Cryptanalysis of GOST2

Tomer Ashur, Achiya Bar-On, Orr Dunkelman

February 22, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

\blacktriangleright A brief description of GOST and GOST2

990

3 1 3

< □ > < A >

- \blacktriangleright A brief description of GOST and GOST2
- ▶ A weak-key reflection attack on GOST2

< 円

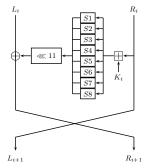
- ▶ A brief description of GOST and GOST2
- ▶ A weak-key reflection attack on GOST2
- ▶ An impossible reflection attack on GOST2

- ▶ A brief description of GOST and GOST2
- \blacktriangleright A weak-key reflection attack on GOST2
- ▶ An impossible reflection attack on GOST2
- ▶ A fixed point attack on GOST2

▶ Designed by the Soviet Union

(日) (四) (三) (三) (三)

э


- Designed by the Soviet Union
- Balanced Feistel structure; 64-bit block; 256-bit key; 8 S-boxes

< 47 ▶

- - E + - E +

- ▶ Designed by the Soviet Union
- ► Balanced Feistel structure; 64-bit block; 256-bit key; 8 S-boxes
- ▶ Keys are injected in ascending cyclic order in rounds 0-23, and in a descending order in rounds 24-32.

GOST's Round Function

990

E

Round	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Subkey (GOST)	K^0	K^1	K^2	K^3	K^4	K^5	K^6	K^7	K^0	K^1	K^2	K^3	K^4	K^5	K^{6}	K^7
Round	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Subkey (GOST)	K^0	K^1	K^2	K^3	K^4	K^5	K^{6}	K^7	K^7	K^6	K^5	K^4	K^3	K^2	K^1	K^0

E

(日) (四) (三) (三) (三)

▶ Weak-key reflection attack [Kar08]

990

E

(日) (四) (三) (三) (三)

- ▶ Weak-key reflection attack [Kar08]
- ▶ Reflection attack [Iso11]

- 4 🗇 ▶

< Ξ > < Ξ >

э

- ▶ Weak-key reflection attack [Kar08]
- ▶ Reflection attack [Iso11]
- ▶ Fixed point [DDS12]

< 17 ▶

Round	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Subkey (GOST2)	K^0	K^1	K^2	K^3	K^4	K^5	K^{6}	K^7	K^3	K^4	K^5	K^6	K^7	K^0	K^1	K^2
Round	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Subkey (GOST2)	K^5	K^{6}	K^7	K^0	K^1	K^2	K^3	K^4	K^6	K^5	K^4	K^3	K^2	K^1	K^0	K^7

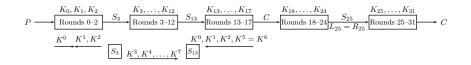
E

(日) (四) (三) (三) (三)

A Weak-key Reflection Attack - Preliminaries

▶ In a Feistel structure, decryption is the same procedure as encryption with the left and right sides exchanged and a different key order

- ▶ In a Feistel structure, decryption is the same procedure as encryption with the left and right sides exchanged and a different key order
- ► When the left and the right sides are the same, only the keys matter

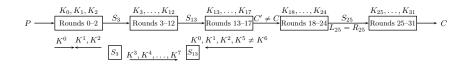

- ▶ In a Feistel structure, decryption is the same procedure as encryption with the left and right sides exchanged and a different key order
- ► When the left and the right sides are the same, only the keys matter
- If S is a reflection point, then for any key $R_k(S) = R_k^{-1}(S)$

A Weak-key Reflection Attack - Key Order

Round	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Subkey (GOST2)	K^0	K^1	K^2	K^3	K^4	K^5	K^{6}	K^7	K^3	K^4	K^5	K^{6}	K^7	K^0	K^1	K^2
Round	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Subkey (GOST2)	K^5	K^{6}	K^7	K^0	K^1	K^2	K^3	K^4	$K^{6} =$	\mathbf{K}^{5}	K^4	K^3	K^2	K^1	K^0	K^7

E

A Weak-key Reflection Attack - Description



・ロト ・ 同ト ・ ヨト ・ ヨト …

E

A Weak-key Reflection Attack - Complexity

- Size of weak-key class: 2^{224}
- Time complexity: 2^{192}
- Data complexity: 2^{32} known plaintexts
- Memory complexity: $2^{68.58}$ bytes

E

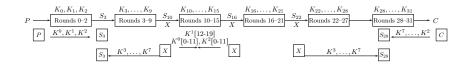
An Impossible Reflection Attack - Complexity

- Number of impossible keys: $(2e)^{-1}$
- Time complexity: $2^{254.34}$
- Data complexity: 2^{63} chosen plaintexts
- Memory complexity: $2^{166.58}$ bytes

• A fixed point is a state S such that S = F(S).

- - E + - E +

< 47 ►


- A fixed point is a state S such that S = F(S).
- The probability to observe a fixed point is 2^{-64}

A Fixed-point Attack - Key Ordering

Round	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Subkey (GOST2)	K^0	K^1	K^2	K^3	K^4	K^5	K^6	K^7	K^3	K^4	K^5	K^6	K^7	K^0	K^1	K^2
Round	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Subkey (GOST2)	K^5	K^{6}	K^7	K^0	K^1	K^2	K^3	K^4	K^6	K^5	K^4	K^3	K^2	K^1	K^0	K^7

(日) (四) (三) (三) (三)

э

1

- Time complexity: 2^{237}
- Data complexity: 2^{64} known plaintexts
- Memory complexity: $2^{138.15}$ bytes

▶ Weak-key reflection attack

990

3 1 3

< □ > < A >

- Weak-key reflection attack
- ▶ Impossible reflection attack

Sac

< 円

- ▶ Weak-key reflection attack
- ▶ Impossible reflection attack
- ▶ Fixed point attack

< 円

- ▶ Weak-key reflection attack
- ▶ Impossible reflection attack
- ▶ Fixed point attack
- ▶ Related-key differential characteristics

Thank you

< □ > < A >

< E.

E

F 4

E

DQC