SymSum: Symmetric-Sum Distinguishers Against Round Reduced SHA3

Dhiman Saha¹, Sukhendu Kuila², Dipanwita Roy Chowdhury¹

¹Crypto Research Lab Department of Computer Science & Engineering, IIT Kharagpur, India {dhimans,drc}@cse.iitkgp.ernet.in

> ²Department of Mathematics Vidyasagar University, India babu.sukhendu@gmail.com

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

FSE 2017 Tokyo, Japan

Basics

- Follows SPONGE construction
- Internal permutation called KECCAK-f/KECCAK-p
- Internal state
 - Array of 5 × 5 slices
 - Biggest size \rightarrow 1600 bits
- Total 24 rounds
- ▶ 1 Round = 5 sub-operations

 $\mathcal{R} = \iota \circ \chi \circ \pi \circ \rho \circ \theta$

Note:

Position of ι in the round function

SQA

Round-constants added at the end of a round

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SHA3 Family

$$\label{eq:shad-length} \begin{split} \texttt{Fixed-Length} & \to \texttt{SHA3-224/256/384/512} \\ \texttt{XOF} & \to \texttt{SHAKE128/256} \end{split}$$

- Main difference with Keccaκ Family:
 - Introduction of the domain separation bits prior to 10*1 padding

$$M \xrightarrow{\text{Add Suffix}} \begin{cases} M || 01 & \text{Fixed-Length} \\ M || 1111 & \text{XOF} \end{cases}$$

Distinguishing Attacks on Keccak-f

Towards exhibiting non-random behaviour

(ロ)、(型)、(E)、(E)、(E)、(Q)、(Q)

Target the Hermetic Sponge Strategy

Internal permutation of Sponge based hash function should be designed such that they **cannot be distinguished** from a randomly-chosen permutation.

- Maximum results on Keccak-f during SHA-3 competition
 - ▶ e.g., Zero-Sum, Rotational among others

Particular Attention

Zero-Sum Distinguisher

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

- Based on higher-order derivatives of forward/inverse rounds
- Only distinguisher to reach full 24-rounds
- Uses inside-out strategy

What about distinguishers on KECCAK?

Distinguishing the hash-function itself

(ロ)、(型)、(E)、(E)、(E)、(Q)、(Q)

Distinguishers on KECCAK-f may not directly extend to KECCAK

- Due to restrictions imposed by SPONGE
- e.g. Zero-Sum applies
 - But looses number of penetrable rounds
 - Inside-out technique invalidated

Few results on distinguishers on KECCAK hash function

- 4-round Keccak
 - Due to Naya-Plasencia, Röck, and Meier
 - Using low weight differential path
 - ► Complexity: 2²⁴

- 6-round Кессак
 - Due to Das and Meier
 - Based on biased output bits

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

► Complexity: 2⁵²

An Experiment on SHA3

Based on self-symmetry

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Internal State

- ► A **restriction** on the internal state of KECCAK-*f*
- 1600-bit State (S) visualized as two 800-bit Substates (σ₁, σ₂)

$$S = \sigma_1 || \sigma_2$$

• $\sigma_i = 5 \times 5 \times 32$ bits

イロト イロト イヨト イヨト 三日

Sac

The Restriction: Equal Substates

$$\sigma_1 = \sigma_2$$

Self-Symmetric State

An Example

- A self-symmetric state
- Represented in standard lane × sheet format
- Look at individual lanes
- The first Substate is highlighted

62C05E2462C05E24	0934258C0934258C	49DA0D3D49DA0D3D	2923A54B2923A54B	8817062C8817062C
B6C808B2B6C808B2	24B83B0524B83B05	2026890020268900	738E1141738E1141	3886D76A3886D76A
94BA023194BA0231	74F1384174F13841	ADE17841ADE17841	411E023D411E023D	98C34C6798C34C67
64010A3264010A32	8030F1308030F130	E383F57AE383F57A	35388C8235388C82	61F7231161F72311
68DD183C68DD183C	36FB572A36FB572A	120A313A120A313A	1C6E105D1C6E105D	B50D7CA2B50D7CA2

$\texttt{Pad}(\texttt{AddSuffix}(\texttt{Message})) \rightarrow \texttt{Self-Symmetric Internal State}$

- Single block messages
- Similar to ZeroSum computation
- But with additional restriction of preserving symmetry
- $\blacktriangleright \text{ By construction, } \bigoplus_{\mathtt{Msg} \in \mathtt{MsgSet}} \mathtt{Msg} = \boldsymbol{0}$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Zeros at end indicate value of capacity bits

Experiment

- ▶ Run SHA3 (Round-Reduced) over the Message Set
- Compute Output-Sum

What is the nature of the Output-Sum?

