
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2017, No. 1, pp. 307–328. DOI:10.13154/tosc.v2017.i1.307-328

Analysis of Software Countermeasures for
Whitebox Encryption

Subhadeep Banik1, Andrey Bogdanov2, Takanori Isobe3 and Martin
Bjerregaard Jepsen2

1 Temasek Labs, Nanyang Technological University, Singapore, Singapore
bsubhadeep@ntu.edu.sg

2 Department of Applied Mathematics and Computer Science (DTU Compute), Technical
University of Denmark, Kongens Lyngby, Denmark

anbog@dtu.dk,martin@jepsen.no
3 Sony Corporation, Tokyo, Japan

takanori.isobe@jp.sony.com

Abstract. Whitebox cryptography aims to ensure the security of cryptographic
algorithms in the whitebox model where the adversary has full access to the execution
environment. To attain security in this setting is a challenging problem: Indeed, all
published whitebox implementations of standard symmetric-key algorithms such as
AES to date have been practically broken. However, as far as we know, no whitebox
implementation in real-world products has suffered from a key recovery attack. This
is due to the fact that commercial products deploy additional software protection
mechanisms on top of the whitebox implementation. This makes practical attacks
much less feasible in real-world applications.
There are numerous software protection mechanisms which protect against standard
whitebox attacks. One such technique is control flow obfuscation which randomizes
the order of table lookups for each execution of the whitebox encryption module.
Another technique is randomizing the locations of the various Look up tables (LUTs)
in the memory address space. In this paper we investigate the effectiveness of these
countermeasures against two attack paradigms. The first known as Differential
Computational Analysis (DCA) attack was developed by Bos, Hubain, Michiels and
Teuwen in CHES 2016. The attack passively collects software execution traces for
several plaintext encryptions and uses the collected data to perform an analysis
similar to the well known differential power attacks (DPA) to recover the secret key.
Since the software execution traces contain time demarcated physical addresses of
memory locations being read/written into, they essentially leak the values of the
inputs to the various LUTs accessed during the whitebox encryption operation, which
as it turns out leaks sufficient information to perform the power attack. We found
that if in addition to control flow obfuscation, one were to randomize the locations
of the LUTs in the memory, then it is very difficult to perform the DCA on the
resultant system using such table inputs and extract the secret key in reasonable
time. As an alternative, we investigate the version of the DCA attack which uses the
outputs of the tables instead of the inputs to mount the power analysis attack. This
modified DCA is able to extract the secret key from the flow obfuscated and location
randomized versions of several whitebox binaries available in crypto literature.
We develop another attack called the Zero Difference Enumeration (ZDE) attack. The
attack records software traces for several pairs of strategically selected plaintexts and
performs a simple statistical test on the effective difference of the traces to extract
the secret key. We show that ZDE is able to recover the keys of whitebox systems.
Finally we propose a new countermeasure for protecting whitebox binaries based
on insertion of random delays which aims to make both the ZDE and DCA attacks

Licensed under Creative Commons License CC-BY 4.0.
Received: 2016-11-23, Accepted: 2017-01-23, Published: 2017-03-08

https://doi.org/10.13154/tosc.v2017.i1.307-328
mailto:bsubhadeep@ntu.edu.sg
mailto:anbog@dtu.dk, martin@jepsen.no
mailto:takanori.isobe@jp.sony.com
http://creativecommons.org/licenses/by/4.0/

308 Analysis of Software Countermeasures for Whitebox Encryption

practically difficult by adding random noise in the information leaked to the attacker.

Keywords: Whitebox Cryptography, differential computational analysis, zero enumer-
ation attack. control randomization, dummy operation

1 Introduction
Whitebox cryptography was introduced by Chow et al. in 2002 [CEJvO02a] as a technique
to protect software implementations of cryptographic algorithms in untrusted environments.
An increasing number of applications are emerging that require substantial security in
purely software environments, e.g. set-top boxes, PCs, tablets, smartphones, HCE, digital
rights management (DRM) systems, or client software running in the cloud. The major goal
of whitebox cryptography is to protect the confidentiality of secret keys when the adversary
has full access to the execution environment with the aid of a decompiler, debugger tools
and dynamic binary analysis tools, e.g. IDA Pro, IL DASM, Valgrind and PIN. In the
wake of this seminal paper, several further variants of whitebox implementations for AES
were proposed [BCD06, XL09, Kar10, LN05].

The whitebox setting assumes that the executable of the encryption module would run
on untrusted and often malicious platforms over which an adversary has total control. As
such, potentially every intermediate value computed by the executable is liable to be leaked
and would provide the adversary a channel of additional information for cryptanalysis.
Thus, for a given scheme to be whitebox secure, it has to withstand key recovery attack, even
under the assumption that every temporary/intermediate value it calculates is available
to the adversary. Although, all published whitebox solutions for AES to date have
been practically broken [BGE04, WMGP07, MWP10, MRP12, LRM+13, Mul14], due to
increasing demand, a large number of companies still sell and deploy whitebox AES products
and solutions. The reason for this is that the security model of whitebox cryptography is
too strong in many real-world applications. In practice white box cryptography is often
only a small part of the software protection mechanism, where it is used in conjunction
with additional protection techniques like [ARX14, whi15, Mic15]

• Control flow obfuscation: For each execution, the path of the computation is ran-
domized to confuse and force an adversary to reverse engineer a complex node graph,
including a runtime randomization and dummy operations.

• Tamper resistance: Integrity protection to ensure that the application code and
read-only data are not modified.

• Device binding: Binding the code/binary to the current device, and therefore
preventing it from executing in the adversaries environments.

• Anti-debug protection: Detecting whether the binary is executed under a debugger,
and performing counteractions.

The device binding and the anti-debug protection hamper the usage of disassembler/de-
bugging and binary analysis tools, and it defends the adversary from the full control of the
execution environments and lifting the code/binary. The control flow randomization and
the tamper resistance prevent the adversary from performing attacks which may require
finding a correct byte position and overwriting it. To bypass these protections, considerable
reverse engineering efforts by means of analysis tools with high skills and experience are
required on the adversary’s side [Wys12].

A number of other practical key recovery attacks against whitebox AES implementations
have been proposed [BGE04, MWP10, MRP12, LRM+13, Mul14] in which, by decomposing
the obfuscated table, the secret key is derived with practical time complexity. These attacks

Subhadeep Banik, Andrey Bogdanov, Takanori Isobe and Martin Bjerregaard Jepsen309

require read/write access to correct internal states during the execution to exploit the
relation between input and output of the target obfuscated table. Sanfelix et al. propose
a differential fault analysis on whitebox AES and DES [SMdH15] in which faults are
injected into the cryptographic process at the correct locations within the algorithm.
This attack also requires write access to the specific state where faults are injected. The
integrity protection and the control flow randomization make these attacks infeasible in
the real-world products with a barrier to the full control by the device binding and the
anti-debug protection. In fact, until now, no white-box implementation in a real-world
product has suffered from a key recovery attack. There is a clear gap between theory and
practice.

In summary, it is still questionable if previous attacks work for the real-world products
where additional countermeasures are deployed and the adversary has limited control of
the environment.

1.1 Contributions and Organization
In this paper we investigate the effectiveness of countermeasures against side-channel attacks
on whitebox implementations (Section 4). These countermeasures are similar to some
of the software protection mechanisms that protect real-world whitebox systems[ARX14,
whi15, Mic15]. We perform and verify the DCA proposed by Bos et. al., which uses
techniques from power side-channel attacks on hardware to recover the key of software
systems. Since the attack is feasible by passively collecting software execution traces for
several plaintext encryptions, integrity check protections is useless against this attack
unlike previous attacks. The techniques are verified on a challenge1 released for CHES
2016, in several variants that also include protection mechanisms (Section 6):

• Control flow obfuscation: We created an implementation of the CHES 2016 code
that randomly shuffles the order of the instructions in each run without changing
the result of the encryption.

• Randomization of table locations: We used a PRNG to randomly disperse lookup
tables in the memory address space.

We find that if one were to randomize the locations of the whitebox tables in the
memory, then it is very difficult to perform the DCA on the resultant system and extract
the secret key in reasonable time. As an alternative, we investigate the version of the
DCA attack which uses the outputs of the tables instead of the inputs to mount the
power analysis attack. This modified DCA is able to extract the secret key from the flow
obfuscated and location randomized versions of the whitebox binaries. We propose a new
countermeasure for protecting whitebox binaries based on insertion of random dummy
operations, which aims to make DCA attacks practically difficult by adding random noise
in the information leaked to the attacker.

Finally we propose and implement another attack paradigm called the Zero Difference
Enumeration Attack (ZDE, Section 5). We show that the ZDE attack can recover the key
of whitebox systems, by applying it to publicly available whitebox challenges:

• The Hack.lu challenge of 2009.

• A public implementation of the Chow whitebox available on the Internet2.

We then show that the ZDE attack is applicable to any combination of the counter-
measures listed above. Finally we propose a new countermeasure for protecting whitebox

1Found at https://ctf.newae.com/flags/
2at https://github.com/ph4r05/Whitebox-crypto-AES

https://ctf.newae.com/flags/
https://github.com/ph4r05/Whitebox-crypto-AES

310 Analysis of Software Countermeasures for Whitebox Encryption

binaries based on the “random disarrangement of time” countermeasure, originally pro-
posed in [Man04] to counteract power attacks against symmetric ciphers. This measure
essentially aims to make both the ZDE and DCA attacks practically difficult by adding a
random number of dummy operations before performing table accesses.

The rest of the paper is organized in the following manner. In Section 2, we give a brief
description of the AES-128 block cipher and Chow’s whitebox scheme. In Section 3, we
describe the Differential Computation Attacks (DCA) introduced in [BHMT16] and further
introduce the notions of address and value based attacks, (ADCA and VDCA respectively).
In Section 4, we describe in brief the software countermeasures we have considered in this
paper. In Section 5, we introduce the concept of Zero Difference Enumeration attacks. All
experimental results are included in Section 6. Section 7 concludes the paper.

2 Whitebox AES Implementations
This section first describes the algorithm of AES, and fixes notations of the whitebox AES
that we will use throughout the paper.

2.1 Description of AES
AES-128 is a block cipher with a 128-bit internal state and a 128-bit key K. The internal
state S and the key are represented by two 4× 4 byte matrices. For example, the internal
state after round r is represented as follows (where s(r)

i,j are byte values).

S(r) =

s

(r)
0,0 s

(r)
0,1 s

(r)
0,2 s

(r)
0,3

s
(r)
1,0 s

(r)
1,1 s

(r)
1,2 s

(r)
1,3

s
(r)
2,0 s

(r)
2,1 s

(r)
2,2 s

(r)
2,3

s
(r)
3,0 s

(r)
3,1 s

(r)
3,2 s

(r)
3,3

AES consists of a data processing part and a key schedule. The data processing part

adopts a substitution-permutation network whose round function consists of four layers:
SubBytes, ShiftRows, Mixcolumns and AddRoundKey. Subkeys are generated by a key
schedule. 128-bit subkeys are denoted as K(r), 1 ≤ r ≤ 11, and each byte is indexed by i
and j as k(r)

i,j in the same manner of the state S. For the details of the key schedule of
AES, we refer to [oST01].

SubBytes is a set of sixteen 8-bit nonlinear transformation Sb: {0, 1}8 → {0, 1}8

applying a 8-bit S-box to each cell. ShiftRow rotates four bytes in the a-th row by a
positions to the left. MixColumns is a linear transformation MC: {{0, 1}8}4 → {{0, 1}8}4

which multiplies each column by a 4× 4 diffusion matrix with branch number 5. Let the
coefficients of the matrix be denoted by mci,j , 0 ≤ i, j ≤ 3. AddRoundKey adds a 128-bit
subkey K(r) to a 128-bit state by an XOR operation. Note that AddRoundKey is also
performed before the first round as whitening and that MixColumns is omitted in the last
round.

We define a 32-bit function Subround as follows. Let K̂(r) and Ŝ(r) denote the key
and the state obtained after applying ShiftRows to K(r) and S(r), respectively. k̂

(r)
i,j ,

ŝ
(r)
i,j are respectively each byte of K̂(r) and Ŝ(r). T

(r)
i,j : {0, 1}8 → {0, 1}8 is defined as

T
(r)
i,j (x) = Sb(x⊕ k̂(r)

i,j).

Definition 1. (Subround) Subround(r)
j : {{0, 1}8}4 → {{0, 1}8}4 for 1 ≤ r ≤ R and

0 ≤ j ≤ 3 is defined as (y0, y1, y2, y3) = Subround(r)
j (x0, x1, x2, x3) (note R = 10 for

AES-128) with

Subhadeep Banik, Andrey Bogdanov, Takanori Isobe and Martin Bjerregaard Jepsen311

• 1 ≤ r ≤ R− 1

yi = (mci,0 ⊗ T (r)
0,j (x0))⊕ (mci,1 ⊗ T (r)

1,j (x1))

⊕(mci,2 ⊗ T (r)
2,j (x2))⊕ (mci,3 ⊗ T (r)

3,j (x3)), 0 ≤ i ≤ 3.

• r = R

yi = (k(R+1)
i,j ⊕ T (r)

i,j (xi)), 0 ≤ i ≤ 3.

Here ⊗ denotes finite field multiplication in GF (28) represented in the polynomial
basis x8 + x4 + x3 + x+ 1. As an intended consequence of the design of AES, the structure
of the data processing function can be rewritten such that each round uses four Subround
modules. The data processing par of the AES-128 is described as Algorithm 1.

Algorithm 1 AES-128 implementation (data processing part)
S(0) ← Plaintext
/* Round 1 to 10 */
for r = 1 to 10 do
Ŝ(r−1) ← ShiftRow(S(r−1))
for j = 0 to 3 do

(s(r)
0,j , s

(r)
1,j , s

(r)
2,j , s

(r)
3,j)← Subround(r)

j (ŝ(r−1)
0,j , ŝ

(r−1)
1,j , ŝ

(r−1)
2,j , ŝ

(r−1)
3,j)

end for
end for
Ciphertext← S(10)

2.2 Chow et al’s Whitebox Implementation
Whitebox implementations of AES were first proposed by Chow et al. in [CEJvO02b].
The basic idea is to combine the key and the algorithm by partial evaluation of parts of
the cipher. The approach was to find a representation of the algorithm as a network of
look-ups in randomized and key-dependent tables. These tables are protected with secret
mappings, with the aim of making extracting the key from them difficult. A trivial (but
not practical) example of this is to simply precompute a full mapping from all plaintexts to
their corresponding ciphertexts. Encryption is then a single table lookup on the plaintext,
and recovering the key should be as hard as attacking the cipher in a black-box scenario.
However such a lookup table will need at least 2128 entries (one for every plaintext) and
hence it is infeasible.

The main idea in the paper by Chow et. al. is a method for constructing a set of
randomized key-dependent tables that have a practical size, allowing whitebox AES to
be implemented in practice. For a detailed description of Chow’s whitebox we refer to
[CEJvO02b] and an excellent tutorial available at [Mui13]. However for the completeness
of the paper we provide a small structural description.

In the case of the Chow et. al. whitebox design, the principal idea is to create an
encoded subround function EnSubround. Specifically, the whitebox implementation adds
nonlinear bijection functions P (r)

i,j and Q(r)
i,j : {0, 1}8 → {0, 1}8, 0 ≤ i ≤ 3 before and after

Subround(r)
j as shown in Fig. 1. The first and last rounds disregard input and output

encodings, respectively. Define an encoded subround EnSubround(r)
j as follows.

