

Conditional Cube Attack on Round-Reduced Ascon

Zheng Li¹, Xiaoyang Dong^{1,2}, Xiaoyun Wang^{1,2}

 1 Shandong University; 2 Tsinghua University

March 7, 2017

(日) (國) (필) (필) (필) 표

Outline

1 ASCON and Its Cryptanalysis Results

Z Li, X Dong, X Wang ()

Conditional Cube Attack on ASCON

3 March 7, 2017 2 / 20

・ロン ・四 ・ ・ ヨン ・ ヨン

ASCON

- designed by Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer
- one of the 16 survivors of 3rd CAESAR competition
- \bullet specification of $\ensuremath{\operatorname{Ascon}}$
 - permutation (12-round)
 - sponge-like construction
 - Ascon-128, Ascon-128a
- \bullet cryptanalysis of $\ensuremath{\operatorname{Ascon}}$

Туре	Attacked Rounds	Time	Source
Differential-Linear	4/12	2^{18}	
Differential-Liffear	5/12	2^{36}	[ASCON designers
	5/12	2^{35}	at CT-RSA 2015]
Cube-like Method	6/12	2^{66}	
	5/12	2^{24}	
	6/12	2^{40}	Our result
	7/12	$2^{103.9}$	

Z Li, X Dong, X Wang ()

The Encryption of $\ensuremath{\operatorname{Ascon}}$

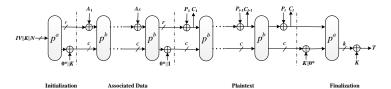
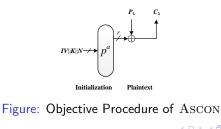


Figure: The Encryption of ASCON

Our target(omitted the associated data phase)



Z Li, X Dong, X Wang ()

Conditional Cube Attack on ASCON

March 7, 2017 4 / 20

The Permutation of $\ensuremath{\operatorname{Ascon}}\xspace$'s Initialization

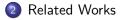
state: 320-bit=5×64-bit

Figure: operating state

permutation: 12 iterations of round function

- round function
 - addition of constants
 - substitution layer (S-box)
 - linear diffusion layer

Outline



イロト イポト イヨト イヨト

Cube Attack [Dinur and Shamir]

Theorem 1

$$f(k_0, ..., k_{n-1}, v_0, ..., v_{m-1}) = T \cdot P + Q(k_0, ..., k_{n-1}, v_0, ..., v_{m-1})$$
(1)

T is a monomial which is actually the product of certain public variables, for example $(v_0, ..., v_{s-1})$, $1 \le s \le m$, denoted as cube C_T . None of the monomials in Q is divisible by T. P is called superpoly, which does not contain any variables of C_T . Then the sum of f over all values of the cube C_T (cube sum) is

$$\sum_{v'=(v_0,\dots,v_{s-1})\in C_T} f(k_0,\dots,k_{n-1},v',v_s,\dots,v_{m-1}) = P$$
(2)

where C_T contains all binary vectors of the length s, v_s , ..., v_{m-1} are fixed to constant.

Z Li, X Dong, X Wang ()

Conditional Cube Attack [Huang et al.]

Theorem 2

(simplified) For (n + 2)-round Keccak sponge function (n > 0), if there is one conditional cube variable v_0 , and $q = 2^{n+1} - 1$ ordinary cube variables, $u_0, ..., u_{q-1}$, the term $v_0u_0...u_{q-1}$ will not appear in the output polynomials of (n + 2)-round Keccak sponge function.

Outline

2 Related Works

Z Li, X Dong, X Wang ()

Conditional Cube Attack on ASCON

March 7, 2017 9 / 20

3

<ロ> (日) (日) (日) (日) (日)

Attack on 5-round Ascon

An Example to Determine $k_0(0) = 1$, i.e. $g = k_0(0)$. Select a set of 16 cube variables $\{v_0, v_1...v_{15}\}$ satisfying:

- In the 1st round, any two of $\{v_0, v_1...v_{15}\}$ do not multiply.
- In the 2nd round: if $k_0(0)=0$, v_0 doesn't multiply with any of $\{v_1, v_2...v_{15}\}$; if $k_0(0)=1$, v_0 multiplies with some of $\{v_1, v_2...v_{15}\}$.

