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Abstract. Midori is a lightweight block cipher designed by Banik et al. at ASIACRYPT 2015
to achieve low energy consumption. One version of Midori uses a 64-bit state, another uses a
128-bit state and we denote these versions Midori64 and Midori128. Each of these versions
uses a 128-bit key. In this paper, we focus on the key-recovery attacks on reduced-round
Midori64 with meet-in-the-middle method. We use the differential enumeration, key-bridging
and key-dependent sieve techniques which are popular to analyze AES to attack Midori64.
Using key-bridging and key-dependent sieve techniques directly to achieve the complexity
lower bound is almost impossible, we give the model on how to achieve the complexity lower
bound using these techniques. We also propose the state-bridge technique to use some key
relations that are quite complicated and divided by some rounds. With a 6-round distinguisher,
we achieve a 10-round attack. After that, by adding one round at the end, we get an 11-round
attack. Finally, with a 7-round distinguisher, we get an attack on 12-round Midori64. To the
best of our knowledge, these are recently the best attacks on Midori64 in the single-key setting.
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1 Introduction
In the past few years, lightweight cryptography has become a popular research discipline with
a number of ciphers and hash functions proposed. The goals of these ciphers range from mini-
mizing the hardware area [BKL+07, SMMK12, WZ11] to low latency [BCG+12]. However, the
optimization goal of low energy for block cipher design has not attached much attention. At
ASIACRYPT 2015, Banik et al. present a new lightweight block cipher Midori that is optimized
with respect to the energy consumed by the circuit per bit in encryption or decryption operation
[BBI+15a, BBI+15b]. Midori is based on the Substitution-Permutation Network (SPN). One
version of Midori uses a 64-bit state, another uses a 128-bit state and we denote these versions
Midori64 and Midori128. Each of these versions uses a 128-bit key.

Meet-in-the-middle attack is first proposed by Diffie and Hellman to attack DES [DH77]. In
recent years, it is widely researched due to its effectiveness against block cipher AES [DR02]. For
AES, Gilbert and Minier show in [GM00] some collision attacks on 7-round AES. At FSE 2008,
Demirci and Selçuk improve the Gilbert and Minier attacks using meet-in-the-middle method
instead of collision idea. More specifically, they show that the value of each byte of 4-round AES
ciphertext can be described by a function of the δ -set, i.e., a set of 256 plaintexts where a byte
(called active byte) can take all values and the other 15 bytes are constant, parameterized by 25
[DS08] and 24 [DTÇB09] 8-bit parameters. The last improvement is due to storing differences
instead of values. This function is used to build a distinguisher in the precomputation phase, i.e.,
they build a lookup table containing all the possible sequences constructed from a δ -set. In the
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online phase, they identify a δ -set, then partially decrypt the δ -set through some rounds and check
whether it belongs to the table. At ASIACRYPT 2010, Dunkelman et al. develop many new ideas to
solve the memory problems of the Demirci and Selçuk attacks [DKS10]. First of all, they only store
multiset, i.e., an unordered sequence with multiplicity, rather than the ordered sequence. Secondly,
they propose the key-bridging technique which uses the relations of sub-key cells to improve the
complexity in the online phase. The third and main idea is the differential enumeration technique
which uses a special property on a truncated differential trail to reduce the number of parameters
that describes the set of functions from 24 to 16. Furthermore, Derbez et al. present a significant
improvement to the Dunkelman et al.’s differential enumeration technique at EUROCRYPT 2013
[DFJ13], called efficient tabulation. Using this rebound-like idea, they show that many values in the
precomputation table are not reached at all under the constraint of a special truncated differential
trail. Actually, the size of the precomputation table is determined by 10 byte-parameters only. At
FSE 2014, Li et al. introduce the key-dependent sieve technique, which filters the wrong states
based on the key relations, to further reduce the complexity in the precomputaion phase [LJW14].
Then they give an attack on 9-round AES-192. In [LJ16], Li and Jin give a meet-in-the-middle
attack on 10-round AES-256.

Our contributions.
In this paper, we carefully study and apply the variant of Derbez et al. attack on Midori64.
Differential enumeration, key-dependent sieve and key-bridging techniques are used to achieve a
better complexity. Using key-dependent sieve and key-bridging techniques directly to achieve the
complexity lower bound is almost impossible, we give the model on how to achieve the complexity
lower bound with these techniques. We also propose the state-bridge technique to use some key
relations that are quite complicated and divided by some rounds. For Midori64, we present a
6-round distinguisher. Based on this distinguisher, we add one round at the beginning and three
rounds at the end to present a 10-round meet-in-the-middle attack. The time complexity of this
attack is 299.5 10-round Midori64 encryptions, the data complexity is 261.5 chosen-plaintexts and
the memory complexity is 292.7 64-bit blocks. After that, by adding one round at the end, we get
an 11-round attack with time complexity of 2122 11-round Midori64 encryptions, data complexity
of 253 chosen-plaintexts and memory complexity of 289.2 64-bit blocks. Finally, with a 7-round
distinguisher, we get an attack on 12-round Midori64 with time complexity of 2125.5 12-round
Midori64 encryptions, data complexity of 255.5 chosen-plaintexts and memory complexity of 2106

64-bit blocks. It is worthy to mention that we ran the automatic search tool of [DF16], and found
one potential attack that may provide slightly better time complexity1. Unfortunately, this attack
can hardly be transferred into a valid attack due to the too low distinguishing probability.

After this paper, some results on Midori64 have been proposed. In [GJN+15] and [TLS16],
Guo et al. and Todo et al. give invariant subspace attack and nonlinear invariant attack on full-round
Midori64 in the weak-key setting, respectively. In [CW16], Chen and Wang give impossible
differential attack on 10-round Midori64. And in [DS16], Dong and Shen give differential attack
on 14-round Midori64 in the related-key setting. We present here a summary of our attack results,
and compare them to the best attacks known for it. This summary is given in Table 1.
Organizations of this paper. The rest of this paper is organized as follows. In Section 2, we
provide a brief description of Midori64, some definitions and properties, a brief recall of the
previous meet-in-the-middle distinguishers, the attack model and the way to use key relations to
improve the complexity. In Section 3, we give our attack on 10-round Midori64. In Section 4, we
give our attack on 11-round Midori64. In Section 5, we give our attack on 12-round Midori64. In
Section 6, we conclude this paper.

1Note that the tool in [DF16] produces potential attacks, but cannot always guarantee the complexity will be actually
reached.
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Table 1: Summary of the best attacks on Midori64.

Attack type Rounds Data Memory (Bytes) Time (Enc) Source
IDA (SK) 10 262.4 CPs 268.13 280.81 [CW16]
DA (RK) 14 259 CPs 2115 2116 [DS16]
ISA (WK) 16 2 CPs - 216 [GJN+15]
NLA (WK) 16 33h CPs - 323×h [TLS16]
MITM (SK) 10 259.5 CPs 295.7 299.5 Sec. 3
MITM (SK) 11 253 CPs 292.2 2122 Sec. 4
MITM (SK) 12 255.5 CPs 2109 2125.5 Sec. 5

CPs: Chosen-Plaintexts, MITM: meet-in-the-middle, IDA: impossible differential attack, DA: differential
attack, ISA: invariant subspace attack, NSA: nonlinear invariant attack, SK: single-key, RK: related-key,
WK: weak-key, h: the number of blocks in the mode of operation.

2 Preliminaries
In this section, we give a short description of Midori64 and give some definitions and propositions
used throughout this paper. Then we briefly recall the previous meet-in-the-middle distinguishers
on AES. Finally, the basic attack model and the way to use key relations to improve the complexity
are given.

2.1 Description of Midori64
Midori is a lightweight block cipher designed by Banik et al. at ASIACRYPT 2015 [BBI+15b] and is
based on the Substitution-Permutation Network (SPN). One version of Midori uses a 64-bit state,
another uses a 128-bit state and we denote these versions Midori64 and Midori128. Each of these
versions uses a 128-bit key. In this paper, we focus on the 64-bit version of Midori, so we describe
it here. The Midori64 block cipher operates on 64-bit state, and uses the following 4× 4 array
called state as a data expression:

S =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15


where the size of each cell is 4 bits.

A Midori64 round applies the following four operations to the state matrix:

• SubCell: Apply the non-linear 4×4 S-box in parallel on each nibble of the state.

• ShuffleCell: Each nibble of the state is permuted as follows:
s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

→


s0 s14 s9 s7
s10 s4 s3 s13
s5 s11 s12 s2
s15 s1 s6 s8


• MixColumn: Midori64 utilizes an involutive binary matrix M defined as follows:

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


M is applied to every 4-nibble column of the state S, i.e.,

t(si,si+1,si+2,si+3)←M ·t (si,si+1,si+2,si+3) and i = 0,4,8,12.
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• KeyAdd: The ith 64-bit round key rki is xored to a state S.

Before the first round, an additional KeyAdd operation is applied, and in the last round the
ShuffleCell and MixColumn operations are omitted. The total round number of Midori64 is 16.

The key-schedule of Midori64 is quite simple. A 128-bit secret key K is denoted as two 64-bit
keys k0 and k1 as K = k0||k1. Suppose we focus on Midori64 reduced to R-round, the whiten key
and the last sub-key are rk−1 = rkR−1 = k0⊕k1, and the sub-key for round i is rki = k(i mod 2)⊕αi,
where 0≤ i≤ R−2 and αi is a constant.