Definition 2. (Encoded Subround)
EnSubround(r)

j : {{0, 1}8}4 → {{0, 1}8}4 for 2 ≤ r ≤ 9 and 0 ≤ j ≤ 3 is defined as
(y0, y1, y2, y3) = EnSubround(r)

j (x0, x1, x2, x3) with

312 Analysis of Software Countermeasures for Whitebox Encryption

P0P0 P1P1 P2P2 P3P3

SubroundSubround

Q1Q1 Q2Q2 Q3Q3 Q4Q4

Figure 1: High-level view of an encoded subround of the Chow et. al. AES.

• r = 1 (first)

(y0, y1, y2, y3) = (Q(r)
0,j(z0), Q(r)

1,j(z1), Q(r)
2,j(z2), Q(r)

3,j(z3)),

where (z0, z1, z2, z3) = Subround(r,j)(x0, x1, x2, x3), zi ∈ {0, 1}8

• 2 ≤ r ≤ R− 1

(y0, y1, y2, y3) = (Q(r)
0,j(z0), Q(r)

1,j(z1), Q(r)
2,j(z2), Q(r)

3,j(z3)),

where (z0, z1, z2, z3) = Subround(r,j)(P (r)
0,j (x0), P (r)

1,j (x1), P (r)
2,j (x2), P (r)

3,j (x3)), zi ∈ {0, 1}8

• r = R (last)

(y0, y1, y2, y3) = Subround(r,j)(P (r)
0,j (x0), P (r)

1,j (x1), P (r)
2,j (x2), P (r)

3,j (x3)).

The output encodings Qi and input encodings Pi of successive rounds are pairwise
annihilating between ShiftRows to maintain the functionality of AES. For the first and
last round there are no input and output encodings, respectively. Chow et al’s whitebox
implementation of AES-128 is provided as Algorithm 2.

Algorithm 2 Chow et al’s Whitebox AES implementation
S(0) ← Plaintext
for r = 1 to 10 do
Ŝ(r−1) ← ShiftRow(S(r−1))
for j = 0 to 3 do

(s(r)
0,j , s

(r)
1,j , s

(r)
2,j , s

(r)
3,j)← EnSubround(r)

j (ŝ(r−1)
0,j , ŝ

(r−1)
1,j , ŝ

(r−1)
2,j , ŝ

(r−1)
3,j)

end for
end for
Ciphertext← S(10)

2.2.1 Composition of Encoded Subround

In practice, each EnSubround is created from four types of smaller lookup tables (LUTs):

Subhadeep Banik, Andrey Bogdanov, Takanori Isobe and Martin Bjerregaard Jepsen313

• Level 1 T-boxes (Table A): These LUTs combine the effect of AddRoundKey and
SubBytes, ShiftRows and a part of the Mixcolumns transformations. Each round
consists of 16 such T-boxes that map a byte value to a 4-byte (i.e 32 bit) value. Hence
there are essentially 160 such T-boxes in total. In order to diffuse the information,
the 32 bit output of partial MixColumns layer is subject to an invertible linear
transformation called Mixing bijection. Table A consists of R(r)

j ◦MCi◦T (r)
i,j ◦(L

(r)
i,j)−1,

where MCi: {0, 1}8 → {0, 1}32 is the i-th column operation of MixColumn. (L(r)
i,j)−1:

{0, 1}8 → {0, 1}8 is a secret 8-bit linear bijection and R(r)
j : {0, 1}32 → {0, 1}32 is

the Mixing bijection, referred to previously. Note that for each of the 4 bytes input
EnSubround modules in one AES round, only a partial Mixcolumn multiplication
with the ith column of the MDS matrix is done. In order to complete the Mixcolumn
operation, the results of the multiplication needs to be summed. This is precisely
what is done in the tables of the next level.

• Level 2 Xor-tables (Table C1): These tables are essentially used to perform the addi-
tion operations of the MixColumns layer that were not performed in the construction
of the Level 1 T-boxes. Table C is an 8 to 4 bits XOR table. 32-bit XOR operation
is realized by 2-layer six Table C1 calls.

• Level 3 T-boxes (Table B): These LUTs partially cancel the effect of Mixing bijections
applied in the level 1 T-boxes, by multiplying each byte input with one column of
the inverse Mixing bijection matrix. As a result these tables also map byte values to
4-bytes. Table B comprises L(r+1)

j ◦ (R(r)
i,j)−1. (R(r)

i,j)−1: {0, 1}8 → {0, 1}32 basically
represents multiplication by the 8i− 8i+ 7th columns of the inverse matrix of R(r)

j .
Since only a partial multiplication is done with the (R(r)

j)−1 matrix, as in level 1, the
addition operations omitted in this level is performed in the tables of the next level.
L

(r+1)
j : {0, 1}32 → {0, 1}32 is a 32 bit linear bijection which is chosen to cancel the

effect of (L(r+1)
i,j)−1. In fact functionally, it is simply the concatenation of the 8-bit

bijections L(r+1)
0,j ||L(r+1)

1,j ||L(r+1)
2,j ||L(r+1)

3,j .

• Level 4 Xor-tables (Table C2): These tables are essentially used to perform the
addition operations that are not performed in the construction of the Level 3 T-boxes.

Thus each round in Chow’s whitebox AES consists of a number of Level 1 to 4 lookup
tables. Of these, only the level 1 tables are key-dependent. To be more precise, each round
r can be seen as a parallel application of 4 encoded subrounds EnSubroundr

j for 0 ≤ j ≤ 3.
Each EnSubroundj would operate on a quarter of the 128 bit state i.e. 32 bits and produce
a 32 bit output. Each EnSubroundj is thus composed of the four types of tables (Table A,
B, C1, C2) as shown in Figure 2.

2.2.2 Visible States.

We use the following notations. For each EnSubroundj

• Let the 128-bit states after Table A and B in round r be denoted as TA(r)
j =

{TA(r)
j [0], . . . , TA(r)

j [15]} and TB(r)
j = {TB(r)

j [0], . . . , TB(r)
j [15]}, TA(r)

j [i] ∈ {0, 1}8

and TB(r)
j [i] ∈ {0, 1}8, respectively.

• Let the 32-bit state of at the input of the Table B be layer TC(r)
j = {TC(r)

j [0], . . .,
TC

(r)
j [3]}, TC(r)

j [i] ∈ {0, 1}8 is the byte input to the ith Table B in EnSubroundj .

314 Analysis of Software Countermeasures for Whitebox Encryption

(L2, j
(r))-1

T2, j
(r)

Table-A

s0,j
(r-1) s1,j

(r-1) s2,j
(r-1) s3,j

(r-1)

4

MC2

(L3, j
(r))-1

T3, j
(r)

4

MC3

(L0, j
(r))-1

T0, j
(r)

4

MC0

(L1, j
(r))-1

T1, j
(r)

4

MC1

Lj
(r+1) Lj

(r+1)Lj
(r+1)

(R{1, j}
(r))-1(R{0, j}

(r))-1 (R{2, j}
(r))-1 (R{3, j}

(r))-1

Lj
(r+1)

S1,j
(r) S2,j

(r) S3,j
(r)

Rj
(r) Rj

(r) Rj
(r) Rj

(r)

Table-C

TAj
(r) TAj

(r)[0]
TAj

(r)[15]

TBj
(r)

TBj
(r)[0]

TBj
(r)[15]

TCj
(r)[0]

Table-B

TCj
(r)[3]

TCj
(r)

TC1j
(r)[0]

TC2j
(r)[0]

TC-1j
(r)[15]

TC-2j
(r)[15]

Figure 2: Table-based composition of the encoded subround of the Chow et. al. AES.

• Define 64-bit internal states of table C1 and C2 as TC1(r)
j = {TC1(r)

j [0], . . .,
TC1(r)

j [15]}, TC1(r)
j [i] ∈ {0, 1}4, and TC2(r)

j = {TC2(r)
j [0], . . ., TC2(r)

j [15]}, TC2(r)
j [i]

∈ {0, 1}4 (see Fig. 2).

The internal states which appear in the memory during the computation are as follows:
S(r) for 1 ≤ r ≤ 9, and TA

(r)
j , TB(r)

j , TC(r)
j , TC1(r)

j and TC2(r)
j for 0 ≤ j ≤ 3 and

1 ≤ r ≤ 9. The total size of visible states is estimated as 16128 bits (= (128× 9) + ((128×
2 + 32 + 64× 2)× 4)× 9) bits, namely 2016 bytes. Essentially, the designer’s challenge is to
use protection techniques like obfuscation and randomization to ensure security assuming
that all these bytes are leaked to the adversary. Similarly, the adversary’s challenge would
be to use the information in the leaked bytes and counteract any additional protection
measure employed by the designer to recover the secret key.

2.2.3 External Encoding.

128-bit external encodings IN and OUT , which are randomly and uniformly selected
linear mixing bijections, are added to the input and output of AES, respectively, to protect
the tables of the first and last rounds and mitigate code lifting attacks. The action of
the composite transform is OUT ◦ EK ◦ IN−1. Thus, the algorithm becomes an encoded
variant of AES, i.e. a different cipher. The affects of IN−1 and OUT are canceled out in
the contents server and the user device, respectively. In real-world applications such as
banking or the standard DRM protocols such as Marlin, implementations without external
encodings are deployed for interoperability and standard-compliance. Also, as discussed in
the [BHMT16], in practice, at least one encoding usually is known to the adversary in the
whitebox model, because the external encodings are canceled locally by the software in
the same device. In this paper, we consider the variant without external encodings as with
recent results [BHMT16, BI15, SMdH15].

Subhadeep Banik, Andrey Bogdanov, Takanori Isobe and Martin Bjerregaard Jepsen315

3 Differential Computation Analysis (DCA)
A side channel attack called a differential computation analysis has been proposed by Bos
et al. [BHMT16] and Sanfelix et al. at Black Hat Europe [SMdH15]. This attack exploits
memory access patterns during the software execution of whitebox AES, and is essentially
the same as Differential Power Analysis (DPA) on block ciphers (for a complete analysis
of DPA, please refer to [KJJR11]). This is a form of side channel attack in which the
attacker studies the power consumption of a cryptographic hardware device and tries to
deduce the secret key by performing statistical analysis on the power traces.

DPA usually targets some intermediate variable signal of the cryptosystem that depends
on a small number of bits of the secret key and the plaintext. For example a simple DPA
on an unprotected version of AES-128 could target the byte of the state V = Sb(PT ⊕K)
just after the SubBytes layer in the first round.The attacker collects power traces Pi(t)
for numerous plaintexts PTi (the variable t in the parenthesis denotes the time index). In
order to do so the attacker selects a model for power consumption which tells him how
much power would be consumed if the internal variables change in a certain fashion. For
CMOS circuits the most realistic model is the Hamming weight model, since for CMOS
transistors switching a bit from 0 to 1 or from 1 to 0 requires the same amount of energy,
and usually all the machine bits handled at a given time consume the same energy. As a
result if one were to eavesdrop on the power signal on the CPU bus carrying the signal V ,
the power consumption would likely be proportional to HW (Sb(PT ⊕K)), where HW
denotes Hamming weight. However, there are two issues in this approach

• The power consumed is usually has an additive noise component. It is realistic to
assume that the noise is zero mean and cancels out over multiple traces.

• The power traces are obtained for each plaintext over the entire duration of the
encryption process. Therefore power consumed during the computation of V is likely
to be reflected in a small range of time.

For each guessKj of the key byteK, the attacker computes the valuesHij = HW (Sb(PTi⊕
Kj)) (where i ranges over all the plaintexts for which power traces are recorded). If Kj

is the true value of K then for some value of t, the sequence Pi(t) would be perfectly
correlated with the sequence Hij . Thus, the attacker can compute a simple correlation
coefficient (for all t)

ρj(t) =
∑

i(Hij −Hj) · (Pi(t)− Pt)√∑
i(Hij −Hj)2 ·

∑
i(Pi(t)− Pt)2

where Hj denotes the arithmetic mean of the Hij ’s for a particular keyguess Kj and Pt

denotes the arithmetic mean of the power traces Pi(t) for a particular time instance t.
The correct guess of Kj is likely to maximize ρj(t) for some value of t, and the attacker
deduces the value of the secret key byte in this manner.

In DCA the adversary instead monitors software execution to exploit side-channel
leakages. The program that is being analyzed is run using a binary instrumentation
framework such as PIN [LCM+05] or Valgrind [NS07]. These frameworks allow the
execution of a program to be observed and modified by inserting code into it during
runtime. In the case of the DCA tools, every memory operation is instrumented with a
function that records the values and addresses the operation reads or writes. This is done
while encrypting random plaintexts, and the recordings (referred to as software traces) are
then serialized as if they were power traces. In the context of whitebox encryption, the
memory address accesses leak revealing information. Since the memory address space is
used to store the several LUTs, the exact address of the memory accesses can be used to
extract the inputs to the LUTs. Any standard DPA tools expecting power traces can then

316 Analysis of Software Countermeasures for Whitebox Encryption

be used to extract the key. Since the traces directly observe the values being read and
written, they are equivalent to power traces made directly on internal chip lines.

For each guess of a key byte the attacker computes the hypothesized intermediate
values in the AES encryption of the plaintexts that were traced. If a key guess is correct,
then at some offset in the traces the hypothesized state would be perfectly correlated
with the sequence recorded values. Thus, the attacker can compute a simple correlation
coefficient to recover the key byte. At this point we categorize DCA attacks into two
paradigms

• Address based DCA (ADCA): This is basically the attack technique used in [BHMT16],
which uses the memory address accesses available in the software traces to construct
a power attack. As further pointed out in this paper, in a software setup all ob-
servations are made in the absence of measurement noise which is observed while
recording power traces in a hardware device, the attack can be performed efficiently
on every bit of information rather (which is akin to eavesdropping on every single
wire with a probe). However as we will show, if one were to randomize the locations
of the tables in the memory space, an attack using memory address accesses becomes
practically difficult.

• Value based DCA (VDCA): We observe that if table locations are randomized a more
useful source of information may be the values stored in the memory addresses, rather
than the addresses itself. Thus in such an event we can instrument the whitebox
binary to additionally include the values stored in memory locations in each software
trace. These are nothing but the table outputs which can similarly used to mount a
power analysis attack.

4 Software Countermeasures
Software countermeasures have become essential to counteract whitebox attacks. In absence
of any countermeasures, the whitebox encryption schemes of Chow et. al. [CEJvO02b],
Karroumi [Kar10], and Xiao-Lai [XL09] have all been broken in practical time complexity.
We test a number of software countermeasures to counteract the existing attacks, including
the one we propose in Section 5. These countermeasures are carried over from the literature
on side-channel analysis, where they play the same role in defending against DPA. In
previous articles on DCA it has been argued that these countermeasures do not add
complexity to the attacks, since they seem to be easy to defeat using automated tools.
However we argue that this might not always be the case. If the binary that is being
analyzed is protected using obfuscation and integrity checking, it can become prohibitively
difficult to fully analyze its functionality. Therefore side-channel attacks, where there is no
need to reverse-engineer the implementation to extract the key, are more interesting to
attackers. This means that attacks which are resistant to countermeasures are valuable
since they work even if the countermeasures cannot be defeated automatically.

4.1 Control flow obfuscation
One example of such a case is in control flow obfuscation (or randomization). Control flow
obfuscation essentially tries to shuffle the order of table accesses that are performed in the
execution of each round of the encryption operation. We know that each round in AES
can be seen as a parallel application of 4 encoded subrounds. The order of execution of
the 4 subrounds can be shuffled using a PRNG as it does not make any difference in the
final result. Furthermore, inside each subround the order of table accesses can be shuffled.
In the general case we can build a dependency graph for table accesses to assess which

Subhadeep Banik, Andrey Bogdanov, Takanori Isobe and Martin Bjerregaard Jepsen317

tables must be accessed before the others. The nodes that reside at the same level in the
graph, represent table accesses whose execution order can be randomly shuffled.

