked byte, which must be compared
against all other leaked bytes in the other beta-pair encryption. This quadratic increase in
bytes to test has a big impact on both runtime and experiments needed. We estimate that
between 5,000 and 10,000 β-pairs are needed to find the correct key, with a runtime of
approximately 10 hours for 256 key candidate tests.

To evaluate the feasibility of applying the zero-difference attacks to binaries, we have
also created a PIN tool that can apply the attack. The tool works by repeatedly running
the AES encryption functionality of the analyzed binary, while inserting beta pairs as the
plaintext. The goal is to recover 2 bytes from the key. To identify at which points this
should be done, the user must specify the start and end of encryption, and the location at
which the input buffer can be found. The control flow of the binary is then modified as it
is being run, as illustrated in Figure 7.

For the Hack.lu conference of 2009 a challenge based on AES encryption was published
by Jean-Baptiste Bédrune3. This challenge is in the form of a Windows keygen-me, which

3http://2009.hack.lu/index.php/ReverseChallenge

http://2009.hack.lu/index.php/ReverseChallenge
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requires that the input given to the program AES encrypts to a specific string. The AES
implementation in the challenge uses whitebox-like ideas to hide the key, so the goal is
also to recover it. This was previously done by Bos et. al. in their introductory paper on
DCA. Our PIN tool can successfully recover the correct 2 key bytes of the first column in
80 minutes when running the program in a Windows VM. Note that the ZDE attack is
trivially parallelized, so one could just run more instances of the cracker if this should be
speeded up.

As part of the Master thesis of Dušan Klinec [Kli13], Klinec implemented a C++
version of the Chow et. al. and Karroumi et. al. AES whitebox designs. The code can
generate tables for an AES key of choice and encrypt plaintexts using the table. Since the
code is one of the few public implementations of whitebox AES systems available online,
and has also been used when evaluating the DCA, we test our PIN tool on a compiled
version of it. Without external encodings the PIN tool successfully recovers the 2 key
bytes after 8 hours 14 minutes of tracing.

7 Conclusion
In this paper we explore some of the efficacies of software countermeasures on whitebox
encryption. We show that while control flow obfuscation is essential to counteract existing
attacks, it does not prevent DCA or ZDE attacks. We then looked at the table randomiza-
tion technique and its relative strengths against the DCA and ZDE attacks. Finally we
propose a countermeasure based on dummy table lookups which seem to counteract both
ZDE and DCA attacks.
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