In this paper, the plaintext is denoted by P, the ciphertext is denoted by C. The intermediate
state at the beginning of round i is denoted by xi, and the intermediate state after the SubCell,
ShuffleCell, MixColumn operations of round i are denoted by yi, zi and wi. xi[ j] denotes the jth

nibble of xi. xk
i [ j] denotes the kth element of a set of some xi[ j]. ∆xk

i [ j] denotes the difference of the
kth element and 0th element of a set, i.e., ∆xk

i [ j] = xk
i [ j]⊕ x0

i [ j]. x− x[ j] denotes a state including
all the nibbles of x except the jth nibble.

In some cases, we are interested in interchanging the order of the MixColumn and KeyAdd
operations. As these operations are linear, they can be interchanged by first xoring the data with
an equivalent key rui = MixColumn−1(rki) and then applying the MixColumn operation. And
we denote the intermediate state after xoring with rui by wi. We also let ui = MixColumn−1(ki),
where i = 0,1.

2.2 Definitions and Propositions
In [DR02], Daemen and Rijmen first proposed the definition of δ -set of byte, which is a structured
set of 256 plaintexts {P0, · · · ,P255} in which one active byte assumes each one of the 256 possible
values exactly once, and each one of the other 15 bytes is a constant. After that, δ -set was used in
the meet-in-the-middle attacks on AES and other ciphers. In [LWWZ13], Lin et al. extended the
definition of δ -set to T active cells, and got T -δ -set. In this paper, we use 2-δ -set which is defined
as follows.

Definition 1 (2-δ -set). Let a 2-δ -set be a set of 22×4 states that are all different in two state nibbles
(active nibbles) and all equal in the other state nibbles (inactive nibbles).

In [DR06], Daemen and Rijmen gave the definition of Super-box for AES. For Midori, we can
give a similar definition as follows (by interchanging the order of the MixColumn and KeyAdd
operations).

Definition 2 (Super-box). For each value of one column of rk3, a Midori Super-box maps one
column of z3 to one column of y4 as shown in Fig. 1. It consists of one SubCell operation, one
MixColumn operation, one KeyAdd operation and one SubCell operation.

SubCellShuffleCell MixColumn

KeyAdd

SubCellMixColumn

x3 y3z3 w3

x4 y4rk3(k1)ru3 (u1)

Figure 1: Super-box of Midori64.

For one S-box, we have the following proposition.

Proposition 1 (Differential Property of S-box, [DFJ13]). Given ∆i and ∆0 two non-zero differ-
ences, the equation of S-box

S(x)⊕S(x⊕∆i) = ∆0, (1)
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has one solution in average.

This proposition also applies to Super-box.

Proposition 2 (Differential Property of Super-box). Given ∆i and ∆0 two non-zero differences
in F216 , the equation of Super-box

Super−S(x)⊕Super−S(x⊕∆i) = ∆0, (2)

has one solution in average for each key value.

For rui, we have the following proposition.

Proposition 3. As shown in Fig. 1, if the first column of z3 is active only in the last 3 nibbles,
z3[1,2,3]||y4[0,1,2,3] has one solution in average for each ∆z3[1,2,3]||∆y4[0,1,2,3]||ru3[1,2,3].

Proof. We use the equivalent sub-key in this proof. For each y4[0,1,2,3] and ru3[1,2,3], since
∆y4[0,1,2,3] is known, one can get w3[0,1,2,3] and ∆w3[0,1,2,3]. With the probability of 2−4,
y3[0,1,2,3] is active only in the last 3 nibbles. By xoring ru3[1,2,3], one can get ∆z3[1,2,3].

Therefore, for each ∆z3[1,2,3] and ∆y4[0,1,2,3], the average number of input values of Super-
box is 216−12−4 = 1 for each ru3[1,2,3].

2.3 Reviews of Former Works
In this section, we review the previous meet-in-the-middle distinguishers on AES in [DS08, DKS10,
DFJ13, LJW14].
Demirci and Selçuk distinguisher. The distinguishers of Demirci and Selçuk attacks are based
on the proposition below.

Proposition 4 (Demirci and Selçuk distinguisher, [DS08]). Consider the encryption of a δ -set
through four full AES rounds. For each of the 16 bytes of the state, the ordered sequence of 256
values of that byte in the corresponding ciphertexts is fully determined by just 25 byte-parameters.
Consequently, for any fixed byte position, there are at most 2200 possible sequences when we
consider all the possible choices of keys and δ -sets.

The table containing all the 2200 possible sequences is tiny compared with the set of all functions
of this type which counts as many as 28·28

= 22048 elements [DS08]. Considering the differences
rather than values, the set of functions can be described by 24 byte-parameters [DTÇB09]. The 24
byte-parameters which map x1[0] to ∆x5[0] are presented as gray cells in Fig. 2. This observation
was used in [DTÇB09] to mount attacks on reduced-round AES-256.

SB

SR

1z1x 2x

MC

ARK

1 round

3x 4x

1 round

5x3y

SB SR

MC,ARK

m

Figure 2: The 4-round AES distinguisher used in [DTÇB09]. The gray cells represent 24 byte-
parameters, δ represents the δ -set and m represents the differential sequence to be stored.

Dunkelman et al. distinguisher. In [DKS10], Dunkelman et al. introduced three new improve-
ments to further reduce the memory complexity of [DTÇB09]. The first uses multiset which
is an unordered sequence with multiplicity to replace ordered sequence in the precomputation
phase, since there is enough information so that the attack succeeds. The second uses the relations
of sub-key cells to improve the complexity in the online phase called key-bridging technique.
The third and main improvement uses a novel idea named differential enumeration technique.
Consider a truncated differential trail for four full AES rounds, in which both the input and the
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output differences are non-zero in a single byte as shown in Fig. 3. Since ∆x2 and ∆z4 can take
232 different values, respectively, then x3 can take only 264 different values rather than 2128 due to
Proposition 1. Therefore, the number of parameters which determines the size of the precomputa-
tion table reduces from 24 to 16. The probability of this differential trail is expected to be about
2−120 and thus it is expected that 2120 randomly chosen pairs with differences would contain one
pair that satisfies the trail.

Derbez et al. distinguisher. In [DFJ13], Derbez et al. used the efficient tabulation to improve
Dunkelman et al.’s differential enumeration technique. Combining with the rebound-like idea,
many values in the precomputation table are not reached at all under the constraint of a truncated
differential trail.

Proposition 5 (Differential Enumeration Technique with Efficient Tabulation, [DFJ13]). If a
message of δ -set belongs to a pair conforming to the 4-round truncated differential trail outlined
in Fig. 3, the values of multiset are only determined by 10 byte-parameters of intermediate states
∆z1[0]||x2[0,1,2,3]||∆x5[0]||z4[0,1,2,3] presented as gray cells in Fig. 3.

SB

SR

1z1x 2x

MC

ARK

1 round

3x 4z

MC,ARK

5x3y

SB 1 round

SR

Figure 3: The truncated differential trail of 4-round AES used in [DS08], the gray cells represent
10 byte-parameters, ∆ represents difference.

The main idea of their works is that suppose one gets a pair of messages conforming to this
truncated differential trail, ∆x3 is determined by ∆z1[0]||x2[0,1,2,3] and ∆y3 is determined by
∆x5[0]||z4[0,1,2,3]. By Proposition 1, part of the 24 byte-parameters in the Demirci and Selçuk
distinguisher, i.e. x3, can be determined. Therefore, the number of parameters which determines
the size of the precomputation table reduces from 16 to 10. In the rest of this paper, when we speak
of differential enumeration technique, we mean differential enumeration technique with efficient
tabulation. The probability of this differential trail is also expected to be about 2−120.

Li et al. distinguisher. At FSE 2014, Li et al. introduced the key-dependent sieve technique,
which filters the wrong states based on the key relations, to further reduce the complexity in
the precomputation phase [LJW14]. More specifically, as shown in Fig. 4, the precomputation
procedure allows to deduce ru2[3,6,9,12] and rk3 independently. Meanwhile, by the key-schedule
of AES-192, it is obvious that the knowledge of rk3 allows to deduce Column 0 and Column 1 of
rk2. This means that the value of the equivalent sub-key ru2[3,6] can be deduced from rk3. Thus
there exists a contradiction between ru2[3,6] and rk3 with a probability of 1−2−16. Therefore, the
size of precomputation table is improved by a factor of 216.

2 2 3

MixColumn KeySchedule

Figure 4: Key-dependent sieve technique based on the key-schedule algorithm of AES-192

2.4 Basic Attack Model
In this section, we present a unified view of the meet-in-the-middle attack, where R rounds of block
cipher can be split into three consecutive parts: r0, r1, and r2, such that a particular set of messages
may verify a certain property we denoteF in the sequel in the middle r1 rounds as shown in Fig. 5.
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r1 roundsr0 rounds r2 rounds

1

Figure 5: General model of meet-in-the-middle attack, where some messages in the middle rounds
may verify a certainF property used to perform the meet-in-the-middle method.

The general attack model uses two successive phases:

Precomputation phase

1. In the precomputation phase, we build a lookup table T containing all the possible
sequences constructed from a 2-δ -set such that one message verifies a truncated
differential trail.

