SymSum:
 Symmetric-Sum Distinguishers Against Round Reduced SHA3

Dhiman Saha ${ }^{1}$, Sukhendu Kuila ${ }^{2}$, Dipanwita Roy Chowdhury ${ }^{1}$

${ }^{1}$ Crypto Research Lab
Department of Computer Science \& Engineering,
IIT Kharagpur, India
\{dhimans,drc\}@cse.iitkgp.ernet.in
${ }^{2}$ Department of Mathematics Vidyasagar University, India babu.sukhendu@gmail.com

FSE 2017

Tokyo, Japan

Basics

SHA3/KECCAK

- Follows SPONGE construction
- Internal permutation called Keccak- - / Кессак- p
- Internal state
- Array of 5×5 slices
- Biggest size $\rightarrow 1600$ bits
- Total 24 rounds
- 1 Round $=5$ sub-operations

$$
\mathcal{R}=\iota \circ \chi \circ \pi \circ \rho \circ \theta
$$

Note:
Position of ι in the round function
Round-constants added at the end of a round

Basics

- SHA3 Family

$$
\begin{aligned}
\text { Fixed-Length } & \rightarrow \text { SHA3-224/256/384/512 } \\
\text { XOF } & \rightarrow \text { SHAKE128/256 }
\end{aligned}
$$

- Main difference with Keccak Family:
- Introduction of the domain separation bits prior to $10 * 1$ padding

$$
M \xrightarrow{\text { Add Suffix }} \begin{cases}M \| 01 & \text { Fixed-Length } \\ M \| 1111 & \text { XOF }\end{cases}
$$

Distinguishing Attacks on Keccak-f

Towards exhibiting non-random behaviour

Distinguishers on Keccak- f

Target the Hermetic Sponge Strategy

Internal permutation of Sponge based hash function should be designed such that they cannot be distinguished from a randomly-chosen permutation.

- Maximum results on Keccak- f during SHA-3 competition
- e.g., Zero-Sum, Rotational among others

Particular Attention
 Zero-Sum Distinguisher

- Based on higher-order derivatives of forward/inverse rounds
- Only distinguisher to reach full 24 -rounds
- Uses inside-out strategy

What about distinguishers on Keccak?

Distinguishing the hash-function itself

Distinguishers on Keccak

Distinguishers on Keccak- f may not directly extend to Keccak

- Due to restrictions imposed by SPONGE
- e.g. Zero-Sum applies
- But looses number of penetrable rounds
- Inside-out technique invalidated

Few results on distinguishers on Keccak hash function

- 4-round Keccak
- Due to Naya-Plasencia, Röck, and Meier
- Using low weight differential path
- Complexity: 2^{24}
- 6-round Keccak
- Due to Das and Meier
- Based on biased output bits
- Complexity: 2^{52}

An Experiment on SHA3

Based on self-symmetry

Self-Symmetry

Internal State

- A restriction on the internal state of Keccak-f
- 1600-bit State (\mathcal{S}) visualized as two 800-bit Substates
$\left(\sigma_{1}, \sigma_{2}\right)$

$$
\mathcal{S}=\sigma_{1} \| \sigma_{2}
$$

- $\sigma_{i}=5 \times 5 \times 32$ bits

The Restriction: Equal Substates

$$
\sigma_{1}=\sigma_{2}
$$

Self-Symmetric State

An Example

- A self-symmetric state
- Represented in standard lane \times sheet format
- Look at individual lanes
- The first Substate is highlighted
$0934258 C 0934258 \mathrm{C}$ 24B83B0524B83B05 74F1384174F13841 8030F1308030F130
36FB572A36FB572A

```
62C05E2462C05E24 0934258C0934258C 49DA0D3D49DA0D3D 2923A54B2923A54B 8817062C8817062C
B6C808B2B6C808B2 24B83B0524B83B05 2026890020268900 738E1141738E1141 3886D76A3886D76A
94BA023194BA0231 74F1384174F13841 ADE17841ADE17841 411E023D411E023D 98C34C6798C34C67
64010A3264010A32 8030F1308030F130 E383F57AE383F57A 35388C8235388C82 61F7231161F72311
68DD183C68DD183C 36FB572A36FB572A 120A313A120A313A 1C6E105D1C6E105D B50D7CA2B50D7CA2
```


Experiment

Message Set (SHA3-512)