Listing 1: Example of data dependencies.
1 v0 = table_0 [v1] ;
2 v1 = table_1 [v0] ;
3 v2 = table_2 [v0] ;
4 v0 = table_3 [v3] ;

As an example of this technique, consider the simple example C code in Listing 1.
Note that the computation of lines 2 and 3 depend on line 1, since v0 is used as the offset
into the tables. For line 4 it is important that both lines 2 and 3 have run, since v0 is
overwritten. The corresponding dependency graph is illustrated in Figure 3. In this case
we may shuffle the order of lines 2 and 3, since they are independent.

v0 = table_0[v1];

v1 = table_1[v0]; v2 = table_2[v0];

v0 = table_3[v3];

Figure 3: Dependency graph of example program in Listing 1.

To counter this one might argue that the attacker can then remove the entropy to
the PRNG, rendering the control flow static. But this might not always be so simple.
Instead of relying on an external PRNG, the whitebox system can supply it’s own. The
generator can then be seeded with the plaintext, which ensures that no external entropy
is needed to randomize the control flow. If the binary is sufficiently obfuscated we find
this unlikely to be defeated by an automated tool. An alternative technique to defeat
control flow obfuscation is to automatically realign the traces using the addresses of the
instructions that were executed. If each leak of a byte from memory notes the current
instruction pointer, we can later reorder the traces such that the instruction addresses
match. However this will not work if the shuffled implementation runs only 1 basic block of
instructions, and instead randomizes a set of pointers that define the order of operations.

Most of the attacks present in cryptographic literature against whitebox schemes are
against binaries that do not employ software protection, and so control flow obfuscation
is an effective tool to counteract them. However as we will later show, binaries applying
only control flow shuffling as a software countermeasure are susceptible to both ADCA
and ZDE attacks. Thus one requires additional protection measures.

4.2 Table location randomization
This DCA attack described by Bos et. al. uses the memory address accesses available in
the software traces to construct a power attack. Since these memory addresses essentially
reveal the inputs to the various tables accessed, they reveal enough information to perform
a DCA. Table location randomization is akin to the masking countermeasure applied in
hardware architectures to thwart power attacks. The memory addresses are protected by

318 Analysis of Software Countermeasures for Whitebox Encryption

・ Correct Key

・Wrong Key

A

C
C

C
C
C

C
C
C
C

C

C
C

A
A
A
A

C
C
C
C

A

C
C

C
C

C

C
C
C

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

P

K(0)

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

Q(1)subbyte

MixColumnShiftrow

Ensubroundj
(1) Ensubroundj

(2)
Ensubroundj

(3)

S(0) S (2)S
M

(2)S
S

(2)

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

Q(2)

S
S
S
S

S
S
S
S

S
S
S

S
S
S
S

P(2)

K(1)

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

Q(3)

S
S
S
S

S
S
S
S

S
S
S

S
S
S
S

P(3)

K(2)

A

C
C
C

C

A
A
A
A

C
C
C

C
C
C
C

C
C
C
C

A
A
A
A

C
C
C

C
C
C
C

C
C
C
C

S (3)SM
(3)SS

(3)

AC
C
C
C

C
C
C
C

C
C
C
C

A

A
C
C
C

C
C
C
C

C
C
C
C

A

A
C
C
C

C
C
C
C

C
C
C
C

S(1)SM
(1)SS

(1)

A
A
A
A

C
C

C
C
C
C

C

C
C

S (1) S (2)
S (0)

?

?

?

?

AC
C
C
C

C
C
C
C

C
C
C
C

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?
A

C
C

C
C

C

C
C
C

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

A

C
C

C
C
C
C

C
C
C
C

C
C
C
C

A

C
C

C
C
C
C

C
C
C
C

C
C
C
C

A

C
C
C

C

A
A
A
A

C
C
C
C

Figure 4: Truncated differential characteristics of Chow et al’s whitebox AES-128 imple-
mentation

adding random offsets to them. This effectively disperses the tables at random locations
in the address space. Although this countermeasure protects against Address based DCA
(ADCA), it does not provide protection if a Value based DCA (VDCA) attack is employed.
The zero difference enumeration attack described in Section 5 is also able to attack binaries
employing location randomization.

4.3 Dummy operations
An effective way of thwarting power attacks was proposed in [Man04] that utilizes random
disarrangement of time. The idea works as follows: recall that in a standard DPA attack,
the attacker computes the correlation coefficient ρj(t) for each key guess Kj for all the
time range for which he obtains power traces. The internal variable V which the power
attack targets is usually computed in the first round itself, and thus the samples that
indicate the power consumption for V are likely to be located in a small time range at
the beginning of the power trace for each plaintext. For a system that does not employ
disarrangement the time range over which the intermediate variable V is calculated is
likely to align itself for each new plaintext for which traces are recorded. Thus it becomes
easy to compute the correlation coefficients. The correct key guess is likely the one which
maximizes ρj(t) for some t.

The idea of disarrangement is to randomize the time instance at which the intermediate
V is computed for each execution of the encryption operation. As a result for each new
plaintext, V is likely to be computed at different time instances. As a result, in the
power traces, the time instances at which V is computed no longer align with each other.
And so it becomes more difficult to mount a power attack. In the context of whitebox
encryption, disarrangement is achieved by adding random number of dummy table lookups
in between each legitimate table access. This essentially breaks the alignment pattern for
table accesses for each new plaintext for which traces are recorded.

5 Zero Difference Enumeration (ZDE) attack
Since the countermeasures that randomize the control flow or insert dummy operations
will misalign the DCA memory traces, we may consider an attack model where this does
not matter. We propose the zero difference enumeration attack inspired by concepts of

Subhadeep Banik, Andrey Bogdanov, Takanori Isobe and Martin Bjerregaard Jepsen319

differential cryptanalysis of symmetric-key cryptosystems. The attack works by choosing
special pairs of plaintexts which are encrypted using the whitebox implementation. The
pairs are constructed such that if our key guess is correct, a significant number of byte
values in the two corresponding AES states will be identical during encryption. Because
whitebox implementations often use many tables to process the bytes of the state, this
will further amplify the number of such bytes. Determining which key is correct is then a
matter of testing which pairs have the highest number of equal bytes in the AES state
during the encryption.

The pair of plaintexts we will henceforth refer to as a β-plaintext pair. The attack
proceeds as follows:

• The attacker starts by guessing a small portion of the Secret key. In this case, he
begins by guessing 2 bytes of the key.

• For all possible values of the key guess Kj , the attacker prepares a β-plaintext pair
PT1, PT2 so that the difference PT1⊕PT2 = f(Kj) is some function of the keyguess.

• The function f is chosen in a manner so that, if the keyguess is correct, then many
internal state variables incurred during rounds 1, 2, 3 of the encryption module for
both PT1 and PT2 are the same.

• As a result, the corresponding table inputs and outputs accessed during the encryption
of PT1 and PT2 are the same if the keyguess Kj is correct.

• Using the above as a distinguisher, the attacker goes through all the possible
keyguesses and selects the keyguess for which the number of similar table inputs/out-
puts for the β-pair are maximized.

The main advantage of ZDE is that the attack seems robust to countermeasures like
control flow obfuscation and randomization of table locations in the memory.

5.1 How to get a key-dependent β-plaintext pair
We will now describe the process to obtain a β-plaintext pair for any given keyguess.
We will refer to the Figure 4 for this. Let states after SubBytes and MixColumns in
EnSubround(r) be S(r)

s and S(r)
M , respectively.

• First, the attacker guesses the first two key bytes {k̂(0)
0,0, k̂

(0)
0,1}.

• The attacker then chooses arbitrarily the entire first column, {s(1)
M0,0, . . . , s

(1)
M0,3}, of

the internal state SM which is the state just after the MixColumns layer of the first
round.

• The logic behind choosing the entire first column is as follows: it allows the the
attacker to invert the MixColumns layer on the first column and calculate the first
column of SS i.e. the state after the SubBytes layer.

• The SubBytes layer can be inverted to get the entire first column which is the state
just after the first AddRoundKey.

• Since the first 2 bytes of the key is already guessed, the attacker can thus compute the
first two bytes in the main diagonal of the plaintext PT1 by inverting AddRoundKey
and ShiftRow operations.

• For the plaintext PT2, we do the following: Generate any byte difference ∆, and add
the 32 bit difference {∆, 3∆, 0, 2∆} to the first column of SM to get the state S′M .

320 Analysis of Software Countermeasures for Whitebox Encryption

Table 1: Probability-one zero for correct and wrong keys when encrypting β-plaintext
pair.

Correct key (307 bytes)
s

(1)
0,2, s

(1)
i,j , s

(2)
2,j (0 ≤ i ≤ 3, 1 ≤ j ≤ 3)

T A
(1)
0 [8 − 15], T A

(1)
j 1 ≤ j ≤ 3

T A
(2)
0 [4 − 15], T A

(2)
1 [0 − 11], T A

(2)
2 , T A

(2)
3 [0 − 3, 7 − 15],

T A
(3)
0 [7 − 11], T A

(3)
1 [4 − 7], T A

(3)
2 [0 − 3], T A

(3)
3 [11 − 15],

T B
(1)
0 [2, 6, 10, 14], T B

(1)
j (1 ≤ j ≤ 3), T B

(2)
2

T C
(1)
j (1 ≤ j ≤ 3), T C

(2)
2

T C1(1)
0 [3 − 7], T C

(1)
j (1 ≤ j ≤ 3)

T C1(2)
0 [3 − 7], T C

(1)
1 [0 − 3], T C

(2)
1 , T C

(3)
1 [3 − 7]

T C2(1)
0 [2, 6], T C2(1)

j (1 ≤ j ≤ 3), T C2(2)
2

Wrong key (244 bytes)
s

(1)
i,j (0 ≤ i ≤ 3, 1 ≤ j ≤ 3)

T A
(1)
0 [8 − 15], T A

(1)
j (1 ≤ j ≤ 3)

T A
(2)
0 [4 − 15], T A

(2)
1 [0 − 11], T A

(2)
2 [0 − 7, 12 − 15]

T A
(2)
3 [0 − 3, 7 − 15], T B

(1)
j , T C

(1)
j , T C2(1)

j (1 ≤ j ≤ 3)
T C1(1)

0 [3 − 7], T C
(1)
j (1 ≤ j ≤ 3)

T C1(2)
0 [3 − 7], T C

(1)
1 [0 − 3], T C

(2)
1 [0 − 3], T C

(3)
1 [3 − 7]

• Thereafter as before, the MixColumns, SubBytes, AddRoundKey, and ShiftRows
layers can be inverted to get the first two bytes in the diagonal of PT2 by using
guessed two key bytes {k̂(0)

0,0, k̂
(0)
0,1}.

• The remaining 14 bytes of PT1 and PT2 can be assigned with the all zero byte value
or the same random byte value. (Note that a similar exercise can be done for other
double byte values of the key).

Due to the property of the MDS matrix used for the linear MixColumns layer in AES-
128, the difference {∆, 3∆, 0, 2∆} between SM and S′M ensures that the difference between
the states SS and S′S is given by {∆,∆, 0, 0}. As described in Figure 4, if the two key
bytes are guessed correctly, then the β-plaintext pairs will produce a differential trail shown
by the upper half of of the figure. If not, the differential trail becomes unpredictable from
the second round onward. Note that the bytes in red indicate a probability 1 difference,
the bytes with ? indicate an unpredictable difference and a byte in white indicate that the
corresponding bytes in the internal state produced during the encryption of the β-pair are
same with probability 1.

5.2 Zero Difference Bytes
In essence the table accesses involving the white bytes in Figure 4 will lead to a larger
amount of equal values when tracing an encryption of the β-plaintext pair, when the 16-key
bits are guessed correctly. For the Chow et. al. AES encryption we found that if the
keyguess is correct we have 307 equal bytes, and if the keyguess is incorrect we only have
244 as shown in Table 1.

The DBI techniques allow the attacker to plant β-pairs into the binary framework and
record software traces. The attack can be performed offline after sufficient traces have
been recorded. The attacker constructs multiple β-pairs for all possible keyguesses, and
the keyguess which results in the highest average number of equal table outputs for the
β-pairs in the first 3 encryption rounds is likely to be the correct key value.

Subhadeep Banik, Andrey Bogdanov, Takanori Isobe and Martin Bjerregaard Jepsen321

6 Experimental results
Along with the paper introducing the concept of DCA [BHMT16], a toolset for practical
analysis of binaries was provided by Bos et. al. The toolset can be used to record execution
traces of target binaries, and apply DPA attacks to trace files of AES and DES encryptions.
To evaluate the impact of hiding on DCA we apply this toolset to binaries containing
countermeasures, and use the number of traces required for key recovery as a measure of
complexity. Since each trace is an independent recording of an encryption of a random
plaintext, they may be collected in parallel. If the resources needed to perform one trace are
known, the final time requirement for the tracing can therefore be scaled to the hardware
available to an attacker. Unless otherwise noted we collected the traces on a laptop with a
1.7GHz Core i7 (I7-4650U, which has 2 cores) and 8GB of RAM. Since the DCA tools and
challenges run on linux, all the experiments were run in a linux virtual machine (VM).

For each set of recorded traces we attempt to recover the key by attacking the state
after the level one T-box in the first AES round. With the number of traces we have
available this might not always recover the whole key successfully, but it shows the effort
required to complete the whole attack. For our results we record the number of correct
key bytes that are returned as the top DCA candidate, ranked on the absolute value of the
bit correlations. Since some key bytes might rank slightly lower due to a too low number
of traces, we also note if the correct key bytes were found in the list of the top 10 results.

6.1 CHES 2016 whitebox challenge

Table 2: DCA on the CHES 2016 challenge.

Attack type Countermeasures Time per trace Size per trace # Traces # Key bytes # Key bytes Correlation time
(found in top 10) (found as best) (h:m:s)

ADCA

None 0.65 seconds 19,248 bytes 4,000 16 15 48:36

Shuffling 3.14 seconds 6,224 bytes 4,000 13 12 16:22
10,000 13 12 40:06

Shuffling and random offsets 3.35 seconds 51,680 bytes 10,000 0 0 6:41:59
Dummy operations 4.61 seconds 38,768 bytes 4,000 1 0 1:41:09

VDCA

None 0.65 seconds 19,248 bytes 4,000 11 4 49:15

Shuffling 3.14 seconds 6,224 bytes 4,000 5 0 16:34
10,000 5 1 41:08

Shuffling and random offsets 3.35 seconds 40,448 bytes 10,000 13 12 5:15:57
Dummy operations 4.61 seconds 38,768 bytes 4,000 0 0 1:49:29

Metrics for DCA on the CHES 2016 whitebox challenge with countermeasures. The time per trace is the
total time to record and store one execution trace. Address and value traces are recorded at the same
time, which is why the time per trace is equal in ADCA and VDCA. The size per trace is the bytes of
storage used per execution trace, when recording 1/3 of the encryption function with appropriate filtering
(see subsections). We record the number of correct key bytes that are ranked in the top 10 and best
position according to the correlation value. The time is the total time to run the DPA correlation tool on
the traces, excluding tracing.