Thus,

- If $k_0(0)=0$, $v_0v_1...v_{15}$ will not appear.
- If $k_0(0)=1$, $v_0v_1...v_{15}$ will appear with high probability.

Therefore, we conclude the cube tester: If at least one nonzero cube sum occurs, we will determine that $k_0(0) = 1$. It is guaranteed to be right. With similar testers for $k_0(t) = 0/1$, $k_0(t) + k_1(t) = 0/1$ with $t \in \{0, 1, ..., 63\}$, we can recover the whole key.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Attack on 6-round Ascon

Similar to 5-round attack, 32 variables are needed instead. An Example to Determine $k_0(0) = 1$, i.e. $g = k_0(0)$.

Select a set of 32 cube variables $\{v_0, v_1...v_{31}\}$ satisfying:

- Any two of $\{v_0, v_1...v_{31}\}$ do not multiply in the S-box operation of the first round.
- If $k_0(0)=0$, v_0 doesn't multiply with any of $\{v_1, v_2...v_{31}\}$ in the S-box operation of the second round.
- If $k_0(0)=1$, v_0 multiplies with some of $\{v_1, v_2...v_{31}\}$ in the S-box operation of the second round.

Our works

Properties of S-box

$$y_0 = x_4x_1 + x_3 + x_2x_1 + x_2 + x_1x_0 + x_1 + x_0,$$

$$y_1 = x_4 + x_3x_2 + x_3x_1 + x_3 + x_2x_1 + x_2 + x_1 + x_0,$$

$$y_2 = x_4x_3 + x_4 + x_2 + x_1 + 1,$$

$$y_3 = x_4x_0 + x_4 + x_3x_0 + x_3 + x_2 + x_1 + x_0,$$

$$y_4 = x_4x_1 + x_4 + x_3 + x_1x_0 + x_1.$$

- Among the 5-bit output of the S-box, x_4x_3 only exists in y_2 .
- x_2 will only multiply with x_1 and x_3 . Especially, quadratic terms containing x_2 exist only in y_0 with x_2x_1 and y_1 with $x_3x_2 + x_2x_1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Attack on 7-round Ascon

Main idea

divide the full key space into n subsets $\{Key_1, Key_2...Key_n\}$, their corresponding cube sets are $\{Cube_1, Cube_2...Cube_n\}$. If the cube sums over $Cube_i$ are zero, we determine $rightkey \in Key_i$.

Notations

 $\begin{array}{ll}S_i & \mbox{the intermediate state after }i\mbox{-round},\\ & \mbox{e.g. }S_{0.5}\mbox{ means the intermediate state after S-box in 1st round},\\ & \mbox{esp. }S_0\mbox{ means the initial state of }ASCON\\ S_i[j] & \mbox{the }j\mbox{th word of }S_i,\ 0\leqslant j\leqslant 4\\ S_i[j][k] & \mbox{the }k\mbox{th bit of }S_i[j],\ 0\leqslant j\leqslant 4,\ 0\leqslant k\leqslant 63\end{array}$

- 本間下 本臣下 本臣下 三臣

original cube set: set $S_0[3][j] = v_j$ for $j = 0, 1 \dots 63$ and $S_0[4][i] = v_{64}$ where i could take a value from $\{0, 1 \dots 63\}$.

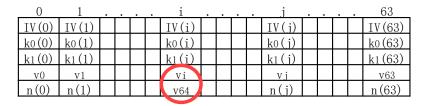


Figure: Notations for State Bits

After the 1st round, v_iv_{64} is the unique quadratic term. In detail, after the S-box in the 1st round, v_iv_{64} just appears in $S_{0.5}[2][i]$; after the linear diffusion layer in the 1st round, ANF of $S_1[2][i]$, $S_1[2][i+1]$ and $S_1[2][i+6]$ contain v_iv_{64} .