Pad(AddSuffix(Message)) \rightarrow Self-Symmetric Internal State

$$
\begin{aligned}
& 8 \mathrm{~cd} 812 \mathrm{~d} 28 \mathrm{~cd} 812 \mathrm{~d} 2 \\
& \hline \star * * * 0 * 9 \mathrm{~b} * * * * 0 * 9 \mathrm{~b} \\
& \hline 0000000000000000
\end{aligned}
$$

- Single block messages
- Similar to ZeroSum computation
- But with additional restriction of preserving symmetry
- By construction, $\bigoplus_{\text {Msg } \in \text { MsgSet }} \mathrm{Msg}=\mathbf{0}$

4a36ea584a36ea58 8cd812d28cd812d2 88e61fc788e61fc7 f3372eaff3372eaf ea3f0b51ea3f0b51
ce $168 \mathrm{c} 02 \mathrm{ce} 168 \mathrm{c} 02 \pi * * * 0 * 9 \mathrm{~b} * * * * 0 * 9 \mathrm{~b}$ b934cb9fb934cb9f 866ac262866ac262 0000000000000000
00
00
00
Zeros at end indicate value of capacity bits

Experiment

4-rounds SHA3 - 512

- Run SHA3 (Round-Reduced) over the Message Set
- Compute Output-Sum

What is the nature of the Output-Sum?

Experimental Results

The Output-Sum

\mid MsgSet \mid	Output-Sum	Remark
2^{17}	00 00 00000000000000000000000000000000	Zero-Sum

Experimental Results

The Output-Sum

\mid MsgSet \mid	Output-Sum	Remark
2^{17}	00 00 00000000000000000000000000000000	Zero-Sum
2^{16}	00 00 00000000000000000000000000000000	Zero-Sum

Experimental Results

The Output-Sum

\mid MsgSet \mid	Output-Sum	Remark
2^{17}	00 00 00000000000000000000000000000000	Zero-Sum
2^{16}	00 00 00000000000000000000000000000000	Zero-Sum
2^{15}	000001000000010000000000000000000000200000002000 00 0000000000000000000004000000040	Symmetric-Sum

Experimental Results

The Output-Sum

\mid MsgSet \mid	Output-Sum	Remark
2^{17}	00 00 00000000000000000000000000000000	Zero-Sum
2^{16}	00 00 00000000000000000000000000000000	Zero-Sum
2^{15}	000001000000010000000000000000000000200000002000 00 00000000000000000000004000000040	Symmetric-Sum
2^{14}	$243 f 4942243 f 4942528 c 98 d 5528 c 98 d 57300 b 0 d 17300 b 0 d 1$ c0585999c0585999147b20a3147b20a3083a3900083a3900 $09225588092255886302671 c 6302671 c$	Symmetric-Sum

Experimental Results

The Output-Sum

\mid MsgSet \mid	Output-Sum	Remark
2^{17}	00 00 00000000000000000000000000000000	Zero-Sum
2^{16}	00 00 00000000000000000000000000000000	Zero-Sum
2^{15}	000001000000010000000000000000000000200000002000 000	Symmetric-Sum
2^{14}	243f4942243f4942528c98d5528c98d57300b0d17300b0d1 c0585999c0585999147b20a3147b20a3083a3900083a3900 09225588092255886302671c6302671c	Symmetric-Sum
2^{13}	81ed3fca81ed3dca15553dac15553dec25858e1125858e11 11c9af8b11c9af8b509927bf5099273f9276901992679019 ca92a3d5ca9223d54ffce7974ffc6797	Not Symmetric

Experimental Results

The Output-Sum

\mid MsgSet \mid	Output-Sum	Remark
2^{17}	00 00 00000000000000000000000000000000	Zero-Sum
2^{16}	00 00 00000000000000000000000000000000	Zero-Sum
2^{15}	000001000000010000000000000000000000200000002000 2^{14}	00 00000000000000000000004000000040
c0585999c0585999147b20a3147b20a3083a3900083a3900 09225588092255886302671c6302671c	Symmetric-Sum	
2^{13}	81ed3fca81ed3dca15553dac15553dec25858e1125858e11 $11 c 9 a f 8 b 11 c 9 a f 8 b 509927 b f 5099273 f 9276901992679019$ ca92a3d5ca9223d54ffce7974ffc6797	Not Symmetric
2^{12}	$78 f 523 d 01479 a 153802 f 16 a 4 c 8 b b b 67116 d 502 e a 0495823 a$ $71057 d f b f 18 b 25 f 22 b b a 947 d 0 b a 094 f d 1240 e e 380 a 42 d f 38$ 99eaa56698fa64e6a21ac1328138c126	Not Symmetric

What to make of these results?