For the CHES conference of 2016, which highlights new results in the design and
analysis of cryptographic hardware and software implementations, a set of challenges
were given as a competition. The challenges involve power analysis and creating secure
implementations of AES encryption, and an implementation of the Chow et. al. whitebox
scheme was included amongst these. The challenge is delivered as both a compiled linux
binary, and the corresponding C source code. When run the program encrypts an input
plaintext using AES and prints the resulting ciphertext. The goal is to recover the AES
key from the encryption function, which we do by applying the Bos et. al. DCA tools to
the compiled binary.

To determine the area to trace, one can perform a superficial analysis in a disassembler
such as IDA Pro. Since the binary is not obfuscated, it is easy to identify the address range
corresponding to the instructions in the encryption function. We may then choose to only

322 Analysis of Software Countermeasures for Whitebox Encryption

Table 3: ZDE on the CHES 2016 challenge.

Attack type Countermeasures Time per trace Size per trace # Traces # Key bytes Total time
found (h:m:s)

ZDE

None 0.000012 seconds 2,048 bytes 500 · 217 2 0:3
Shuffling 0.001641 seconds 2,048 bytes 500 · 217 2 7:0
Shuffling and random offsets 0.003594 seconds 2,048 bytes 500 · 217 2 15:20
Dummy operations 0.071543 seconds 4,096 bytes 5000 · 217 0? 5:5:15

Metrics for ZDE on the CHES 2016 whitebox challenge with countermeasures. The attack was run as 256
parallel instances on a cluster, and the final scores of candidate keys was filtered to identify the top choice.
The time is the total time to run the attack, including tracing. Only 2 key bytes were attacked. ?: The
correct key bytes were ranked as number 2.

record when the binary is executing in this address range. Since the code for the challenge
consists of a long line of table lookups we have chosen to trace for approximately 1/3 of
the encryption function. We will be attacking the state after the level one T-box lookup in
the first round, so this gives us some margin of error when choosing the range. Because all
the whitebox tables used in the challenge are static, we can also narrow recording to only
values that are read and written from the data section. If this was not the case, one could
instead use the trace graphing tool that is provided as part of the toolkit. This tool allows
one to visualize the addresses that are read and written, and spot patterns corresponding
to the encryption algorithms. Narrowing the range of addresses to consider is then easy.
For all instructions referencing memory we record the lowest 8 bit of addresses and 8-bit

Table 4: Ranking for individual key bits when attacking the CHES 2016 challenge.

Key byte
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ar
ge
t
bi
t

0 244 212 255 0 0 0 0 255 249 255 0 0 250 0 233 255
1 255 243 255 255 0 255 255 252 0 255 255 0 254 255 235 0
2 135 204 244 171 0 173 240 1 0 203 186 80 0 237 0 204
3 0 0 254 199 209 219 0 0 128 191 0 202 243 0 206 130
4 255 0 0 0 250 0 236 255 0 0 242 253 245 247 0 249
5 251 41 250 216 129 0 0 244 251 228 60 157 251 153 0 215
6 255 211 194 82 255 179 254 220 0 135 4 0 179 232 249 0
7 0 255 0 255 0 248 254 0 255 255 0 232 0 253 0 1

Recovered X X X X X X X X X X X X X - X X

Here we show the rank of the correlation score for the individual key bits when solving the challenge using
4,000 address traces. The candidates are ranked according to the absolute value of the correlation. As also
noted in [BHMT16] the correct guesses tend to either be the top (0th) or bottom (255th) ranked
candidate. We recover 15/16 key bytes, as shown by the checkmarks.

data values separately, since both can be used to perform the DCA. When looking up
in a whitebox table the implementation uses the output of another table, thus memory
addresses will be correlated with the output data from another memory operation. In total
we collected 4,000 traces of encryptions, which took 43 minutes and 148MB of disk space.
We then searched for the key using the included DPA tool on the address traces, finding
what turned out to be 15/16 of the key bytes. After also running the attack on the traces
of values we complete the whole key, which we then verified by decrypting ciphertexts
again using openssl. The time taken for key recovery was 48 minutes of correlation on the
address traces, and 49 minutes on the value traces. For the traces of values the correlations
are not as strong, and we find only 4/16 bytes as the top 10 candidates. In Table 4 we
show the rank of the correlation score for each byte of the key, when attacking the state
after the level one T-box in the first round using address traces.

Subhadeep Banik, Andrey Bogdanov, Takanori Isobe and Martin Bjerregaard Jepsen323

Whitebox table

Malloced buffer

Random offset

Figure 5: Random offset of table in memory.

6.2 Shuffling of operations

plain[0]

v0@4065

v16@4081 v17@4082 v18@4095 v19@4096 v20@4109 v21@4110 v22@4123 v0@4124

v16@4085 v17@4086 v18@4099 v19@4100 v20@4113 v21@4114 v22@4127 v0@4128

v16@4093 v17@4094 v18@4107 v19@4108 v20@4121 v21@4122 v5@4135 v0@4136

v10@4137 v15@4138 v22@4151 v23@4152v24@4165 v25@4166v26@4179 v16@4180 v22@4139 v23@4140 v24@4153 v25@4154v26@4167 v27@4168v17@4181 v18@4182 v22@4143 v23@4144 v24@4157 v25@4158v26@4171 v27@4172v18@4185 v19@4186 v24@4145 v25@4146 v26@4159 v27@4160v28@4173 v29@4174v20@4187 v0@4188

v10@4141 v15@4142 v22@4155 v23@4156v24@4169 v25@4170v17@4183 v16@4184 v22@4147 v23@4148 v24@4161 v25@4162v26@4175 v27@4176v5@4189 v0@4190

plain[4]

v1@4066

v16@4193 v17@4194 v18@4207 v19@4208 v20@4221 v21@4222 v26@4235 v1@4236

v16@4197 v17@4198 v18@4211 v19@4212 v20@4225 v21@4226 v26@4239 v1@4240

v16@4205 v17@4206 v18@4219 v19@4220 v20@4233 v21@4234 v6@4247 v1@4248

v11@4249 v12@4250v26@4263 v27@4264 v28@4277 v29@4278v30@4291 v16@4292 v26@4251 v27@4252v28@4265 v29@4266 v30@4279 v31@4280v17@4293 v18@4294 v26@4255 v27@4256v28@4269 v29@4270 v30@4283 v31@4284v18@4297 v19@4298 v28@4257 v29@4258v30@4271 v31@4272 v32@4285 v33@4286v20@4299 v1@4300

v11@4253 v12@4254v26@4267 v27@4268 v28@4281 v29@4282v17@4295 v16@4296 v26@4259 v27@4260v28@4273 v29@4274 v30@4287 v31@4288v6@4301 v1@4302

plain[8]

v2@4067

v16@4305 v17@4306 v18@4319 v19@4320 v20@4333 v21@4334 v30@4347 v2@4348

v16@4309 v17@4310 v18@4323 v19@4324 v20@4337 v21@4338 v30@4351 v2@4352

v16@4317 v17@4318 v18@4331 v19@4332 v20@4345 v21@4346 v7@4359 v2@4360

v8@4361 v13@4362v30@4375 v31@4376v32@4389 v33@4390 v34@4403 v16@4404 v30@4363 v31@4364v32@4377 v33@4378v34@4391 v35@4392 v17@4405 v18@4406 v30@4367 v31@4368v32@4381 v33@4382v34@4395 v35@4396 v18@4409 v19@4410 v32@4369 v33@4370v34@4383 v35@4384v36@4397 v37@4398 v20@4411 v2@4412

v8@4365 v13@4366v30@4379 v31@4380v32@4393 v33@4394 v17@4407 v16@4408 v30@4371 v31@4372v32@4385 v33@4386v34@4399 v35@4400 v7@4413 v2@4414

plain[12]

v3@4068

v16@4417 v17@4418 v18@4431 v19@4432 v20@4445 v21@4446 v34@4459 v3@4460

v16@4421 v17@4422 v18@4435 v19@4436 v20@4449 v21@4450 v34@4463 v3@4464

v16@4429 v17@4430 v18@4443 v19@4444 v20@4457 v21@4458 v4@4471 v3@4472

v9@4473 v14@4474v34@4487 v35@4488v36@4501 v37@4502v38@4515 v16@4516 v34@4475 v35@4476v36@4489 v37@4490v38@4503 v39@4504v17@4517 v18@4518 v34@4479 v35@4480v36@4493 v37@4494v38@4507 v39@4508v18@4521 v19@4522 v36@4481 v37@4482v38@4495 v39@4496v40@4509 v41@4510v20@4523 v3@4524

v9@4477 v14@4478v34@4491 v35@4492v36@4505 v37@4506v17@4519 v16@4520 v34@4483 v35@4484v36@4497 v37@4498v38@4511 v39@4512v4@4525 v3@4526

plain[1]

v4@4069

v18@4419 v19@4420 v20@4433 v21@4434 v34@4447 v35@4448 v35@4461 v4@4462

plain[5]

v5@4070

v18@4083 v19@4084 v20@4097 v21@4098 v22@4111 v23@4112 v23@4125 v5@4126

plain[9]

v6@4071

v18@4195 v19@4196 v20@4209 v21@4210 v26@4223 v27@4224 v27@4237 v6@4238

plain[13]

v7@4072

v18@4307 v19@4308 v20@4321 v21@4322 v30@4335 v31@4336 v31@4349 v7@4350

plain[2]

v8@4073

v18@4311 v19@4312 v20@4325 v21@4326 v30@4339 v31@4340 v7@4353 v8@4354

v18@4315 v19@4316 v20@4329 v21@4330 v30@4343 v31@4344 v7@4357 v8@4358

plain[6]

v9@4074

v18@4423 v19@4424 v20@4437 v21@4438 v34@4451 v35@4452 v4@4465 v9@4466

v18@4427 v19@4428 v20@4441 v21@4442 v34@4455 v35@4456 v4@4469 v9@4470

plain[10]

v10@4075

v18@4087 v19@4088 v20@4101 v21@4102 v22@4115 v23@4116 v5@4129 v10@4130

v18@4091 v19@4092 v20@4105 v21@4106 v22@4119 v23@4120 v5@4133 v10@4134

plain[14]

v11@4076

v18@4199 v19@4200 v20@4213 v21@4214 v26@4227 v27@4228 v6@4241 v11@4242

v18@4203 v19@4204 v20@4217 v21@4218 v26@4231 v27@4232 v6@4245 v11@4246

plain[3]

v12@4077

v20@4201 v21@4202 v26@4215 v27@4216 v28@4229 v29@4230 v27@4243 v12@4244

plain[7]

v13@4078

v20@4313 v21@4314 v30@4327 v31@4328 v32@4341 v33@4342 v31@4355 v13@4356

plain[11]

v14@4079

v20@4425 v21@4426 v34@4439 v35@4440 v36@4453 v37@4454 v35@4467 v14@4468

plain[15]

v15@4080

v20@4089 v21@4090 v22@4103 v23@4104 v24@4117 v25@4118 v23@4131 v15@4132

v10@4149 v15@4150 v22@4163 v23@4164v24@4177 v25@4178v5@4191 v0@4192

v16@4529 v17@4530 v18@4543 v19@4544 v20@4557 v21@4558 v38@4571 v10@4572 v18@4867 v19@4868 v20@4881 v21@4882 v38@4895 v39@4896 v14@4909 v22@4910v18@4759 v19@4760 v20@4773 v21@4774 v38@4787 v39@4788 v34@4801 v24@4802v20@4649 v21@4650 v38@4663 v39@4664 v40@4677 v41@4678 v36@4691 v0@4692

v16@4533 v17@4534 v18@4547 v19@4548 v20@4561 v21@4562 v15@4575 v10@4576 v16@4869 v17@4870 v18@4883 v19@4884 v20@4897 v21@4898 v14@4911 v9@4912v18@4763 v19@4764 v20@4777 v21@4778 v38@4791 v39@4792 v6@4805 v1@4806v18@4651 v19@4652 v20@4665 v21@4666 v38@4679 v39@4680 v5@4693 v0@4694

v16@4541 v17@4542 v18@4555 v19@4556 v20@4569 v21@4570 v4@4583 v3@4584

v10@4585 v15@4586 v26@4599 v27@4600v32@4613 v33@4614v38@4627 v16@4628 v26@4587 v27@4588 v32@4601 v33@4602v38@4615 v39@4616v17@4629 v18@4630 v26@4591 v27@4592 v32@4605 v33@4606v38@4619 v39@4620v18@4633 v19@4634 v32@4593 v33@4594 v38@4607 v39@4608v40@4621 v41@4622v20@4635 v3@4636

v10@4589 v15@4590 v26@4603 v27@4604v32@4617 v33@4618v17@4631 v16@4632 v26@4595 v27@4596 v32@4609 v33@4610v38@4623 v39@4624v4@4637 v3@4638

v16@4877 v17@4878 v18@4891 v19@4892 v20@4905 v21@4906 v7@4919 v2@4920

v9@4921 v14@4922v22@4935 v23@4936v28@4949 v29@4950v38@4963 v16@4964 v22@4923 v23@4924v28@4937 v29@4938v38@4951 v39@4952v17@4965 v18@4966 v22@4927 v23@4928v28@4941 v29@4942v38@4955 v39@4956v18@4969 v19@4970 v28@4929 v29@4930v38@4943 v39@4944v40@4957 v41@4958v20@4971 v2@4972

v9@4925 v14@4926v22@4939 v23@4940v28@4953 v29@4954v17@4967 v16@4968 v22@4931 v23@4932v28@4945 v29@4946v38@4959 v39@4960v7@4973 v2@4974

v16@4765 v17@4766 v18@4779 v19@4780 v20@4793 v21@4794 v6@4807 v1@4808

v8@4809 v13@4810v24@4823 v25@4824v34@4837 v35@4838 v38@4851 v16@4852 v24@4811 v25@4812v34@4825 v35@4826v38@4839 v39@4840 v17@4853 v18@4854 v24@4815 v25@4816v34@4829 v35@4830v38@4843 v39@4844 v18@4857 v19@4858 v34@4817 v35@4818v38@4831 v39@4832v40@4845 v41@4846 v20@4859 v1@4860

v8@4813 v13@4814v24@4827 v25@4828v34@4841 v35@4842 v17@4855 v16@4856 v24@4819 v25@4820v34@4833 v35@4834v38@4847 v39@4848 v6@4861 v1@4862

v16@4653 v17@4654 v18@4667 v19@4668 v20@4681 v21@4682 v5@4695 v0@4696

v11@4697 v12@4698v30@4711 v31@4712 v36@4725 v37@4726v38@4739 v16@4740 v30@4699 v31@4700v36@4713 v37@4714 v38@4727 v39@4728v17@4741 v18@4742 v30@4703 v31@4704v36@4717 v37@4718 v38@4731 v39@4732v18@4745 v19@4746 v36@4705 v37@4706v38@4719 v39@4720 v40@4733 v41@4734v20@4747 v0@4748

v11@4701 v12@4702v30@4715 v31@4716 v36@4729 v37@4730v17@4743 v16@4744 v30@4707 v31@4708v36@4721 v37@4722 v38@4735 v39@4736v5@4749 v0@4750

v11@4261 v12@4262v26@4275 v27@4276 v28@4289 v29@4290v6@4303 v1@4304

v16@4641 v17@4642 v18@4655 v19@4656 v20@4669 v21@4670 v38@4683 v11@4684v18@4531 v19@4532 v20@4545 v21@4546 v38@4559 v39@4560 v15@4573 v26@4574 v18@4871 v19@4872 v20@4885 v21@4886 v38@4899 v39@4900 v22@4913 v23@4914v20@4761 v21@4762 v38@4775 v39@4776 v40@4789 v41@4790 v25@4803 v1@4804

