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Constraint Programming

Definition : CP and CSP
CP is used to solve Constraint Satisfaction Problems (CSPs). A CSP is defined by
a triple (X ,D,C) such that

X = {x1, · · · , xn} is a finite set of variables
D = {D1, · · · ,Dn}, where Di is the domain of xi , that is, the finite set of
values that may be assigned to xi . Hence xi ∈ Di .
C = {C1, · · · ,Cm} is a set of constraints, where Ci defines a relation over
scope(Ci) ⊆ X which restrict the set of values that may be assigned
simultaneously to these variables.
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Constraint Programming – The n Queens Problem

Place n queens on an chessboard such that no queen can attack any other.
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Formulating the n-Queens Problem

x1 x4 x3 x2 

1 

2 

3 

4 

Variables : X = {x1, x2, x3, x4}, xi represents the row number of the queen at
ith col
Domains : D = {D1,D2,D3,D4} where Di = {1, 2, 3, 4}
Constraints : xi 6= xj , |xi − xi+j | 6= j

Declare the constraints in extension
(x1, x2) ∈ {(1, 3), (1, 4), (2, 4)(3, 1), (4, 1), (4, 2)}
(x1, x3) ∈ {· · · }
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Constraint Programming : how to solve ?

Step 1. input the variables, domains, and constraints into a CP solver
(Declare the problem)
Step 2 : Wait for the solution

CP Solvers
The CP solvers implement sophisticated backtracking and inference
(constraint propagation) algorithms to find a solution.
Solvers

Dedicated CP solvers : Choco, Chuffed, Gecode ...
SAT, MILP or hybrid solvers
Standard modelling language : Minizinc.

Eugene C. Freuder, April 1997
Constraint programming represents one of the closest approaches computer
science has yet made to the Holy Grail of programming : the user states the
problem, the computer solves it.
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Automatic Cryptanalysis of Symmetric-key Algorithms

Search algorithms implemented from scratch in general-purpose programming
languages
SAT/SMT based methods
Mixed-integer programming (MILP) based methods
Constraint programming (CP) based methods

Advantages of the CP approach
Easy to implement
Modelling process of CP is much more straightforward : input
allowed tuples directly
directly benefit from the advances in the resolution technique
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Search for related-key differential characteristics of
AES-128
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Related work
[Alex Biryukov and Ivica Nikolić, EUROCRYPT 2010 ]
[Pierre-Alain Fouque, Jérémy Jean and Thomas Peyrin, CRYPTO 2013]
[David Gerault, Marine Minier and Christine Solnon, CP 2016]

Step 1 : Find truncated differential characteristics with the minimum number
of active S-boxes
Step 2 : Instantiate the truncated differential characteristics with actual
differences
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CP Model for Step 1 : Variables and Constraints

ARK

KS
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0-1 variables
∆X [j][k]
∆Xi [j][k]
∆Yi [j][k]
∆Ki [j][k]

Constraints
ARK
SR-MC
KS
XOR

Semantics of the variables
These variables are used to trace the propagation of the truncated differences.
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XOR Constraint
(white = 0, colored 6= 0)

Byte values
δA δB δC

⊕ =
⊕ x x=

⊕x y z=
⊕x x =

Boolean abstraction
∆A ∆B ∆C

⊕ =
⊕ =

⊕ = ?
⊕ = ?

∆A ∆B ∆C
0 0 0
0 1 1
1 0 1
1 1 ?

Definition of the XOR constraint
∆A + ∆B + ∆C 6= 1
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SR-MC Constraint

X=X xor X’

δK=K xor K’

δXn=Xn xor Xn’δ

ARK

KS

ARKMCS

n times

SSR

At byte level

Definition of the SR-MC constraint
∀j ∈ [0; 3] :∑3

k=0 ∆Xi [(k + j)%4][k] + ∆Yi [j][k] ∈ {0, 5, 6, 7, 8}
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SR-MC Constraint

X=X xor X’

δK=K xor K’

δXn=Xn xor Xn’δ

ARK

KS

ARKSRS

n times

SMC

At byte level

MDS property :
|A|+ |MC(A)| ∈ {0, 5, 6, 7, 8}
(for diffusion of active cells)

