
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2017, No. 1, pp. 175–202. DOI:10.13154/tosc.v2017.i1.175-202

Conditional Cube Attack on Round-Reduced
ASCON

Zheng Li1, Xiaoyang Dong1,2∗ and Xiaoyun Wang1,2∗

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,
Shandong University, Shandong, China

{lizhengcn,dongxiaoyang}@mail.sdu.edu.cn
2 Institute for Advanced Study, Tsinghua University, Beijing, China

xiaoyunwang@tsinghua.edu.cn.

Abstract. This paper evaluates the secure level of authenticated encryption Ascon
against cube-like method. Ascon submitted by Dobraunig et al. is one of 16 survivors
of the 3rd round CAESAR competition. The cube-like method is first used by Dinur
et al. to analyze Keccak keyed modes. At CT-RSA 2015, Dobraunig et al. applied
this method to 5/6-round reduced Ascon, whose structure is similar to Keccak keyed
modes. However, for Ascon the non-linear layer is more complex and state is much
smaller, which make it hard for the attackers to select enough cube variables that do
not multiply with each other after the first round. This seems to be the reason why
the best previous key-recovery attack is on 6-round Ascon, while for Keccak keyed
modes (Keccak-MAC and Keyak) the attacked round is no less than 7-round.
In this paper, we generalize the conditional cube attack proposed by Huang et al.,
and find new cubes depending on some key bit conditions for 5/6-round reduced
Ascon, and translate the previous theoretic 6-round attack with 266 time complexity
to a practical one with 240 time complexity. Moreover, we propose the first 7-round
key-recovery attack on Ascon. By introducing the cube-like key-subset technique,
we divide the full key space into many subsets according to different key conditions.
For each key subset, we launch the cube tester to determine if the key falls into it.
Finally, we recover the full key space by testing all the key subsets. The total time
complexity is about 2103.9. In addition, for a weak-key subset, whose size is 2117, the
attack is more efficient and costs only 277 time complexity. Those attacks do not
threaten the full round (12 rounds) Ascon.
Keywords: Ascon · CAESAR · Cube-like · Key Recovery · Authenticated Encryption

Introduction
Nowadays, when confidential messages are transmitted using an insecure channel, both
their privacy and integrity are usually needed. Authenticated encryption (AE) schemes
are proposed to meet both goals simultaneously. In 2014, the CAESAR competition
[com14] was launched to identify good authenticated encryption (AE) candidates as better
alternatives to current options such as AES-GCM [NIS]. Totally, 57 candidates have been
submitted to the first round of the CAESAR competition. After two rounds of assessments
from world-wide cryptographers and engineers, only 16 survivors were announced to be
included in the third round of the CAESAR competition in 15 Aug 2016. In order to get a
secure scheme, many more cryptographic analyses on these candidates are needed urgently.

Ascon [DEMS15a] is one of the 16 candidates, which is submitted by Dobraunig et al.
Ascon uses a lightweight sponge construction, the internal state is only 320-bit. The
∗Corresponding authors

Licensed under Creative Commons License CC-BY 4.0.
Received: 2016-09-01, Revised: 2016-11-23, Accepted: 2017-01-24, Published: 2017-03-0

https://doi.org/10.13154/tosc.v2017.i1.175-202
mailto:lizhengcn@mail.sdu.edu.cn, dongxiaoyang@mail.sdu.edu.cn
mailto:xiaoyunwang@tsinghua.edu.cn
http://creativecommons.org/licenses/by/4.0/

176 Conditional Cube Attack on Round-Reduced ASCON

Table 1: Summary of Key-recovery Attacks on Ascon
Type Attacked Rounds Time Source

Differential-Linear 4/12 218 [DEMS15b]
5/12 236 [DEMS15b]

Cube-like Method

5/12 235 [DEMS15b]
6/12 266 [DEMS15b]
5/12 224 Section 4
6/12 240 Section 5
7/12 2103.9 Section 6
7/12 277 for 2117 keys Section 6

previous best attack [DEMS15b] is proposed by Ascon’s authors themselves, where the
key-recovery attack is on 6 out of 12-round using a cube-like method with time complexity
of 266. In this paper, we will focus on the analysis of Ascon against cube-like method.

Cube attack [DS09] is a chosen plaintext key-recovery attack, which was introduced by
Dinur and Shamir. Since then, cube attack was applied to many different cryptographic
primitives [ADMS09, DS11, FV13]. At Eurocrypt 2015, Dinur et al. [DMP+15] published
a key-recovery attack on Keccak keyed modes, where the cube variables are selected not to
multiply with each other after the first round, then the output degree of the polynomials is
reduced. Later it was applied to Ketje [BDP+16] by Dong et al. [DLWQ17]. Huang et al.
[HWX+] proposed a new conditional cube attack on Keccak keyed modes and presented an
8-round attack on Keyak. By restraining some bit conditions of the key, they obtain a new
set of cube variables which not only do not multiply with each other after the first round,
but also contains one cube variable that does not multiply with other cube variables after
the second round, and then the output degree over cube variables is further reduced.

Our Contributions
In this paper, we continue to explore the secure level of Ascon against cube-like method.
Ascon has a more complex non-linear layer and smaller state than Keccak keyed modes,
which make it hard for the attackers to select enough cube variables for the 7-round attack
that do not multiply with each other after the first round. This seems to be the reason
why the best key-recovery attack is on 6-round Ascon, while for Keccak keyed modes
(Keccak-MAC and Keyak) the attacked round is no less than 7-round. In this paper,
we firstly generalize the conditional cube attack, which is first proposed by Huang et al.
[HWX+]. By exploring the details of non-linear layer and the conditional cube attack
method, we improve the complexity of the 6-round attack from 266 to a practical one
240. And then inspired by a so-called key-dependent strategy [DLJW15, LJWD15], we
develop a new cube-like key-subset technique. Based on this technique, we construct a
series of 65-dimension cubes for different key subsets, for each key subset we give a 7-round
key-recovery attack, finally the key-recovery attacks cover the full key space. Our attacks
work on the latest version Ascon v1.2. The results are summarized in Table 1. Our
contribution is four fold:

1. We generalize the conditional cube attack proposed by Huang et al. [HWX+], where
a cube variable of certain cube (all the cube variables do not multiply with each
other after the first round) does not multiply with other cube variables under some
key bit conditions after the second round. In our generalized model, these key bits
actually produce some common divisors of all the cube sums on the output bits.
That means, if these divisors are zero by restraining conditions on these key bits, all
the cube sums will be zero. Hence, using cube testers, one can test whether these
divisors are zero or not, and then deduce the key bit conditions.