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

Sac

MsgSet	Output-Sum	Remark
	000000000000000000000000000000000000000	
2^{17}	000000000000000000000000000000000000000	Zero-Sum
	000000000000000000000000000000000000000	

MsgSet	Output-Sum	Remark
2^{17}	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	Zero-Sum
	000000000000000000000000000000000000000	
2^{16}	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	Zero-Sum
	000000000000000000000000000000000000000	

MsgSet	Output-Sum	Remark
	000000000000000000000000000000000000000	
2^{17}	000000000000000000000000000000000000000	Zero-Sum
	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	
2^{16}	000000000000000000000000000000000000000	Zero-Sum
	000000000000000000000000000000000000000	
	<mark>00000100</mark> 00000100 <mark>00000000</mark> 00000000 <mark>00002000</mark> 00002000	
2^{15}	<mark>00000000</mark> 00000000 <mark>00000000</mark> 00000000 <mark>000000</mark>	Symmetric-Sum
	<mark>00000000</mark> 000000000 <mark>00000040</mark> 00000040	

MsgSet	Output-Sum	Remark
	000000000000000000000000000000000000000	
2^{17}	000000000000000000000000000000000000000	Zero-Sum
	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	
2^{16}	000000000000000000000000000000000000000	Zero-Sum
	000000000000000000000000000000000000000	
	<mark>00000100</mark> 00000100 <mark>00000000</mark> 00000000 <mark>00002000</mark> 00002000	
2^{15}	<mark>00000000</mark> 00000000 <mark>00000000</mark> 00000000 <mark>000000</mark>	Symmetric-Sum
	<mark>00000000</mark> 000000000 <mark>00000040</mark> 00000040	
	<mark>243f4942</mark> 243f4942 <mark>528c98d5</mark> 528c98d5 <mark>7300b0d1</mark> 7300b0d1	
2^{14}	<mark>c0585999</mark> c0585999 <mark>147b20a3</mark> 147b20a3 <mark>083a3900</mark> 083a3900	Symmetric-Sum
	<mark>09225588</mark> 09225588 <mark>6302671c</mark> 6302671c	

MsgSet	Output-Sum	Remark
	000000000000000000000000000000000000000	
2^{17}	000000000000000000000000000000000000000	Zero-Sum
	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	
2^{16}	000000000000000000000000000000000000000	Zero-Sum
	000000000000000000000000000000000000000	
	<mark>00000100</mark> 00000100 <mark>00000000</mark> 00000000 <mark>00002000</mark> 00002000	
2^{15}	<mark>00000000</mark> 00000000 <mark>00000000</mark> 00000000 <mark>000000</mark>	Symmetric-Sum
	<mark>00000000</mark> 00000000 <mark>0000040</mark> 00000040	
	<mark>243f4942</mark> 243f4942 <mark>528c98d5</mark> 528c98d5 <mark>7300b0d1</mark> 7300b0d1	
2^{14}	<mark>c0585999</mark> c0585999 <mark>147b20a3</mark> 147b20a3 <mark>083a3900</mark> 083a3900	Symmetric-Sum
	<mark>09225588</mark> 09225588 <mark>6302671c</mark> 6302671c	
	81ed3fca81ed3dca15553dac15553dec25858e1125858e11	
2^{13}	11c9af8b11c9af8b509927bf5099273f9276901992679019	Not Symmetric
	ca92a3d5ca9223d54ffce7974ffc6797	
2 ¹³	11c9af8b11c9af8b509927bf5099273f9276901992679019 ca92a3d5ca9223d54ffce7974ffc6797	Not Symmetric

The Output-Sum

MsgSet	Output-Sum	Remark
	000000000000000000000000000000000000000	
2^{17}	000000000000000000000000000000000000000	Zero-Sum
	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	
2^{16}	000000000000000000000000000000000000000	Zero-Sum
	000000000000000000000000000000000000000	
	<mark>00000100</mark> 00000100 <mark>00000000</mark> 00000000 <mark>00002000</mark> 00002000	
2^{15}	<mark>00000000</mark> 00000000 <mark>00000000</mark> 00000000 <mark>000000</mark>	Symmetric-Sum
	<mark>00000000</mark> 00000000 <mark>0000040</mark> 00000040	
	<mark>243f4942</mark> 243f4942 <mark>528c98d5</mark> 528c98d5 <mark>7300b0d1</mark> 7300b0d1	
2^{14}	<mark>c0585999</mark> c0585999 <mark>147b20a3</mark> 147b20a3 <mark>083a3900</mark> 083a3900	Symmetric-Sum
	<mark>09225588</mark> 09225588 <mark>6302671c</mark> 6302671c	
	81ed3fca81ed3dca15553dac15553dec25858e1125858e11	
2^{13}	11c9af8b11c9af8b509927bf5099273f9276901992679019	Not Symmetric
	ca92a3d5ca9223d54ffce7974ffc6797	
	78f523d01479a153802f16a4c8bbb67116d502ea0495823a	
2^{12}	71057dfbf18b25f22bba947d0ba094fd1240ee380a42df38	Not Symmetric
	99eaa56698fa64e6a21ac1328138c126	

What to make of these results?