Online phase

1. In the online phase, we need to identify a 2-δ -set containing a message m verifying the
desired truncated differential trail of the precomputation phase. This is done by using a
large number of plaintexts and ciphertexts, and expecting that for each key candidate,
there is one pair of plaintexts satisfying the truncated differential trail.

2. Finally, we partially decrypt the associated 2-δ -set through the last r2 rounds and check
whether it belongs to T .

2.5 Key Relations to Improve the Complexity
From the Derbez et al. distinguisher in Section 2.3, we can deduce many key values from the
truncated differential trail. Meanwhile, the online phase also includes some key values. Since
Midori64 uses two keys k0 and k1 alternately in every two rounds, a lot of key relations can be
found both in the precomputation phase and online phase. However, these key relations cannot be
used to improve the complexity directly. As we can see in Fig. 5, K0 can be deduced from a set of
state variables S0, K1 can be deduced from a set of state variables S1 and K0 =K1. If we guess S0
and S1 to get the precomputation table T , then use K0 =K1 to reduce the size of T , all the values
in S0∪S1 need to be guessed. Hence the time complexity remains unchanged.

To use the key-dependent sieve and key-bridging techniques to improve the time complexity,
we can store S0 in a new table T0 with the index of K0. In the attack, if we want to use the states in
S0, we can guess S1 and deduce K1, then look up T0 to get S0 with the index of K1. If there exist
relations between K1 and a new set of key K2, and we want to get S0 from S2. We need to store S1
in a new table T1 with the index of K1, then look up T1 with the index of K2, finally look up T0.

Sometimes, the relations between K0 and K1 are more complicated and we cannot guess all
the values of S1 at the same time (can guess parts of S0 and S1 at the same time). Let K0 = f (K1),
W0⊕K0 = X0 and W1⊕K1 = X1 ( f is a linear function and (Wi,Xi)⊆ Si), then some states can
be stored in a table with the index of χ = X0⊕ f (W1). We can look up this table with the index of
χ ′ =W0⊕ f (X1) to get these states. We call this technique state-bridge technique. The similar
technique is also used in [DP15] to attack Prince, but ours is more complicate than [DP15] since
we use the relations of different nibbles in one state and the relations of different nibbles in states
of different rounds as the indexes and contents of the tables.

To improve the time complexity using key relations, we need to build some tables. In this paper,
we use figures to show the constructions of these tables. Take Fig. 7 as an example, by guessing
y6[12] and y5[2,8,13] (nibbles in gray shadow), x6[12] and w5[12] can be deduced, then rk5[12]
can be deduced. We store y5[2,8,13] (nibbles in red) with the index of y6[12] and rk5[12] (nibbles
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in blue). Since we guess 4 nibbles and take 2 nibbles as index, there are 28 values for each index,
the size of this table is 216. Sometimes, we add the reason why some nibbles can be deduced above
the arrow.

3 Meet-in-the-Middle Attack on 10-Round Midori64
In this section, we first propose a 6-round meet-in-the-middle distinguisher with the differential
enumeration and key-dependent sieve techniques on Midori64. Then we apply this distinguisher to
10-round Midori64 by adding one round at the beginning and three rounds at the end.

3.1 6-Round Distinguisher on Midori64
Since w6[9] = z6[8]⊕ z6[10]⊕ z6[11] and w6[10] = z6[8]⊕ z6[9]⊕ z6[11], we have w6[9]⊕w6[10] =
z6[9]⊕ z6[10]. Let ein = z6[9]⊕ z6[10] and eout = x7[9]⊕ x7[10], then eout = ein⊕ rk6[9]⊕ rk6[10],
the 6-round distinguisher on Midori64 is based on the proposition below.

Proposition 6. Let {w0
0,w

1
0, · · · ,w255

0 } be a 2-δ -set where w0[5] and w0[10] are the active nibbles.
Consider the encryption of the first 33 values (w0

0,w
1
0, · · · ,w32

0 ) of the 2-δ -set through 6-round
Midori64, in the case of that a message of the 2-δ -set belongs to a pair which conforms to the
truncated differential trail outlined in Fig. 6(a), then the corresponding 128-bit ordered sequence
(e1

out ⊕ e0
out ,e

2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out) only takes about 2104 values (out of the 2128 theoretical
values).

SubCell ShuffleCell MixColumn

KeyAdd

SubCell ShuffleCell MixColumn

KeyAdd

SubCell ShuffleCell MixColumn
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SubCell ShuffleCell MixColumn

KeyAdd

SubCell ShuffleCell MixColumn

MixColumn

MixColumn

MixColumn

MixColumn

MixColumn

KeyAdd

MixColumn

MixColumn

x1 y1 z1 w1rk0(k0)ru0(u0)

x2 y2 z2 w2

x3 y3 z3 w3

x4 y4 z4 w4

x5 y5 z5 w5

x6 y6 z6 w6

x7

KeyAdd

SubCell ShuffleCell MixColumnMixColumn

P

x0 y0 z0 w0rk-1(k0⊕k1)ru-1(u0⊕u1)

x7

SubCell ShuffleCell MixColumn

SubCell ShuffleCell MixColumn

SubCell

MixColumn

MixColumn

MixColumn

x8 y8 z8 w8rk7 (k1)ru7 (u1)

x9 y9rk8 (k0)ru8 (u0)

Crk9 (k0⊕k1)ru9 (u0⊕u1)

KeyAdd

y7 z7 w7

rk1(k1)ru1(u1)

rk2(k0)ru2(u0)

rk3(k1)ru3 (u1)

rk4(k0)ru4 (u0)

rk5(k1)ru5 (u1)

rk6(k0)ru6 (u0)

w0

Round 0

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7
inactive nibble active nibble

key-nibble can be deduced from 
the truncated differential trail 

key-nibble can be deduced 
from other key-nibbles 

Round 0

Round 7

Round 8

Round 9

6-round distinguisher

KeyAdd

KeyAdd

KeyAdd

KeyAdd

KeyAdd

(a) Precomputation phase. (b) Online phase.

Figure 6: The attack on 10-round Midori64. The 6-round distinguisher is shown in (a), the online
phase is shown in (b).

Proof. As shown in Fig. 6(a), for the encryption of the first 33 values of the 2-δ -set, the output
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sequence (e1
out ⊕ e0

out ,e
2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out) is determined by the 42 nibble-parameters:

w0[5,10]||x1[5,10]||x2[0,1,2,3]||x3− x3[0,7,9,14]|| (3)
x4− x4[4,13]||rk4[0,2,5,8,10,13]||rk5[3,12]

At round 1, since ∆xm
1 [5,10] = ∆wm

0 [5,10] (0 < m≤ 32), we can get z1[1,2] by the knowledge
of x1[5,10]. Since the ShuffleCell, MixColumn and KeyAdd operations are linear, ∆xm

2 [0,1,2,3]
can be deduced. Similarly, ∆ym

2 [0,1,2,3] can be deduced by the knowledge of x2[0,1,2,3], ∆ym
3 −

∆ym
3 [0,7,9,14] can be deduced by the knowledge of x3− x3[0,7,9,14], ∆ym

4 −∆ym
4 [4,13] can be

deduced by the knowledge of x4−x4[4,13], ∆ym
5 [0,2,5,8,10,13] can be deduced by the knowledge

of rk4[0,2,5,8,10,13], and ∆zm
6 [9,10] can be deduced by the knowledge of rk5[3,12]. Then we get

the value of em
in⊕e0

in. Since em
out⊕e0

out = em
in⊕e0

in, we can get (e1
out⊕e0

out ,e
2
out⊕e0

out , · · · ,e32
out⊕e0

out).
However, if a pair of messages conforms to the truncated differential trail outlined in Fig. 6(a),

the above 42 nibble-parameters are determined by the 27 nibble-parameters:

∆z1[1,2]||x2[0,1,2,3]||x3− x3[0,7,9,14]||y5[0,2,5,8,10,13]||y6[3,12]||∆z6[9] (4)

Since ∆z1[1,2] is known, we can get ∆x2[0,1,2,3]. Since ∆y2[0,1,2,3] can be deduced by
the knowledge of x2[0,1,2,3], we can get ∆x3−∆x3[0,7,9,14]. Also ∆x4−∆x4[4,13] can be
deduced by the knowledge of x3− x3[0,7,9,14]. For the backward direction, since ∆w6[8] =
∆z6[9]⊕∆z6[10]⊕∆z6[11], ∆z6[11] = 0 and ∆w6[8] = 0, we can get that ∆z6[9] = ∆z6[10]. For
the same reason as the forward direction, ∆y4−∆y4[4,13] can be deduced by the knowledge of
y5[0,2,5,8,10,13]||y6[3,12]||∆z6[9]. According to Proposition 1, we get one value of intermediate
state x4− x4[4,13] in average for the fixed difference ∆x4−∆x4[4,13]||∆y4−∆y4[4,13]. Appar-
ently, ru2[0,7,9,14]||rk4[0,2,5,8,10,13]||rk5[3,12] is also deduced for every 27 nibble-parameters.
Since z3[13,14,15] is known, w3[12] can be deduced. Then rk3[12] can be deduced for the reason
that rk3[12] = x4[12]⊕w3[12]. According to the key-schedule of Midori64, rk3[12] and rk5[12] are
affected by the same nibble of k1. By the key-dependent sieve technique, there are 2104 possible
values for the 27 nibble-parameters.

Since z3[1,2,3] and x4[0,1,2,3] are known, ru3[1,2,3] can be deduced. According to the
key-schedule, rk3[3] can be deduced by the knowledge of rk5[3]. Since rk3[3] = ru3[0]⊕ ru3[1]⊕
ru3[2], ru3[0] can be deduced. Then rk3[0,1,2,3] can be deduced from ru3[0,1,2,3]. After that,
rk1[0,1,2,3] can be deduced. We can also deduce rk0[5,10] from rk4[5,10]. Therefore, w0[5,10]
and x1[5,10] can be deduced from x2[0,1,2,3].

So the 42 nibble-parameters (3) are determined by 27 nibble-parameters (4), i.e., the sequence
(e1

out ⊕ e0
out ,e

2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out) can take about 2104 values (since rk3[3] can be deduced by
the knowledge of rk5[3]).

3.2 Attack on 10-Round Midori64
The attack is made up of two phases: precomputation phase and online phase.
Precomputation phase: In the precomputation phase, we need to build a table T4 that contains
all the sequences (e1

out ⊕ e0
out ,e

2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out) described in Proposition 6. To use the
key-dependent sieve technique to improve the complexity, we need to build three more tables T1,
T2 and T3. To use the key relation of rk3[12] and rk5[12], some nibbles can be stored in a table T1
with the index of rk5[12]. T2 and T3 are built to perform the inbound phases from ∆y1 to ∆x3 and
∆z6 to ∆y4, then perform the outbound phases to deduce the values step by step. When the values
in T1 are needed at the construction of T2, we can look up T1 with the index of rk3[12]. Combining
T2, T3 and some extra guessing nibbles, the precomputation table T4 can be deduced.

To use the key-bridging technique in the online phase, we need to build four more tables T 0
5 , T 2

5 ,
T6 and T7. T i

5 (i = 0,2) and T6 are built to use the key-bridges rk9[1,3,9,11] = rk−1[1,3,9,11] and
(ru7[1,8],ru8[1,8])⇔ ru9[1,8], respectively. T i

5 (i= 0,2) connect Round 0 before the distinguisher
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y6[12],y5[2,8,13] x6[12],w5[12] rk5[12]

�: guessed-nibbles; xi[ j]: content of the table; yi[ j]: index of the table.

Figure 7: Construction of Table T1 on the 10-round attack. There are about 28 values for each
index in average.

∆z6[9] ∆z6[10] x5[0,2,5,8,10,13],
∆x5[0,2,5,8,10,13]

y6[3,12],y5[0,5,10]

y5[2,8,13]

rk5[3]

ru3− ru3[0,4,8,12]

rk1[0,1,2,3]

rk5[12]

∆y2[0,1,2,3]
∆x5[0,2,5,8,10,13] ∆x3,∆y4

x3− x3[0,7,9,14],
x4− x4[4,13] w4[0,2,5,8,10,13]

∆z1[1,2],x2[0,1,2,3] ∆y2[0,1,2,3]
x3− x3[0,7,9,14],x4− x4[4,13],

w4[0,2,5,8,10,13],
∆x5[0,2,5,8,10,13] rk1[0,1,2,3],

x5[0,2,5,8,10,13]

rk4[0,2,5,8,10,13],
rk0[5,10],x1[5,10],w0[5,10]

∆w6[8] = ∆z6[11] = 0

look up T3

look up T2

T3

T4

T2

get the 42 nibble-parameters of (3)

look up T1

Proposition 3

�: guessed-nibbles; xi[ j]: content of the table; yi[ j]: index of the table.

Figure 8: Constructions of Table T2, Table T3 and Table T4 on the 10-round attack. For T2, there
are about 28 values for each index in average. For T3, there are about 224 values for each index in
average.

and Rounds 8, 9 after the distinguisher, and T6 connects Rounds 7, 8 and 9. When the values in
these tables need to be deduced in the online phase, we can look up these tables with the index of
sub-key nibbles or state nibble relations. T7 is built to connect Round 8 and ∆eout of Round 7.

We show the detailed process of the precomputation phase in Appendix A.

1. Table T1 is built to use the key-dependent sieve technique that rk3[12] and rk5[12] are affected
by the same nibble of k1 as shown in Proposition 6. As Section 2.5 shows, this relation
cannot be used directly to improve the complexity, so y5[2,8,13] is stored in T1 with the
index of rk5[12]. When y5[2,8,13] is needed to use in the construction of Table T2, we can
look up T1 with the index of rk3[12] (deduced from ru3− ru3[0,4,8,12]). The construction
of this table is shown in Fig. 7.

2. For each 48-bit value ru3− ru3[0,4,8,12], we can build two tables T2 and T3, then use these
tables to get the 42 nibble-parameters (3). From the proof of Proposition 6, we need to
perform the inbound phases from ∆y1 to ∆x3 and ∆z6 to ∆y4, then perform the outbound
phases to deduce the values. To use the key-dependent sieve technique to improve the time
complexity, we deal with these phases step by step. Table T2 is built to perform the inbound
phase from ∆z6 to ∆x5 in the decryption direction as shown in the proof of Proposition 6 and
Fig. 6(a). Table T3 is built to perform the inbound phases from ∆y2 to ∆x3 and ∆x5 to ∆y4, then
perform the outbound phases to get the values of x3 and y4 using Proposition 3. Then we can
use the 42 nibble-parameters to compute the sequence (e1

out⊕e0
out ,e

2
out⊕e0

out , · · · ,e32
out⊕e0

out),
and store it along with a 16-bit value ru2[0,9,14]||ru3[1] in the precomputation table T4 as
Proposition 6. The constructions of these tables are shown in Fig. 8.

3. Table T 0
5 (resp. T 2

5 ) is built to use the relation that rk9[1,3] = rk−1[1,3] (resp. rk9[9,11] =
rk−1[9,11]) in the online phase. We cannot use this key-bridge to improve the complexity
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∆C[0,1,2,3],∆z8[0,1] ∆x9[0,1,2,3],∆y9[0,1,2,3] x9[0,1,2,3]

C[1,3] rk9[1,3] rk−1[1,3]

Proposition 1

T 0
5

∆C[8,9,10,11],∆z8[8,9] ∆x9[8,9,10,11],∆y9[8,9,10,11] x9[8,9,10,11]

C[9,11] rk9[9,11] rk−1[9,11]

Proposition 1

T 2
5

�: guessed-nibbles; xi[ j]: content of the table; yi[ j]: index of the table.

Figure 9: Constructions of Table T 0
5 and Table T 2

5 on the 10-round attack. There is one value for
each index in average.

∆y8[0,2,3,9,10,11] x8[0,2,3,9,10,11],
y8[0,2,3,9,10,11]

ru7[1,8] ru8[1,8]⊕ ru9[1,8]

x7[9,10],∆x7[9] ∆y7[9,10],y7[9,10] ∆x8[0,2,3,9,10,11]

Proposition 1

∆x7[9] = ∆x7[10]

χ = z8[1,8]⊕ ru8[1,8]⊕ ru9[1,8]

�: guessed-nibbles; xi[ j]: content of the table; yi[ j]: index of the table.

Figure 10: Construction of Table T6 on the 10-round attack. There are 24 values for each index in
average.

directly, so T 0
5 (resp. T 2

5 ) is built. After deducing rk−1[1,3] (resp. rk9[1,3]) from the first
round in the online phase, instead of guessing x9[0,1,2,3] and ∆z8[0,1] (resp. x9[8,9,10,11]
and ∆z8[8,9]), we can look up this table with the index of rk−1[1,3] (resp. rk−1[9,11]). The
constructions of these tables are shown in Fig. 9.

4. Table T6 is built to use the relation (ru7[1,8],ru8[1,8])⇔ ru9[1,8]. This key-bridge cannot
be used directly and this relation is more complicated than others, so state-bridge technique
is used to improve the complexity. By guessing x7[9,10], ∆x7[9] and ∆y8[0,2,3,9,10,11],
z8[1,8] and ru7[1,8] can be deduced, then χ = z8[1,8]⊕ ru8[1,8]⊕ ru9[1,8] can be deduced.
Store y8[0,2,3,9,10,11] and ru7[1,8] in Table T6 with the index of χ . Since z8[1,8]⊕
ru8[1,8] = w8[1,8], we can deduce χ ′ = ru9[1,8]⊕w8[1,8] in the online phase, and look
up T6 to get y8[0,2,3,9,10,11] and ru7[1,8] with the index of χ ′. The construction of T6 is
shown in Fig. 10.

5. Table T7 is built to get eout from w8[0,1,6,8,9,14] in the decryption direction. The construc-
tion of T7 is shown in Fig. 11.

Online phase: In the online phase of the attack, we first find at least one pair which satisfies the
truncated differential trail in Fig. 6(a). To find the right pair, instead of guessing the sub-keys
and checking whether this pair satisfies the truncated differential trail, we deduce the sub-keys
which make it satisfy the truncated differential trail for each pair. Then we identify the 2-δ -set,
calculate the sequence (e1

out⊕e0
out ,e

2
out⊕e0

out , · · · ,e32
out⊕e0

out) and check whether it belongs to Table
T4. Finally, we use ru2[0,9,14]||ru3[1] to filter the remaining keys and retrieve the correct key.