- Results
- Partly intuitive
- Partly inexplicable
- Definitely worth investigating (Our Motivation)

First Question

What is the underlying operator in the experiment?

Intuition

We must be computing some kind of higher order derivative.

- But not simple higher order derivatives (as in case of classical Zero-Sum)
- Recall: Multiple variables change values per call
- Also, the self-symmetry constraint

The Operator

m-fold vectorial derivatives

So, What is the underlying operator?

Answer: m-fold vectorial derivatives ${ }^{1}$

- Slightly different notion of higher-order derivatives
- Analogous to computing derivatives over a subspace
- Partitions the inputs variables

The Experiment \equiv Computing m - fold vectorial derivatives with specially selected subspaces

Specially selected subspace \rightarrow Self-Symmetry constraint

[^0]
Why do we witness ZeroSum?

2^{17}	00 00 00000000000000000000000000000000	Zero-Sum
2^{16}	00 00 00000000000000000000000000000000	Zero-Sum

ZeroSum

Explained

The Experiment

Corresponds to computing $17,16,15,14,13$-fold vectorial derivatives of SHA3-512 reduced to 4 -rounds.

2^{17}	00 00 00000000000000000000000000000000	Zero-Sum
2^{16}	00 00 00000000000000000000000000000000	Zero-Sum

- Note: deg 4-Round SHA3-512 ≤ 16
- So computing the 17 -fold vectorial derivative leads to a ZeroSum
- For 16 -fold case, highest degree could not be reached due to choice of constant partitions

Why do we witness symmetry in the Output-Sum?

2^{15}	000001000000010000000000000000000000200000002000 00 00000000000000000000004000000040	Symmetric-Sum
2^{14}	$243 f 4942243 f 4942528 c 98 d 5528 c 98 d 57300 b 0 d 17300 b 0 d 1$ $c 0585999 c 0585999147 b 20 a 3147 b 20 a 3083 a 3900083 a 3900$ $09225588092255886302671 c 6302671 c$	Symmetric-Sum

A Generic Result

SPN Round Function

Lemma

For an iterated SPN round function (\mathcal{G}) if the ordering of the component transformations is such that the non-linear operation precedes the round constant addition, then highest-degree monomials are "not affected" by round-constants.

$$
\begin{align*}
\mathcal{G}^{q} & =\left(\mathcal{C}_{q} \circ \mathcal{N} \circ \mathcal{L}\right) \circ\left(\mathcal{C}_{q-1} \circ \mathcal{N} \circ \mathcal{L}\right) \circ \cdots \circ\left(\mathcal{C}_{2} \circ \mathcal{N} \circ \mathcal{L}\right) \circ\left(\mathcal{C}_{1} \circ \mathcal{N} \circ \mathcal{L}\right) \\
& =\left[\left(\left(\mathcal{C}_{q} \circ \mathcal{N} \circ \mathcal{L}\right) \circ \cdots \circ\left(\mathcal{C}_{2} \circ \mathcal{N} \circ \mathcal{L}\right)\right) \circ \mathcal{C}_{1}\right] \circ(\mathcal{N} \circ \mathcal{L}) \tag{1}
\end{align*}
$$

Intuition

Notice effect of the first round non-linear operation

Proof Idea

By Induction

- Segregate monomials in ANF based on dependence on round-constants

Example

$$
\begin{aligned}
f & =x_{1} x_{2} x_{3}+c_{1} c_{2} x_{2} x_{3}+x_{3} x_{4}+c_{2} c_{3} \\
& =\left(x_{1} x_{2} x_{3}+x_{3} x_{4}\right)+\left(c_{1} c_{2} x_{2} x_{3}+c_{2} c_{3}\right) \\
& =f_{s}+f_{s^{\prime}}
\end{aligned}
$$

- Show difference in highest-degree attained

What does this mean for SHA3?

Corollary

For q rounds of the SHAЗ permutation Кессак-p, the maximum degree of a monomial involving a round-constant is $d^{\circ} \mathcal{K}^{q}-2$

- Recall the sequence of operations in Keccak-f

$$
\mathcal{R}=\iota \circ \chi \circ \pi \circ \rho \circ \theta
$$

- Note ι after χ, the non-linear operation
- First round χ has no effect on terms involving round-constants.
- Note: $\operatorname{deg} \chi=2$

Further...

A Round-Constant Independent Function

Corollary

For q rounds of КЕССак- p the $\left(d^{\circ} \mathcal{K}^{q}-1\right)$-fold vectorial derivative is a round-constant independent function.