- Results
 - Partly intuitive
 - Partly inexplicable
 - Definitely worth investigating (Our Motivation)

First Question

What is the underlying operator in the experiment?

Intuition

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

We must be computing some kind of higher order derivative.

- But not simple higher order derivatives (as in case of classical Zero-Sum)
 - ► Recall: Multiple variables change values per call
 - Also, the self-symmetry constraint

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

So, What is the underlying operator?

Answer: m-fold vectorial derivatives¹

- Slightly different notion of higher-order derivatives
- Analogous to computing derivatives over a subspace
- Partitions the inputs variables

The Experiment \equiv Computing m – fold vectorial derivatives with specially selected subspaces

Specially selected subspace \rightarrow Self-Symmetry constraint

¹Refer paper for mathematical form

Why do we witness ZeroSum?

	000000000000000000000000000000000000000	
2^{17}	000000000000000000000000000000000000000	Zero-Sum
	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	
2^{16}	000000000000000000000000000000000000000	Zero-Sum
	000000000000000000000000000000000000000	

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

The Experiment

Corresponds to computing 17, 16, 15, 14, 13-fold vectorial derivatives of SHA3-512 reduced to 4-rounds.

2 ¹⁷	00000000000000000000000000000000000000	Zero-Sum
2^{16}	00000000000000000000000000000000000000	Zero-Sum

- Note: deg 4-Round SHA3-512 \leq 16
 - So computing the 17-fold vectorial derivative leads to a ZeroSum
 - For 16-fold case, highest degree could not be reached due to choice of constant partitions

Why do we witness **symmetry** in the Output-Sum?

2^{15}	<mark>00000100</mark> 00000100 <mark>00000000</mark> 00000000 <mark>00002000</mark> 00002000	
	<mark>00000000</mark> 00000000 <mark>0000000000000000000</mark>	Symmetric-Sum
	<mark>00000000</mark> 00000000 <mark>0000040</mark> 00000040	
	<mark>243f4942</mark> 243f4942 <mark>528c98d5</mark> 528c98d5 <mark>7300b0d1</mark> 7300b0d1	
2^{14}	<mark>c0585999</mark> c0585999 <mark>147b20a3</mark> 147b20a3 <mark>083a3900</mark> 083a3900	Symmetric-Sum
	<mark>09225588</mark> 09225588 <mark>6302671c</mark> 6302671c	

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Lemma

For an iterated SPN round function (\mathcal{G}) if the ordering of the component transformations is such that the non-linear operation **precedes** the round constant addition, then highest-degree monomials are "**not affected**" by round-constants.

$$\mathcal{G}^{q} = (\mathcal{C}_{q} \circ \mathcal{N} \circ \mathcal{L}) \circ (\mathcal{C}_{q-1} \circ \mathcal{N} \circ \mathcal{L}) \circ \dots \circ (\mathcal{C}_{2} \circ \mathcal{N} \circ \mathcal{L}) \circ (\mathcal{C}_{1} \circ \mathcal{N} \circ \mathcal{L})$$
$$= \left[((\mathcal{C}_{q} \circ \mathcal{N} \circ \mathcal{L}) \circ \dots \circ (\mathcal{C}_{2} \circ \mathcal{N} \circ \mathcal{L})) \circ \mathcal{C}_{1} \right] \circ (\mathcal{N} \circ \mathcal{L})$$
(1)

Intuition

Notice effect of the first round non-linear operation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Segregate monomials in ANF based on dependence on round-constants

Example

$$f = x_1 x_2 x_3 + c_1 c_2 x_2 x_3 + x_3 x_4 + c_2 c_3$$

= $(x_1 x_2 x_3 + x_3 x_4) + (c_1 c_2 x_2 x_3 + c_2 c_3)$
= $f_s + f_{s'}$

Show difference in highest-degree attained

Corollary

For q rounds of the SHA3 permutation Keccak-p, the maximum degree of a monomial involving a round-constant is $d^\circ {\cal K}^q-2$

▶ Recall the sequence of operations in Keccak-f

$$\mathcal{R} = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Note ι after χ , the non-linear operation
- First round χ has no effect on terms involving round-constants.
- Note: deg $\chi = 2$

Corollary

For q rounds of KECCAK-p the $(d^{\circ}\mathcal{K}^{q} - 1)$ -fold vectorial derivative is a round-constant independent function.