1. Phase A – Detecting the right pair.
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ru7[1,8],ru8[0,1,6,8,9,14]

eout
w8[0,1,6,8,9,14]

�: guessed-nibbles; xi[ j]: content of the table; yi[ j]: index of the table.

Figure 11: Construction of Table T7 on the 10-round attack.

(a) Define a structure of 224 plaintexts where P[1,3,6,9,11,14] takes all the possible
values, and the remaining 10 nibbles are fixed to some constants. Hence, we can
generate 224× (224−1)/2≈ 247 pairs satisfying the plaintext difference.

(b) Choose 229 structures to get about 229+47 = 276 pairs. As shown in Fig. 6(b), the
probability to get the truncated differential trail in the forward and backward directions
is 2(2−6+1−16)×4 = 2−76 2, then about 1 pair follows the truncated differential trail for
each guess of the key.
Among the 276 pairs, we expect about 276−8 = 268 pairs to verify that ∆C[6,14] = 0.

2. Phase B – Checking the δ -set.
For each of the 268 remaining pairs, we do the following sub-steps:

(a) Guess ∆w0[5,10], and deduce ∆y0[1,3,6,9,11,14]. According to Proposition 1, x0[1,3,
6,9,11,14] can be deduced from ∆y0[1,3,6,9,11,14] and ∆P[1,3,6,9,11,14]. Then
rk−1[1,3,6,9,11,14] can be deduced.

(b) For each of the 28 deduced sub-keys in (a), encrypt the plaintext pairs and get the value
z0[4,6,7,8,9,11]. Change the value of w0[5,10] to be (0,1, · · · ,32) and compute their
corresponding plaintexts (P0,P1, · · · ,P32), then get the corresponding ciphertexts.

(c) For each of the deduced rk−1[1,3,6,9,11,14], compute rk9[1,3] (resp. rk9[9,11]).
Look up Table T 0

5 (resp. T 2
5 ) to get about one value x9[0,1,2,3]||∆z8[0,1] (resp.

x9[8,9,10,11]||∆z8[8,9]) with the index of rk−1[1,3]||∆C[0,1,2,3]||C[1,3] (resp. rk−1[
9,11]||∆C[8,9,10,11]||C[9,11]). Deduce rk9[0,2] (resp. rk9[8,10]) from the cipher-
text.

(d) Guess ∆z8[6,14], and deduce ∆x9[4,5,7,12,13,15]. Then rk9[4,5,7,12,13,15] and
x9[4,5,7,12,13,15] can be deduced. Deduce ru9[1,8] from rk9[0,2,3,9,10,11], and
deduce w8[1,8] from x9[0,2,3,9,10,11]. Then we can get χ ′ = ru9[1,8]⊕w8[1,8],
i.e., χ ′ = z8[1,8]⊕ ru8[1,8]⊕ ru9[1,8]. Look up Table T6 to get about 24 values
y8[0,2,3,9,10,11]||ru7[1,8] with the index of χ ′||∆z8[0,1,6,8,9,14]. Deduce ru8[0,1,
6,8,9,14] from y8[0,2,3,9,10,11] and x9− x9[6,14].

(e) For about 220 values rk−1[1,3,6,9,11,14]||rk9−rk9[6,14]||ru8[0,1,6,8,9,14]||ru7[1,8
] we have got, decrypt the corresponding ciphertexts we made in (b) and get (e1

out ⊕
e0

out ,e
2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out) using Table T7. Check whether it lies in the precom-
putation table T4. If not, try another one. If so, we check whether ru2[0,9,14]||ru3[1]
matches ru8[0,9,14]||ru7[1]. So the probability for a wrong sub-key to pass this test is
2−24−16 = 2−40.

3. Exhaustively search the rest of the key: In the end, there are about 222×4−40 = 244 sub-
keys remaining. Then exhaustively search for the 244 sub-keys and 10 unknown key-nibbles
to recover the master key.

Complexity analysis. In the precomputation phase, in order to construct T4, we need to perform

2P is active in 6 nibbles, w0 is active in 2 nibbles, C is active in 16 nibbles (reduce to 14 afterward) and x7 is active in 1
nibble relation.
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2104 partial encryptions on 33 messages. The time complexity of this phase is about 2104+5−2 =
2107 10-round Midori64 encryptions, the memory complexity is about 2104+7.2−6 = 2105.2 64-bit
blocks. In the online phase, we need to perform 220+68 partial encryptions on 33 messages. The
time complexity of this phase is about 288+5−3 = 290 10-round Midori64 encryptions, the data
complexity is 224+29 = 253 chosen-plaintexts and the memory complexity is 253 64-bit blocks.
With data/time/memory tradeoff, the adversary only need to precompute a fraction of 2−8.5 of
possible sequences, then the time complexity becomes 2107−8.5 = 298.5, the memory complexity
becomes 296.7 64-bit blocks. But in the online phase, the adversary will repeat the attack 28.5 times
to offset the probability of the failure. So the data complexity increases to 261.5 chosen-plaintexts,
and the time complexity increases to 290+8.5 = 298.5. Otherwise, we can divide the whole attack
into series of weak-key attacks according to the relations between the sub-keys in the online phase
and the precomputation phase as Li et al. presented in [LJW14]. Using the relation of ru3[1]
and ru7[1], the attack can be divided into 24 weak-key attacks, i.e., the precomputation table can
be divided into 24 sub-tables with the index of ru3[1] and we only need to check the sub-table
according to the value of ru7[1] in the online phase. The memory complexity can be reduced by a
factor of 24. In total, the time complexity of this attack is 299.5 10-round Midori64 encryptions, the
data complexity is 261.5 chosen-plaintexts and the memory complexity is 292.7 64-bit blocks.

4 Meet-in-the-Middle Attack on 11-Round Midori64
Based on the 10-round attack, we can add one round at the end to mount an 11-round attack on
Midori64.

The precomputation phase is almost the same as the 10-round attack except the tables for online
phase, i.e., we use new tables T i

5 (i = 0, · · · ,3) to replace T i
5 (i = 0,2) of the 10-round attack and

a new table T6 to replace T6 of the 10-round attack. We also build two new tables T i
8 (i = 0,1)

to get w8 from w9 and ru9 for online phase. T i
5 (i = 0, · · · ,3) and T6 are built to use the key-

bridges rk10[1,3,6,9,11,14] = rk−1[1,3,6,9,11,14], (ru8[0,1,6,8,9,14],ru9[0,1,6,8,9,14])⇔
ru10[0,1,6,8,9,14] and (ru7[1,8],ru8[1,8])⇔ ru10[1,8], respectively. T i

5 (i = 0, · · · ,3) connect
Round 0 before the distinguisher and Rounds 9, 10 after the distinguisher, and T6 connects Rounds
8, 9 and 10. When the values in these tables need to be deduced in the online phase, we can look
up these tables with the index of sub-key nibbles or state nibble relations.

We show the detailed process of the precomputation phase in Appendix B.

1. Tables T i
5 (i = 0, · · · ,3) are built to use the relation that rk10[1,3,6,9,11,14] = rk−1[1,3,6,

9,11,14] in the online phase, and Table T i
5 is for Column i. We cannot use these key-

bridges to improve the complexity directly, so T i
5 (i = 0, · · · ,3) are built. After deducing

rk−1[1,3,6,9,11,14] from the first round in the online phase, instead of guessing x10 and
∆z9−∆z9[4,11], we can look up these tables with the index of rk−1[1,3,6,9,11,14]. The
constructions of these tables are shown in Fig. 12.

2. Table T6 is built to use the key relations (ru8[0,1,6,8,9,14],ru9[0,1,6,8,9,14])⇔ ru10[0,1,
6,8,9,14] and (ru7[1,8],ru8[1,8])⇔ ru10[1,8] as shown in Fig. 15. These key-bridges can-
not be used directly and these relations are more complicated than others, so state-bridge tech-
nique is used to improve the complexity. By guessing ∆y8[0,2,3,9,10,11], ∆z9−∆z9[4,11],
x7[9,10] and ∆x7[9], y9− y9[6,14], ru8[0,1,6,8,9,14] and ru7[1,8] can be deduced, then
χ = z9[0,1,6,8,9,14]⊕ ru10[0,1,6,8,9,14]⊕ ru9[0,1,6,8,9,14] and ru10[1,8] can be de-
duced. Store y9− y9[6,14], ru8[0,1,6,8,9,14] and ru7[1,8] in Table T6 with the index of
χ and ru10[1,8]. Since z9[0,1,6,8,9,14]⊕ ru9[0,1,6,8,9,14] = w9[0,1,6,8,9,14], we can
deduce χ ′ = ru10[0,1,6,8,9,14]⊕w9[0,1,6,8,9,14] in the online phase, and look up T6 to
get y9− y9[6,14], ru8[0,1,6,8,9,14] and ru7[1,8] with the index of ru10[1,8] and χ ′. The
construction of Table T6 is shown in Fig. 13.