v16@4645 v17@4646 v18@4659 v19@4660 v20@4673 v21@4674 v12@4687 v11@4688 v18@4875 v19@4876 v20@4889 v21@4890 v38@4903 v39@4904 v7@4917 v2@4918

v8@4373 v13@4374v30@4387 v31@4388v32@4401 v33@4402 v7@4415 v2@4416

v16@4753 v17@4754 v18@4767 v19@4768 v20@4781 v21@4782 v38@4795 v8@4796v18@4643 v19@4644 v20@4657 v21@4658 v38@4671 v39@4672 v12@4685 v30@4686v18@4535 v19@4536 v20@4549 v21@4550 v38@4563 v39@4564 v26@4577 v27@4578 v20@4873 v21@4874 v38@4887 v39@4888 v40@4901 v41@4902 v28@4915 v2@4916

v16@4757 v17@4758 v18@4771 v19@4772 v20@4785 v21@4786 v13@4799 v8@4800v18@4539 v19@4540 v20@4553 v21@4554 v38@4567 v39@4568 v4@4581 v3@4582

v9@4485 v14@4486v34@4499 v35@4500v36@4513 v37@4514v4@4527 v3@4528

v16@4865 v17@4866 v18@4879 v19@4880 v20@4893 v21@4894 v38@4907 v9@4908v18@4755 v19@4756 v20@4769 v21@4770 v38@4783 v39@4784 v13@4797 v34@4798v18@4647 v19@4648 v20@4661 v21@4662 v38@4675 v39@4676 v30@4689 v31@4690v20@4537 v21@4538 v38@4551 v39@4552 v40@4565 v41@4566 v32@4579 v3@4580

v10@4597 v15@4598 v26@4611 v27@4612v32@4625 v33@4626v4@4639 v3@4640

v16@4977 v17@4978 v18@4991 v19@4992 v20@5005 v21@5006 v38@5019 v10@5020 v18@5315 v19@5316 v20@5329 v21@5330 v38@5343 v39@5344 v14@5357 v26@5358v18@5207 v19@5208 v20@5221 v21@5222 v38@5235 v39@5236 v22@5249 v23@5250v20@5097 v21@5098 v38@5111 v39@5112 v40@5125 v41@5126 v28@5139 v3@5140

v16@4981 v17@4982 v18@4995 v19@4996 v20@5009 v21@5010 v15@5023 v10@5024 v16@5317 v17@5318 v18@5331 v19@5332 v20@5345 v21@5346 v14@5359 v9@5360v18@5211 v19@5212 v20@5225 v21@5226 v38@5239 v39@5240 v5@5253 v0@5254v18@5099 v19@5100 v20@5113 v21@5114 v38@5127 v39@5128 v4@5141 v3@5142

v16@4989 v17@4990 v18@5003 v19@5004 v20@5017 v21@5018 v7@5031 v2@5032

v10@5033 v15@5034 v30@5047 v31@5048v34@5061 v35@5062v38@5075 v16@5076 v30@5035 v31@5036 v34@5049 v35@5050v38@5063 v39@5064v17@5077 v18@5078 v30@5039 v31@5040 v34@5053 v35@5054v38@5067 v39@5068v18@5081 v19@5082 v34@5041 v35@5042 v38@5055 v39@5056v40@5069 v41@5070v20@5083 v2@5084

v10@5037 v15@5038 v30@5051 v31@5052v34@5065 v35@5066v17@5079 v16@5080 v30@5043 v31@5044 v34@5057 v35@5058v38@5071 v39@5072v7@5085 v2@5086

v16@5325 v17@5326 v18@5339 v19@5340 v20@5353 v21@5354 v6@5367 v1@5368

v9@5369 v14@5370v26@5383 v27@5384v36@5397 v37@5398v38@5411 v16@5412 v26@5371 v27@5372v36@5385 v37@5386v38@5399 v39@5400v17@5413 v18@5414 v26@5375 v27@5376v36@5389 v37@5390v38@5403 v39@5404v18@5417 v19@5418 v36@5377 v37@5378v38@5391 v39@5392v40@5405 v41@5406v20@5419 v1@5420

v9@5373 v14@5374v26@5387 v27@5388v36@5401 v37@5402v17@5415 v16@5416 v26@5379 v27@5380v36@5393 v37@5394v38@5407 v39@5408v6@5421 v1@5422

v16@5213 v17@5214 v18@5227 v19@5228 v20@5241 v21@5242 v5@5255 v0@5256

v8@5257 v13@5258v22@5271 v23@5272v32@5285 v33@5286 v38@5299 v16@5300 v22@5259 v23@5260v32@5273 v33@5274v38@5287 v39@5288 v17@5301 v18@5302 v22@5263 v23@5264v32@5277 v33@5278v38@5291 v39@5292 v18@5305 v19@5306 v32@5265 v33@5266v38@5279 v39@5280v40@5293 v41@5294 v20@5307 v0@5308

v8@5261 v13@5262v22@5275 v23@5276v32@5289 v33@5290 v17@5303 v16@5304 v22@5267 v23@5268v32@5281 v33@5282v38@5295 v39@5296 v5@5309 v0@5310

v16@5101 v17@5102 v18@5115 v19@5116 v20@5129 v21@5130 v4@5143 v3@5144

v11@5145 v12@5146v24@5159 v25@5160 v28@5173 v29@5174v38@5187 v16@5188 v24@5147 v25@5148v28@5161 v29@5162 v38@5175 v39@5176v17@5189 v18@5190 v24@5151 v25@5152v28@5165 v29@5166 v38@5179 v39@5180v18@5193 v19@5194 v28@5153 v29@5154v38@5167 v39@5168 v40@5181 v41@5182v20@5195 v3@5196

v11@5149 v12@5150v24@5163 v25@5164 v28@5177 v29@5178v17@5191 v16@5192 v24@5155 v25@5156v28@5169 v29@5170 v38@5183 v39@5184v4@5197 v3@5198

v11@4709 v12@4710v30@4723 v31@4724 v36@4737 v37@4738v5@4751 v0@4752

v16@5089 v17@5090 v18@5103 v19@5104 v20@5117 v21@5118 v38@5131 v11@5132v18@4979 v19@4980 v20@4993 v21@4994 v38@5007 v39@5008 v15@5021 v30@5022 v18@5319 v19@5320 v20@5333 v21@5334 v38@5347 v39@5348 v26@5361 v27@5362v20@5209 v21@5210 v38@5223 v39@5224 v40@5237 v41@5238 v32@5251 v0@5252

v16@5093 v17@5094 v18@5107 v19@5108 v20@5121 v21@5122 v12@5135 v11@5136 v18@5323 v19@5324 v20@5337 v21@5338 v38@5351 v39@5352 v6@5365 v1@5366

v8@4821 v13@4822v24@4835 v25@4836v34@4849 v35@4850 v6@4863 v1@4864

v16@5201 v17@5202 v18@5215 v19@5216 v20@5229 v21@5230 v38@5243 v8@5244v18@5091 v19@5092 v20@5105 v21@5106 v38@5119 v39@5120 v12@5133 v24@5134v18@4983 v19@4984 v20@4997 v21@4998 v38@5011 v39@5012 v30@5025 v31@5026 v20@5321 v21@5322 v38@5335 v39@5336 v40@5349 v41@5350 v36@5363 v1@5364

v16@5205 v17@5206 v18@5219 v19@5220 v20@5233 v21@5234 v13@5247 v8@5248v18@4987 v19@4988 v20@5001 v21@5002 v38@5015 v39@5016 v7@5029 v2@5030

v9@4933 v14@4934v22@4947 v23@4948v28@4961 v29@4962v7@4975 v2@4976

v16@5313 v17@5314 v18@5327 v19@5328 v20@5341 v21@5342 v38@5355 v9@5356v18@5203 v19@5204 v20@5217 v21@5218 v38@5231 v39@5232 v13@5245 v22@5246v18@5095 v19@5096 v20@5109 v21@5110 v38@5123 v39@5124 v24@5137 v25@5138v20@4985 v21@4986 v38@4999 v39@5000 v40@5013 v41@5014 v34@5027 v2@5028

v10@5045 v15@5046 v30@5059 v31@5060v34@5073 v35@5074v7@5087 v2@5088

v16@5425 v17@5426 v18@5439 v19@5440 v20@5453 v21@5454 v38@5467 v10@5468 v18@5763 v19@5764 v20@5777 v21@5778 v38@5791 v39@5792 v14@5805 v30@5806v18@5655 v19@5656 v20@5669 v21@5670 v38@5683 v39@5684 v26@5697 v27@5698v20@5545 v21@5546 v38@5559 v39@5560 v40@5573 v41@5574 v36@5587 v2@5588

v16@5429 v17@5430 v18@5443 v19@5444 v20@5457 v21@5458 v15@5471 v10@5472 v16@5765 v17@5766 v18@5779 v19@5780 v20@5793 v21@5794 v14@5807 v9@5808v18@5659 v19@5660 v20@5673 v21@5674 v38@5687 v39@5688 v4@5701 v3@5702v18@5547 v19@5548 v20@5561 v21@5562 v38@5575 v39@5576 v7@5589 v2@5590

v16@5437 v17@5438 v18@5451 v19@5452 v20@5465 v21@5466 v6@5479 v1@5480

v10@5481 v15@5482 v24@5495 v25@5496v32@5509 v33@5510v38@5523 v16@5524 v24@5483 v25@5484 v32@5497 v33@5498v38@5511 v39@5512v17@5525 v18@5526 v24@5487 v25@5488 v32@5501 v33@5502v38@5515 v39@5516v18@5529 v19@5530 v32@5489 v33@5490 v38@5503 v39@5504v40@5517 v41@5518v20@5531 v1@5532

v10@5485 v15@5486 v24@5499 v25@5500v32@5513 v33@5514v17@5527 v16@5528 v24@5491 v25@5492 v32@5505 v33@5506v38@5519 v39@5520v6@5533 v1@5534

v16@5773 v17@5774 v18@5787 v19@5788 v20@5801 v21@5802 v5@5815 v0@5816

v9@5817 v14@5818v28@5831 v29@5832v30@5845 v31@5846v38@5859 v16@5860 v28@5819 v29@5820v30@5833 v31@5834v38@5847 v39@5848v17@5861 v18@5862 v28@5823 v29@5824v30@5837 v31@5838v38@5851 v39@5852v18@5865 v19@5866 v30@5825 v31@5826v38@5839 v39@5840v40@5853 v41@5854v20@5867 v0@5868

v9@5821 v14@5822v28@5835 v29@5836v30@5849 v31@5850v17@5863 v16@5864 v28@5827 v29@5828v30@5841 v31@5842v38@5855 v39@5856v5@5869 v0@5870

v16@5661 v17@5662 v18@5675 v19@5676 v20@5689 v21@5690 v4@5703 v3@5704

v8@5705 v13@5706v26@5719 v27@5720v34@5733 v35@5734 v38@5747 v16@5748 v26@5707 v27@5708v34@5721 v35@5722v38@5735 v39@5736 v17@5749 v18@5750 v26@5711 v27@5712v34@5725 v35@5726v38@5739 v39@5740 v18@5753 v19@5754 v34@5713 v35@5714v38@5727 v39@5728v40@5741 v41@5742 v20@5755 v3@5756

v8@5709 v13@5710v26@5723 v27@5724v34@5737 v35@5738 v17@5751 v16@5752 v26@5715 v27@5716v34@5729 v35@5730v38@5743 v39@5744 v4@5757 v3@5758

v16@5549 v17@5550 v18@5563 v19@5564 v20@5577 v21@5578 v7@5591 v2@5592

v11@5593 v12@5594v22@5607 v23@5608 v36@5621 v37@5622v38@5635 v16@5636 v22@5595 v23@5596v36@5609 v37@5610 v38@5623 v39@5624v17@5637 v18@5638 v22@5599 v23@5600v36@5613 v37@5614 v38@5627 v39@5628v18@5641 v19@5642 v36@5601 v37@5602v38@5615 v39@5616 v40@5629 v41@5630v20@5643 v2@5644

v11@5597 v12@5598v22@5611 v23@5612 v36@5625 v37@5626v17@5639 v16@5640 v22@5603 v23@5604v36@5617 v37@5618 v38@5631 v39@5632v7@5645 v2@5646

v11@5157 v12@5158v24@5171 v25@5172 v28@5185 v29@5186v4@5199 v3@5200

v16@5537 v17@5538 v18@5551 v19@5552 v20@5565 v21@5566 v38@5579 v11@5580v18@5427 v19@5428 v20@5441 v21@5442 v38@5455 v39@5456 v15@5469 v24@5470 v18@5767 v19@5768 v20@5781 v21@5782 v38@5795 v39@5796 v30@5809 v28@5810v20@5657 v21@5658 v38@5671 v39@5672 v40@5685 v41@5686 v34@5699 v3@5700

v16@5541 v17@5542 v18@5555 v19@5556 v20@5569 v21@5570 v12@5583 v11@5584 v18@5771 v19@5772 v20@5785 v21@5786 v38@5799 v39@5800 v5@5813 v0@5814

v8@5269 v13@5270v22@5283 v23@5284v32@5297 v33@5298 v5@5311 v0@5312

v16@5649 v17@5650 v18@5663 v19@5664 v20@5677 v21@5678 v38@5691 v8@5692v18@5539 v19@5540 v20@5553 v21@5554 v38@5567 v39@5568 v12@5581 v22@5582v18@5431 v19@5432 v20@5445 v21@5446 v38@5459 v39@5460 v24@5473 v25@5474 v20@5769 v21@5770 v38@5783 v39@5784 v40@5797 v41@5798 v29@5811 v0@5812

v16@5653 v17@5654 v18@5667 v19@5668 v20@5681 v21@5682 v13@5695 v8@5696v18@5435 v19@5436 v20@5449 v21@5450 v38@5463 v39@5464 v6@5477 v1@5478

v9@5381 v14@5382v26@5395 v27@5396v36@5409 v37@5410v6@5423 v1@5424

v16@5761 v17@5762 v18@5775 v19@5776 v20@5789 v21@5790 v38@5803 v9@5804v18@5651 v19@5652 v20@5665 v21@5666 v38@5679 v39@5680 v13@5693 v26@5694v18@5543 v19@5544 v20@5557 v21@5558 v38@5571 v39@5572 v22@5585 v23@5586v20@5433 v21@5434 v38@5447 v39@5448 v40@5461 v41@5462 v32@5475 v1@5476

v10@5493 v15@5494 v24@5507 v25@5508v32@5521 v33@5522v6@5535 v1@5536

v16@5873 v17@5874 v18@5887 v19@5888 v20@5901 v21@5902 v38@5915 v10@5916 v18@6211 v19@6212 v20@6225 v21@6226 v38@6239 v39@6240 v14@6253 v24@6254v18@6103 v19@6104 v20@6117 v21@6118 v38@6131 v39@6132 v28@6145 v29@6146v20@5993 v21@5994 v38@6007 v39@6008 v40@6021 v41@6022 v30@6035 v1@6036

v16@5877 v17@5878 v18@5891 v19@5892 v20@5905 v21@5906 v15@5919 v10@5920 v16@6213 v17@6214 v18@6227 v19@6228 v20@6241 v21@6242 v14@6255 v9@6256v18@6107 v19@6108 v20@6121 v21@6122 v38@6135 v39@6136 v7@6149 v2@6150v18@5995 v19@5996 v20@6009 v21@6010 v38@6023 v39@6024 v6@6037 v1@6038

v16@5885 v17@5886 v18@5899 v19@5900 v20@5913 v21@5914 v5@5927 v0@5928

v10@5929 v15@5930 v22@5943 v23@5944v34@5957 v35@5958v38@5971 v16@5972 v22@5931 v23@5932 v34@5945 v35@5946v38@5959 v39@5960v17@5973 v18@5974 v22@5935 v23@5936 v34@5949 v35@5950v38@5963 v39@5964v18@5977 v19@5978 v34@5937 v35@5938 v38@5951 v39@5952v40@5965 v41@5966v20@5979 v0@5980

v10@5933 v15@5934 v22@5947 v23@5948v34@5961 v35@5962v17@5975 v16@5976 v22@5939 v23@5940 v34@5953 v35@5954v38@5967 v39@5968v5@5981 v0@5982

v16@6221 v17@6222 v18@6235 v19@6236 v20@6249 v21@6250 v4@6263 v3@6264

v9@6265 v14@6266v24@6279 v25@6280v36@6293 v37@6294v38@6307 v16@6308 v24@6267 v25@6268v36@6281 v37@6282v38@6295 v39@6296v17@6309 v18@6310 v24@6271 v25@6272v36@6285 v37@6286v38@6299 v39@6300v18@6313 v19@6314 v36@6273 v37@6274v38@6287 v39@6288v40@6301 v41@6302v20@6315 v3@6316

v9@6269 v14@6270v24@6283 v25@6284v36@6297 v37@6298v17@6311 v16@6312 v24@6275 v25@6276v36@6289 v37@6290v38@6303 v39@6304v4@6317 v3@6318

v16@6109 v17@6110 v18@6123 v19@6124 v20@6137 v21@6138 v7@6151 v2@6152

v8@6153 v13@6154v28@6167 v29@6168v32@6181 v33@6182 v38@6195 v16@6196 v28@6155 v29@6156v32@6169 v33@6170v38@6183 v39@6184 v17@6197 v18@6198 v28@6159 v29@6160v32@6173 v33@6174v38@6187 v39@6188 v18@6201 v19@6202 v32@6161 v33@6162v38@6175 v39@6176v40@6189 v41@6190 v20@6203 v2@6204

v8@6157 v13@6158v28@6171 v29@6172v32@6185 v33@6186 v17@6199 v16@6200 v28@6163 v29@6164v32@6177 v33@6178v38@6191 v39@6192 v7@6205 v2@6206

v16@5997 v17@5998 v18@6011 v19@6012 v20@6025 v21@6026 v6@6039 v1@6040

v11@6041 v12@6042v26@6055 v27@6056 v30@6069 v31@6070v38@6083 v16@6084 v26@6043 v27@6044v30@6057 v31@6058 v38@6071 v39@6072v17@6085 v18@6086 v26@6047 v27@6048v30@6061 v31@6062 v38@6075 v39@6076v18@6089 v19@6090 v30@6049 v31@6050v38@6063 v39@6064 v40@6077 v41@6078v20@6091 v1@6092

v11@6045 v12@6046v26@6059 v27@6060 v30@6073 v31@6074v17@6087 v16@6088 v26@6051 v27@6052v30@6065 v31@6066 v38@6079 v39@6080v6@6093 v1@6094

v11@5605 v12@5606v22@5619 v23@5620 v36@5633 v37@5634v7@5647 v2@5648

v16@5985 v17@5986 v18@5999 v19@6000 v20@6013 v21@6014 v38@6027 v11@6028v18@5875 v19@5876 v20@5889 v21@5890 v38@5903 v39@5904 v15@5917 v22@5918 v18@6215 v19@6216 v20@6229 v21@6230 v38@6243 v39@6244 v24@6257 v25@6258v20@6105 v21@6106 v38@6119 v39@6120 v40@6133 v41@6134 v32@6147 v2@6148

v16@5989 v17@5990 v18@6003 v19@6004 v20@6017 v21@6018 v12@6031 v11@6032 v18@6219 v19@6220 v20@6233 v21@6234 v38@6247 v39@6248 v4@6261 v3@6262

v8@5717 v13@5718v26@5731 v27@5732v34@5745 v35@5746 v4@5759 v3@5760

v16@6097 v17@6098 v18@6111 v19@6112 v20@6125 v21@6126 v38@6139 v8@6140v18@5987 v19@5988 v20@6001 v21@6002 v38@6015 v39@6016 v12@6029 v26@6030v18@5879 v19@5880 v20@5893 v21@5894 v38@5907 v39@5908 v22@5921 v23@5922 v20@6217 v21@6218 v38@6231 v39@6232 v40@6245 v41@6246 v36@6259 v3@6260

v16@6101 v17@6102 v18@6115 v19@6116 v20@6129 v21@6130 v13@6143 v8@6144v18@5883 v19@5884 v20@5897 v21@5898 v38@5911 v39@5912 v5@5925 v0@5926

v9@5829 v14@5830v28@5843 v29@5844v30@5857 v31@5858v5@5871 v0@5872

v16@6209 v17@6210 v18@6223 v19@6224 v20@6237 v21@6238 v38@6251 v9@6252v18@6099 v19@6100 v20@6113 v21@6114 v38@6127 v39@6128 v13@6141 v28@6142v18@5991 v19@5992 v20@6005 v21@6006 v38@6019 v39@6020 v26@6033 v27@6034v20@5881 v21@5882 v38@5895 v39@5896 v40@5909 v41@5910 v34@5923 v0@5924

v10@5941 v15@5942 v22@5955 v23@5956v34@5969 v35@5970v5@5983 v0@5984

v16@6321 v17@6322 v18@6335 v19@6336 v20@6349 v21@6350 v38@6363 v10@6364 v18@6659 v19@6660 v20@6673 v21@6674 v38@6687 v39@6688 v14@6701 v22@6702v18@6551 v19@6552 v20@6565 v21@6566 v38@6579 v39@6580 v24@6593 v25@6594v20@6441 v21@6442 v38@6455 v39@6456 v40@6469 v41@6470 v36@6483 v0@6484

v16@6325 v17@6326 v18@6339 v19@6340 v20@6353 v21@6354 v15@6367 v10@6368 v16@6661 v17@6662 v18@6675 v19@6676 v20@6689 v21@6690 v14@6703 v9@6704v18@6555 v19@6556 v20@6569 v21@6570 v38@6583 v39@6584 v6@6597 v1@6598v18@6443 v19@6444 v20@6457 v21@6458 v38@6471 v39@6472 v5@6485 v0@6486

v16@6333 v17@6334 v18@6347 v19@6348 v20@6361 v21@6362 v4@6375 v3@6376

v10@6377 v15@6378 v26@6391 v27@6392v32@6405 v33@6406v38@6419 v16@6420 v26@6379 v27@6380 v32@6393 v33@6394v38@6407 v39@6408v17@6421 v18@6422 v26@6383 v27@6384 v32@6397 v33@6398v38@6411 v39@6412v18@6425 v19@6426 v32@6385 v33@6386 v38@6399 v39@6400v40@6413 v41@6414v20@6427 v3@6428

v10@6381 v15@6382 v26@6395 v27@6396v32@6409 v33@6410v17@6423 v16@6424 v26@6387 v27@6388 v32@6401 v33@6402v38@6415 v39@6416v4@6429 v3@6430

v16@6669 v17@6670 v18@6683 v19@6684 v20@6697 v21@6698 v7@6711 v2@6712

v9@6713 v14@6714v22@6727 v23@6728v30@6741 v31@6742v38@6755 v16@6756 v22@6715 v23@6716v30@6729 v31@6730v38@6743 v39@6744v17@6757 v18@6758 v22@6719 v23@6720v30@6733 v31@6734v38@6747 v39@6748v18@6761 v19@6762 v30@6721 v31@6722v38@6735 v39@6736v40@6749 v41@6750v20@6763 v2@6764

v9@6717 v14@6718v22@6731 v23@6732v30@6745 v31@6746v17@6759 v16@6760 v22@6723 v23@6724v30@6737 v31@6738v38@6751 v39@6752v7@6765 v2@6766

v16@6557 v17@6558 v18@6571 v19@6572 v20@6585 v21@6586 v6@6599 v1@6600

v8@6601 v13@6602v24@6615 v25@6616v34@6629 v35@6630 v38@6643 v16@6644 v24@6603 v25@6604v34@6617 v35@6618v38@6631 v39@6632 v17@6645 v18@6646 v24@6607 v25@6608v34@6621 v35@6622v38@6635 v39@6636 v18@6649 v19@6650 v34@6609 v35@6610v38@6623 v39@6624v40@6637 v41@6638 v20@6651 v1@6652

v8@6605 v13@6606v24@6619 v25@6620v34@6633 v35@6634 v17@6647 v16@6648 v24@6611 v25@6612v34@6625 v35@6626v38@6639 v39@6640 v6@6653 v1@6654

v16@6445 v17@6446 v18@6459 v19@6460 v20@6473 v21@6474 v5@6487 v0@6488

v11@6489 v12@6490v28@6503 v29@6504 v36@6517 v37@6518v38@6531 v16@6532 v28@6491 v29@6492v36@6505 v37@6506 v38@6519 v39@6520v17@6533 v18@6534 v28@6495 v29@6496v36@6509 v37@6510 v38@6523 v39@6524v18@6537 v19@6538 v36@6497 v37@6498v38@6511 v39@6512 v40@6525 v41@6526v20@6539 v0@6540

v11@6493 v12@6494v28@6507 v29@6508 v36@6521 v37@6522v17@6535 v16@6536 v28@6499 v29@6500v36@6513 v37@6514 v38@6527 v39@6528v5@6541 v0@6542

v11@6053 v12@6054v26@6067 v27@6068 v30@6081 v31@6082v6@6095 v1@6096

v16@6433 v17@6434 v18@6447 v19@6448 v20@6461 v21@6462 v38@6475 v11@6476v18@6323 v19@6324 v20@6337 v21@6338 v38@6351 v39@6352 v15@6365 v26@6366 v18@6663 v19@6664 v20@6677 v21@6678 v38@6691 v39@6692 v22@6705 v23@6706v20@6553 v21@6554 v38@6567 v39@6568 v40@6581 v41@6582 v34@6595 v1@6596

v16@6437 v17@6438 v18@6451 v19@6452 v20@6465 v21@6466 v12@6479 v11@6480 v18@6667 v19@6668 v20@6681 v21@6682 v38@6695 v39@6696 v7@6709 v2@6710

v8@6165 v13@6166v28@6179 v29@6180v32@6193 v33@6194 v7@6207 v2@6208

v16@6545 v17@6546 v18@6559 v19@6560 v20@6573 v21@6574 v38@6587 v8@6588v18@6435 v19@6436 v20@6449 v21@6450 v38@6463 v39@6464 v12@6477 v28@6478v18@6327 v19@6328 v20@6341 v21@6342 v38@6355 v39@6356 v26@6369 v27@6370 v20@6665 v21@6666 v38@6679 v39@6680 v40@6693 v41@6694 v30@6707 v2@6708

v16@6549 v17@6550 v18@6563 v19@6564 v20@6577 v21@6578 v13@6591 v8@6592v18@6331 v19@6332 v20@6345 v21@6346 v38@6359 v39@6360 v4@6373 v3@6374

v9@6277 v14@6278v24@6291 v25@6292v36@6305 v37@6306v4@6319 v3@6320

v16@6657 v17@6658 v18@6671 v19@6672 v20@6685 v21@6686 v38@6699 v9@6700v18@6547 v19@6548 v20@6561 v21@6562 v38@6575 v39@6576 v13@6589 v24@6590v18@6439 v19@6440 v20@6453 v21@6454 v38@6467 v39@6468 v28@6481 v29@6482v20@6329 v21@6330 v38@6343 v39@6344 v40@6357 v41@6358 v32@6371 v3@6372

v10@6389 v15@6390 v26@6403 v27@6404v32@6417 v33@6418v4@6431 v3@6432

v16@6769 v17@6770 v18@6783 v19@6784 v20@6797 v21@6798 v38@6811 v10@6812 v18@7107 v19@7108 v20@7121 v21@7122 v38@7135 v39@7136 v14@7149 v26@7150v18@6999 v19@7000 v20@7013 v21@7014 v38@7027 v39@7028 v22@7041 v23@7042v20@6889 v21@6890 v38@6903 v39@6904 v40@6917 v41@6918 v30@6931 v3@6932

v16@6773 v17@6774 v18@6787 v19@6788 v20@6801 v21@6802 v15@6815 v10@6816 v16@7109 v17@7110 v18@7123 v19@7124 v20@7137 v21@7138 v14@7151 v9@7152v18@7003 v19@7004 v20@7017 v21@7018 v38@7031 v39@7032 v5@7045 v0@7046v18@6891 v19@6892 v20@6905 v21@6906 v38@6919 v39@6920 v4@6933 v3@6934

v16@6781 v17@6782 v18@6795 v19@6796 v20@6809 v21@6810 v7@6823 v2@6824

v10@6825 v15@6826 v28@6839 v29@6840v34@6853 v35@6854v38@6867 v16@6868 v28@6827 v29@6828 v34@6841 v35@6842v38@6855 v39@6856v17@6869 v18@6870 v28@6831 v29@6832 v34@6845 v35@6846v38@6859 v39@6860v18@6873 v19@6874 v34@6833 v35@6834 v38@6847 v39@6848v40@6861 v41@6862v20@6875 v2@6876

v10@6829 v15@6830 v28@6843 v29@6844v34@6857 v35@6858v17@6871 v16@6872 v28@6835 v29@6836 v34@6849 v35@6850v38@6863 v39@6864v7@6877 v2@6878

v16@7117 v17@7118 v18@7131 v19@7132 v20@7145 v21@7146 v6@7159 v1@7160

v9@7161 v14@7162v26@7175 v27@7176v36@7189 v37@7190v38@7203 v16@7204 v26@7163 v27@7164v36@7177 v37@7178v38@7191 v39@7192v17@7205 v18@7206 v26@7167 v27@7168v36@7181 v37@7182v38@7195 v39@7196v18@7209 v19@7210 v36@7169 v37@7170v38@7183 v39@7184v40@7197 v41@7198v20@7211 v1@7212

v9@7165 v14@7166v26@7179 v27@7180v36@7193 v37@7194v17@7207 v16@7208 v26@7171 v27@7172v36@7185 v37@7186v38@7199 v39@7200v6@7213 v1@7214

v16@7005 v17@7006 v18@7019 v19@7020 v20@7033 v21@7034 v5@7047 v0@7048

v8@7049 v13@7050v22@7063 v23@7064v32@7077 v33@7078 v38@7091 v16@7092 v22@7051 v23@7052v32@7065 v33@7066v38@7079 v39@7080 v17@7093 v18@7094 v22@7055 v23@7056v32@7069 v33@7070v38@7083 v39@7084 v18@7097 v19@7098 v32@7057 v33@7058v38@7071 v39@7072v40@7085 v41@7086 v20@7099 v0@7100

v8@7053 v13@7054v22@7067 v23@7068v32@7081 v33@7082 v17@7095 v16@7096 v22@7059 v23@7060v32@7073 v33@7074v38@7087 v39@7088 v5@7101 v0@7102

v16@6893 v17@6894 v18@6907 v19@6908 v20@6921 v21@6922 v4@6935 v3@6936

v11@6937 v12@6938v24@6951 v25@6952 v30@6965 v31@6966v38@6979 v16@6980 v24@6939 v25@6940v30@6953 v31@6954 v38@6967 v39@6968v17@6981 v18@6982 v24@6943 v25@6944v30@6957 v31@6958 v38@6971 v39@6972v18@6985 v19@6986 v30@6945 v31@6946v38@6959 v39@6960 v40@6973 v41@6974v20@6987 v3@6988