- Recall *i* is the only operation that breaks symmetry
- And θ, ρ, π, χ are translation invariant in the *z*-axis

Proposition

The $(d^{\circ}SHA3 - 1)$ -fold vectorial derivative of SHA3 evaluated using only self-symmetric input states will preserve the symmetric property.

Explains the symmetry in the Output-Sum

2^{15}	<mark>00000100</mark> 00000100 <mark>00000000</mark> 00000000 <mark>00002000</mark> 00002000	
	<mark>00000000</mark> 00000000 <mark>0000000000000000000</mark>	Symmetric-Sum
	<mark>00000000</mark> 00000000 <mark>00000040</mark> 00000040	
	<mark>243f4942</mark> 243f4942 <mark>528c98d5</mark> 528c98d5 <mark>7300b0d1</mark> 7300b0d1	
2^{14}	<mark>c0585999</mark> c0585999 <mark>147b20a3</mark> 147b20a3 <mark>083a3900</mark> 083a3900	Symmetric-Sum
	<mark>09225588</mark> 09225588 <mark>6302671c</mark> 6302671c	

 Recall: Highest degree attained for this particular case was < 16

SymSum: A new distinguishing property for SHA3

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Definition (Symmetric Sum (SymSum))

Let us consider the SHA3 fixed-length hash functions SHA3-h: $(\mathbb{F}_2^r)^* \to \mathbb{F}_2^h$ or XOFs SHAKE128/256: $(\mathbb{F}_2^r)^* \to \mathbb{F}_2^*$. A **Symmetric Sum** or SymSum is defined as a set of inputs $\{x_1, x_2, \dots, x_k\} \in \mathbb{F}_2^r$ for which the input-sum is **zero** while the **64-prefix** of the output-sum is **symmetric**.

Step 1: Compute $(d^{\circ}SHA3 - 1)$ -fold vectorial derivative of SHA3 by generating self-symmetric input states

Step 2: Check for the SymSum property in the Output-Sum

	Degrees of	f freedom		Degrees of freedom	
SHA3 variant	ZeroSum	SymSum	SHA3 variant	ZeroSum	SymSum
Fixed-Length	(2^{r-4})	$(2^{\frac{r-8}{2}})$	XOFs	(2^{r-6})	$(2^{\frac{r-12}{2}})$
SHA3-224	2 ¹¹⁴⁸	2 ⁵⁷²	QUAKE_108	2 1338	2666
SHA3-256	2 ¹⁰⁸⁴	2 ⁵⁴⁰	SHAKE-120	2	2
SHA3-384	2 ⁸²⁸	2412	SHAKE-256	21082	2538
SHA3-512	2 ⁵⁷²	2 ²⁸⁴	DIRKE-200	~	2

SymSum looses degrees of freedom

Does this have an adverse effect on its performance?

Actually, No (See next slide)

Comparison with ZeroSum

		Complexity	
#Rounds	Bound on	ZeroSum	SymSum
(n_r)	d° SHA3	$(2^{d^\circ \mathtt{SHA3}+1})$	$(2^{d^\circ \mathtt{SHA3}-1})$
1	2	2 ³	2 ¹
2	4	2 ⁵	2 ³
3	8	2 ⁹	27
4	16	2 ¹⁷	2 ¹⁵
5	32	2 ³³	2 ³¹
6	64	2 ⁶⁵	2 ⁶³
7	128	2 ¹²⁹	2 ¹²⁷
8	256	2 ²⁵⁷	2 ²⁵⁵
9	512	2 ⁵¹³	2 ^{511†}
10	1024	2 ^{1025†}	*
11	1408 (<i>Boura et al.</i>)	*	*

† Not applicable for SHA3-512 and SHA3-384

* Exceeds degrees of freedom

Epilogue

- We investigated an interesting symmetric property exhibited by the sum of SHA3 message digests
- Put forward a mathematical framework to explain the property
 - A operator that tries to select a specific subspace over which it computes higher order derivatives
 - A relation that estimates the degree of round-constant dependent terms in ANF for SPN based functions.
- ► Capitalizing on this a new distinguisher SymSum is proposed
 - Has high distinguishing advantage
 - Better that ZeroSum by a factor of four
- First property that relies on round-constants but independent of their Hamming-weights

Thanks!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

Related info on http://de.ci.phe.red shortly.

Queries

crypto@dhimans.in