Definition of the SR-MC constraint
∀j ∈ [0; 3] :∑3

k=0 ∆Xi [(k + j)%4][k] + ∆Yi [j][k]∈ {0, 5, 6, 7, 8}
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CP Model for Step 1

Impose constraints for all operations having an effect on the the truncated
differences
Impose additional constraints (at least one active byte)
Set the objective function to minimize the number of active S-boxes

Problem
Too many inconsistent solutions !
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CP Model for Step 1

Reduce the number of inconsistent solutions
Take the equality relationship into consideration : when A == B, A⊕B == 0
Consider the MDS property of two different columns

The Minizinc Code
http://www.gerault.net/resources/CP_AES.tar.gz
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CP Model for Step 2

SARK

KS

ARKMCSRS

n times

Plaintext X
(4x4 bytes)

Key K

(4x4 bytes)

Ciphertext Xn
(4x4 bytes)

Introduce a variable for every byte, whose domain is {0, 255}
Impose the constraints of the differential distribution table, XOR etc. as table
constraints
Impose constraints according to the truncated differential characteristic

The Choco Code
http://www.gerault.net/resources/Step2_AES.tar.gz
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Results for AES-128

We find 19 truncated related-key differential characteristics with 20 active
S-boxes in 7 hours, but none of them can be instantiated with an actual
differential characteristic.
We then find 1542 ones with 21 active S-boxes in around 12 hours. Among
these, only 20 of them can be instantiated with actual differential
characteristics.
The probability of the optimal characteristic is 2−131.

Round δXi = Xi ⊕ X ′i δKi = Ki ⊕ K ′i Pr(States) Pr(Key)
init. 366d1b80 dc37dbdb 9bc08d5b 00000000
i = 0 00000000 71000000 00004d00 00000000 366d1b80 ad37dbdb 9bc0c05b 00000000 2−6·2 −
1 b6f60000 009a0000 009a0000 009a0000 366d1b80 9b5ac05b 009a0000 009a0000 2−7·2 · 2−6·3 2−6
2 00000000 009a0000 00000000 009a0000 ed6d1b80 7637dbdb 76addbdb 7637dbdb 2−6·2 2−6 · 2−7·3
3 00000000 009a0000 009a0000 00000000 76addbdb 009a0000 7637dbdb 00000000 2−6·2 −
4 00000000 009a0000 00000000 00000000 76addbdb 7637dbdb 00000000 00000000 2−6 −
5 00000000 009a0000 009a0000 009a0000 76addbdb 009a0000 009a0000 009a0000 2−6·3 2−6

End/6 db000000 db9a0000 db000000 ad37dbdb adaddbdb ad37dbdb adaddbdb ad37dbdb − −

Table – The optimal characteristic
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Table – A comparison between the results obtained by CP and the graph-based search
algorithm [Pierre-Alain Fouque, Jérémy Jean and Thomas Peyrin, CRYPTO 2013].

Rounds Constraint Programming Graph Search
#AS Prob. #AS Prob.

3 5 2−31 5 2−31
4 12 2−79 13 2−81
5 17 2−105 17 2−105
6 21 2−131 - -
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Search for Impossible differential and Zero-correlation
Linear Approximation

Related work
[Yu Sasaki and Yosuke Todo, EUROCRYPT 2017]
[Cui, Jia, Fu, Chen and Wang, IACR ePrint 2016/689]

Choose an input-output difference pattern (α, β).
Construct a CP modelM(α,β) whose solution set includes all valid
differential characteristics.
SolveM(α,β). IfM(α,β) is infeasible, (α, β) is an impossible differential.
Choose another (α, β) and repeat.
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Search for Integral Distinguishers based on Bit-based
Dvision Property

Division property was proposed by Todo [Todo, EUROCRYPT 2015] which
was extended to Bit-based division property [Todo and Morii, FSE 2016].

Bit-based division property
Let X be a multiset whose elements belong to Fn

2. When the multiset X has the
division property D1n

K , where K denotes a set of n-dimensional vectors in
{0, 1}n ⊆ Zn, it fulfills the following condition

⊕
x∈X

xu0
0 xu1

1 · · · x
un−1
n−1 =

{
unknown if there are k ∈ K, s.t.u < k
0 otherwise

where u = (u0, u1, · · · , un−1) ∈ {0, 1}n ⊆ Zn, x = (x0, x1, · · · , xn−1) ∈ Fn
2.
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Using Division Property

Construct an input set with division property D1n
K .