Z Li, X Dong, X Wang ()

Conditional Cube Attack on ASCON

March 7, 2017 14 / 20

All the possible cubic terms in $S_{1.5}$ and their corresponding coefficients are listed below.

index of S-box	cubic terms	corresponding coefficients
		(partial divisors)
i+1	$v_i v_{64} v_{i+1}$	$k_0(i+1) + k_1(i+1) + 1$
		$k_0(i+1) + k_1(i+1) + IV(i+1)$
	$v_i v_{64} v_{i+4}$	$k_0(i+4) + k_1(i+4) + 1$
	$v_i v_{64} v_{i+26}$	$k_0(i+26) + k_1(i+26) + 1$
	$v_i v_{64} v_{i+48}$	IV(i+48)+1
	$v_i v_{64} v_{i+55}$	IV(i+55)+1
i	$v_i v_{64} v_{i+3}$	$k_0(i+3) + k_1(i+3) + 1$
	$v_i v_{64} v_{i+25}$	$k_0(i+25) + k_1(i+25) + 1$
	$v_i v_{64} v_{i+47}$	IV(i+47)+1
	$v_i v_{64} v_{i+54}$	IV(i+54)+1
i+6	$v_i v_{64} v_{i+6}$	$k_0(i+6) + k_1(i+6) + 1$
		$k_0(i+6) + k_1(i+6) + IV(i+6)$
	$v_i v_{64} v_{i+9}$	$k_0(i+9) + k_1(i+9) + 1$
	$v_i v_{64} v_{i+31}$	$k_0(i+31) + k_1(i+31) + 1$
	$v_i v_{64} v_{i+53}$	IV(i+53)+1
	$v_i v_{64} v_{i+61}$	IV(i+60)+1

Z Li, X Dong, X Wang ()

March 7, 2017 15 / 20

3

index of S-box	cubic terms	auxiliary cube variables	corresponding coefficients (<i>partial divisors</i>)
i+1	$v_i v_{64} v_{i+1}$	$S_0[4][i+1] = v_{i+1}$	$k_0(i+1) + k_1(i+1)$
	$v_i v_{64} v_{i+4}$		$k_0(i+4) + k_1(i+4) + 1$
	$v_i v_{64} v_{i+26}$		$k_0(i+26) + k_1(i+26) + 1$
	$v_i v_{64} v_{i+48}$	$S_0[4][i+48] = v_{i+48}$	0
	$v_i v_{64} v_{i+55}$	$S_0[4][i+55] = v_{i+55}$	0
i	$v_i v_{64} v_{i+3}$		$k_0(i+3) + k_1(i+3) + 1$
	$v_i v_{64} v_{i+25}$		$k_0(i+25) + k_1(i+25) + 1$
	$v_i v_{64} v_{i+47}$	$S_0[4][i+47] = v_{i+47}$	0
	$v_i v_{64} v_{i+54}$	$S_0[4][i+54] = v_{i+54}$	0
i+6	$v_i v_{64} v_{i+6}$	$S_0[4][i+6] = v_{i+6}$	$k_0(i+6) + k_1(i+6)$
	$v_i v_{64} v_{i+9}$		$k_0(i+9) + k_1(i+9) + 1$
	$v_i v_{64} v_{i+31}$		$k_0(i+31) + k_1(i+31) + 1$
	$v_i v_{64} v_{i+53}$	$S_0[4][i+53] = v_{i+53}$	0
	$v_i v_{64} v_{i+61}$	$S_0[4][i+60] = v_{i+60}$	0

Table: Coefficients of Cubic Terms with Auxiliary Cube Variables

Z Li, X Dong, X Wang ()