- Recall ι is the only operation that breaks symmetry
- And θ, ρ, π, χ are translation invariant in the z-axis

Implication

A Round-Constant Independent Function \Longrightarrow
A Translation Invariant Function

The SymSum Proposition

Proposition

The (d° SHA3 - 1)-fold vectorial derivative of SHA3 evaluated using only self-symmetric input states will preserve the symmetric property.

- Explains the symmetry in the Output-Sum

2^{15}	000001000000010000000000000000000000200000002000 00 00000000000000000000004000000040	Symmetric-Sum
2^{14}	$243 f 4942243 f 4942528 c 98 d 5528 c 98 d 57300 b 0 d 17300 b 0 d 1$ c0585999c0585999147b20a3147b20a3083a3900083a3900 $09225588092255886302671 c 6302671 c$	Symmetric-Sum

- Recall: Highest degree attained for this particular case was <16

SymSum:

A new distinguishing property for SHA3

SymSum

Formally

Definition (Symmetric Sum (SymSum))

Let us consider the SHA3 fixed-length hash functions SHA3-h : $\left(\mathbb{F}_{2}^{r}\right)^{*} \rightarrow \mathbb{F}_{2}^{h}$ or XOFs SHAKE128/256: $\left(\mathbb{F}_{2}^{r}\right)^{*} \rightarrow \mathbb{F}_{2}^{*}$. A Symmetric Sum or SymSum is defined as a set of inputs $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\} \in \mathbb{F}_{2}^{r}$ for which the input-sum is zero while the 64-prefix of the output-sum is symmetric.

Step 1: Compute (d° SHA3 - 1)-fold vectorial derivative of SHA3 by generating self-symmetric input states
Step 2: Check for the SymSum property in the Output-Sum

$$
\text { SymSum Advantage } \quad h=\text { hash-length }
$$

$$
\operatorname{Adv}_{\text {SymSum }}=1-2^{-32 \times\left\lfloor\frac{h}{64}\right\rfloor} \approx 1
$$

Degrees of Freedom

ZeroSum Vs SymSum

	Degrees of freedom		SHA3 variant XOFs	Degrees of freedom	
SHA3 variant Fixed-Length	$\begin{gathered} \text { ZeroSum } \\ \left(2^{r-4}\right) \end{gathered}$	SymSum $\left(2^{\frac{r-8}{2}}\right)$		ZeroSum $\left(2^{r-6}\right)$	SymSum $\left(2^{\frac{r-12}{2}}\right)$
SHA3-224	2^{1148}	2^{572}	SHAKE-128	2^{1338}	2^{666}
SHA3-256	2^{1084}	2^{540}			
SHA3-384	2^{828}	2^{412}	SHAKE-256	2^{1082}	2^{538}
SHA3-512	2^{572}	2^{284}			

- SymSum looses degrees of freedom

Does this have an adverse effect on its performance?
Actually, No (See next slide)

Comparison with ZeroSum

		Complexity	
\#Rounds $\left(n_{r}\right)$	Bound on d° SHA3	ZeroSum $\left(2^{d^{\circ} \text { SHA3 }+1}\right)$	SymSum $\left(2^{d^{\circ} \text { SHA3-1 }}\right)$
1	2	2^{3}	2^{1}
2	4	2^{5}	2^{3}
3	8	2^{9}	2^{7}
4	16	2^{17}	2^{15}
5	32	2^{33}	2^{31}
6	64	2^{65}	2^{63}
7	128	2^{129}	2^{127}
8	256	2^{257}	2^{255}
9	512	2^{513}	$2^{511^{\dagger}}$
10	1024	$2^{1025 \dagger}$	\star
11	1408 (Boura et al.)	\star	\star

\dagger Not applicable for SHA3-512 and SHA3-384
\star Exceeds degrees of freedom

Epilogue

- We investigated an interesting symmetric property exhibited by the sum of SHA3 message digests
- Put forward a mathematical framework to explain the property
- A operator that tries to select a specific subspace over which it computes higher order derivatives
- A relation that estimates the degree of round-constant dependent terms in ANF for SPN based functions.
- Capitalizing on this a new distinguisher SymSum is proposed
- Has high distinguishing advantage
- Better that ZeroSum by a factor of four
- First property that relies on round-constants but independent of their Hamming-weights

Thanks!

Related info on http://de.ci.phe.red shortly.

Queries

crypto@dhimans.in

[^0]: ${ }^{1}$ Refer paper for mathematical form