v11@6941 v12@6942v24@6955 v25@6956 v30@6969 v31@6970v17@6983 v16@6984 v24@6947 v25@6948v30@6961 v31@6962 v38@6975 v39@6976v4@6989 v3@6990

v11@6501 v12@6502v28@6515 v29@6516 v36@6529 v37@6530v5@6543 v0@6544

v16@6881 v17@6882 v18@6895 v19@6896 v20@6909 v21@6910 v38@6923 v11@6924v18@6771 v19@6772 v20@6785 v21@6786 v38@6799 v39@6800 v15@6813 v28@6814 v18@7111 v19@7112 v20@7125 v21@7126 v38@7139 v39@7140 v26@7153 v27@7154v20@7001 v21@7002 v38@7015 v39@7016 v40@7029 v41@7030 v32@7043 v0@7044

v16@6885 v17@6886 v18@6899 v19@6900 v20@6913 v21@6914 v12@6927 v11@6928 v18@7115 v19@7116 v20@7129 v21@7130 v38@7143 v39@7144 v6@7157 v1@7158

v8@6613 v13@6614v24@6627 v25@6628v34@6641 v35@6642 v6@6655 v1@6656

v16@6993 v17@6994 v18@7007 v19@7008 v20@7021 v21@7022 v38@7035 v8@7036v18@6883 v19@6884 v20@6897 v21@6898 v38@6911 v39@6912 v12@6925 v24@6926v18@6775 v19@6776 v20@6789 v21@6790 v38@6803 v39@6804 v28@6817 v29@6818 v20@7113 v21@7114 v38@7127 v39@7128 v40@7141 v41@7142 v36@7155 v1@7156

v16@6997 v17@6998 v18@7011 v19@7012 v20@7025 v21@7026 v13@7039 v8@7040v18@6779 v19@6780 v20@6793 v21@6794 v38@6807 v39@6808 v7@6821 v2@6822

v9@6725 v14@6726v22@6739 v23@6740v30@6753 v31@6754v7@6767 v2@6768

v16@7105 v17@7106 v18@7119 v19@7120 v20@7133 v21@7134 v38@7147 v9@7148v18@6995 v19@6996 v20@7009 v21@7010 v38@7023 v39@7024 v13@7037 v22@7038v18@6887 v19@6888 v20@6901 v21@6902 v38@6915 v39@6916 v24@6929 v25@6930v20@6777 v21@6778 v38@6791 v39@6792 v40@6805 v41@6806 v34@6819 v2@6820

v10@6837 v15@6838 v28@6851 v29@6852v34@6865 v35@6866v7@6879 v2@6880

v16@7217 v17@7218 v18@7231 v19@7232 v20@7245 v21@7246 v38@7259 v10@7260 v18@7555 v19@7556 v20@7569 v21@7570 v38@7583 v39@7584 v14@7597 v28@7598v18@7447 v19@7448 v20@7461 v21@7462 v38@7475 v39@7476 v26@7489 v27@7490v20@7337 v21@7338 v38@7351 v39@7352 v40@7365 v41@7366 v36@7379 v2@7380

v16@7221 v17@7222 v18@7235 v19@7236 v20@7249 v21@7250 v15@7263 v10@7264 v16@7557 v17@7558 v18@7571 v19@7572 v20@7585 v21@7586 v14@7599 v9@7600v18@7451 v19@7452 v20@7465 v21@7466 v38@7479 v39@7480 v4@7493 v3@7494v18@7339 v19@7340 v20@7353 v21@7354 v38@7367 v39@7368 v7@7381 v2@7382

v16@7229 v17@7230 v18@7243 v19@7244 v20@7257 v21@7258 v6@7271 v1@7272

v10@7273 v15@7274 v24@7287 v25@7288 v32@7301 v33@7302v38@7315 v16@7316 v24@7275 v25@7276 v32@7289 v33@7290 v38@7303 v39@7304v17@7317 v18@7318 v24@7279 v25@7280 v32@7293 v33@7294 v38@7307 v39@7308v18@7321 v19@7322 v32@7281 v33@7282 v38@7295 v39@7296 v40@7309 v41@7310v20@7323 v1@7324

v10@7277 v15@7278 v24@7291 v25@7292 v32@7305 v33@7306v17@7319 v16@7320 v24@7283 v25@7284 v32@7297 v33@7298 v38@7311 v39@7312v6@7325 v1@7326

v16@7565 v17@7566 v18@7579 v19@7580 v20@7593 v21@7594 v5@7607 v0@7608

v9@7609 v14@7610 v28@7623 v29@7624v30@7637 v31@7638v38@7651 v16@7652 v28@7611 v29@7612 v30@7625 v31@7626v38@7639 v39@7640v17@7653 v18@7654 v28@7615 v29@7616 v30@7629 v31@7630v38@7643 v39@7644v18@7657 v19@7658 v30@7617 v31@7618 v38@7631 v39@7632v40@7645 v41@7646v20@7659 v0@7660

v9@7613 v14@7614 v28@7627 v29@7628v30@7641 v31@7642v17@7655 v16@7656 v28@7619 v29@7620 v30@7633 v31@7634v38@7647 v39@7648v5@7661 v0@7662

v16@7453 v17@7454 v18@7467 v19@7468 v20@7481 v21@7482 v4@7495 v3@7496

v8@7497 v13@7498v26@7511 v27@7512v34@7525 v35@7526 v38@7539 v16@7540 v26@7499 v27@7500v34@7513 v35@7514v38@7527 v39@7528 v17@7541 v18@7542 v26@7503 v27@7504v34@7517 v35@7518v38@7531 v39@7532 v18@7545 v19@7546 v34@7505 v35@7506v38@7519 v39@7520v40@7533 v41@7534 v20@7547 v3@7548

v8@7501 v13@7502v26@7515 v27@7516v34@7529 v35@7530 v17@7543 v16@7544 v26@7507 v27@7508v34@7521 v35@7522v38@7535 v39@7536 v4@7549 v3@7550

v16@7341 v17@7342 v18@7355 v19@7356 v20@7369 v21@7370 v7@7383 v2@7384

v11@7385 v12@7386v22@7399 v23@7400 v36@7413 v37@7414 v38@7427 v16@7428 v22@7387 v23@7388v36@7401 v37@7402 v38@7415 v39@7416 v17@7429 v18@7430 v22@7391 v23@7392v36@7405 v37@7406 v38@7419 v39@7420 v18@7433 v19@7434 v36@7393 v37@7394v38@7407 v39@7408 v40@7421 v41@7422 v20@7435 v2@7436

v11@7389 v12@7390v22@7403 v23@7404 v36@7417 v37@7418 v17@7431 v16@7432 v22@7395 v23@7396v36@7409 v37@7410 v38@7423 v39@7424 v7@7437 v2@7438

v11@6949 v12@6950v24@6963 v25@6964 v30@6977 v31@6978v4@6991 v3@6992

v16@7329 v17@7330 v18@7343 v19@7344 v20@7357 v21@7358 v38@7371 v11@7372v18@7219 v19@7220 v20@7233 v21@7234 v38@7247 v39@7248 v15@7261 v24@7262 v18@7559 v19@7560 v20@7573 v21@7574 v38@7587 v39@7588 v28@7601 v29@7602v20@7449 v21@7450 v38@7463 v39@7464 v40@7477 v41@7478 v34@7491 v3@7492

v16@7333 v17@7334 v18@7347 v19@7348 v20@7361 v21@7362 v12@7375 v11@7376 v18@7563 v19@7564 v20@7577 v21@7578 v38@7591 v39@7592 v5@7605 v0@7606

v8@7061 v13@7062v22@7075 v23@7076v32@7089 v33@7090 v5@7103 v0@7104

v16@7441 v17@7442 v18@7455 v19@7456 v20@7469 v21@7470 v38@7483 v8@7484v18@7331 v19@7332 v20@7345 v21@7346 v38@7359 v39@7360 v12@7373 v22@7374v18@7223 v19@7224 v20@7237 v21@7238 v38@7251 v39@7252 v24@7265 v25@7266 v20@7561 v21@7562 v38@7575 v39@7576 v40@7589 v41@7590 v30@7603 v0@7604

v16@7445 v17@7446 v18@7459 v19@7460 v20@7473 v21@7474 v13@7487 v8@7488v18@7227 v19@7228 v20@7241 v21@7242 v38@7255 v39@7256 v6@7269 v1@7270

v9@7173 v14@7174v26@7187 v27@7188v36@7201 v37@7202v6@7215 v1@7216

v16@7553 v17@7554 v18@7567 v19@7568 v20@7581 v21@7582 v38@7595 v9@7596v18@7443 v19@7444 v20@7457 v21@7458 v38@7471 v39@7472 v13@7485 v26@7486v18@7335 v19@7336 v20@7349 v21@7350 v38@7363 v39@7364 v22@7377 v23@7378v20@7225 v21@7226 v38@7239 v39@7240 v40@7253 v41@7254 v32@7267 v1@7268

v10@7285 v15@7286 v24@7299 v25@7300 v32@7313 v33@7314v6@7327 v1@7328

v16@7665 v17@7666 v18@7679 v19@7680 v20@7693 v21@7694 v38@7707 v10@7708 v18@8003 v19@8004 v20@8017 v21@8018 v38@8031 v39@8032 v14@8045 v24@8046 v18@7895 v19@7896 v20@7909 v21@7910 v38@7923 v39@7924 v28@7937 v29@7938v20@7785 v21@7786 v38@7799 v39@7800 v40@7813 v41@7814 v30@7827 v1@7828

v16@7669 v17@7670 v18@7683 v19@7684 v20@7697 v21@7698 v15@7711 v10@7712 v16@8005 v17@8006 v18@8019 v19@8020 v20@8033 v21@8034 v14@8047 v9@8048 v18@7899 v19@7900 v20@7913 v21@7914 v38@7927 v39@7928 v7@7941 v2@7942v18@7787 v19@7788 v20@7801 v21@7802 v38@7815 v39@7816 v6@7829 v1@7830

v16@7677 v17@7678 v18@7691 v19@7692 v20@7705 v21@7706 v5@7719 v0@7720

v10@7721 v15@7722 v22@7735 v23@7736 v34@7749 v35@7750 v38@7763 v16@7764 v22@7723 v23@7724 v34@7737 v35@7738 v38@7751 v39@7752 v17@7765 v18@7766 v22@7727 v23@7728 v34@7741 v35@7742 v38@7755 v39@7756 v18@7769 v19@7770 v34@7729 v35@7730 v38@7743 v39@7744 v40@7757 v41@7758 v20@7771 v0@7772

v10@7725 v15@7726 v22@7739 v23@7740 v34@7753 v35@7754 v17@7767 v16@7768 v22@7731 v23@7732 v34@7745 v35@7746 v38@7759 v39@7760 v5@7773 v0@7774

v16@8013 v17@8014 v18@8027 v19@8028 v20@8041 v21@8042 v4@8055 v3@8056

v9@8057 v14@8058 v24@8071 v25@8072 v36@8085 v37@8086 v38@8099 v16@8100 v24@8059 v25@8060 v36@8073 v37@8074 v38@8087 v39@8088 v17@8101 v18@8102 v24@8063 v25@8064 v36@8077 v37@8078 v38@8091 v39@8092 v18@8105 v19@8106 v36@8065 v37@8066 v38@8079 v39@8080 v40@8093 v41@8094 v20@8107 v3@8108

v9@8061 v14@8062 v24@8075 v25@8076 v36@8089 v37@8090 v17@8103 v16@8104 v24@8067 v25@8068 v36@8081 v37@8082 v38@8095 v39@8096 v4@8109 v3@8110

v16@7901 v17@7902 v18@7915 v19@7916 v20@7929 v21@7930 v7@7943 v2@7944

v8@7945 v13@7946 v28@7959 v29@7960 v32@7973 v33@7974 v38@7987 v16@7988 v28@7947 v29@7948 v32@7961 v33@7962 v38@7975 v39@7976 v17@7989 v18@7990 v28@7951 v29@7952 v32@7965 v33@7966 v38@7979 v39@7980 v18@7993 v19@7994 v32@7953 v33@7954 v38@7967 v39@7968 v40@7981 v41@7982 v20@7995 v2@7996

v8@7949 v13@7950 v28@7963 v29@7964 v32@7977 v33@7978 v17@7991 v16@7992 v28@7955 v29@7956 v32@7969 v33@7970 v38@7983 v39@7984 v7@7997 v2@7998

v16@7789 v17@7790 v18@7803 v19@7804 v20@7817 v21@7818 v6@7831 v1@7832

v11@7833 v12@7834 v26@7847 v27@7848 v30@7861 v31@7862 v38@7875 v16@7876 v26@7835 v27@7836 v30@7849 v31@7850 v38@7863 v39@7864 v17@7877 v18@7878 v26@7839 v27@7840 v30@7853 v31@7854 v38@7867 v39@7868 v18@7881 v19@7882 v30@7841 v31@7842 v38@7855 v39@7856 v40@7869 v41@7870 v20@7883 v1@7884

v11@7837 v12@7838 v26@7851 v27@7852 v30@7865 v31@7866 v17@7879 v16@7880 v26@7843 v27@7844 v30@7857 v31@7858 v38@7871 v39@7872 v6@7885 v1@7886

v11@7397 v12@7398v22@7411 v23@7412 v36@7425 v37@7426 v7@7439 v2@7440

v16@7777 v17@7778 v18@7791 v19@7792 v20@7805 v21@7806 v38@7819 v11@7820v18@7667 v19@7668 v20@7681 v21@7682 v38@7695 v39@7696 v15@7709 v22@7710 v18@8007 v19@8008 v20@8021 v21@8022 v38@8035 v39@8036 v24@8049 v25@8050 v20@7897 v21@7898 v38@7911 v39@7912 v40@7925 v41@7926 v32@7939 v2@7940

v16@7781 v17@7782 v18@7795 v19@7796 v20@7809 v21@7810 v12@7823 v11@7824 v18@8011 v19@8012 v20@8025 v21@8026 v38@8039 v39@8040 v4@8053 v3@8054

v8@7509 v13@7510v26@7523 v27@7524v34@7537 v35@7538 v4@7551 v3@7552

v16@7889 v17@7890 v18@7903 v19@7904 v20@7917 v21@7918 v38@7931 v8@7932v18@7779 v19@7780 v20@7793 v21@7794 v38@7807 v39@7808 v12@7821 v26@7822v18@7671 v19@7672 v20@7685 v21@7686 v38@7699 v39@7700 v22@7713 v23@7714 v20@8009 v21@8010 v38@8023 v39@8024 v40@8037 v41@8038 v36@8051 v3@8052

v16@7893 v17@7894 v18@7907 v19@7908 v20@7921 v21@7922 v13@7935 v8@7936v18@7675 v19@7676 v20@7689 v21@7690 v38@7703 v39@7704 v5@7717 v0@7718

v9@7621 v14@7622 v28@7635 v29@7636v30@7649 v31@7650v5@7663 v0@7664

v16@8001 v17@8002 v18@8015 v19@8016 v20@8029 v21@8030 v38@8043 v9@8044 v18@7891 v19@7892 v20@7905 v21@7906 v38@7919 v39@7920 v13@7933 v28@7934v18@7783 v19@7784 v20@7797 v21@7798 v38@7811 v39@7812 v26@7825 v27@7826v20@7673 v21@7674 v38@7687 v39@7688 v40@7701 v41@7702 v34@7715 v0@7716

v10@7733 v15@7734 v22@7747 v23@7748 v34@7761 v35@7762 v5@7775 v0@7776

v10@8113 v15@8120 v18@8123 v0@8126

cipher[0] cipher[13] cipher[10] cipher[7]

v11@7845 v12@7846 v26@7859 v27@7860 v30@7873 v31@7874 v6@7887 v1@7888

v11@8114 v12@8117 v19@8124 v1@8127

cipher[4] cipher[1] cipher[14] cipher[11]

v8@7957 v13@7958 v28@7971 v29@7972 v32@7985 v33@7986 v7@7999 v2@8000

v8@8115 v13@8118 v16@8121 v2@8128

cipher[8] cipher[5] cipher[2] cipher[15]

v9@8069 v14@8070 v24@8083 v25@8084 v36@8097 v37@8098 v4@8111 v3@8112

v9@8116 v14@8119 v17@8122 v3@8125

cipher[12] cipher[9] cipher[6] cipher[3]

Figure 6: Data flow in the CHES 2016 challenge. The graph shows how the data flows from
4 bytes of the input plaintext through the tables of the CHES 2016 challenge whitebox.
Each node represents a line in the source code, and is annotated with the variable that is
modified followed by the line number. What is seen is part of a masked MixColumns step
on nibbles, followed by masked xor tables to combine the results.