3. Tables T i
8 (i = 0,1) are built to get w8 from w9 in the decryption direction. The constructions
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∆C[0,1,2,3],
∆z9[0,1,2,3]

∆x10[0,1,2,3],
∆y10[0,1,2,3]

x10[0,1,2,3]

C[1,3]

rk10[1,3] rk−1[1,3]Proposition 1 T 0
5

∆C[4,5,6,7],
∆z9[5,6,7]

∆x10[4,5,6,7],
∆y10[4,5,6,7]

x10[4,5,6,7]

C[6]

rk10[6] rk−1[6]Proposition 1 T 1
5

∆C[8,9,10,11],
∆z9[8,9,10]

∆x10[8,9,10,11],
∆y10[8,9,10,11] x10[8,9,10,11]

C[9,11]

rk10[9,11] rk−1[9,11]Proposition 1 T 2
5

∆C[12,13,14,15],
∆z9[12,13,14,15]

∆x10[12,13,14,15],
∆y10[12,13,14,15] x10[12,13,14,15]

C[14]

rk10[14] rk−1[14]

Proposition 1
T 3

5

�: guessed-nibbles; xi[ j]: content of the table; yi[ j]: index of the table.

Figure 12: Constructions of Tables T i
5 (i = 0, · · · ,3) on the 11-round attack. There are 28, 28, 24,

212 values for each index in each table, respectively.

x7[9,10],∆x7[9] ∆y7[9,10],y7[9,10] ∆x8[0,2,3,9,10,11]

∆y8[0,2,3,9,10,11],
∆z9−∆z9[4,11]

x8[0,2,3,9,10,11],
y8[0,2,3,9,10,11] ru7[1,8] ru10[1,8]

y9− y9[6,14] ru8[0,1,6,8,9,14] ru10[0,1,6,8,9,14],
⊕ru9[0,1,6,8,9,14]

∆x7[9] = ∆x7[10]

Proposition 1

Proposition 1

χ = z9[0,1,6,8,9,14]⊕ ru10[0,1,6,8,9,14]⊕ ru9[0,1,6,8,9,14]

�: guessed-nibbles; xi[ j]: content of the table; yi[ j]: index of the table.

Figure 13: Construction of Table T6 on the 11-round attack. There are 24 values for each index in
average.
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ru9[0,2,5,7,9,12,14]

w9[0,2,5,7,9,12,14]

w8[0,1,6]
T 0

8

ru9[1,3,6,8,10,13,15]

w9[1,3,6,8,10,13,15]

w8[8,9,14]
T 1

8

�: guessed-nibbles; xi[ j]: content of the table; yi[ j]: index of the table.

Figure 14: Constructions of Table T 0
8 and Table T 1

8 on the 11-round attack.

of these tables are shown in Fig. 14.

The online phase (Fig. 15) is different from the 10-round attack at Step 2(c), Step 2(d) and Step
2(e). And since all nibbles of ciphertext are active, we should try all the 276 pairs.

1. At Step 2(c), for each of the deduced rk−1[1,3], compute rk10[1,3]. Look up Table T 0
5 to get

about 28 values x10[0,1,2,3]||∆z9[0,1,2,3] with the index of rk−1[1,3]||∆C[0,1,2,3]||C[1,3].
Deduce rk10[0,2] from the ciphertext. Do the same things to Column i and T i

5 (i = 1,2,3),
and deduce about 232 values rk10||x10||∆z9−∆z9[4,11].

2. At Step 2(d), deduce ru10[0,1,6,8,9,14] from rk10, and deduce w9[0,1,6,8,9,14] from x10.
Then we can get χ ′ = ru10[0,1,6,8,9,14]⊕w9[0,1,6,8,9,14], i.e., χ ′ = z9[0,1,6,8,9,14]⊕
ru9[0,1,6,8,9,14]⊕ ru10[0,1,6,8,9,14]. Look up Table T6 to get about 24 values y9−
y9[6,14]||ru7[1,8]||ru8[0,1,6,8,9,14] with the index of ru10[1,8]||χ ′||∆z9−∆z9[4,11]. De-
duce ru9− ru9[4,11] from y9− y9[6,14] and x10.

3. At Step 2(e), for about 244 values rk−1[1,3,6,9,11,14]||rk10||ru9− ru9[4,11]||ru8[0,1,6,8,
9,14]||ru7[1,8] we have got, decrypt the corresponding ciphertexts we made in (b) and get
(e1

out ⊕ e0
out ,e

2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out) using T7, T 0
8 and T 1

8 . Check whether it lies in the
precomputation table T4. If not, try another one. If so, we check whether ru2[0,9,14]||ru3[1]
matches ru8[0,9,14]||ru7[1]. So the probability for a wrong sub-key to pass this test is
2−24−16 = 2−40.

Complexity analysis. The time complexity of the precomputation phase is the same as the 10-
round attack. In the online phase, we need to perform 244+76 partial encryptions on 33 messages.
The time complexity of this phase is about 2120+5−3 = 2122 11-round Midori64 encryptions, the
data complexity is 224+29 = 253 chosen-plaintexts and the memory complexity is 253 64-bit blocks.
Otherwise, we can divide the whole attack into series of weak-key attacks according to the relations
between the sub-keys in the online phase and the precomputation phase as Li et al. presented in
[LJW14]. Using the relation of ru2[0,9,14]||ru3[1] (precomputation phase) and ru8[0,9,14]||ru7[1]
(online phase), the attack can be divided into 216 weak-key attacks. The memory complexity can
be reduced by a factor of 216. In total, the time complexity of this attack is 2122 11-round Midori64
encryptions, the data complexity is 253 chosen-plaintexts and the memory complexity is 289.2 64-bit
blocks.
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Figure 15: Online phase of the attack on 11-round Midori64.

5 Meet-in-the-Middle Attack on 12-round Midori64
In this section, we first propose a 7-round meet-in-the-middle distinguisher with the differential
enumeration and key-dependent sieve techniques on Midori64. Then we apply this distinguisher to
12-round Midori64 by adding one round at the beginning and four rounds at the end.

5.1 7-Round Distinguisher on Midori64
Since w7[5] = z7[4]⊕ z7[6]⊕ z7[7] and w7[6] = z7[4]⊕ z7[5]⊕ z7[7], we have w7[5]⊕w7[6] =
z7[5]⊕ z7[6]. Let ein = z7[5]⊕ z7[6] and eout = x8[5]⊕ x8[6], then eout = ein⊕ rk7[5]⊕ rk7[6], the
7-round distinguisher on Midori64 is based on the proposition below.

Proposition 7. Let {w0
0,w

1
0, · · · ,w255

0 } be a 2-δ -set where w0[5] and w0[10] are the active nibbles.
Consider the encryption of the first 33 values (w0

0,w
1
0, · · · ,w32

0 ) of the 2-δ -set through 7-round
Midori64, in the case of that a message of the 2-δ -set belongs to a pair which conforms to the
truncated differential trail outlined in Fig. 16(a), then the corresponding 128-bit ordered sequence
(e1

out ⊕ e0
out ,e

2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out) only takes about 2124 values (out of the 2128 theoretical
values).

Proof. As shown in Fig. 16(a), for the encryption of the first 33 values of the 2-δ -set, the output
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Figure 16: The attack on 12-round Midori64. The 7-round distinguisher is shown in (a), the
online phase is shown in (b).

sequence (e1
out ⊕ e0

out ,e
2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out) is determined by the 58 nibble-parameters:

w0[5,10]||x1[5,10]||x2[0,1,2,3]||x3− x3[0,7,9,14]||x4|| (5)
rk4− rk4[7,14]||rk5[1,3,4,9,11,12]||rk6[4,11]

However, if a pair of messages conforms to the truncated differential trail outlined in Fig. 16(a),
the above 58 nibble-parameters are determined by the 41 nibble-parameters:

∆z1[1,2]||x2[0,1,2,3]||x3− x3[0,7,9,14]|| (6)
y5− y5[7,14]||y6[1,3,4,9,11,12]||y7[4,11]||∆z7[5]

Meanwhile, ru2[0,7,9,14]||ru3−ru3[0,4,8,12]||rk4−rk4[7,14]||rk5[1,3,4,9,11,12]||rk6[4,11
] can be determined by the above 41 nibble-parameters. Since ru4[0,7,9,14] can be deduced from
rk4−rk4[7,14], rk3[4,12] can de deduced from ru3[5,6,7,13,14,15] and rk3[3,11] can be deduced
from ru3[1,2,3,9,10,11]||ru5[1,9], according to the key-schedule of Midori64, ru2[0,7,9,14]||rk3[
3,4,11,12]||rk6[4,11]3 and ru4[0,7,9,14]||rk5[3,4,11,12]||rk4[4,11] are affected by the same nib-
bles of the master key. By the key-dependent sieve technique, there are 2124 possible values for the
58 nibble-parameters (5).

So the 58 nibble-parameters (5) are determined by 41 nibble-parameters (6), i.e., the sequence
(e1

out ⊕ e0
out ,e

2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out) can take about 2124 values.

3rk3[3,11] can be deduced from ru3[1,2,3,9,10,11] and rk5[1,9].
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∆z2[0,7,9,14],
∆w4−∆w4[7,14] x3− x3[0,7,9,14],x4

w2[0,7,9,14],z4[0,7,9,14]

w4[4,11]

ru3− ru3[0,4,8,12] rk3[4,12]

ς1 = w2[0,7,9,14]⊕ z4[0,7,9,14]
ς2 = rk3[4,12]||(ru3[1,9]⊕ ru3[3,11])

Proposition 3

�: guessed-nibbles; xi[ j]: content of the table; yi[ j]: index of the table.