Zheng Li, Xiaoyang Dong and Xiaoyun Wang 177

2. When applying the generalized conditional cube attack to Ascon, we find some
sets of cube variables for Ascon. In each set, the cube variables do not multiply
with each other after the first round. Moreover, by assigning some bit conditions of
the key, one cube variable does not multiply with the other cube variables after the
second round. This reduces the cube dimension and leads to 5/6-round key-recovery
attacks with time complexity of 224 and 240, respectively. This is the first practical
key-recovery attack on 6-round Ascon.

3. In our 7-round attack, different from previous cube-like attacks [DMP+15, HWX+,
DEMS15b] which make the cube variables not multiply with each other in the first
round, we let two of the cube variables multiply with each other to generate quadratic
terms after the first round. In the second round, by restraining some bit conditions
of the key and adding some auxiliary variables, the produced quadratic terms do not
multiply with other monomials of cube variables. This solves the problem that there
are no enough cube variables to launch a 7-round cube attack on Ascon.

4. By introducing the cube-like key-subset technique, we construct many new 65-
dimension cubes on Ascon, whose cube sum after 7th round is zero when some key
bit conditions are met. In other words, if we divide the full key space according to
the key bit conditions into many key subsets, we can test the cube sum of different
65-dimension cubes to determine which subset the secret key falls into and then
determine which key bit conditions the secret key meets. Finally, the full key space
is divided into 63 key subsets and one small remaining set1. The computations of
cube sums of different 65-dimension cubes are repeated on these subsets until the
right key is recovered. If the right key is not recovered, we assume that it is in the
remaining subset and search it for the right one. The time complexity of the 7-round
key-recovery attack on Ascon is 2103.9. Moreover, if the key falls into a weak-key
set, whose size is 2117, the total complexity is reduced to 277.

Organization of the Paper
Section 1 gives some notations, a brief description of Ascon cipher, some related properties
of S-box and our attack assumptions. In Section 2, we briefly describe the related works.
Section 3 introduces models. Then, the new 5/6-round conditional cube attacks on Ascon
are introduced in Section 4 and 5. In Section 6, some new 65-dimension cubes corresponding
to some partial divisors are given, then 7-round conditional cube attack is launched on
Ascon. Section 7 gives a discussion on Ascon-128a and a previous version Ascon v1.1.
At last, we conclude this paper in Section 8.

1 Preliminaries
In this section, we will give some notations, a brief description of Ascon, some related
properties of S-box, together with our attack assumptions.

1.1 Notations
Si the intermediate state after i-round,

for example S0.5 means the intermediate state after S-box in 1st round,
esp. S0 means the initial state of Ascon

Si[j] the jth word of Si, 0 6 j 6 4

1The remaining set means the secret key does not fall into any of the 63 key subsets.

178 Conditional Cube Attack on Round-Reduced ASCON

Table 2: Parameters Set for Ascon

name bit size rounds
IV valueskey nonce tag data block pa pb

Ascon-128 128 128 128 64 12 6 0x80400c0600000000
Ascon-128a 128 128 128 128 12 8 0x80800c0800000000

pa
IV||K||N pb

C

r

0*||K

pb

A1

C
pb

C

0*||1

P1AS

r

pb

C1 Pt-1Ct-1

C
pa

Pt Ct

C

K||0*

k

K

T

 Initialization Associated Data Plaintext Finalization

Figure 1: The Encryption of Ascon

Si[j][k] the kth bit of Si[j], 0 6 j 6 4, 0 6 k 6 63
vi the ith cube variable
IV (i) the ith bit of IV , 0 6 i 6 63
K 128-bit key, K = k0||k1
k0(i) the ith bit of k0, k0 is placed in S0[1], 0 6 i 6 63
k1(i) the ith bit of k1, k1 is placed in S0[2], 0 6 i 6 63
n(i) the ith bit of S0[4], 0 6 i 6 63

1.2 Brief Description of Ascon
Authenticated encryption cipher Ascon is one of the 16 candidates in 3rd round CAESAR
competition, whose mode of operation is based on MonkeyDuplex [DPAB12]. We give a
brief description of the latest version Ascon v1.2 [DEMS15a] proposed for the 3rd round
CAESAR competition. It operates on a 320-bit state (five 64-bit words x0, ..., x4) in a
sponge-like construction. Parameters of two flavors, Ascon-128 and Ascon-128a, are
summarized in Table 2, while Ascon-128 is the primary recommendation by the designers.
Readers can refer to [DEMS15a] for more details.

Mode. Based on MonkeyDuplex, the encryption of Ascon is organized in four phases as
illustrated in Figure 1: initialization, processing associated data, processing the plaintext
and finalization. In the initialization, concatenation of IV (64-bit), the secret key K(128-
bit) and nonce N(128-bit) initializes the state of Ascon, where IV is constant in both
flavors with values listed in Table 2. It is processed by pa followed by XORing K. The
associated 64-bit data block Ai is XORed and then pb is applied to the intermediate state
in sequence for i = 1, ..., s. A bit 1 is XORed to the least significant output bit of the last
pb in the process of associated data. Each plaintext block Pi with i = 1, ..., t is processed
similarly to Ai, while the corresponding Ci is outputted. In the finalization, K is XORed,
then apply pa. Finalization outputs T after the K is XORed to the least significant 128-bit.

Permutation. Permutations pa and pb only differ in the number of iterations of round
function p, which is shown in Table 2. p is composed of a constant addition to x2, the
substitution layer and the linear diffusion layer. Some constants are added in different
rounds. The substitution layer applies a 5-bit S-box as shown in Table 3 in parallel to
each bit-slice of the five words x0, x1, ..., x4, where x0 acts as the most significant bit of
the S-box. It will be explored further in Section 1.3. The linear diffusion layer, shown in
Eq. (1), provides diffusion in each 64-bit state-word xi with Σi(xi).

Zheng Li, Xiaoyang Dong and Xiaoyun Wang 179

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 4 11 31 20 26 21 9 2 27 5 8 18 29 3 6 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x) 30 19 7 14 0 13 17 24 16 12 1 25 22 10 15 23

Table 3: The 5-bit S-box in the Substitution Layer of p

Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)
Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)
Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)
Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)
Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(1)

1.3 Properties of S-box
Denote the 5-bit input and output of the S-box as x0, x1, x2, x3, x4 and y0, y1, y2, y3, y4
respectively, and we use x0 to mark the most significant bit or the first register word of
the S-box. The algebraic normal form (ANF) of the S-box is as follow:

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0,

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0,

y2 = x4x3 + x4 + x2 + x1 + 1,

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0,

y4 = x4x1 + x4 + x3 + x1x0 + x1.

By studying the ANF of the S-box, the following two properties are given.
Property 1. Among the 5-bit output of the S-box, x4x3 only exists in y2.

If we choose x3 and x4 as cube variables, then the quadratic term x4x3 only exists in
the ANF of y2.
Property 2. x2 will only multiply with x1 and x3. Especially, quadratic terms containing
x2 exist only in y0 with x2x1 and y1 with x3x2 + x2x1.

If x2 is a cube variable and x1 is a nonce bit, then we can select x1 = 0 to delete x2x1.

1.4 Our Attack Assumptions
The Ascon’s design document [DEMS15a] shows, if there is no associated data, the
associated data processing phase will be removed. In our attack, some input and output
bits of pa are needed, we omit the associated data processing phase too, i.e. our attack
target is the initialization of Ascon as shown in Figure 2. This assumption is the same
to [DEMS15b]. Our attacks work on both flavors Ascon-128 and Ascon-128a of the
latest version Ascon v1.2, whose parameters are summarized in Table 2. We describe the
analysis of 5/6/7-round initialization of Ascon-128 in details, then give a discussion on
Ascon-128a and Ascon v1.1 in Section 7.

2 Related Work
2.1 Cube Attack
The cube attack [DS09] was introduced by Dinur and Shamir at EUROCRYPT 2009. It
assumes that the output bit of a symmetric cryptographic scheme can be regarded as

180 Conditional Cube Attack on Round-Reduced ASCON

pa
IV||K||N

r

 Initialization Plaintext

 P1 C1

Figure 2: Objective Procedure of Ascon

a polynomial f(k0, ..., kn−1, v0, ..., vm−1) over GF (2), k0, ..., kn−1 are the secret variables
(the key bits), v0, ..., vm−1 are the public variables (e.g. IV or nonce bits).
Theorem 1. ([DS09])

f(k0, ..., kn−1, v0, ..., vm−1) = T · P + Q(k0, ..., kn−1, v0, ..., vm−1) (2)

T is a monomial which is actually the product of certain public variables, for example
(v0, ..., vs−1), 1 ≤ s ≤ m, denoted as cube CT . None of the monomials in Q is divisible by
T . P is called superpoly, which does not contain any variables of CT . Then the sum of f
over all values of the cube CT (cube sum) is∑

v′=(v0,...,vs−1)∈CT

f(k0, ..., kn−1, v′, vs, ..., vm−1) = P (3)

where CT contains all binary vectors of the length s, vs, ..., vm−1 are fixed to constant.
The basic idea is to find enough T whose P is linear and not a constant. This enables

the key recovery through solving a system of linear equations.

2.2 Dynamic Cube Attack
Dynamic cube attack [DS11] was first introduced to analyse Grain-128 by Dinur and Shamir
at FSE 2011. The basic idea is to simplify a complex polynomial P : P = P1 · P2 + P3
where P3’s degree is relatively lower than P , and P1 contains a linear public term called a
dynamic variable. A dynamic variable is a variable assigned with a function in some secret
variables (i.e. key bits) and cube variables to zero P1. Thus, P is simplified to P3. One
must firstly guess these key bits to compute dynamic variable. The right guess of key bits
will lead to zero cube sums with high probability, otherwise the cube sums will be random.

2.3 Conditional Differential Cryptanalysis
Knellwolf, Meier and Naya-Plasenciaa [KMN10] applied conditional differential charac-
teristic to NFSR-based constructions and extended to higher order differential attacks at
ASIACRYPT 2010. The input of a synchronous stream cipher is an IV and a key. Suppose
that the keystream for many chosen IV s under the same secret key can be observed.
By imposing specific conditions on certain bits of the IV , the attacker can control the
propagation of a difference through the first few rounds of the initialization process. Taking
IV pairs conformed to these conditions as input, the resulting keystream differences will
present a bias. Additionally, conditions upon key define classes of weak keys.

3 Cube-like Attack Models
In this section, we firstly generalize the conditional cube attack, which was first introduced
by Huang et al. to attack Keccak keyed mode. Then a new cube-like key-subset technique
is introduced. At last, the rationality tests about these attack models are presented.

Zheng Li, Xiaoyang Dong and Xiaoyun Wang 181

3.1 Generalizing Conditional Cube Attack
Conditional cube attack [HWX+] was proposed by Huang et al. to attack Keccak keyed
mode. Inspired by dynamic cube attack [DS09], which reduces the degree of output
polynomials of cube variables by adding some bit conditions on IV , they reduce the degree
by appending key bit conditions. The techniques are similar to message modification
technique [WY05, WYY05] and conditional differential cryptanalysis [KMN10] which used
bit conditions to control differential propagation. They also construct a cube tester based
on cube variables and corresponding conditions, called conditional cube tester.

In this section, we will generalize the conditional cube attack. In Theorem 1, the
cube sum P is calculated in Eq. (3). In Keccak-MAC and other similar ciphers, after
certain rounds, the cipher produces l-bit output. Each of the output bits is written as
a polynomial fi(k0, ..., kn−1, v0, ..., vm−1), i = 0, 1, ..., l − 1. Choose a common cube CT ,
e.g (v0, ..., vs−1), 1 ≤ s ≤ m, then fi = T · Pi + Qi, i = 0, 1, ..., l − 1. In conditional cube
attack, a common divisor of Pi is found, which is a polynomial g(k0, ..., kn−1, vs, ..., vm−1).
vs, ..., vm−1 are constant when computing cube sums Pi = g(k0, ..., kn−1, vs, ..., vm−1) · P ′i .
Then the Corollary 1 is given.

Corollary 1. Given a series of polynomials fi (i ∈ {0, 1, ..., l − 1}):{0,1}n → {0,1}.
f0(k0, ..., kn−1, v0, ..., vm−1) = T · g(k0, ..., kn−1, vs, ..., vm−1) · P ′0 + Q0

f1(k0, ..., kn−1, v0, ..., vm−1) = T · g(k0, ..., kn−1, vs, ..., vm−1) · P ′1 + Q1

...

fl−1(k0, ..., kn−1, v0, ..., vm−1) = T · g(k0, ..., kn−1, vs, ..., vm−1) · P ′l−1 + Ql−1

(4)

where none of the monomials in Qi(x) is divisible by T . Then the sums of fi (i ∈
{0, 1, ..., l − 1}) over all values of the cube (cube sum) are

∑
v′∈CT

f0(k0, ..., kn−1, v′, vs, ..., vm−1) = g(k0, ..., kn−1, vs, ..., vm−1) · P ′0∑
v′∈CT

f1(k0, ..., kn−1, v′, vs, ..., vm−1) = g(k0, ..., kn−1, vs, ..., vm−1) · P ′1

...∑
v′∈CT

fl−1(k0, ..., kn−1, v′, vs, ..., vm−1) = g(k0, ..., kn−1, vs, ..., vm−1) · P ′l−1

(5)

where the CT contains all binary vectors of the length s.

Among the output polynomials, a common factor which is related to key instead of
any cube bits exists. g is introduced to represent the common factor for clearness.

As shown in Eq. (5), we get the following Property 3 and Assumption 1.

Property 3. If g = 0, cube sums of fi (i ∈ {0, 1, ..., l− 1}) will be all 0 with probability 1.

Assumption 1. If g = 1, cube sums of fi (i ∈ {0, 1, ..., l − 1}) will be determined by
P ′i (i ∈ {0, 1, ..., l − 1}), the cube sums of fi (i ∈ {0, 1, ..., l − 1}) all equal to 0 with
probability about 2−l if fi (i ∈ {0, 1, ..., l − 1}) is a random oracle.

According to Property 3 and Assumption 1, we introduce the cube tester, which has
the Property 4 and Assumption 2.

Property 4. If at least one nonzero cube sum occurs among the cube sums of fi (i ∈
{0, 1, ..., l − 1}), we will determine that g = 1. It is guaranteed to be right.

182 Conditional Cube Attack on Round-Reduced ASCON

Assumption 2. If the cube sums of fi (i ∈ {0, 1, ..., l−1}) all equal to 0, we will determine
that g = 0. Note that, in a random oracle, g = 0 is wrong with probability of 2−l, because
P ′i is zero with probability of about 1

2 .

If the common divisor g(k0, ..., kn−1, vs, ..., vm−1) is simple enough, e.g. g = k0, we will
use the cube tester of Property 4 and Assumption 2 to detect k0.

3.2 The Cube-like Key-subset Technique
In Corollary 1, all cube sums Pi = g(k0, ..., kn−1, vs, ..., vm−1) · P ′i have a common divisor
g, hence g = 0 will produce all zero cube sums illustrated in Property 3. When the l cube
sums Pi do not have a common divisor, but the cube sums can be divided into several sets,
there is a common divisor for cube sums in the same set, we denote these divisors as partial
divisor. For example, there are three divisors g1, g2 and g3 which are the common divisor of
cube sums {P0, P1, ..., P19}, {P20, P21, ..., P39} and {P40, P41, ..., Pl−1}, respectively. Then
g1 = 0, g2 = 0 and g3 = 0 will produce all zero cube sums which is similar to Property 3.

Specially, the partial divisors g1, g2 and g3 are some linear key-dependent polynomials,
for example g1 = k1 + a, g2 = k2 + b and g3 = k3 + c, where k1, k2 and k3 are three key
bit variables and (a, b, c) are in F3

2. If for each (a, b, c) in F3
2, a cube (denoted as CT (abc))

is found, that maintain the g1 = k1 + a, g2 = k2 + b and g3 = k3 + c to be partial divisors
(which means g1 = 0, g2 = 0 and g3 = 0 will produce all zero cube sums). Then we can
divide the full 128-bit key space (we assume that it is 128-bit) by (a, b, c) to 23 different
key subsets. At last, we process the cube testers of all the 23 cubes CT (abc) to determine
which key subset the key candidate falls into. For example, according to Assumption 2, if
the cube tester of CT (000) produce all zero cube sums, we get k1 = 0, k2 = 0 and k3 = 0.
Hence the key candidates are reduced from the 128-bit full key space to a subset of size
2125, which meets the condition k1 = 0, k2 = 0 and k3 = 0. We summarize those above
techniques as cube-like key-subset technique.

3.3 Applications and Rationality test
We apply the cube tester of Property 4 in our attacks on 5/6-round reduced initialization
of Ascon. And we apply Assumption 2 and the cube-like key-subset technique to 7-round
reduced initialization of Ascon. For Ascon-128, the number of output bits are 64-bit
(128-bit for Ascon-128a). The success rate of the corresponding cube tester is dependent
on the density of monomial T in the output bits.

1. If the monomial T does not appear in anyone of fi (i = 0, 1, ..., 63), the cube tester
will fail to detect keys.

2. If the monomial T appears in some (a small fraction) of fi (i = 0, 1, ..., 63), we can
use Property 4 to detect the keys. When using Property 4, every detection returned
is guaranteed to be right.

3. If the monomial T does appear in all (or most, e.g. l1) of the fi (i = 0, 1, ..., 63), we
can use Property 4 or Assumption 2 to detect the keys. When using Assumption 2,
wrong key detection is returned with probability of about 2−64 or 2−l1 , besides, if
there exist three partial divisors g1, g2 and g3 as shown in Section 3.2, we get g1 = 0,
g2 = 0 and g3 = 0 with the same negligible probability of wrong detection.

Thus, for a given cube, we should firstly test if the monomial T appears in output
fi (i = 0, 1, ..., 63) of the round-reduced Ascon-128. For 5/6-round attack on Ascon
in Section 4 and 5, the monomial of the chosen cubes appears in the output fi, we use
Property 4 to detect the right key. The 5/6-round attacks are practical and the key-recovery

Zheng Li, Xiaoyang Dong and Xiaoyun Wang 183

programs are listed in https://github.com/lizhengcn/Ascon_test. But the 7-round
attack is impractical, so in the following we present strong evidence for the correctness of
our analysis. For 7-round attack, 65 (64+1) dimension cubes are chosen, so we have to test
if the monomial T of 65 degree appears in outputs fi, however, the test should compute
the cube sums of 65-dimension cube, which is out of reach by the computing resource.
We test similar cubes that reduced to 17 (16+1) dimension for 5-round and 33 (32+1)
dimension for 6-round, to deduce the appearance of monomial of 65 (64+1) dimension
cubes. Both Test 1 and Test 2 provide evidences for the correctness of our assumptions.

Test 1. We test 5-round cube sums of 1000 17-dimension random cubes: For each
of the 1000 simulations, we first place 16 cube variables in S0[3][ij] (j ∈ {0, 1, ..., 15})
randomly and place a cube variable in S0[4][i0]. The monomial (product of 17 variables)
appears (that means the 64-bit cube sums of the 5-round are not all zero) in more than
850 simulations.

We test 6-round cube sum of 1000 33-dimension random cubes: For each of the 1000
simulations, we firstly place 32 cube variables in S0[3][ij] (j ∈ {0, 1, ..., 31}) randomly, and
place a cube variable in S0[4][i0]. The monomial (product of 33 variables) appears (that
means the 64-bit cube sums of the 6-round are not all zero) in all the 1000 random tests.

So we deduce, in our attack for the 65-dimension cube (64 cube variables in S0[3][ij] (j ∈
{0, 1, ..., 63}), one cube variable in S0[4][i0]), the monomial (product of 65 variables) will
also appear with significantly high probability.

Test 2. We test 5-round cube sums over a 17-dimension random cube (cube variables
are selected in the same way as Test 1.) with 1000 keys. The monomial T does really exist
in some of fi (i = 0, 1, ..., 63), as shown in Table 9.

We test 6-round cube sums over a 33-dimension random cube with 982 keys. In each
one of fi (i = 0, 1, ..., 63), the cube sum is nonzero with a probability of about 1

2 , as shown
in Table 10, which implies the monomial T exists in all fis. Note that if the monomial T
does not exist in one of fis, e.g. f0, the cube sum of f0 is definitely zero. Experiments
verify Assumption 2 for our 6-round attack on Ascon, so we conjecture it will also hold
for the 7-round attack.

The test programs are listed in https://github.com/lizhengcn/Ascon_test.

4 Attack on 5-round initialization of Ascon
Basic Ideas. In the 5-round attack, we select a set of 16 cube variables {v0, v1...v15}.
{vi}i=0,1,...,15 are located in distinct S-boxes, thus they do not multiply with each other in
the first round. With some bit conditions on key and nonce, v0 does not multiply with
any of {v1, v2...v15} in the second round. Therefore, no v0vi exists in S2. As the algebraic
degree of the round function is 2, v0v1...v15 will not appear in S5, which means the cube
sums of the output of 5-round Ascon over v0, v1...v15 are all zero. If some of the cube
sums are nonzero, bit conditions in the above are not met. According to Corollary 1, the
bit conditions are actually determined by the common divisor of the cube sums.

In details, we construct a 16-dimension cube whose 64-bit cube sums have a common
divisor g = k0(0). Similarly, we get 64 × 4 = 256 16-dimension cubes corresponding to
different common divisors: k0(t), k0(t)+1, k0(t)+k1(t), k0(t)+k1(t)+1 with t ∈ {0, 1, ..., 63}.
Thus, we apply Property 4 to recover the key bits one by one. The cubes are listed in
Table 7 in Appendix A.

An Example to Determine k0(0) = 1. For example, we select cube variables when
t = 0 and set nonce according to (1) of Table 7. Figure 3 and 4 shows the diffusion of vi

in the first round with k0(0) = 0 and k0(0) = 1 respectively, in which yellow bits represent
the diffusion of v0, and grey ones represent the diffusion of {v1, v2 . . . v15}, while a red

https://github.com/lizhengcn/Ascon_test
https://github.com/lizhengcn/Ascon_test

184 Conditional Cube Attack on Round-Reduced ASCON

S 0

S 1

Figure 3: Diffusion of vi with k0(0) = 0

S 0

S 1

Figure 4: Diffusion of vi with k0(0) = 1

one’s polynomial is in form h1v0 + h2vi + h3 (i ∈ {1, . . . , 15}, h1, h2, h3 only depend on
nonce and key).

If k0(0) = 0, state S1 of Figure 3 shows the distribution of vi at the input of the S-box
layer in the second round: yellow and red bits are located in different S-boxes from grey
ones except for S1[0][1] and S1[2][1] highlighted in a red circle. And Property 2 tells us that
S1[0][1] does not multiply with S1[2][1]. So v0 will not multiply with any of {vi}i=1,2,...,15
in the S-box operation of the second round and no v0vi exists in S2. As the algebraic
degree of the round function is 2, a term in S5 with the highest degree is product of 8 terms
in S2. If this term contains v0 as a factor, its degree over cube variables {vi}i=0,1,...,15 is
at most 15 with all the other 7 terms being quadratic. If this term does not contain v0,
its degree over cube variables {vi}i=0,1,...,15 will not exceed 15 obviously. Thus, v0v1...v15
does not appear in S5.

However, if k0(0) = 1, v0 is certain to multiply with some of {vi}i=1,2,...,15 as high-
lighted in red circles in Figure 4. v0vi exists in S2. v0v1...v15 will appear in S5 with a high
probability. It means that g = k0(0) in Corollary 1. Therefore, if we obtain a nonzero
cube sum, we can determine that k0(0) = 1, which is identical to Property 4.

The Whole Procedure to Recover the Full Key. With parameters in Table 7, 1-
values for k0(t), k0(t) + 1, k0(t) + k1(t), k0(t) + k1(t) + 1 with t ∈ {0, 1, ..., 63} are detected
by Property 4. Therefore, 0/1-values for k0(t), k0(t) + k1(t) with t ∈ {0, 1, ..., 63} are
detected. We describe the procedure in Algorithm 1.

We illustrate some special bit positions here. As a constant 0x000000000000000000f0
is added to S0[2] before S-box in the first round, in which only 4 bits are 1 indexed
by 56,57,58,59, k0(t) + k1(t) should reverse when t ∈ {56, 57, 58, 59}. In Ascon-128
only six bits of IV value are 1, whose indexes are {0, 9, 20, 21, 29, 30}, and other IV bits
are 0, it leads to a special cube selection (not rotated from others) to detect 1-value of
k0(t) + k1(t) + 1 for t ∈ {0, 9, 20, 21, 29, 30}.

The whole procedure is performed as follow: with parameters in Table 7, for t ∈
{0, 1, . . . , 63}, if we obtain a nonzero cube sum in (1), we can determine that k0(t) = 1, if
we obtain a nonzero cube sum in (2), we can determine that k0(t) = 0. For t ∈ {0, 1, . . . , 63}
while t 6= 56, 57, 58, 59, if we obtain a nonzero cube sum in (3), we can determine that
k0(t) + k1(t) = 1; for t ∈ {56, 57, 58, 59}, if we obtain a nonzero cube sum in (3), we
can determine that k0(t) + k1(t) = 0; for t ∈ {0, 9, 20, 21, 29, 30}, if we obtain a nonzero
cube sum in (4), we can determine that k0(t) + k1(t) = 0; for t ∈ {0, 1, . . . , 63} while
t 6= 0, 9, 20, 21, 29, 30, 56, 57, 58, 59, if we obtain a nonzero cube sum in (5), we can determine

Zheng Li, Xiaoyang Dong and Xiaoyun Wang 185

that k0(t) + k1(t) = 0; for t ∈ {56, 57, 58, 59}, if we obtain a nonzero cube sum in (5), we
can determine that k0(t) + k1(t) = 1.

Computation of a cube sum need 216 (nonce, P1 ⊕ C1) (as shown in Figure 2) pairs,
and each pair corresponds to an operation of initialization of Ascon. Thus, time and
data share the same complexity in cube computation. As each cube sum consumes 216,
tester described in Algorithm 1 with Table 7 needs at most 64× 2× 2× 216 = 224. In our
experiments, remain returned by Algorithm 1 with Table 7 is always less than 14. For 214

is far less than 224, the whole time complexity is 224. The data complexity is 224 as well.
Source code is in https://github.com/lizhengcn/Ascon_test.

5 Attack on 6-round initialization of Ascon
Similar to the attack on 5-round, we choose cube {v0, v1...v31} obeying the following rules:

1. Any two of {v0, v1...v31} do not multiply in the S-box operation of the first round.
2. If k0(t)=0, v0 doesn’t multiply with any of {v1, v2...v31} in the S-box operation of

the second round.
3. If k0(t)=1, v0 multiplies with some of {v1, v2...v31} in the S-box operation of the

second round.
Thus, if k0(t)=0, no v0vi, i ∈ {1, 2, ..., 31}, exists in S2, and v0v1...v31 does not appear

in S6. However, if k0(t) = 1, v0v1...v31 will appear in S6 with a high probability. It means
that g = k0(t) in Corollary 1. Therefore, if we obtain a nonzero cube sum of the output of
6-round Ascon over v0, v1...v31 with parameters in (1) of Table 8, we can determine that
k0(t) = 1, which is identical to Property 4. The whole procedure to recover the whole key
is similar to the attack on 5-round initialization of Ascon in Section 4 applying Algorithm
1 with parameters in Table 8.

As each cube sum consumes 232 (time and data as shown in Section 4), tester described
in Algorithm 1 with Table 8 needs at most 64 × 2 × 2 × 232 = 240. In our experiments,
remain returned by Algorithm 1 with Table 8 is always 0. The whole time complexity is 240.
The data complexity is 240 as well. Source code is in https://github.com/lizhengcn/
Ascon_test.

6 Attack on 7-round initialization of Ascon
In this section, we apply the so-called the cube-like key-subset technique to the 7-round
key-recovery attack on Ascon. We find a series sets of partial divisors related to the key
bits for many 65-dimension cubes. That means, if the partial divisors in a set equal to
zero, the cube sums of the corresponding 65-dimension cube will be zero. The full key
space is divided into many subsets indexed by the key bits in each set of partial divisors.
Then the cube-like key-subset technique is applied to recover the key.

In detail, we set S0[3][j] = vj for j = 0, 1 . . . 63 and S0[4][i] = v64 where i could take
a value from {0, 1 . . . 63}. We denote the 65-dimension cube set as original cube set. As
v0, v1, . . . , v63 belong to distinct S-boxes, they do not multiply with each other in the
first round. While v64 and vi lie in the same ith S-box, viv64 will be the only quadratic
term after the first substitution layer. Based on Property 1, viv64 just appear in S0.5[2][i]
after the S-box in the first round. The first linear diffusion layer makes the ANF of
S1[2][i], S1[2][i + 1]2 and S1[2][i + 6] contain viv64. According to our Test 1 and Test 2 in
Section 3.3, the monomial v0v1 · · · v64 will appear in the output bits of 7-round. However,
by assigning some key bit conditions, the quadratic terms viv64 will not multiply with
other cube variables in the second round. Thus, after the second round, only quadratic
and linear terms exist (no terms exist with degree more than 2). Then in the output bits of

2i + 1 is short for (i + 1)mod 64 , similarly i + x is short for (i + x)mod 64 in this section.

https://github.com/lizhengcn/Ascon_test
https://github.com/lizhengcn/Ascon_test
https://github.com/lizhengcn/Ascon_test

186 Conditional Cube Attack on Round-Reduced ASCON

Algorithm 1 Tester in Attack on 5/6-round Initialization of Ascon.
Note: cube sum Ci[t] means sum of the output of 5/6-round Ascon over cube variables in
(i) of Table 7/ 8; k0, k0 + k1 record values of key bits recovered; flag[0][t] = 1 represents
k0(t) has been recovered, flag[0][t] = 0 represents k0(t) hasn’t been recovered, and flag[1][t]
for k0(t)+k1(t) similarly; remain represents the number of key bits that need to be searched
exhaustively.

Require: k0, k1, flag[2][64] all set to 0
Ensure: remain, k0, k0 + k1 and flag[2][64]
all elements of k0, k0 + k1, remain, flag[2][64] are set to 0
for t ∈ {0, 1, ..., 63} do
compute cube sum C1[t];
if C1[t] 6= 0 then

k0(t) = 1; flag[0][t] = 1;
else
compute cube sum C2[t];
if C2[t] 6= 0 then

k0(t) = 0; flag[0][t] = 1;
end if

end if
compute cube sum C3[t];
if C3[t] 6= 0 then
if t ∈ {56, 57, 58, 59} then

k0(t) + k1(t) = 0; flag[1][t] = 1;
else

k0(t) + k1(t) = 1; flag[1][t] = 1;
end if

else
if t ∈ {0, 9, 20, 21, 29, 30} then
compute cube sum C4[t];
if C4[t] 6= 0 then

k0(t) + k1(t) = 0; flag[1][t] = 1;
end if

else
compute cube sum C5[t];
if C5[t] 6= 0 then
if t ∈ {56, 57, 58, 59} then

k0(t) + k1(t) = 1; flag[1][t] = 1;
else

k0(t) + k1(t) = 0; flag[1][t] = 1;
end if

end if
end if

end if
end for
for i ∈ {0, 1} do
for t ∈ {0, 1 . . . 63} do
if flag[i][t] == 0 then

remain++;
end if

end for
end for
return remain, k0, k0 + k1 and flag[2][64];

Zheng Li, Xiaoyang Dong and Xiaoyun Wang 187

Table 4: Coefficients of Cubic Terms with No Additional Cube Set

index of S-box cubic terms corresponding coefficients
(partial divisors)

i + 1

viv64vi+1
k0(i + 1) + k1(i + 1) + 1

k0(i + 1) + k1(i + 1) + IV (i + 1)
viv64vi+4 k0(i + 4) + k1(i + 4) + 1
viv64vi+26 k0(i + 26) + k1(i + 26) + 1
viv64vi+48 IV (i + 48) + 1
viv64vi+55 IV (i + 55) + 1

i

viv64vi+3 k0(i + 3) + k1(i + 3) + 1
viv64vi+25 k0(i + 25) + k1(i + 25) + 1
viv64vi+47 IV (i + 47) + 1
viv64vi+54 IV (i + 54) + 1

i + 6

viv64vi+6
k0(i + 6) + k1(i + 6) + 1

k0(i + 6) + k1(i + 6) + IV (i + 6)
viv64vi+9 k0(i + 9) + k1(i + 9) + 1
viv64vi+31 k0(i + 31) + k1(i + 31) + 1
viv64vi+53 IV (i + 53) + 1
viv64vi+61 IV (i + 60) + 1

7-round, the degree of the product of cube variables is at most 64. In fact, the assigned key
bit conditions lead all the coefficients of the cubic terms viv64vj′ (j′ = 0, 1 . . . 63 and j′ 6= i)
after the second round to be zero, which makes the disappearance of the monomial of
degree 65 in the output bits of 7-round. Those coefficients are actually the so-called
partial divisors of the cube sums of the 65-dimension cube. In the following, we
will extract the partial divisors along with key bit conditions.