Propagate it against the target cipher to get the output set with division
property D1n

K′

Extract some useful integral property from D1n
K′

The rule of propagation
The propagation of the division property can be described as a set of bit vectors,
which in turn can be modeled by the language of CP.
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Propagation of Division Property against Vectorial Boolean
Functions

[Xiang, Zhang, Bao and Lin, ASIACRYPT 2016]
[Christina Boura and Anne Canteaut, CRYPTO 2016]
[Ling Sun and Meiqin Wang, IACR ePrint 2016/392]
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Example : the PRESENT S-box
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Propagation of Division Property : Division Trail

The bit-based division property can be described by the propagation of bit
patterns with some special meaning, which leads to the concept of division
trail.

Division Trail [Xiang, Zhang, Bao and Lin, ASIACRYPT 2016]
Let F be the round function of an iterated block cipher. Assume that the input
multi-set to the block cipher has initial division property D1n

K0
with K0 = {k}. This

initial division property propagates through the round function which forms a chain

D1n
K0

F−→ D1n
K1

F−→ D1n
K2

F−→ · · ·

For any vector k∗i ∈ Ki(i ≥ 1), there must exist a vector k∗i−1 in Ki−1 such that
k∗i−1 can propagate to k∗i according to the rules of division property propagation.
Furthermore, for (k0, k1, · · · , kr ) ∈ K0 ×K1 × · · · ×Kr , if ki−1 can propagate to
ki for all i ∈ {1, 2, · · · , r}, we call (k0, k1, · · · , kr ) an r -round division trail.
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The rule for detecting integral distinguisher based on
division property

Set without Integral Property
Let X be a multiset with division property D1n

K , then X does not have integral
property if and only if K contains all the n unit vectors.

Construct a CP modelMej whose solution set contains all the division trails
whose output division property is set to ej .
If we can find at least oneMej for j ∈ {0, · · · , n − 1} which is infeasible,
then we find an integral distinguisher.
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Accelerating the Search

Ordering heuristic
The order in which the variables are assigned has significant impact on the
efficiency of the resolution.
We choose the generic ordering heuristic called domain over weighted degree
[Frédéric Boussemart et al., ECAI 2004]

Random restart
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Results on PRESENT, HIGHT, and SKINNY

Retrieve the 9-round distinguisher of PRESENT found by MILP method(cost
3.4 minutes) in 36 seconds.
Rediscover all zero-correlation linear approximations of the 17-round in 1709
seconds (MILP cost 4786).
SKINNY : We found 16 impossible differentials leading to 18-round attack.
Better results obtained by other researchers are now available for SKINNY
[IACR ePrint 2016/1127, 1120, 1115, and 1108]

Note
During the process of designing new ciphers, the evaluation sometimes needs to
be repeated several times. Hence, even though not crucial, a good CPU time is a
desirable feature.

Sun et al. (IIE, LIMOS, NTT) Analysis of AES, SKINNY, and Others with Constraint Programming FSE 2017 @ Tokyo 26 / 34



Comparing Solvers

Pick two problems as benchmark
Optimization : find the best trail of PRESENT
Enumeration : list all solutions in a given linear hull of PRESENT

Solvers
MILP solvers : Gurobi, SCIP
CP solvers : Choco, Chuffed, PICAT_SAT
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Comparing Solvers

Table – Optimization problem, with a time limit of 2 hours.

Rounds Prob. Time by Time by Time by Time by
Gurobi (sec.) Choco (sec.) Chuffed (sec.) PICAT_SAT (sec.)

3 2−8 2 4.1 0.2 12.8
4 2−12 25 750.8 11.4 22.5
5 2−20 453 - 3404.5 91.4
6 2−24 2184 - - 486.2
7 2−28 - - - 5883.9
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Comparing Solvers

Table – Enumerating the linear hull of PRESENT

Rounds Time by Number of solutions Time by Number of solutions
SCIP (sec.) by SCIP Choco (sec.) by Choco

4 0.1 3 0.023 3
5 0.28 17 0.031 17
6 37.7 8064 0.359 8064
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Conclusion and Discussion

CP is indeed a convenient tool for symmetric-key cryptanalysis
Easy to implement
Sometimes faster

Further directions
Most automatic tools focus on the search for distinguishers
Can we automate the key-recovery part ?
[Patrick Derbez and Pierre-Alain Fouque, CRYPTO 2016]
[Li Lin, Wenling Wu, Yafei Zheng, FSE 2016]

Sun et al. (IIE, LIMOS, NTT) Analysis of AES, SKINNY, and Others with Constraint Programming FSE 2017 @ Tokyo 30 / 34



References

Mitsuru Matsui (1994)
On correlation between the Order of S-boxes and the Strength of DES
Advances in Cryptology–EUROCRYPT 1994

Alex Biryukov and Ivica Nikolić (2010)
Automatic search for related-key differential characteristics in byte-oriented block ciphers : Application
to AES, Camellia, Khazad and others
Advances in Cryptology–EUROCRYPT 2010

Christoph Dobraunig and Maria Eichlseder and Florian Mendel (2015)
Heuristic Tool for Linear Cryptanalysis with Applications to CAESAR Candidates
Advances in Cryptology–ASIACRYPT 2015

Patrick Derbez and Pierre-Alain Fouque
Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks
Advances in Cryptology – CRYPTO 2016

Pierre-Alain Fouque and Jérémy Jean and Thomas Peyrin (2013)
Structural Evaluation of AES and Chosen-Key Distinguisher of 9-Round AES-128
Advances in Cryptology–CRYPTO 2013

Stefan Kölbl and Gregor Leander and Tyge Tiessen (2015)
Observations on the SIMON Block Cipher Family
Advances in Cryptology–CRYPTO 2015

David Gerault and Marine Minier and Christine Solnon (2016)
Constraint Programming Models for Chosen Key Differential Cryptanalysis
Principles and Practice of Constraint Programming–CP 2016

Sun et al. (IIE, LIMOS, NTT) Analysis of AES, SKINNY, and Others with Constraint Programming FSE 2017 @ Tokyo 31 / 34



References

Yu Sasaki and Yosuke Todo (2017)
New Impossible Differential Search Tool from Design and Cryptanalysis Aspects
Advances in Cryptology–EUROCRYPT 2017

Tingting Cui and Keting Jia and Kai Fu and Shiyao Chen and Meiqin Wang (2016)
New Automatic Search Tool for Impossible Differentials and Zero-Correlation Linear Approximations
http: // eprint. iacr. org/ 2016/ 689

Todo Yosuke (2015)
Structural Evaluation by Generalized Integral Property
Advances in Cryptology–EUROCRYPT 2015

Todo Yosuke (2015)
Integral Cryptanalysis on Full MISTY1
Annual Cryptology Conference–CRYPTO 2015

Yosuke Todo and Masakatu Morii (2016)
Bit-Based Division Property and Application to Simon Family
Fast Software Encryption–FSE 2016

Christina Boura and Anne Canteaut (2016)
Another View of Division Property
Advances in Cryptology–CRYPTO 2016

Zejun Xiang and Wentao Zhang and Zhenzhen Bao and Dongdai Lin (2016)
Applying MILP Method to Searching Integral Distinguishers Based on Division Property for 6
Lightweight Block Ciphers
Advances in Cryptology – ASIACRYPT 2016

Sun et al. (IIE, LIMOS, NTT) Analysis of AES, SKINNY, and Others with Constraint Programming FSE 2017 @ Tokyo 32 / 34

http://eprint.iacr.org/2016/689


References

Ling Sun and Meiqin Wang (2016)
Towards a Further Understanding of Bit-Based Division Propert
http: // eprint. iacr. org/ 2016/ 392

Frédéric Boussemart and Fred Hemery and Christophe Lecoutre and Lakhdar Sais (ECAI 2004)
Boosting Systematic Search by Weighting Constraints
ECAI 2004

Li Lin and Wenling Wu and Yafei Zheng (2016)
Automatic Search for Key-Bridging Technique : Applications to LBlock and TWINE
FSE 2016

Sun et al. (IIE, LIMOS, NTT) Analysis of AES, SKINNY, and Others with Constraint Programming FSE 2017 @ Tokyo 33 / 34

http://eprint.iacr.org/2016/392


Thanks for your attention !
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