Figure 17: Construction of Table T1 on the 12-round attack. There are 28 values for each index in
average.

5.2 12-Round Attack on Midori64
The attack is made up of two phases: precomputation phase and online phase.
Precomputation phase: In the precomputation phase, we need to build a table T4 that contains
all the sequences (e1

out ⊕ e0
out ,e

2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out) described in Proposition 7. To use the
key-dependent sieve technique to save some time, we need to build three more tables T1, T2 and T3.
These tables are built to perform the inbound phases from ∆y1 to ∆x3 and ∆z7 to ∆y4, then perform
the outbound phases to deduce the values step by step. T1 is also built to use the key relation
of ru2[0,7,9,14]||rk3[3,4,11,12]||rk6[4,11] and ru4[0,7,9,14]||rk5[3,4,11,12]||rk4[4,11]. Some
nibbles can be stored in the table T1 with the index of a linear relation concerning ru2[0,7,9,14]||rk3[
3,4,11,12]||rk6[4,11]. After building T2 and T3 and combining all the values in these two tables to
construct T4, the index of T1, i.e. a linear relation concerning ru4[0,7,9,14]||rk5[3,4,11,12]||rk4[4,
11], can be deduced, then the values in T1 can be deduced. The precomputation table T4 can be
deduced with the help of T1, T2 and T3.

We show the detailed process of the precomputation phase in Appendix C.

1. Table T1 is built to perform the inbound phases from ∆z2 to ∆x3 and ∆w4 to ∆y4, then
perform the outbound phases to get the values of x3 and y4 using Proposition 3. Ta-
ble T1 is also built to use the key relation that ru2[0,7,9,14]||rk3[3,4,11,12]||rk6[4,11]
and ru4[0,7,9,14]||rk5[3,4,11,12]||rk4[4,11] are affected by the same nibbles of the mas-
ter key. The state-bridge technique is used to improve the complexity. By guessing
ru3− ru3[0,4,8,12], ∆z2[0,7,9,14] and ∆w4−∆w4[7,14], x3− x3[0,7,9,14], x4, rk3[4,12],
w2[0,7,
9,14] and z4[0,7,9,14] can be deduced, then ς1 = w2[0,7,9,14]⊕ z4[0,7,9,14] and ς2 =
rk3[4,12]||(ru3[1,9]⊕ ru3[3,11]) can be deduced. Store x3− x3[0,7,9,14] and x4 in Table
T1 with the index of ς1 and ς2. Let ς ′1 = w2[0,7,9,14]⊕ z4[0,7,9,14] = z2[0,7,9,14]⊕
w4[0,7,9,14] and we can deduce ς2 from T2, so we can look up T1 to get x3− x3[0,7,9,14]
and x4 with the index of ς ′1 and ς2. The construction of Table T1 is shown in Fig. 17.

2. Table T2 and Table T3 are built to perform the inbound phases from ∆z7 to ∆w4 and ∆z1 to
∆y2, respectively. For each value of T2 and T3, we can get the corresponding index of Table
T1. Look up T1 to get all the 58 nibble-parameters of (5) in Proposition 7, then compute
the sequence (e1

out ⊕ e0
out ,e

2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out), and store it along with a 60-bit value
ru4[0,1,2,7,8,9,10,11,14]||ru3[0,1,7,8,9,15] in a table T4. The constructions of these
tables are shown in Fig. 18.

The online phase and the constructions of Tables T i
5 (i = 0, · · · ,3), T6, T7, T 0

8 and T 1
8 are almost

the same as the 11-round attack except the positions of nibbles. The process of this phase is shown
in Fig. 16(b).
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∆z7[5] ∆z7[6]

∆x7[4,11] x7[4,11] rk6[4,11]

∆x6[1,3,4,9,11,12] x6[1,3,4,9,11,12] rk5[1,3,4,9,11,12]

∆w4−∆w4[7,14] x5− x5[7,14]

∆z7[6] = ∆z7[5]

Proposition 1

T2Proposition 1

Propositio
n 1

∆z1[1,2],∆y2[0,1,2,3] y2[0,1,2,3] T3

Table T2

rk5[1,3,4,9,11,12] ς ′2 = rk3[4,12]||
(ru3[1,9]⊕ ru3[3,11])

rk5[4,11],x5[4,11] w4[4,11]

x5− x5[7,14] ς ′1 = z2[0,7,9,14]
⊕w4[0,7,9,14] x3− x3[0,7,9,14]||x4

rk4− rk4[7,14],rk1[0,1,2,3],
rk0[5,10],x1[5,10],w0[5,10]

Table T3

y2[0,1,2,3]

∆z2[0,7,9,14]

look up T1

get the 58 nibble-parameters of (5)

T4

�: guessed-nibbles; xi[ j]: content of the table; yi[ j]: index of the table.

Figure 18: Constructions of Table T2, Table T3 and Table T4 on the 12-round attack.
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Therefore, the time complexity of the precomputation phase is 2124+5−2 = 2127 12-round
Midori64 encryptions, the memory complexity is 2124+7.2−6 = 2125.2 64-bit blocks. The time
complexity of the online phase is about 2120+5−3 = 2122 12-round Midori64 encryptions, the data
complexity is 224+29 = 253 chosen-plaintexts and the memory complexity is 253 64-bit blocks. By
data/time/memory tradeoff and weak-key attacks, the time complexity of this attack is about 2125.5

12-round Midori64 encryptions, the data complexity is 255.5 chosen-plaintexts and the memory
complexity is 2106 64-bit blocks4.

6 Conclusions and Further Works
In this paper, we discussed the security of Midori64 against meet-in-the-middle attacks. Using the
differential enumeration, key-bridging and key-dependent sieve techniques, we proposed a 6-round
meet-in-the-middle distinguisher on Midori64. Based on this distinguisher, we added one round at
the beginning and three rounds at the end to present a 10-round attack with time complexity of 299.5

10-round Midori64 encryptions, data complexity of 261.5 chosen-plaintexts and memory complexity
of 292.7 64-bit blocks. After that, by adding one round at the end, we got an 11-round attack with
time complexity of 2122 11-round Midori64 encryptions, data complexity of 253 chosen-plaintexts
and memory complexity of 289.2 64-bit blocks. Finally, with a 7-round distinguisher, we got an
attack on 12-round Midori64 with time complexity of 2125.5 12-round Midori64 encryptions, data
complexity of 255.5 chosen-plaintexts and memory complexity of 2106 64-bit blocks. There are
many further works possible: the way to apply this kind of attacks to Midori128, the way to
get better attack complexity with meet-in-the-middle method and the security level against other
cryptanalytic methods (e.g., impossible differential and zero-correlation linear) for Midori.
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Appendices
In this section, we give the supplementary material about the detailed processes of the precomputa-
tion phases on 10-round, 11-round and 12-round Midori64.

A Precomputation Phase of 10-Round Attack
Precomputation phase: In the precomputation phase, we need to build a table that contains all
the sequence (e1

out ⊕ e0
out ,e

2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out) described in Proposition 6.

1. Guess y6[12]||y5[2,8,13], and compute x6[12] and w5[12]. Deduce rk5[12] from x6[12]||w5[12].
Store y5[2,8,13] in a table T1 with the index of rk5[12]||y6[12]. There are about 28 values of
y5[2,8,13] for each index in average.

2. For each 48-bit ru3− ru3[0,4,8,12], do the following steps:

(a) Guess ∆z6[9]. Since ∆w6[8] = ∆z6[11] = 0, we can deduce ∆z6[10]. Deduce rk5[12]
from ru3[13,14,15]. Guess y6[3,12]||y5[0,5,10], look up Table T1 to get about 28 val-
ues of y5[2,8,13] with the index of rk5[12]||y6[12]. Then compute x5[0,2,5,8,10,13]||
∆x5[0,2,5,8,10,13]. Deduce rk5[3] from y6[3] and y5[0,5,10], then deduce rk1[0,1,2,
3] from rk5[3] and ru3[1,2,3]. Store rk1[0,1,2,3]||x5[0,2,5,8,10,13] in a table T2 with
the index of ∆x5[0,2,5,8,10,13]. There are about 28 values for each index in average.

(b) For all 240 values of ∆y2[0,1,2,3] and ∆x5[0,2,5,8,10,13], deduce ∆x3 and ∆y4. Ac-
cording to Proposition 3, we can get x3−x3[0,7,9,14] and y4−y4[4,13]. Then compute
w4[0,2,5,8,10,13], and store x3− x3[0,7,9,14]||x4− x4[4,13]||w4[0,2,5,8,10,13]||
∆x5[0,2,5,8,10,13] in a table T3 with the index of ∆y2[0,1,2,3]. There are about 224

values for each index in average.