Based on Property 2, only S1[1][i], S1[3][i] multiply with S1[2][i], and similarly S1[1][i +
1], S1[3][i+1] multiply with S1[2][i+1], and S1[1][i+6], S1[3][i+6] multiply with S1[2][i+6].
In detail, for the input of the (i+1)th S-box of second round, we list the ANF of S1[1][i+1],
S1[3][i + 1] and S1[2][i + 1] in Eq. (6) as an example, similar equations can be obtained
for the input of the ith and (i + 6)th S-box. Note that S0[4][t] = n(t) for t ∈ {0, 1 . . . 63}
while t 6= i. According to Property 1 and 2, in (i + 1)th S-box of second round, only
cubic terms viv64vi+1, viv64vi+4, viv64vi+26, viv64vi+48, viv64vi+55 are possibly produced
by terms underlined in Eq. (6). We display all the possible cubic terms in S1.5 and their
corresponding coefficients in Table 4.

S1[1][i + 1] = (k0(i + 1) + k1(i + 1) + 1) ∗ vi+1 + (k0(i + 4) + k1(i + 4) + 1) ∗ vi+4

+(k0(i + 26)+k1(i + 26) + 1) ∗ vi+26 + n(i+1) + n(i+4) + n(i+26) + k0(i + 1)∗
k1(i + 1) + k0(i + 1) + k0(i + 4) ∗ k1(i + 4) + k0(i + 4) + k0(i + 26) ∗ k1(i + 26)+
k0(i + 26) + k1(i + 1) + k1(i + 4) + k1(i + 26) + IV (i + 1) + IV (i + 4) + IV (i + 26)

S1[2][i + 1] = vi ∗ v64 + k0(i) + k0(i + 1) + k0(i + 59) + k1(i) + k1(i + 1) + k1(i+
59) + n(i + 1) ∗ vi+1 + n(i + 1) + n(i + 59) ∗ vi+59 + n(i + 59) + vi+64

S1[3][i + 1] = (IV (i + 1) + 1) ∗ vi+1 + (IV (i + 48) + 1) ∗ vi+48 + (IV (i + 55) + 1)∗
vi+55 + (IV(i+1)+1)*n(i+1) + (IV(i+48)+1)*n(i+48) + (IV(i+55)+1)*
n(i+55) + k0(i + 1) + k0(i + 48) + k0(i + 55) + k1(i + 1) + k1(i + 48) + k1(i + 55)+
IV (i + 1) + IV (i + 48) + IV (i + 55)

(6)

188 Conditional Cube Attack on Round-Reduced ASCON

CASE 1: all the IV bits in Table 4 are 0.
As IV (j) = 0 for j ∈ {0, 1 . . . 63} while j 6= 0, 9, 20, 21, 29, 30, we firstly consider the

case that all the relative bits in IV are 0. To achieve a zero cube sum, all the coefficients
in Table 4 should be 0. However, in Table 4, if all the relative IV bits are 0, then the
coefficients k0(i + 1) + k1(i + 1) + 1, k0(i + 1) + k1(i + 1) + IV (i + 1) can not be zero
simultaneously, and IV (i + 48) + 1, IV (i + 55) + 1 etc are certain to equal 1. To solve
this problem, we introduce some auxiliary cube variables to zero the coefficients. These
auxiliary cube variables are introduced as follows in Definition 1.

Definition 1. For any value of key, some additional nonce bits in S0[4] should be set as
cube variables to eliminate the cases that no key can zero all the coefficients in Table 4,
the additional cube variable is called auxiliary cube variable. Auxiliary cube variable is
necessary to nullify cubic terms in S1.5. It should be noted that S0[4][j] is set as vj which
is equal to S0[3][j] for some given j ∈ {0, 1, ..., 63}.

If the added auxiliary cube variables are S0[4][i + 1] = n(i + 1) = vi+1, S0[4][i + 48] =
n(i + 48) = vi+48, S0[4][i + 55] = n(i + 55) = vi+55, in the ANF of S1[3][i + 1] of Eq. (6),
parts of the underline formula and the bold formula will be equal and cancelled out. Then
the Eq. (6) is simplified as follow in Eq. (7).

S1[1][i + 1] = (k0(i + 1) + k1(i + 1)) ∗ vi+1 + (k0(i + 4) + k1(i + 4) + 1) ∗ vi+4

+(k0(i + 26)+k1(i + 26) + 1) ∗ vi+26 + n(i+4) + n(i+26) + k0(i + 1) ∗ k1(i + 1)
+ k0(i + 1) + k0(i + 4) ∗ k1(i + 4) + k0(i + 4) + k0(i + 26) ∗ k1(i + 26) + k0(i + 26)
+ k1(i + 1) + k1(i + 4) + k1(i + 26) + IV (i + 1) + IV (i + 4) + IV (i + 26)

S1[2][i + 1] = vi ∗ v64 + k0(i) + k0(i + 1) + k0(i + 59) + k1(i) + k1(i + 1)+
k1(i + 59) + n(i + 1) ∗ vi+1 + n(i + 1) + n(i + 59) ∗ vi+59 + n(i + 59) + vi+64

S1[3][i + 1] = k0(i + 1) + k0(i + 48) + k0(i + 55) + k1(i + 1) + k1(i + 48) + k1(i + 55)
IV (i + 1) + IV (i + 48) + IV (i + 55)

(7)

Then, compared to Table 4, the coefficients of viv64vi+48 and viv64vi+55 turn to 0, and
k0(i+1)+k1(i+1) becomes the only coefficient of viv64vi+1 instead of k0(i+1)+k1(i+1)+1
and k0(i+1)+k1(i+1)+IV (i+1). Additionally, we can add more auxiliary cube variables
to zero more coefficients as shown in the new coefficients Table 5. Hence, the nonzero
coefficients of the cubic terms are all determined by some key bits. We set these coefficients
to be zero and get a equation set Eq. (8). Hence, if a secret key conforms to Eq. (8), then
all the coefficients in Table 5 are 0 and there will be no cubic terms after second round.



k0(i + 1) + k1(i + 1) = 0
k0(i + 4) + k1(i + 4) = 1
k0(i + 26) + k1(i + 26) = 1
k0(i + 3) + k1(i + 3) = 1
k0(i + 25) + k1(i + 25) = 1
k0(i + 6) + k1(i + 6) = 0
k0(i + 9) + k1(i + 9) = 1
k0(i + 31) + k1(i + 31) = 1

(8)

In order to get more different key conditions that delete the cubic terms, we introduce the
control cube variable which is defined as follows.