3

(日) (同) (三) (三)

	cubic	control cube	corresponding
	terms	variable	coefficients
i+1	$v_i v_{64} v_{i+1}$		$k_0(i+1) + k_1(i+1)$
	$v_i v_{64} v_{i+4}$	$S_0[4][i+4] = v_{i+4}$	$k_0(i+4) + k_1(i+4)$
	$v_i v_{64} v_{i+26}$		$k_0(i+26) + k_1(i+26) + 1$
	$v_i v_{64} v_{i+48}$		0
	$v_i v_{64} v_{i+55}$		0
i	$v_i v_{64} v_{i+3}$		$k_0(i+3) + k_1(i+3) + 1$
	$v_i v_{64} v_{i+25}$		$k_0(i+25) + k_1(i+25) + 1$
	$v_i v_{64} v_{i+47}$		0
	$v_i v_{64} v_{i+54}$		0
i+6	$v_i v_{64} v_{i+6}$		$k_0(i+6) + k_1(i+6)$
	$v_i v_{64} v_{i+9}$		$k_0(i+9) + k_1(i+9) + 1$
	$v_i v_{64} v_{i+31}$		$k_0(i+31) + k_1(i+31) + 1$
	$v_i v_{64} v_{i+53}$		0
	$v_i v_{64} v_{i+61}$		0

Table: Coefficients of Cubic Terms with Auxiliary and Control Cube Variable

Z Li, X Dong, X Wang ()

3

< ロ > < 同 > < 三 > < 三

$$\begin{cases} k_0(i+1) + k_1(i+1) = 0 \\ k_0(i+4) + k_1(i+4) = a \\ k_0(i+26) + k_1(i+26) = b \\ k_0(i+3) + k_1(i+3) = c \\ k_0(i+25) + k_1(i+25) = d \\ k_0(i+6) + k_1(i+6) = 0 \\ k_0(i+9) + k_1(i+9) = e \\ k_0(i+31) + k_1(i+31) = f \end{cases}$$
(3)

Similar control cube variable can change the corresponding coefficients. Therefore, there are $2^6 = 64$ kinds of control cube variable combinations corresponding to 64 groups of coefficients respectively. In Eq. (3), where $(a, b, c, d, e, f) \in F_2^6$ varies according to different control cube variable combination.

Z Li, X Dong, X Wang ()

$$\begin{pmatrix}
k_0(i+1) + k_1(i+1) = 0 \\
k_0(i+4) + k_1(i+4) = a \\
k_0(i+26) + k_1(i+26) = b \\
k_0(i+3) + k_1(i+3) = c \\
k_0(i+25) + k_1(i+25) = d \\
k_0(i+6) + k_1(i+6) = 0 \\
k_0(i+9) + k_1(i+9) = e \\
k_0(i+31) + k_1(i+31) = f
\end{cases}$$
(3)

When key meets the corresponding conditions, there are no cubic terms in $S_{1.5}$. The highest degree of monomials in S_2 is 2. As the algebraic degree of S-box is 2, the algebraic degree of the 7-round ASCON's output is less than or equal to 64, which means that $v_0v_1 \dots v_{64}$ will not appear in the output.

Z Li, X Dong, X Wang ()

$$\begin{pmatrix}
k_0(i+1) + k_1(i+1) = 0 \\
k_0(i+4) + k_1(i+4) = a \\
k_0(i+26) + k_1(i+26) = b \\
k_0(i+3) + k_1(i+3) = c \\
k_0(i+25) + k_1(i+25) = d \\
k_0(i+6) + k_1(i+6) = 0 \\
k_0(i+9) + k_1(i+9) = e \\
k_0(i+31) + k_1(i+31) = f
\end{cases}$$
(3)

When key does not meet the corresponding conditions, some cubic terms will appear in S_2 . Therefore, $v_0v_1 \ldots v_{64}$ will appear in the output of 7-round.

Experimental Verification

Implementation of 5/6-round attacks on Ascon Experimental verification for 7-round attack source code: https://github.com/lizhengcn/Ascon_test

Thanks for Your Attention

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで