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Abstract. Search for different types of distinguishers are common tasks in symmetric-
key cryptanalysis. In this work, we employ the constraint programming (CP) technique
to tackle such problems. First, we show that a simple application of the CP approach
proposed by Gerault et al. leads to the solution of the open problem of determining
the exact lower bound of the number of active S-boxes for 6-round AES-128 in the
related-key model. Subsequently, we show that the same approach can be applied in
searching for integral distinguishers, impossible differentials, zero-correlation linear
approximations, in both the single-key and related-(twea)key model. We implement
the method using the open source constraint solver Choco and apply it to the
block ciphers PRESENT, SKINNY, and HIGHT (ARX construction). As a result,
we find 16 related-tweakey impossible differentials for 12-round SKINNY-64-128
based on which we construct an 18-round attack on SKINNY-64-128 (one target
version for the crypto competition https://sites.google.com/site/skinnycipher
announced at ASK 2016). Moreover, we show that in some cases, when equipped
with proper strategies (ordering heuristic, restart and dynamic branching strategy),
the CP approach can be very efficient. Therefore, we suggest that the constraint
programming technique should become a convenient tool at hand of the symmetric-key
cryptanalysts
Keywords: Differential Cryptanalysis, Integral Cryptanalysis, Constraint Program-
ming, AES, SKINNY

1 Introduction
The design and analysis of symmetric-key cryptographic primitives is considered a tedious,
time consuming, and error-prone task which involves tracing the propagation of bit-level
patterns against all sorts of different operations according to some intricate rules. These bit
patterns of interest for the cryptanalysts represent different meanings in different context.
For example, in differential analysis [BS91] the bit patterns represent the differential

∗Lei Hu is the corresponding author.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2016-11-23, Accepted: 2017-01-23, Published: 2017-03-08

https://doi.org/10.13154/tosc.v2017.i1.281-306
mailto:sunsiwei@iie.ac.cn, yangqianqian@iie.ac.cn, qiaokexin@iie.ac.cn, hulei@iie.ac.cn
mailto:david@gerault.net, pascal.lafourcade@uca.fr
mailto:todo.yosuke@lab.ntt.co.jp
https://sites.google.com/site/skinnycipher
http://creativecommons.org/licenses/by/4.0/


282 Analysis of AES, SKINNY, and Others with Constraint Programming

characteristics, while in linear cryptanalysis [Mat94], the patterns correspond to the
propagation of the linear masks.

In order to avoid extensive manual work and to deeply explore the exponential space
of the bit patterns, we, as cryptographic researchers, are in urgent need of automatic
tools. In fact, automatic tools for cryptanalysis designed by the community have played a
significant role in the design and analysis of symmetric-key primitives.

Roughly speaking, those automatic tools can be divided into four categories, including
search algorithms implemented from scratch in general purpose programming languages
[Mat95, ANE15, BV14, BN11, FJP13, BDF11, DF16, DEM15, Leu13, YZW15, DDS14,
SW16], SAT/SMT (satisfiability modulo theory) based methods [CB07, KY10, RS09,
MP13, KLT15, QCW16, AJN14, SHY16], mixed-integer linear programming (MILP) based
methods [AC11, MWGP12, WW11, SHW+14, FWG+16, XZBL16] and methods based on
classical constraint programming.

To the best of our knowledge, the first application of the classical constraint program-
ming (CP) technique in the field of block cipher cryptanalysis are presented in [GMS16].
In this work, Gerault et al. use a CP solver called Choco to search for the related-key
differential characteristics of the AES, where some previous results [BN10, FJP13] are
rediscovered in a highly automatic way and some better characteristics are found. Recently
in [GL16], the authors used CP to perform a related-key cryptanalysis of a symmetric
encryption scheme called Midori [BBI+15].

Each method presented above has its own advantages and drawbacks. For example, the
method proposed in [BVC16] is able to give provable security bounds of an ARX cipher
against simple differential attack, while the MILP/SMT based methods [MP13, FWG+16]
can analyze more rounds of a cipher when compared to the method presented in [BVC16].
Moreover, sometimes methods implemented from scratch may be more efficient in some
specific cases, and such methods probably are the only choices in some sophisticated
situations. When compared with the methods based on SAT, SMT, MILP and CP, they
are much more difficult to implement.

Our Contribution. Based on Gerault et al.’s work [GMS16], we apply the CP approach to
search for differential/linear characteristics, integral distinguishers, impossible differentials
and zero-correlation linear approximations automatically. Some experiments are performed
on AES, PRESENT, SKINNY and HIGHT. We determine the exact lower bound of the
number of active S-boxes of 6-round AES-128 in the related-key model. In addition, we
find 16 related-tweakey impossible differentials of 12-round SKINNY, based on which
we can attack 18-round SKINNY-64-128 (one target version for the crypto competition
announced at ASK 2016).

We argue that the CP approach enjoys certain advantages over other methods in some
aspects. Firstly, compared with the methods implemented from scratch, the CP approach
is much easier to implement and more efficient in some cases. Second, the solution of
the CP model can be delegated to a wide range of open-source or commercially available
solvers. These solvers include dedicated CP solvers, but also SAT, MILP or hybrid solvers.
In particular, by using the MiniZinc [NSB+07] language, one can express CP model in a
language that can be interpreted by a wide range of solvers. Therefore, we directly benefit
from the advances in resolution techniques. Thirdly, the modeling process of CP is much
more straightforward than that of the MILP based method. Since in the MILP method,
we need to encode the allowed bit patterns as a set of linear inequalities, while in the CP
approach, we can directly input the allowed bit patterns as tuples into the CP solver. To the
best of our knowledge, the MILP approach is unable to search for actual differential char-
acteristics of ciphers with 8×8 S-boxes, while the CP approach does not have this limitation.

Organization. In Section 2, we give a brief introduction to the constraint programming
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and the Choco CP solver with sample codes. Section 3 explains how to search for differential
and linear characteristics with CP, which is applied to determine the exact lower bound of
the number of active S-boxes of 6-round AES-128 in the related-key model. In Section 4,
we use the example of the search for integral distinguishers of PRESENT and the zero-
correlation linear approximations of HIGHT to present some common techniques to improve
the efficiency of the search. An impossible related-tweakey differential attack on 18-round
SKINNY-64-128 is then given in Section 5 by exploiting some 12-round related-tweakey
impossible differentials found by CP. We conclude in Section 6 and give some further
discussions.

2 Constraint Programming and the Choco CP Solver
Definition 1. CP is used to solve Constraint Satisfaction Problems (CSPs). A CSP is
defined by a triple (X ,D, C) such that

• X is a finite set of variables;

• D is a function that maps every variable xi ∈ X to its domain D(xi), that is, the
finite set of values that may be assigned to xi;

• C is a set of constraints, that is, relations between some variables which restrict the
set of values that may be assigned simultaneously to these variables.

A solution of a CSP is an assignment of values to all the variables in X = {x0, · · · , xn−1}
such that all constraints C = {c0, . . . , cm−1} are satisfied. A CSP is said to be inconsistent
if the set of its solutions is empty.

A generic approach for solving a CP model is the depth-first search algorithm with
backtracking. At each step of the search, variable assignment is performed followed by
a process called constraint propagation in which some values which can not occur in any
solution are removed. The order in which variables are assigned in the search, as well as
the order for exploring the possible values for each variable, has a significant impact on
the efficiency. Therefore, choosing a good ordering heuristic is a key issue for solving CP
problems.

One generic variable ordering heuristic among many other strategies is the so-called
domain over weighted degree [BHLS04]. This is a conflict-directed variable ordering heuristic
exploiting both the previous and current state of the search, and we refer the reader to
[BHLS04] for more technical information.

Here we give a simple example of a constraint programming model with 5 0-1 variables
{x0, x1, x2, x3, x4} and 3 constraints {c0, c1, c2} c0 : x0 + x2 + x3 + x4 = 3

c1 : x0 6= x1
c2 : (x0, x1, x2) ∈ {(0, 0, 0), (0, 1, 0), (0, 1, 1)}

According to Definition 1, the above CP model (X ,D, C) has the following properties

- X = {x0, x1, x2, x3, x4} and D(xi) = {0, 1} for 0 ≤ i ≤ 4;

- C = {c0, c1, c2}, vars(c0) = {x0, x2, x3, x4}, vars(c1) = {x0, x1}, and vars(c2) =
{x0, x1, x2};

- (x0, x2, x3, x4) ∈ rel(c0) = {(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)}, (x0, x1) ∈
rel(c1) = {(0, 1), (1, 0)}, and (x0, x1, x2) ∈ rel(c2) = {(0, 0, 0), (0, 1, 0), (0, 1, 1)}.

- A solution of the CP model is x0 = 0, x1 = 1, x2 = 1, x3 = 1, x4 = 1.
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Note that a constraint can be declared in extension, by defining the valid/invalid tuples,
or in intension, by defining a relation between the variables. For instance, c0 and c1 are
declared in intension, and c2 is declared in extension. Note that the modelling choices
influence the resolution time: in this example, defining c2 in intention would probably
be more efficient. Such models can be solved by CP solvers such as Choco [PFL14]. To
illustrate its ease of use, we give a toy example together with its source code in Appendix A.
Other solvers exist, and different solvers may have very different performances for a same
problem.

3 Search for Differential/Linear Characteristics
In this section, we consider an r-round iterative block cipher EK : {0, 1}m × {0, 1}n →
{0, 1}n with round function F : {0, 1}n → {0, 1}n. Typically, the F function can be
decomposed into operations acting on smaller sub-blocks of the input data. When the
corresponding parts of the input differences go through these operations, the input differ-
ences are transformed to output differences according to the differential properties of the
operations.

The differential property of an operation f : {0, 1}u → {0, 1}v can be completely
characterized by its differential distribution table DDTf , where DDTf [α][β] specifies the
probability Pr(α → β) of the differential α → β for all α ∈ {0, 1}u and β ∈ {0, 1}v. If
we denote the input and output differences of f by α = (α[0], · · · ,α[u − 1]) ∈ {0, 1}u

and β = (β[0], · · · ,β[v − 1]) ∈ {0, 1}v respectively, the constraint imposed by f on the
differential α→ β can be described in the language of constraint programming by

(α[0], · · · ,α[u− 1],β[0], · · · ,β[v − 1], pα→β) ∈ Df

where pα→β is typically a positive integer called probability variable and

Df = {(x,y, log2(Pr(x→ y))) : Pr(x→ y) > 0, (x,y) ∈ {0, 1}u × {0, 1}v}.

By imposing constraints according to the above method for all operations involved
in a cipher, we can construct a CP model whose set of solutions is exactly the set of all
possible differential characteristics. Further, by setting the objective function to minimize
the sum of all probability variables, we can search for the characteristic with the highest
probability.

In the following, we useMDSK
Er

(C) andMDRK
Er

(C) to denote the CP models whose set
of solutionss are exactly the set of all differential characteristics satisfying the additional
constraints specified in C in single-key and related-key models, respectively. For example,
MDSK
Er

(∆in = α,∆out = β) is a CP model whose set of solutions is the set of all single-key
differential characteristics of r-round E with specified input and output differences. When
C = ∅, it means that there is no additional constraint. Similarly, letMLIN

Er
(C) be the CP

model whose set of solutions is the set of all valid linear characteristics satisfying the
additional constraints specified in C of an r-round cipher E .

Also note that in the above formulation, we introduce a variable for every bit. When
the operations involved in a cipher are all word oriented (aligned), we can introduce a
variable x for every c-bit word, such that dom(x) = {0, 1, · · · , 2c − 1}.

3.1 Exact Lower Bound of the Number of Active S-boxes of 6-round
AES-128 in the Related-key Model

In the last few decades, a lot of research has been conducted on analysis and design of
block ciphers, and the community has strong confidence in building efficient and secure
block ciphers against the classical single-key differential attack.
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However, when the adversary is allowed to ask for encryption or decryption with related
keys, the situation becomes more complicated. One of the purpose of the key schedule
algorithm is to resist against such attacks. In some extreme cases, as in LED [GPPR11], the
designers choose to use no key schedule at all, at the expense of a larger number of rounds
which may suffer from efficiency issues. In contrast, the key schedule algorithms of some
block ciphers, e.g. the AES [DR02], are rather ad-hoc, in the sense that the designers came
up with a key schedule that is quite different from the internal permutation of the cipher,
in a hope that no harmful interaction is created by the two components. This approach
typically makes the security evaluation in the related-key model very difficult [BKN09].
For example, it is pointed out in [Pey] at ASK 2016 (http://www.nuee.nagoya-u.ac.
jp/labs/tiwata/ask2016/) that the exact lower bounds of the number of active S-boxes
of r-round AES-128 in the related-key model are still unknown for r ≥ 6. In the following,
we show that a simple reapplication of the method presented in [GMS16] leads to the
solution of the 6-round case. Note that, instead of using the solver Choco as for the rest
of the paper, we use the setting proposed by Gerault et al., i.e. the MiniZinc model they
provided 1, as well as the solver Chuffed 2, where MiniZinc 3 is a solver-independent open
source language that can be used to express CP models readable by multiple solvers.

First, adapt the parameters of the CP model of Gerault et al. to build one whose feasible
region is exactly the set of all truncated related-key differential characteristics of 6-round
AES-128, and set the objective function to minimize the number of differentially active
S-boxes. For each solution, we construct a CP model whose set of solutions is exactly the set
of all related-key differential characteristics matching the truncated related-key differential
characteristic. The results we give were computed on a regular desktop computer. We
find 19 truncated related-key differential characteristics with 20 active S-boxes in 7 hours,
but none of them can be instantiated with an actual differential characteristic. We then
find 1542 ones with 21 active S-boxes in around 12 hours. Among these, only 20 of them
can be instantiated with actual differential characteristics. From that, we can conclude
that the minimum number of active S-boxes of 6-round AES-128 in the related-key model
is 21. The related-key differential characteristic with maximal probability occurs with
probability 2−131, and is given in Table. 1 whose truncated characteristic is depicted in
Fig. 1. A comparison between the results obtained by CP and the graph-based search
algorithm [FJP13] is given in Table 2.

Table 1: The optimal 6-round related-key differential characteristic for AES-128. It has
21 active S-boxes, and occurs with probability 2−131. The four words represent the four
columns and are given in hexadecimal notation. We have the relation: δX ⊕ δK0 = δX0.
Round δXi = Xi ⊕X ′i δKi = Ki ⊕K ′i Pr(States) Pr(Key)
init. 366d1b80 dc37dbdb 9bc08d5b 00000000
i = 0 00000000 71000000 00004d00 00000000 366d1b80 ad37dbdb 9bc0c05b 00000000 2−6·2 −
1 b6f60000 009a0000 009a0000 009a0000 366d1b80 9b5ac05b 009a0000 009a0000 2−7·2 · 2−6·3 2−6

2 00000000 009a0000 00000000 009a0000 ed6d1b80 7637dbdb 76addbdb 7637dbdb 2−6·2 2−6 · 2−7·3

3 00000000 009a0000 009a0000 00000000 76addbdb 009a0000 7637dbdb 00000000 2−6·2 −
4 00000000 009a0000 00000000 00000000 76addbdb 7637dbdb 00000000 00000000 2−6 −
5 00000000 009a0000 009a0000 009a0000 76addbdb 009a0000 009a0000 009a0000 2−6·3 2−6

End/6 db000000 db9a0000 db000000 ad37dbdb adaddbdb ad37dbdb adaddbdb ad37dbdb − −

Note that a practical reason which often limits the usability of the MILP based method
is that it is impractical to compute the convex hull of all valid differential patterns of an
8× 8 S-box, while the CP approach does not have this limitation.

1http://gerault.net/misc.php
2https://github.com/geoffchu/chuffed
3http://minizinc.org

http://www.nuee.nagoya-u.ac.jp/labs/tiwata/ask2016/
http://www.nuee.nagoya-u.ac.jp/labs/tiwata/ask2016/
http://gerault.net/misc.php
https://github.com/geoffchu/chuffed
http://minizinc.org
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Figure 1: The optimal 6-round related-key differential characteristic for AES-128 in its
truncated form.

Table 2: A comparison between the results obtained on AES-128 by constraint programming
method and the graph-based search algorithm [FJP13], where #AS denotes the number of
active S-boxes while Prob. is the probability of the best characteristic found. When no
results are known, we simply write “-”.

Rounds Constraint Programming Graph Search [FJP13]
#AS Prob. #AS Prob.

3 5 2−31 5 2−31

4 12 2−79 13 2−81

5 17 2−105 17 2−105

6 21 2−131 - -

3.2 Comparing Solvers
In order to evaluate the performances of the Choco solver further, we picked two problems
as benchmarks. The first one is an optimization problem, where the solver must find a
differential characteristic with optimal probability. The second one is an enumeration
problem, where the solver must list all solutions with predefined properties. It appears
that the MILP solver Gurobi [Gur13] outperforms Choco on the optimization problem in
our benchmark, and that Choco outperforms MILP for enumerating solutions. In order to
try other solvers, we also implemented the first problem in MiniZinc. MiniZinc is a CSP
modelling language that is accepted by a wide range of solvers. Using it, we could add the
solvers Chuffed and PICAT_SAT [ZKF15] to the optimization experiments. It appears
that Chuffed is in between Choco and Gurobi, and that PICAT_SAT outperforms Gurobi.

In the optitmization problem, we search for differential characteristics on PRESENT.
It appears that Choco does not scale up well for a straightforward implementation of
this search.We build a CP modelMDSK

PRESENTr
(∅) for some r, set the objective function

to minimize the sum of all probability variables, and try to find the optimal solution
(corresponding to the best differential characteristic) by Choco. We also try to find the
best differential characteristic of r-round PRESENT by the MILP based method using the
Gurobi solver. The comparison of the results are listed in Table 3, from which we can see
that our Choco implementation is not competitive with Gurobi on this problem, and that
both approaches are extremely inefficient compared to Matsui’s algorithm, which can find
the best characteristic of full PRESENT in several seconds [ANE15]. It is noteworthy that
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Table 3: Efficiency comparison of Choco, Gurobi, Chuffed and PICAT_SAT in searching
for the best differential characteristic of PRESENT, with a time limit of 2 hours. A “-”
means timeout.

Rounds Prob. Time by Time by Time by Time by
Gurobi (sec.) Choco (sec.) Chuffed (sec.) PICAT_SAT (sec.)

3 2−8 2 4.1 0.2 12.8
4 2−12 25 750.8 11.4 22.5
5 2−20 453 - 3404.5 91.4
6 2−24 2184 - - 486.2
7 2−28 - - - 5883.9

Table 4: Efficiency comparison of SCIP and Choco in enumerating characteristics in the
linear hulls of PRESENT.

Rounds Time by Number of solutions Time by Number of solutions
SCIP (sec.) by SCIP Choco (sec.) by Choco

4 0.1 3 0.023 3
5 0.28 17 0.031 17
6 37.7 8064 0.359 8064

Chuffed performs slightly better than the others on small instances, but that PICAT_SAT
is the one which scales up the best. Note that out implementation in both frameworks is
very straightforward. As opposed to Matsui’s algorithm, it does not derive bounds from
results on lower number of rounds, which would speed up the search. This does not either
set a definitive advantage of one method over the other.

On the other hand, it seems that Choco is very good at enumerating the characteristics
in a given differential or linear hull with fixed input and output differences. We construct a
CP modelMLIN

PRESENTr
(C) for some r, where C dictates the input and output linear masks

must be some fixed bit strings. Then we enumerate the set of solutions of the CP model
by Choco. Also we try to enumerate the characteristics in the same linear hulls by SCIP
[Tob04], which implements an efficient set of solutions enumeration algorithm based on
MILP. The comparison of the two methods are given in Table 4, from which we can see
that Choco dramatically outperforms SCIP in enumerating characteristics.

These results confirm how solver dependant the resolution process can be. It appears
that there is not a definitive advantage of one method or solver for all purposes, and that
different solvers perform differently on different problems. Hence, using the MiniZinc
language seems to be the best practice, as it allows to try several solvers without having
to translate the model to their respective language.

4 Accelerating the Search for Integral Distinguishers and
Zero-correlation Linear Approximations

In this section, we apply the CP approach to search for integral distinguishers and zero-
correlation linear approximations. Experimental results show that when combined with
proper search strategies, the CP approach can be very efficient. Using it, we find again
and more efficiently the currently known best integral distinguisher of PRESENT and
zero-correlation linear approximations of HIGHT (ARX construction) [HSH+06]. First,
we introduce a convenient tool from CP: random restarts.

Please take a look at the so-called domain over weighted degree heuristic specified in
line 20 and 21 of the Choco code in Appendix A. This heuristic breaks ties at random,
using the random seed provided as system time in the example. Ovbviously, the resolution
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performances from one execution to another, since the random seed changes. Occasionally,
the variations of the resolution performances can be extraordinarily large, from one second
to more than minutes from one run to another. This behavior was extensively studied,
e.g. in [GSC97], and is common to many combinatorial problems. This is linked to the
determining impact of the order in which the variables are treated on the resolution
performance. A bad decision when using the randomized part to break a tie can thus
dramatically increase the difficulty of finding a solution. To counter this, the method
known as random restarts consists in starting over the search from scratch at a certain
point if no solution was found. This results in different random choices, and possibly a way
faster resolution. In practice, for one of the experiments described in the next paragraph,
the search generally took less than one second per instance, except for some problematic
runs where the solving time went over 10 minutes. By setting a random restart if the
search took more than 1 second, we observed that no instance had to restart more than 10
times before reaching a solution in less than 1 second. Hence, these instances were solved
in less than 10 seconds instead of more than 10 minutes.