(c) For each ∆z1[1,2]||x2[0,1,2,3], do the following sub-steps:

i. Deduce ∆y2[0,1,2,3] from ∆z1[1,2] and x2[0,1,2,3]. Then look up Table T3 to get
about 224 values x3[1,2,3,4,5,6,8,10,11,12,13,15]||x4− x4[4,13]||w4[0,2,5,8,
10,13]||∆x5[0,2,5,8,10,13]. For each of these values, look up Table T2 to get
about 28 values rk1[0,1,2,3]||x5[0,2,5,8,10,13]. Deduce rk4[0,2,5,8,10,13]
from x5[0,2,5,8,10,13] and w4[0,2,5,8,10,13], then deduce rk0[5,10] from rk4[5,
10]. Compute x1[5,10] from rk1[0,1,2,3] and x2[0,1,2,3], then compute w0[5,10]
from x1[5,10] and rk0[5,10]. Therefore, we get the 42 nibble-parameters (3).

ii. Compute the sequence (e1
out ⊕ e0

out ,e
2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out), and store them
along with a 16-bit value ru2[0,9,14]||ru3[1] in a table T4.

3. We build two tables T 0
5 and T 2

5 for online phase. As shown in Fig. 6(b), for Column 0,
guess ∆C[0,1,2,3]||∆z8[0,1], and deduce ∆x9[0,1,2,3] and ∆y9[0,1,2,3]. By Proposition
1, we can deduce y9[0,1,2,3]. Guess C[1,3], rk9[1,3] can be deduced. One can deduce
rk−1[1,3] from rk9[1,3], and store x9[0,1,2,3]||∆z8[0,1] in a table T 0

5 with the index of
rk−1[1,3]||∆C[0,1,2,3]||C[1,3]. There is one value for each index in average. Similarly, we
can get a table T 2

5 for Column 2.

4. We build a table T6 for online phase. Guess x7[9,10]||∆x7[9], one can deduce ∆y7[9,10]
and y7[9,10] since ∆x7[9] = ∆x7[10]. Then ∆x8[0,2,3,9,10,11] can be deduced. Guess
∆y8[0,2,3,9,10,11], then x8[0,2,3,9,10,11] and y8[0,2,3,9,10,11] can be deduced by
Proposition 1. Deduce ru7[1,8] from x7[9,10] and x8[0,2,3,9,10,11], and deduce ru8[1,8]⊕
ru9[1,8] from ru7[1,8]. Let χ denote z8[1,8]⊕ru8[1,8]⊕ru9[1,8]. Store y8[0,2,3,9,10,11]||
ru7[1,8] in a table T6 with the index of χ||∆z8[0,1,6,8,9,14]. There are 24 values for each
index in average.
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5. We build another table T7 for online phase. For all 36-bit sub-keys ru7[1,8]||ru8[0,1,6,8,9,
14], decrypt all 24-bit values w8[0,1,6,8,9,14] and obtain the values eout . Store eout with
the index of ru7[1,8]||ru8[0,1,6,8,9,14]||w8[0,1,6,8,9,14] in a table T7.

B Precomputation Phase of 11-Round Attack
The precomputation phase is almost the same as the 10-round attack except the following steps.

1. At Step 3, we need to build four tables T i
5 (i = 0, · · · ,3). As shown in Fig. 15, for Column 0,

guess ∆C[0,1,2,3]||∆z9[0,1,2,3], and deduce ∆x10[0,1,2,3] and ∆y10[0,1,2,3]. By Proposi-
tion 1, we can deduce y10[0,1,2,3]. Guess C[1,3], rk10[1,3] can be deduced. One can deduce
rk−1[1,3] from rk10[1,3], and store x10[0,1,2,3]||∆z9[0,1,2,3] in a table T 0

5 with the index
of rk−1[1,3]||∆C[0,1,2,3]||C[1,3]. There are 28 values for each index in average. Similarly,
we can get one table T i

5 for Column i (i = 1, · · · ,3), and there are 28, 28, 24 and 212 values
for each index in T i

5 (i = 0, · · · ,3), respectively.

2. At Step 4, guess x7[9,10]||∆x7[9], one can deduce ∆y7[9,10] and y7[9,10] since ∆x7[9] =
∆x7[10]. Then ∆x8[0,2,3,9,10,11] can be deduced. Guess ∆y8[0,2,3,9,10,11]||∆y9 −
∆y9[6,14], then x8[0,2,3,9,10,11] and y8[0,2,3,9,10,11] can be deduced by Proposition 1,
and x9− x9[6,14] and y9− y9[6,14] can be also deduced by Proposition 1. Deduce ru7[1,8]
from x7[9,10] and x8[0,2,3,9,10,11], and deduce ru8[0,1,6,8,9,14] from y8[0,2,3,9,10,11
] and x9−x9[6,14]. Deduce ru10[1,8] from ru7[1,8] and ru8[1,8], and deduce ru10[0,1,6,8,9,
14]⊕ru9[0,1,6,8,9,14] from ru8[0,1,6,8,9,14]. Let χ denote z9[0,1,6,8,9,14]⊕ru10[0,1,
6,8,9,14]⊕ ru9[0,1,6,8,9,14]. Store y9− y9[6,14]||ru7[1,8]||ru8[0,1,6,8,9,14] in a table
T6 with the index of ru10[1,8]||χ||∆z9−∆z9[4,11]. There are 24 values for each index in
average. We can also reduce the size of T6 by dividing it into small tables.

3. Besides, we need to build two more tables for online phase. For all 28-bit sub-keys ru9[0,2,
5,7,9,12,14], decrypt all 28-bit values w9[0,2,5,7,9,12,14] and obtain w8[0,1,6]. Store
w8[0,1,6] with the index of ru9[0,2,5,7,9,12,14]||w9[0,2,5,7,9,12,14] in a table T 0

8 . For
all 28-bit sub-keys ru9[1,3,6,8,10,13,15], decrypt all 28-bit values w9[1,3,6,8,10,13,15]
and obtain w8[8,9,14]. Store w8[8,9,14] with the index of ru9[1,3,6,8,10,13,15]||w9[1,3,
6,8,10,13,15] in a table T 1

8 .

C Precomputation Phase of 12-Round Attack
Precomputation phase: In the precomputation phase, we need to build a table that contains all
the sequence (e1

out ⊕ e0
out ,e

2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out) described in Proposition 7.

1. For each 120-bit value ∆z2[0,7,9,14]||∆w4−∆w4[7,14]||ru3− ru3[0,4,8,12], deduce x3−
x3[0,7,9,14]||y4 by Proposition 3. Compute w2[0,7,9,14] and z4[0,7,9,14], and let ς1 =
w2[0,7,9,14]⊕ z4[0,7,9,14]. Deduce rk3[4,12] from ru3[5,6,7,13,14,15], and let ς2 =
rk3[4,12]||(ru3[1,9]⊕ ru3[3,11]). Store x3− x3[0,7,9,14]||x4||w4−w4[7,14] in a Table T1
with the index of w4[4,11]||ς1||ς2||∆z2[0,7,9,14]||∆w4−∆w4[7,14]. There are 28 values for
each index in average.

2. For each 92-bit value ∆z7[5]||∆x7[4,11]||∆x6[1,3,4,9,11,12]||∆w4 − ∆w4[7,14], deduce
∆z7[6] since ∆z7[6] = ∆z7[5], then deduce x7[4,11], x6[1,3,4,9,11,12] and x5− x5[7,14] by
Proposition 1. Deduce rk6[4,11] and rk5[1,3,4,9,11,12]. Store x5−x5[7,14]||rk6[4,11]||rk5[
1,3,4,9,11,12]||∆w4−∆w4[7,14] in a Table T2.

3. For each 24-bit value ∆z1[1,2]||∆y2[0,1,2,3], deduce y2[0,1,2,3]. Store y2[0,1,2,3]||∆z2[0,7,
9,14] in a Table T3.
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4. For each value of Table T2 and Table T3, do the following steps:

(a) Compute w4[4,11] from rk5[4,11] and x5[4,11], and compute ς ′1 = z2[0,7,9,14]⊕
w4[0,7,9,14] from y2[0,1,2,3] and x5−x5[7,14]5. Deduce ς ′2 = rk3[4,12]||(ru3[1,9]⊕
ru3[3,11]) from rk5[1,3,4,9,11,12]. Look up Table T1 to get about 28 values of x3−
x3[0,7,9,14]||x4||w4−w4[7,14] with the index of w4[4,11]||ς ′1||ς ′2||∆z2[0,7,9,14]||∆w4
−∆w4[7,14]. Deduce rk4−rk4[7,14], rk1[0,1,2,3] and rk0[5,10], then deduce x1[5,10]
and w0[5,10]. Therefore, we get the 58 nibble-parameters (5).

(b) Compute the sequence (e1
out ⊕ e0

out ,e
2
out ⊕ e0

out , · · · ,e32
out ⊕ e0

out), and store them along
with a 60-bit value ru4[0,1,2,7,8,9,10,11,14]||ru3[0,1,7,8,9,15] in a Table T4.

5ς ′1 is different from ς1 by a constant.


	Introduction
	Preliminaries
	Description of Midori64
	Definitions and Propositions
	Reviews of Former Works
	Basic Attack Model
	Key Relations to Improve the Complexity

	Meet-in-the-Middle Attack on 10-Round Midori64
	6-Round Distinguisher on Midori64
	Attack on 10-Round Midori64

	Meet-in-the-Middle Attack on 11-Round Midori64
	Meet-in-the-Middle Attack on 12-round Midori64
	7-Round Distinguisher on Midori64
	12-Round Attack on Midori64

	Conclusions and Further Works
	Precomputation Phase of 10-Round Attack
	Precomputation Phase of 11-Round Attack
	Precomputation Phase of 12-Round Attack