To experiment with the effect of countermeasures in practice, we apply the techniques
to the CHES 2016 challenge and compare the difficulty of finding the key using DCA. The
C code contains 4048 static tables of data that implement the whitebox scheme, and which
are used in an encryption function that consists only of table lookups. To visualize the
actual structure of the encryption we have parsed the code and built a graph of the data
flow inside the encryption algorithm. A part of the this graph can be seen in Figure 6. If
it is compared with the description of the encoded AES algorithm, it is clear that this is
part of the masked calculation of the first column of the AES state.

The first countermeasure we want to test is shuffling the order of operations, and to do
this we built a dependency graph for the lines of the encryption function as previously
specified. The graph records which table lookups depend on data from previous lookups,
and which operations must be run before a line can overwrite the contents of a variable.
From Figure 6, it should be clear that some of the operations can be performed in arbitrary
order. However since only a few local variables are used to store the state, we must be
careful not to overwrite a result that is needed later. After constructing the dependency
graph the code can be transformed into a shuffled implementation. For each batch of
operations that may run in parallel we emit a block of C code that randomly shuffles their
order on each run using a random number generator. After compiling the code we then
apply the DCA attack to the resulting binary. Now 4,000 traces are no longer enough
to recover the correct key when taking the top 10 key byte candidates for each position.

324 Analysis of Software Countermeasures for Whitebox Encryption

When we increased the number of recorded traces to 10,000, which took approximately 10
hours and used 120 MB of disk space, there was no significant increase in the number of
recovered key bytes.

6.3 Masking memory addresses
Since DCA attacks may rely on the addresses of memory lookups to perform correlations,
we also attempt to mask these in the CHES 2016 challenge. We have written a parsing
script to extract the 4048 tables in the C code and emit code to relocate them randomly
on each encryption call. This is done by allocating a large buffer that the tables are copied
to on each invocation of the encryption function. A table is randomly moved to any of
256 offsets in memory, such that the least significant byte of the addresses of lookups is
randomly chosen (see Figure 5). This is equivalent to adding a random constant modulo
256 to the addresses that are recorded for table lookups. After compiling the binary with
both random shuffling and masking of memory addresses, we again apply the DCA tools.

This time recording 10,000 traces takes approximately 12 hours, and the total size of
the traces is approximately 1 GB. This is because we cannot use the address range of the
data segment to limit recording. Now that the buffer is allocated on each run, all memory
accesses that have a size of 1 byte must be recorded. With these countermeasures, 10,000
traces of memory addresses result in no identified key bytes. As expected, using the data
instead of addresses has a higher success rate, since the values themselves are untouched.
The time taken to recover 1 key byte is approximately 25 minutes in both cases.

6.4 Dummy operations
In DPA attacks a common strategy is to hide the key-dependent operations in the time
dimension by inserting dummy operations. This can be done either with random sleeps, or
with actual operations using random data. Since DCA only records on memory accesses,
inserting sleeps into the algorithm will not change the recorded traces. Only insertion of
dummy operations which do irrelevant memory lookups is therefore possible. We parse
the CHES 2016 C code to extract all table lookups, and insert a block of random dummy
lookups after each one. For a simplified example of this transformation see Listing 2, where
only line 1 is doing real work.

Listing 2: Example of dummy lookups.
1 v0 = table_0 [v1] ;
2 for (int i = 0 ; i < rand () % 16 ; i++)
3 dummy = table_0 [rand () % 12 8] ;

Recording 4,000 execution traces takes 5 hours 7 minutes, and results in trace files of
148 MB. We again attack the state after the first T-box substitution, and with the dummy
operations countermeasure we are unable to find any correct key bytes. All the results of
the DCA experiments on the CHES 2016 challenge are tabulated in Table 3.

Table 5: Zero-difference enumeration using PIN tool.

Method of attack Challenge, countermeasures Experiments Total number of traces Time per 28 key candidates

Source code
CHES 2016 challenge, none 500 500 · 217 3 seconds
CHES 2016 challenge, shuffling 500 500 · 217 7 minutes
CHES 2016 challenge, shuffling and random offsets 500 500 · 217 15 minutes

PIN tool Hack.lu 2009, protected AES 1,000 1, 000 · 217 18.75 seconds
Klinec, Chow et. al. AES 1,000 1, 000 · 217 115.78 seconds

Subhadeep Banik, Andrey Bogdanov, Takanori Isobe and Martin Bjerregaard Jepsen325

6.5 Zero-difference enumeration

Modify input
using beta pair

Analysis
finished?

Start of
program

End of
program

Trace AES
encryption Yes

No

Figure 7: Modified control flow of instrumented binary. Our PIN tool changes the execution
flow of the analyzed binary using a state machine that runs the ZDE attack. The state
machine performs the required amount of experiments for each key candidate, and outputs
the guess with the highest number of equal bytes in the traces.

After having tested DCA against different countermeasures, we now consider applying
zero-difference enumeration attacks instead. Since these attacks only use values and not
addresses, it is clear that they will not be affected by any countermeasure that adds random
constants to table addresses. We can therefore focus on evaluating the random shuffling
and dummy operation countermeasures.

As a comparison point we have tested ZDE against the unprotected CHES 2016 source
code, recovering two key bytes as described in the section on ZDE attacks. Since all table
outputs are leaked every time, we may directly compare two leaks for equality of bytes.
We run the attack as 256 parallel processes that fix 8 bits of the key guess and test all
remaining 8 bits. The attack finds the correct value of the 2 key bytes, with a runtime of
approximately 3 seconds per 28 key guesses. Because the attack is trivially parallellizable,
this number can be scaled to the available computational resources. A total of 500 beta
pairs are tested per key candidate, which is enough to distinguish the correct key bytes.

We now tested the ZDE attack against the same source code with shuffling that was
used for the DCA experiments. Now that the order of returned values change on each
encryption, we will have to compare all leaked bytes in the two traces against each other.
We successfully find the 2 key bytes after spending 7 minutes per 256 key guesses. As a
sanity check we have also run the zero-difference attack on the table-offsetting version of
the CHES challenge. The attack time is then 15 minutes per 256 guesses, which is likely a
result of the implementation being slower. As expected the correct 2 key bytes are also
identified after 500 beta pairs are tested per key candidate. See Table 5 for the details
details on all attacks.

With dummy operations the runtime of the encryption is slowed up to 16 times. In
addition to this every random table lookup adds a leaked byte, which must be compared
against all other leaked bytes in the other beta-pair encryption. This quadratic increase in
bytes to test has a big impact on both runtime and experiments needed. We estimate that
between 5,000 and 10,000 β-pairs are needed to find the correct key, with a runtime of
approximately 10 hours for 256 key candidate tests.

To evaluate the feasibility of applying the zero-difference attacks to binaries, we have
also created a PIN tool that can apply the attack. The tool works by repeatedly running
the AES encryption functionality of the analyzed binary, while inserting beta pairs as the
plaintext. The goal is to recover 2 bytes from the key. To identify at which points this
should be done, the user must specify the start and end of encryption, and the location at
which the input buffer can be found. The control flow of the binary is then modified as it
is being run, as illustrated in Figure 7.

For the Hack.lu conference of 2009 a challenge based on AES encryption was published
by Jean-Baptiste Bédrune3. This challenge is in the form of a Windows keygen-me, which

3http://2009.hack.lu/index.php/ReverseChallenge

http://2009.hack.lu/index.php/ReverseChallenge

326 Analysis of Software Countermeasures for Whitebox Encryption

requires that the input given to the program AES encrypts to a specific string. The AES
implementation in the challenge uses whitebox-like ideas to hide the key, so the goal is
also to recover it. This was previously done by Bos et. al. in their introductory paper on
DCA. Our PIN tool can successfully recover the correct 2 key bytes of the first column in
80 minutes when running the program in a Windows VM. Note that the ZDE attack is
trivially parallelized, so one could just run more instances of the cracker if this should be
speeded up.

As part of the Master thesis of Dušan Klinec [Kli13], Klinec implemented a C++
version of the Chow et. al. and Karroumi et. al. AES whitebox designs. The code can
generate tables for an AES key of choice and encrypt plaintexts using the table. Since the
code is one of the few public implementations of whitebox AES systems available online,
and has also been used when evaluating the DCA, we test our PIN tool on a compiled
version of it. Without external encodings the PIN tool successfully recovers the 2 key
bytes after 8 hours 14 minutes of tracing.

7 Conclusion
In this paper we explore some of the efficacies of software countermeasures on whitebox
encryption. We show that while control flow obfuscation is essential to counteract existing
attacks, it does not prevent DCA or ZDE attacks. We then looked at the table randomiza-
tion technique and its relative strengths against the DCA and ZDE attacks. Finally we
propose a countermeasure based on dummy table lookups which seem to counteract both
ZDE and DCA attacks.

References
[ARX14] ARXAN. TransformIT: Software-based Key Protection, 2014.

[BCD06] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. White Box
Cryptography: Another Attempt. IACR Cryptology ePrint Archive, 2006:468,
2006.

[BGE04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a
White Box AES Implementation. In Selected Areas in Cryptography, 11th
International Workshop, SAC 2004, Waterloo, Canada, August 9-10, 2004,
Revised Selected Papers, pages 227–240, 2004.

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differen-
tial computation analysis: Hiding your white-box designs is not enough. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science, pages 215–236. Springer, 2016.

[BI15] Andrey Bogdanov and Takanori Isobe. White-box cryptography revisited:
Space-hard ciphers. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, CO, USA, October 12-6, 2015, pages
1058–1069. ACM, 2015.

[CEJvO02a] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
A White-Box DES Implementation for DRM Applications. In Security and
Privacy in Digital Rights Management, ACM CCS-9 Workshop, DRM 2002,
Washington, DC, USA, November 18, 2002, Revised Papers, pages 1–15, 2002.

Subhadeep Banik, Andrey Bogdanov, Takanori Isobe and Martin Bjerregaard Jepsen327

[CEJvO02b] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-Box Cryptography and an AES Implementation. In Selected Areas
in Cryptography, 9th Annual International Workshop, SAC 2002, St. John’s,
Newfoundland, Canada, August 15-16, 2002. Revised Papers, pages 250–270,
2002.

[Kar10] Mohamed Karroumi. Protecting White-Box AES with Dual Ciphers. In
Kyung Hyune Rhee and DaeHun Nyang, editors, Information Security and
Cryptology - ICISC 2010 - 13th International Conference, Seoul, Korea,
December 1-3, 2010, Revised Selected Papers, volume 6829 of Lecture Notes
in Computer Science, pages 278–291. Springer, 2010.

[KJJR11] Paul C. Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduc-
tion to differential power analysis. J. Cryptographic Engineering, 1(1):5–27,
2011.

[Kli13] Dušan Klinec. White-box attack resistant cryptography. Master’s thesis,
Masaryk University, Brno, Czech Republic, 2013.

[LCM+05] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser,
P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim M.
Hazelwood. Pin: building customized program analysis tools with dynamic
instrumentation. In PLDI, pages 190–200. ACM, 2005.

[LN05] Hamilton E. Link and William D. Neumann. Clarifying Obfuscation: Im-
proving the Security of White-Box DES. In International Symposium on
Information Technology: Coding and Computing (ITCC 2005), Volume 1,
4-6 April 2005, Las Vegas, Nevada, USA, pages 679–684, 2005.

[LRM+13] Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse, and Bart
Preneel. Two Attacks on a White-Box AES Implementation. In Selected
Areas in Cryptography - SAC 2013 - 20th International Conference, Burnaby,
BC, Canada, August 14-16, 2013, Revised Selected Papers, pages 265–285,
2013.

[Man04] Stefan Mangard. Hardware countermeasures against DPA ? A statistical
analysis of their effectiveness. In Topics in Cryptology - CT-RSA 2004, The
Cryptographers’ Track at the RSA Conference 2004, San Francisco, CA, USA,
February 23-27, 2004, Proceedings, pages 222–235, 2004.

[Mic15] Microsemi. WhiteboxCRYPTO: Cryptographic key hiding with tunable
security and performance, 2015.

[MRP12] Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the Xiao
- Lai White-Box AES Implementation. In Selected Areas in Cryptography,
19th International Conference, SAC 2012, Windsor, ON, Canada, August
15-16, 2012, Revised Selected Papers, pages 34–49, 2012.

[Mui13] J. A. Muir. A tutorial on white-box aes. Cryptology ePrint Archive, Report
2013/104, 2013.

[Mul14] Yoni De Mulder. White-Box Cryptography: Analysis of White-Box AES
Implementations. PhD thesis, KU Leuven, 2014.

[MWP10] Yoni De Mulder, Brecht Wyseur, and Bart Preneel. Cryptanalysis of a
Perturbated White-Box AES Implementation. In Progress in Cryptology -
INDOCRYPT 2010 - 11th International Conference on Cryptology in India,
Hyderabad, India, December 12-15, 2010. Proceedings, pages 292–310, 2010.

328 Analysis of Software Countermeasures for Whitebox Encryption

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In PLDI, pages 89–100. ACM,
2007.

[oST01] National Institute of Standards and Technology. Advanced Encryption
Standard. Federal Information Processing Standards Publication 197, 2001.

[SMdH15] Eloi Sanfelix, Cristofaro Mune, and Job de Haas. Unboxing the White-Box
Practical attacks against Obfuscated Ciphers. Black Hat Europe 2015, 2015.

[whi15] whiteCrypton. Cryptanium Overview, 2015.

[WMGP07] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis
of White-Box DES Implementations with Arbitrary External Encodings. In
Selected Areas in Cryptography, 14th International Workshop, SAC 2007,
Ottawa, Canada, August 16-17, 2007, Revised Selected Papers, pages 264–277,
2007.

[Wys12] Brecht Wyseur. White-box Cryptography: Hiding Keys in Software. MISC
magazine, 2012.

[XL09] Yaying Xiao and Xuejia Lai. A Secure Implementation of White-box AES.
In 2ndInternational Conference on Computer Science and its Applications
(CSA2009), 2009.

	Introduction
	Contributions and Organization

	Whitebox AES Implementations
	Description of AES
	Chow et al's Whitebox Implementation

	Differential Computation Analysis (DCA)
	Software Countermeasures
	Control flow obfuscation
	Table location randomization
	Dummy operations

	Zero Difference Enumeration (ZDE) attack
	How to get a key-dependent -plaintext pair
	Zero Difference Bytes

	Experimental results
	CHES 2016 whitebox challenge
	Shuffling of operations
	Masking memory addresses
	Dummy operations
	Zero-difference enumeration

	Conclusion