4.1 Search for Integral Distinguishers
The division property, a generalized integral property, is proposed by Todo at Eurocrypt
2015 [Tod15b], which leads to the first theoretical attack on the full MISTY1 [Tod15a],
and extended to bit-based division properties for analyzing bit-oriented ciphers [TM16].
In [XZBL16, SWW16], Xiang et al. and Sun et al. model the propagation of bit based
division property as mixed-integer programming models, and automatically search for the
integral distinguishers of a wide range of block ciphers. In the following, we show how to
search for the integral distinguishers by employing the constraint programming technique.

Let F2 and Z denote the finite field of two elements and the integer ring, respectively.
For vectors k = (k0, k1, · · · , kn−1) and u = (u0, u1, · · · , un−1) in {0, 1}n ⊆ Z, we say u < k
if ui ≥ ki holds for all i = 0, · · · , n− 1.

Definition 2 (Conventional Bit-based Division Property [TM16]). Let X be a multiset
whose elements belong to Fn

2 . When the multiset X has the division property D1n

K , where
K denotes a set of n-dimensional vectors in {0, 1}n ⊆ Zn, it fulfills the following condition

⊕
x∈X

πu(x) =
{

unknown if there are k ∈ K, s.t.u < k
0 otherwise

where u = (u0, u1, · · · , un−1) ∈ {0, 1}n ⊆ Zn, x = (x0, x1, · · · , xn−1) ∈ Fn
2 , and πu(x) =∏n−1

i=0 x
ui
i .

If a multiset X has division property D1m

K , after the application of a vectorial boolean
function f : Fm

2 → Fn
2 , the division property of the output multiset Y becomes D1n

K′ . We
say D1m

K propagates to D1n

K′ , which is denoted by D1m

K
f−→ D1n

K′ , or K
f−→ K′ .

In the following, we reformulate the propagation of the bit-based division property in
the language of boolean functions. Our description is slightly different compared with
[BC16, XZBL16, CJF+16], but they are essentially the same thing. Yet we think our
description is easier for programming.

Let f : Fn
2 → F2 be an n-variable boolean function which can be represented as the

Algebraic Normal Form (ANF)

f(x) =
⊕

I∈PN

aI

∏
i∈I

xi =
⊕

I∈PN

aIxI

where PN denotes the power set of {0, 1, · · · , n− 1}.



Siwei Sun et al. 289

The set of all terms Terms(f) involved in a boolean function f = ⊕I∈PN
aIxI is defined

to be the set {xI : aI = 1}. We say a term of product of variables xI is divisible by a term
xJ , denoted by xJ |xI , if J ⊆ I. A term xJ is covered by the ANF of a boolean function f
if there exits xI ∈ Terms(f), such that xJ |xI , which is denoted by xJ l f . For example,
x1x2 l f = x1x2x3 + x2x3 + 1, while x2x3x4 is not covered by g = x1x2x3 + x1x4 + x3 + 1.

Let f : Fm
2 → Fn

2 be a vectorial boolean function whose coordinate function is denoted
by fj(x), where x = (x0, · · · , xm−1). If the input set has division property D1m

K where
K = {k = (k0, · · · , km−1)} has only one element. The output division property D1n

K′ can
be computed using the following algorithm called propagate() as K′ = propagate(K, f) such
that D1m

K0

f−→ D1n

K′ .

Algorithm 1: propagate() Compute the output division property.
Input: A vectorial boolean function f : Fm

2 → Fn
2 , and an input pattern

u = (u0, · · · , um−1) ∈ Fm
2 , where f(x) = (f0(x), · · · , fn−1(x)) and

x = (x0, · · · , xm−1);
Output: O: a set of patterns v ∈ Fn

2 describing the division property of the
output set;

1 O = ∅;
2 if u = (0, · · · , 0) then
3 return O = {(0, · · · , 0)}
4 else
5 for v ∈ Fn

2/(0, · · · , 0) do
6 Let F =

∏n−1
j=0 f

vj

j (x0, · · · , xn−1) ;
7 if

∏m−1
j=0 x

uj

j l F then
8 O = O ∪ {v};
9 end

10 end
11 end
12 return reduced(O);

The reduced() subroutine is used to remove all redundant vectors in a set such that
there are no vectors k and k∗ in K satisfying k < k∗. If the input set has division property
D1n

K with K = {k1,k2, · · · ,kq}, after the application of a vectorial function f , the division
property of the output set D1m

K′ can be computed as follows

K
′

= reduced(
q⋃

i=1
propagate({ki}, f))

Example: Core operation of the SIMON family. The core operation of SIMON is
a vectorial boolean function f : F4

2 → F4
2 with algebraic normal form

y0 = f0(x0, x1, x2, x3) = x0
y1 = f1(x0, x1, x2, x3) = x1
y2 = f2(x0, x1, x2, x3) = x2
y3 = f3(x0, x1, x2, x3) = x0x1 + x2 + x3

We show how to deduce the valid output patterns for the input division property
(1, 0, 1, 0).

Taking the output pattern (0, 0, 0, 1) for example, since F = f0
0 f

0
1 f

0
2 f

1
3 = x0x1 +x2 +x3,

and Terms(F ) = {x0x1, x2, x3}. Therefore x0x2 is not covered by F and (0, 0, 0, 1) is an
invalid output pattern.
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For output pattern (0, 0, 1, 1), since F = f0
0 f

0
1 f

1
2 f

1
3 = x2(x0x1 + x2 + x3) = x0x1x2 +

x2x3 + x2, and Terms(F ) = {x0x1x2, x2x3, x2}. Therefore x0x2 l F and (0, 0, 1, 1) is a
valid pattern. Similarly, we can deduce that (1, 0, 1, 0) and (1, 0, 0, 1) are also valid output
patterns. Note that (0, 1, 1, 1) is also a valid pattern according to Algorithm 1. But this
pattern can be removed since (0, 1, 1, 1) < (0, 0, 1, 1).

Definition 3 (Division Trail [XZBL16]). Let F be the round function of an iterated block
cipher. Assume that the input multi-set to the block cipher has initial division property
D1n

K0
with K0 = {k}. This initial division property propagates through the round function

which forms a chain
D1n

K0

F−→ D1n

K1

F−→ D1n

K2

F−→ · · ·

For any vector k∗i ∈ Ki(i ≥ 1), there must exist a vector k∗i−1 in Ki−1 such that k∗i−1 can
propagate to k∗i according to the rules of division property propagation. Furthermore, for
(k0,k1, · · · ,kr) ∈ K0 ×K1 × · · · ×Kr, if ki−1 can propagate to ki for all i ∈ {1, 2, · · · , r},
we call (k0,k1, · · · ,kr) an r-round division trail.

Similarly to the case of differential analysis, the propagation of the division property
against a specific operation can also be described by allowing bit-level patterns. Taking
the XOR operation for example, let (x[0], x[1]) ∈ {0, 1}2 and x[2] ∈ {0, 1} be the vectors
describing the input and output division properties of the XOR operation respectively. Then
we have the following constraint (x[0], x[1], x[2]) ∈ {(0, 0, 0), (0, 1, 1), (1, 0, 1)} ⊆ {0, 1}3.
Therefore, by considering the constraints imposed on the propagation of division properties
for all operations involved in a cipher, we can construct a CP model whose set of solutions
is the set of all division trails for an r-round cipher E .

Theorem 1 (Set without Integral Property [XZBL16]). Let X be a multiset with division
property D1n

K , then X does not have integral property if and only if K contains all the n
unit vectors.

According to Theorem 1, whether there exists an integral distinguisher for an r-round
iterative block cipher E with n-bit block size can be determined by Algorithm 2, where
MINT
Er

(Cj) denotes the CP model whose set of solutions is the set of all division trails
satisfying Cj , which dictates that the output division property is the unit vector ej .

Algorithm 2: Search for integral distinguishers of r-round E .
1 for j ∈ {0, 1, · · · , n− 1} do
2 M =MINT

Er
(Cj)

3 if M is infeasible then
4 An integral distinguisher is found.
5 end
6 end

We implement the Algorithm 2 in the Choco solver combined with random restarts to
search for the 9-round integral distinguisher of PRESENT, and the source code can be
found in Appendix B. The 9-round distinguisher presented in [XZBL16] is rediscovered on
an ordinary PC in no more than 36 seconds (the time of the resolution of 64 CP models).
By contrast, the same search without using restarts was more than 10 times longer, and
the MILP approach needs 3.4 minutes (roughly 204 seconds) [XZBL16] to solve the same
problem. Note that only one thread is used in our experiment, but since each of the 64
models is independant, they could be solved in parallel.
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4.2 Search for Impossible Differentials and Zero-Correlation Linear Ap-
proximations

Impossible differential cryptanalysis (IDC) [BBS99] is different from standard differential
analysis in that IDC tries to recover the secret key by exploiting some differentials of the
target cipher which never occur, instead of differentials with high probability. Similarly,
zero-correlation linear cryptanalysis [BR14] uses linear approximations with zero correlation.
The links between impossible differential, integral and zero-correlation linear approximation
are explored in [C14]. Existing tools used to search for impossible differentials and zero-
correlation linear approximations include U-method [KHL10], UID-method [LLWG14],
and the MILP based methods [WW12, CJF+16, ST17].

Given an r-round cipher Er, it is trivial to see that a specific differential (linear
approximation) α → β is an impossible differential (zero-correlation linear approxima-
tion) if and only if the CP model MDSK/LIN

Er
(∆in = α,∆out = β) is infeasible, where

(∆in = α,∆out = β) represents input-output difference patterns or input-output linear
masks accordingly. Therefore, the problem of searching for impossible differential or
zero-correlation linear approximation is equivalent to looking for the infeasible CP models
in

{MProperty
Er

(∆in = α,∆out = β) : α, β ∈ Fn
2 − {0}}, Property ∈ {DSK,DRK, LIN}

However, the search space is too large to be enumerated by considering all possible α
and β. Hence, typically the cryptanalysts only test those models whose input and output
patterns with low Hamming weights. For example, a lot of work only search for those
distinguishers whose Hamming weights of both the input and output bit patterns are 1,
which can be accomplished by Algorithm 3.

Algorithm 3: Search for impossible differential or zero-correlation linear approx-
imations.

1 for i ∈ {0, 1, · · · , n− 1} do
2 for j ∈ {0, 1, · · · , n− 1} do
3 M =MProperty

Er
(∆in = ei,∆out = ej)

4 if M is infeasible then
5 ei → ej is an impossible differential or zero-correlation linear

approximation
6 end
7 end
8 end

We implement Algorithm 3 in Choco and applied it to HIGHT, which is an ISO
standard lightweight block cipher introduced by Hong et al. at CHES 2006 [HSH+06]. In
[CJF+16], Cui et al. tried to search for all 17-round zero-correlation linear approximations
of HIGHT using the MILP method such that the Hamming weights of both the input and
output linear masks are 1, and 4 zero-correlation linear approximations were found, which
costs 4786 seconds on a server (Intel(R) Xeon(R) CPU E5-2620, 2.00GHz, 47GB RAM)
using 12 threads. By using the CP approach with restarts, we rediscover this result on a
PC using only one thread in 1709 seconds.

5 Related-tweakey Impossible Differential Attack on 18-
round SKINNY-64-128

SKINNY is a new family of tweakable block ciphers presented at CRYPTO 2016 [BJK+16]
designed under the TWEAKEY framework [JNP14], whose goal is to compete with the
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Figure 2: The SKINNY Round function: SubCells (SC), AddConstants (AC), Ad-
dRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC).

NSA recent design SIMON in terms of hardware/software performances. Unlike SIMON,
the designers of SKINNY provide strong bounds for all versions of the cipher, and not only
in the single-key model, but also in the related-key or related-tweak model. At ASK 2016,
the designers initiated a cryptanalysis competition to encourage third party analysis, and
the 18-round SKINNY-64-128 is one target version (https://sites.google.com/site/
skinnycipher/). In this section, we target this version with the aid of the CP. Some
existing cryptanalysis of SKINNY which are better than the results presented in this paper
can be found in [ABC+16, SMB16, TAY16, LGS16].

For the convenience of the discussion, we describe an attack on SKINNY-64-64, that is,
the TK1 version with 64-bit block size and 64-bit secret key. We will see in the following
that this attack can be directly converted to an attack on 18-round SKINNY-64-128 with
64-bit block size, 96-bit secret key, and 32-bit tweak. We refer the reader to [BJK+16] for
the detailed description of the SKINNY cipher.

5.1 Notations
- ET

K(·) : The encryption oracle with key K and tweak T .

- K: The 64-bit master key of SKINNY-64-64.

- Ki: The ith round subkey (1 ≤ i ≤ 18). Hence, K1 is the master key.

- Ki[j]: The jth nibble of Ki (0 ≤ j ≤ 15).

- Ki[j0, j1, · · · ]: Ki[j0]||Ki[j1]|| · · · .

- ∆Ki,∆Ki[j],∆Ki[j0, j1, · · · ]: The differences at the corresponding positions.

- Ii: The input internal state of round i (1 ≤ i ≤ 18).

- ISC
i , IART

i , ISR
i , IMC

i : The internal state of round i after the SC, ART, SR, and MC
operations, respectively.

- =⇒ : logical implication. For example:

{∆I5 = 0,∆K5 = 0000000080000000} =⇒ ∆I2[0, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15] = 0

Note that in the above “0” represents the bit string of 64 0’s and 0000000080000000
is in hexadecimal notation, which should be clear from the context. Under this notation,
the input internal state of round i is Ii, which is transformed to ISC

i after the application
of the SC operation. ISC

i is XORed with the subkey Ki[0, · · · , 7] to produce IART
i . The

rows of IART
i are rotated (the SR operation) to get ISR

i which subsequently becomes
IMC

i = Ii+1 after the application of the MC operation. We refer the reader to Fig. 2 for
more information.

https://sites.google.com/site/skinnycipher/
https://sites.google.com/site/skinnycipher/
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5.2 Cryptanalysis
We implement Algorithm 3 in Choco with Property = DRK and Er = SKINNY12, and we
search for related-tweakey impossible differentials of SKINNY-64-64 with the following
input, output, and key differences. The Hamming weights of both ∆I1||∆K1 and ∆I13 are
all 1.

Since no differences are injected into the remaining 16 nibbles of the tweakey if we
consider SKINNY-64-128, we are essentially analyzing the SKINNY-64-64, that is, the
TK1 version. Therefore, in the figures demonstrating the analysis (see Fig. 3), we only
draw 64-bit of the 128-bit tweakey state, and according to the tweakey schedule algorithm
of SKINNY, this will not affect the differences of the subkeys.

Finally, we find 16 related-tweakey impossible differentials for 12-round SKINNY-64-64
(the results are summarized in Table 5), which is one more round than the impossible
differentials presented in the SKINNY paper. With these related-tweakey impossible
differentials, we can construct an attack on 18-round SKINNY-64-64 which directly leads
to an attack on 18-round SKINNY-64-128 with 96-bit secret key and 32-bit tweak. The
attack is depicted in Fig. 3.

Table 5: 16 related-tweakey impossible differentials for 12-round SKINNY-64-64 (In
hexadecimal representation).

∆I1||∆K[0, · · · , 15] ∆I13

0000000000000000||0000000080000000 0000000080000000
0000000000000000||0000000040000000 0000000040000000
0000000000000000||0000000020000000 0000000020000000
0000000000000000||0000000010000000 0000000010000000
0000000000000000||0000000000080000 0000000000080000
0000000000000000||0000000000040000 0000000000040000
0000000000000000||0000000000020000 0000000000020000
0000000000000000||0000000000010000 0000000000010000
0000000000000000||0000000000000800 0000000008000000
0000000000000000||0000000000000400 0000000004000000
0000000000000000||0000000000000200 0000000002000000
0000000000000000||0000000000000100 0000000001000000
0000000000000000||0000000000000008 0000000000800000
0000000000000000||0000000000000004 0000000000400000
0000000000000000||0000000000000002 0000000000200000
0000000000000000||0000000000000001 0000000000100000

Assuming ∆I5 = 0, ∆I17 = 0000000080000000, and ∆K5 = 0000000080000000, we
extend the 12-round related-tweakey impossible differential 4 rounds on the top and 2
rounds at the bottom, which is illustrated in Fig. 3. Note that

∆K5 = 0000000080000000 =⇒ ∆K = ∆K1 = 0000000000000008.

Data Collection. Prepare 2x structures St = [PSt
0 , PSt

1 , · · · , PSt

232−1] (0 ≤ t ≤ 2x − 1)
each of which has 232 plaintexts, and all plaintexts in the same structure share the same
values in I1[1, 2, 3, 4, 9, 11, 12, 13]. For each plaintext PSt

j we ask the encryption oracle to
get (CSt

j , ĈSt
j ) where CSt

j = E
Tq

K (PSt
j ) and ĈSt

j = E
Tq

K⊕∆(PSt
j ), where Tq is an arbitrary

tweak and
∆ = ∆K1 = 0000000000000008

which requires totally 2× 2x × 232 18-round SKINNY encryptions. Then, for each struc-
ture, we can create approximately 232 × 232 = 264 pairs [(PSt

i , PSt
j ), (CSt

i , ĈSt
j )] such that
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PSt
i ⊕ P

St
j = ∆I1 with ∆I1 = [0, 5, 6, 7, 8, 10, 14, 15] = 0. If we choose 2y different tweaks,

we can get approximately 2y × 2x× 264 = 2x+y+64 pairs (without increasing the number of
chosen plaintexts) satisfying the desired condition with 2×2x×2y×232 = 2x+y+33 18-round
SKINNY encryptions. Note that this is equivalent to that we have 2x+y structures denoted
by St = [PSt

0 , PSt
1 , · · · , PSt

232−1] (0 ≤ t ≤ 2x+y − 1), and will use [(PSt
i , PSt

j ), (CSt
i , ĈSt

j )] to
represent the pairs in the the t-th structure for the convenience of discussion.

Filtering. In this step, we will discard those pairs such that ∆I5 6= 0 or ∆I17 6=
0000000080000000 under any key guess. Such pairs are helpless in discovering wrong key
guesses.

Since ∆I5 = 0 and ∆K5 = 0000000080000000 implies ∆ISC
1 [0] = ∆ISC

1 [7] = ∆ISC
1 [10]

and ∆ISC
1 [5] = ∆ISC

1 [8] = ∆ISC
1 [15], we discard those pairs that do not have this property,

and there are 2x+y+64 × 2−16 = 2x+y+48 pairs left. Similarly, ∆I17 = 0000000080000000
and ∆K5 = 0000000080000000 implies ∆IART

18 [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15] = 0 and
∆IART

18 [1] = 8, it remains approximately 2x+y+48 × 2−13×4 = 2x+y−4 pairs satisfying this
property.

Key Recovery. We try to reduce the key space by spotting wrong key guesses. To deduce
the values of ∆I5 and ∆I17, we need to know the values of the following 12 nibbles

K1[0, 1, 2, 5, 6, 7],K2[0, 1, 5],K3[0],K18[2, 6].

Step 1. For each guess of K1[0, 1, 2, 5, 6, 7] = kK1 ∈ {0, 1}4×6, encrypt all the 2x+y−4

pairs, and create a set X1 (for each guess) contains all the pairs satisfying ∆ISC
2 [1] =

8,∆ISC
2 [4] = ∆ISC

2 [11] = ∆ISC
2 [14]. The average size of one X1 set is approximately

2x+y−4 × 2−12 = 2x+y−16. The time complexity of this step is 2x+y−4 × 24×6 = 2x+y+20

1-round SKINNY encryptions.
Step 2. For each guess of K1[0, 1, 2, 5, 6, 7] = kK1{0, 1}4×6 and K18[2, 6] = kK18 ∈

{0, 1}4×2, decrypt all the pairs in the corresponding X1 associated with kK1 , and create a
set X2 ⊆ X1 contains all the pairs satisfying ∆I18[2] = ∆I18[10] = ∆I18[14] and ∆I17[8] = 8.
The average size of one X2 set is approximately 2x+y−16 × 2−12 = 2x+y−28. The time
complexity of this step is 2x+y−16 × 24×6 × 24×2 = 2x+y+16 2-round SKINNY encryptions.

Step 3. For each guess of K1[0, 1, 2, 5, 6, 7] = kK1{0, 1}4×6, K18[2, 6] = kK18 ∈
{0, 1}4×2, and K2[0, 1, 5]||K3[0] = kK2,3 ∈ {0, 1}4×4, encrypt all the pairs in the correspond-
ing X2 associated with kK1 ||kK18 , and create a set X3 ⊆ X2 contains all the pairs satisfying
∆ISC

4 [0] = 8. The average size of one X3 set is approximately 2x+y−28 × 2−4 = 2x+y−32.
The time complexity of this step is 2x+y−28 × 24×6 × 24×2 × 24×4 = 2x+y+20 2-round
SKINNY encryptions.

We can confirm a guess is a wrong key guess if and only if one of the 2x+y−4 pairs has
the following property under the guess

∆I5 = 0000000000000000, ∆I17 = 0000000080000000.

A key value is still in the key space if and only if no one of the 2x+y−4 pairs has the above
property under the guessed key value. Hence, after the above steps, each of the X4s which
is nonempty suggests a wrong key. The probability of a given pair surviving the filtering
step satisfying ∆I5 = 0000000000000000 and ∆I17 = 0000000080000000 under a random
key guess is about

(1− 2−28)2x+y−4
= (1− 1

228 )228+x+y−32
≈ e−2x+y−32

.

By adopting the strategy presented in [BNS14], we consider the number of pairs such
that (1− 2−28)2x+y−4 is slightly smaller than 2−1 so to reduce the exhaustive search by at
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Figure 3: A relate-tweakey impossible differential attack on 18-round SKINNY-64-128.
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least one bit. If we choose x = 31, y = 2, the remaining 12-nibble subkey space is reduced
to 24×12 × e−2 < 24×12−2 = 246.
Complexity Analysis. Since x = 31 and y = 2, the number of chosen plaintexts is
231 × 232 = 263. The time complexity of the data collection step is 231+2+33 = 266. In step
1 through step 3, the time complexity is

1
18 × (2x+y+20 + 2x+y+16 × 2 + 2x+y+20 × 2) ≈ 251.

If we chose to attack SKINNY-64-128 with 96-bit key and 32-bit tweak, from an information
theoretical point of view, we reduce 12 × 4 = 48-bit key information to 48 − 2 = 46
bits. Therefore, we still need to do an exhaustive search with complexity 296−48 ×
246 = 294. In this attack, only one related-tweakey impossible differential is used. It is
interesting to investigate how to improve the attack by exploiting multiple impossible
differentials [BNS14].

6 Conclusion and Discussion
In this work, we apply the constraint programming method to search for integral distin-
guishers, impossible differentials, zero-correlation linear approximations and differential,
linear characteristics in both single-key and related-key models. By using some searching
strategies properly, we show the CP approach is faster than other method in some cases.
Moreover, the CP approach has some appealing advantages. Firstly, it is highly automatic.
Secondly, modeling under the CP framework is more straightforward than other methods.
We can directly input the allowed tuples for some variables without converting them
to linear inequalities or boolean formulas. Hence, there is no difficulty to model the
cryptographic properties of an 8 × 8 S-box by using the CP approach. Therefore, we
think the CP approach, together with the MILP, SMT, and SAT based techniques should
become standard tools for symmetric-key crypanalysts. Also, we would like to propose
some problems deserving further investigation:

- How to combine the technique of constraint programming and Matsui’s algorithm to
produce better method for finding the best differential/linear characteristics?

- Investigate how the ordering heuristic affects the resolution performance of the CP
models derived form the problems of symmetric-key cryptanalysis.

- Solve the CP models derived from the problems of symmetric-key cryptanalysis by
using other CP solvers rather than Choco to compare the performance.
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A The Choco CP Solver
Choco is an open source Java framework dedicated to constraint programming, which is
among the fastest CP solvers on the market, and has been awarded two silver medals and
three bronze medals at the MiniZinc challenge in 2013 and 2014 [PFL14]. In this section,
we give a brief introduction of the relevant parts of Choco 4 by a simple example, and we
refer the reader to the Choco documentation [PFL14] for more technical information.

Let (X , C) be a CP model with X = {x0, x1, x2} and C = {c0}, where dom(x0) =
dom(x1) = dom(x2) = {0, 1}, vars(c0) = {x0, x2} and c0 dictates that

(x0, x2) ∈ {(1, 1), (0, 0), (0, 1)} ⊆ dom(x0)× dom(x2) = {0, 1}2

The following code snippet gives all solutions of the CP model. The solver object
returned by calling new Solver() in line 4 is a central object of the Choco framework and
must be created first. In line 7 we create an array of three 0-1 variables x[0], x[1] and
x[2]. In line 10 to 17, we impose the constraint such that (x[0], x[2]) can only take
values from (1, 1), (0, 0), (0, 1).

1 public class ToyExample {
2 public static void main(String[] args) {
3 // Create a Solver
4 Solver solver = new Solver();
5

6 // Create variables through the variable factory
7 IntVar[] x = VF.enumeratedArray("x", 3, new int[]{0, 1}, solver);
8

9 // Prepare the tuples representing the constraint
10 Tuples tuples = new Tuples(true);
11 tuples.add(1, 1);
12 tuples.add(0, 0);
13 tuples.add(0, 1);
14

15 // Select variables and impose the constraint
16 IntVar[] vs = new IntVar[]{x[0], x[2]};
17 solver.post(ICF.table(vs, tuples, "AC2001"));
18

19 // Specify a search heuristic
20 solver.set(ISF.domOverWDeg(vars, System.currentTimeMillis()));
21 solver.set(ISF.lastConflict(solver, solver.getStrategy()));
22

23 // solve the model
24 if (solver.findSolution()){
25 do{
26 System.out.println(solver.toString());
27 }while(solver.nextSolution());
28 }
29 }
30 }

The third parameter ("AC2001") of ICF.table() is used to specify an extensional
constraint enforcing, most of the time, arc-consistency, and there are many other choices
of this parameter [PFL14].

The so-called domain over weighted degree heuristic is specified in line 20. The
parameter System.currentTimeMillis() of ISF.domOverWDeg() is used to seed the
heuristic. ISF.lastConflict(solver, solver.getStrategy()) is a composite dynamic
branching heuristic which override the defined strategy by forcing some decisions to branch
on variables involved in recent conflicts. After each conflict, the last assigned variable is

4In this paper, we work with Choco 3. Note that since the beginning of this work, version 4 was
released, and is not backwards compatible
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selected in priority, and we refer the reader to [LSTV09] for more technical information.
Finally, we output all solutions of the CP model in line 24 to 27.

B Source code for finding 9-round Integral Distinguisher
of PRESENT

1 import java.io.FileNotFoundException;
2 import org.chocosolver.solver.Solver;
3 import org.chocosolver.solver.constraints.ICF;
4 import org.chocosolver.solver.constraints.extension.Tuples;
5 import org.chocosolver.solver.search.limits.TimeCounter;
6 import org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory;
7 import org.chocosolver.solver.search.strategy.IntStrategyFactory;
8 import org.chocosolver.solver.variables.IntVar;
9 import org.chocosolver.solver.variables.VariableFactory;

10

11 //find 9-round integral distinguisher of PRESENT
12 public class v2 {
13 public static int R=9;
14 public static int bl=64;
15

16

17 public static void main(String[] args) throws FileNotFoundException {
18 int[] values;
19 long startTime = System.currentTimeMillis();
20 for (int i=0;i<bl;i++) {
21 values=new int[bl];
22 for (int j=0;j<bl;j++) {
23 if (j==i)
24 values[j]=1;
25 else
26 values[j]=0;
27 }
28 System.out.println("i = "+ i);
29

30

31 if (!testSolver(values, true)) {
32 //No solution, checking without restarts
33 if (!testSolver(values, false)) {
34 System.out.println("No solution when the 1 is at position "+ i);
35 }
36 }
37 }
38 long endTime = System.currentTimeMillis();
39 System.out.println("Running time: "+(endTime-startTime)+"ms");
40 }
41 public static boolean testSolver(int[] values, boolean restart) {
42 IntVar[] vars= new IntVar[(R+1)*bl+R*16*8];
43 int cpt=0;
44 Tuples integral_path = new Tuples(true);
45 integral_path.add(0, 0, 0, 0, 0, 0, 0, 0);
46 integral_path.add(0, 0, 0, 1, 0, 0, 0, 1);
47 integral_path.add(0, 0, 0, 1, 0, 0, 1, 0);
48 integral_path.add(0, 0, 0, 1, 0, 1, 0, 0);
49 integral_path.add(0, 0, 0, 1, 1, 0, 0, 0);
50 integral_path.add(0, 0, 1, 0, 0, 0, 0, 1);
51 integral_path.add(0, 0, 1, 0, 0, 0, 1, 0);
52 integral_path.add(0, 0, 1, 0, 0, 1, 0, 0);
53 integral_path.add(0, 0, 1, 0, 1, 0, 0, 0);
54 integral_path.add(0, 0, 1, 1, 0, 0, 1, 0);
55 integral_path.add(0, 0, 1, 1, 0, 1, 0, 0);
56 integral_path.add(0, 0, 1, 1, 1, 0, 0, 0);
57 integral_path.add(0, 1, 0, 0, 0, 0, 0, 1);



Siwei Sun et al. 305

58 integral_path.add(0, 1, 0, 0, 0, 0, 1, 0);
59 integral_path.add(0, 1, 0, 0, 0, 1, 0, 0);
60 integral_path.add(0, 1, 0, 0, 1, 0, 0, 0);
61 integral_path.add(0, 1, 0, 1, 0, 0, 1, 0);
62 integral_path.add(0, 1, 0, 1, 0, 1, 0, 0);
63 integral_path.add(0, 1, 0, 1, 1, 0, 0, 0);
64 integral_path.add(0, 1, 1, 0, 0, 0, 0, 1);
65 integral_path.add(0, 1, 1, 0, 0, 0, 1, 0);
66 integral_path.add(0, 1, 1, 0, 1, 0, 0, 0);
67 integral_path.add(0, 1, 1, 1, 0, 0, 1, 0);
68 integral_path.add(0, 1, 1, 1, 1, 0, 0, 0);
69 integral_path.add(1, 0, 0, 0, 0, 0, 0, 1);
70 integral_path.add(1, 0, 0, 0, 0, 0, 1, 0);
71 integral_path.add(1, 0, 0, 0, 0, 1, 0, 0);
72 integral_path.add(1, 0, 0, 0, 1, 0, 0, 0);
73 integral_path.add(1, 0, 0, 1, 0, 0, 1, 0);
74 integral_path.add(1, 0, 0, 1, 0, 1, 0, 0);
75 integral_path.add(1, 0, 0, 1, 1, 0, 0, 0);
76 integral_path.add(1, 0, 1, 0, 0, 0, 1, 0);
77 integral_path.add(1, 0, 1, 0, 0, 1, 0, 0);
78 integral_path.add(1, 0, 1, 0, 1, 0, 0, 0);
79 integral_path.add(1, 0, 1, 1, 0, 0, 1, 0);
80 integral_path.add(1, 0, 1, 1, 0, 1, 0, 0);
81 integral_path.add(1, 0, 1, 1, 1, 0, 0, 0);
82 integral_path.add(1, 1, 0, 0, 0, 0, 1, 0);
83 integral_path.add(1, 1, 0, 0, 0, 1, 0, 0);
84 integral_path.add(1, 1, 0, 0, 1, 0, 0, 0);
85 integral_path.add(1, 1, 0, 1, 0, 0, 1, 0);
86 integral_path.add(1, 1, 0, 1, 0, 1, 0, 0);
87 integral_path.add(1, 1, 0, 1, 1, 0, 0, 0);
88 integral_path.add(1, 1, 1, 0, 0, 1, 0, 1);
89 integral_path.add(1, 1, 1, 0, 1, 0, 1, 1);
90 integral_path.add(1, 1, 1, 0, 1, 1, 1, 0);
91 integral_path.add(1, 1, 1, 1, 1, 1, 1, 1);
92

93 int[] P = {0, 16, 32, 48, 1, 17, 33, 49, 2, 18, 34, 50, 3, 19, 35, 51,
94 4, 20, 36, 52, 5, 21, 37, 53, 6, 22, 38, 54, 7, 23, 39, 55,
95 8, 24, 40, 56, 9, 25, 41, 57, 10, 26, 42, 58, 11, 27, 43, 59,
96 12, 28, 44, 60, 13, 29, 45, 61, 14, 30, 46, 62, 15, 31, 47, 63};
97

98 Solver present = new Solver("present Integral2");
99

100 IntVar[][] x = new IntVar[R+1][bl];
101

102 for (int i = 0; i< R+1; i++)
103 {
104 for (int j=0;j<bl;j++) {
105 x[i][j] = VariableFactory.bounded("x"+i+j,0 , 1, present);
106 vars[cpt++]=x[i][j];
107 }
108 }
109

110 for (int r = 0; r < R;r++)
111 {
112 for (int j = 0; j < 16;j++)
113 {
114 IntVar[] Svar = new IntVar[8];
115 for (int i = 0; i < 4;i++)
116 {
117 Svar[i] = x[r][j*4+i];
118 Svar[i+4] = x[r+1][P[j*4+i]];
119 vars[cpt++]=Svar[i];
120 vars[cpt++]=Svar[i+4];
121

122 }
123
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124

125 present.post(ICF.table(Svar, integral_path, "STR2+" /*"STR2+"*/));
126

127 }
128

129 }
130

131 for (int i=0;i<bl;i++) {
132 present.post(ICF.arithm(x[R][i],"=",values[i]));
133 }
134 IntVar varsSetTo1[]=new IntVar[60];
135 IntVar varsSetTo0[]=new IntVar[4];
136

137 for (int i=0;i<60;i++)
138 varsSetTo1[i]=x[0][i];
139

140 for (int i=0;i<4;i++)
141 varsSetTo0[i]=x[0][i+60];
142

143 present.post(ICF.sum(varsSetTo1,"=",VariableFactory.fixed(60,present)));
144 present.post(ICF.sum(varsSetTo0,"=",VariableFactory.fixed(0,present)));
145

146 present.set(IntStrategyFactory.domOverWDeg(vars, System.currentTimeMillis()));
147 present.set(IntStrategyFactory.lastConflict(present,present.getStrategy()));
148 // If restart is set, use geometrical restart 10 times:
149 // first after 1 second(1000000000 ns), and then multiplying the time limit by 1.2

at every iteration.
150 if (restart)
151 SearchMonitorFactory.geometrical(present, 1000000000, 1.2, new

TimeCounter(present, 1), 10);
152 boolean ret=present.findSolution();
153 return ret;
154 }
155 }
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