Zheng Li, Xiaoyang Dong and Xiaoyun Wang 189

Table 5: Coefficients of Cubic Terms with Auxiliary Cube Variables

index of S-box cubic terms auxiliary cube variables corresponding coefficients
(partial divisors)

i + 1

viv64vi+1 S0[4][i + 1] = vi+1 k0(i + 1) + k1(i + 1)
viv64vi+4 k0(i + 4) + k1(i + 4) + 1
viv64vi+26 k0(i + 26) + k1(i + 26) + 1
viv64vi+48 S0[4][i + 48] = vi+48 0
viv64vi+55 S0[4][i + 55] = vi+55 0

i

viv64vi+3 k0(i + 3) + k1(i + 3) + 1
viv64vi+25 k0(i + 25) + k1(i + 25) + 1
viv64vi+47 S0[4][i + 47] = vi+47 0
viv64vi+54 S0[4][i + 54] = vi+54 0

i + 6

viv64vi+6 S0[4][i + 6] = vi+6 k0(i + 6) + k1(i + 6)
viv64vi+9 k0(i + 9) + k1(i + 9) + 1
viv64vi+31 k0(i + 31) + k1(i + 31) + 1
viv64vi+53 S0[4][i + 53] = vi+53 0
viv64vi+61 S0[4][i + 60] = vi+60 0

Definition 2. When some additional nonce bit in S0[4] set as cube variable, the value of
coefficients in Table 5 will be XORed by 1. The additional cube variable is called control
cube variable. Control cube variable is tweakable to provide different coefficients of cubic
terms in S1.5 according to the recovery of different keys. S0[4][j] is set as vj which is equal
to S0[3][j] for some given j ∈ {0, 1, ..., 63}.

For example, we add S0[4][i + 4] = n(i + 4) = vi+4 as a control cube variable, the Eq.
(7) is changed to be Eq. (9). In the ANF of S1[1][i + 1] of Eq. (7), the bold formula
n(i+4) and (k0(i + 4) + k1(i + 4) + 1) ∗ vi+4 are added to be (k0(i + 4) + k1(i + 4)) ∗ vi+4.
Obviously, the coefficient is changed.

S1[1][i + 1] = (k0(i + 1) + k1(i + 1)) ∗ vi+1 + (k0(i + 4) + k1(i + 4)) ∗ vi+4

+(k0(i + 26)+k1(i + 26) + 1) ∗ vi+26 + n(i+26) + k0(i + 1) ∗ k1(i + 1)
+ k0(i + 1) + k0(i + 4) ∗ k1(i + 4) + k0(i + 4) + k0(i + 26) ∗ k1(i + 26) + k0(i + 26)
+ k1(i + 1) + k1(i + 4) + k1(i + 26) + IV (i + 1) + IV (i + 4) + IV (i + 26)

S1[2][i + 1] = vi ∗ v64 + k0(i) + k0(i + 1) + k0(i + 59) + k1(i) + k1(i + 1)+
k1(i + 59) + n(i + 1) ∗ vi+1 + n(i + 1) + n(i + 59) ∗ vi+59 + n(i + 59) + vi+64

S1[3][i + 1] = k0(i + 1) + k0(i + 48) + k0(i + 55) + k1(i + 1) + k1(i + 48) + k1(i + 55)

(9)

Differences among original cube variables, auxiliary cube variables and con-
trol cube variables: We firstly select a 65-dimension original cube which occupies S0[3]
and 1-bit of S0[4]. After the second round, cubic terms appear with coefficients determined
by key bits and IV bits. We would like to zero those coefficients, however, some coefficients
can not be zero, e.g. the coefficient of viv64vi+48 is IV (i + 55) + 1 while IV (i + 55) = 0,
shown in Table 4. Hence, auxiliary cube variables are introduced to zero these shown in
Table 5. Then we get key condition equation set – Eq. (8) to zero those coefficients. When
the secret key meets Eq. (8), the cube sums will be zero. However, it is just a weak key
attack that covers a key subset of size 2120. We want get many more such key subsets
to extend the weak key attack to a full key attack. Hence, the tweakable control cube
variables are introduced to provide different coefficients of cubic terms and get different
key condition equation sets to cover different key subsets. So when an original cube is

190 Conditional Cube Attack on Round-Reduced ASCON

Table 6: Coefficients of Cubic Terms with Auxiliary and Control Cube Variable
cubic auxiliary cube control cube corresponding
terms variables variable coefficients

i + 1

viv64vi+1 S0[4][i + 1] = vi+1 k0(i + 1) + k1(i + 1)
viv64vi+4 S0[4][i + 4] = vi+4 k0(i + 4) + k1(i + 4)
viv64vi+26 k0(i + 26) + k1(i + 26) + 1
viv64vi+48 S0[4][i + 48] = vi+48 0
viv64vi+55 S0[4][i + 55] = vi+55 0

i

viv64vi+3 k0(i + 3) + k1(i + 3) + 1
viv64vi+25 k0(i + 25) + k1(i + 25) + 1
viv64vi+47 S0[4][i + 47] = vi+47 0
viv64vi+54 S0[4][i + 54] = vi+54 0

i + 6

viv64vi+6 S0[4][i + 6] = vi+6 k0(i + 6) + k1(i + 6)
viv64vi+9 k0(i + 9) + k1(i + 9) + 1
viv64vi+31 k0(i + 31) + k1(i + 31) + 1
viv64vi+53 S0[4][i + 53] = vi+53 0
viv64vi+61 S0[4][i + 60] = vi+60 0

fixed, the auxiliary cube variables are also fixed, but control cube variables are tweakable
to cover different key subsets. Those are the differences between the three cube variables.

We list coefficients of cubic terms in Table 6 after adding control cube variable S0[4][i +
4] = n(i + 4) = vi+4. Compared to Table 5, only k0(i + 4) + k1(i + 4) + 1 is changed to
k0(i + 4) + k1(i + 4). Key conditions required for a zero cube sum are adjusted to Eq. (10)
from Eq. (8) by a control cube variable S0[4][i + 4] = vi+4.

k0(i + 1) + k1(i + 1) = 0
k0(i + 4) + k1(i + 4) = 0
k0(i + 26) + k1(i + 26) = 1
k0(i + 3) + k1(i + 3) = 1
k0(i + 25) + k1(i + 25) = 1
k0(i + 6) + k1(i + 6) = 0
k0(i + 9) + k1(i + 9) = 1
k0(i + 31) + k1(i + 31) = 1

(10)

Similarly, for t ∈ {3, 4, 9, 25, 26, 31}, control cube variable S0[4][i + t] = vi+t can change
the corresponding kind of coefficients from k0(i + t) + k1(i + t) + 1 to k0(i + t) + k1(i + t).
Therefore, there are 26 = 64 kinds of control cube variable combinations corresponding
to 64 groups of coefficients respectively. Hence, there are 64 different equation sets
correspondingly shown in Eq. (11), where (a, b, c, d, e, f) ∈ F 6

2 varies according to different
control cube variable combination.



k0(i + 1) + k1(i + 1) = 0
k0(i + 4) + k1(i + 4) = a

k0(i + 26) + k1(i + 26) = b

k0(i + 3) + k1(i + 3) = c

k0(i + 25) + k1(i + 25) = d

k0(i + 6) + k1(i + 6) = 0
k0(i + 9) + k1(i + 9) = e

k0(i + 31) + k1(i + 31) = f

(11)

Zheng Li, Xiaoyang Dong and Xiaoyun Wang 191

When key meets the corresponding conditions, all the coefficients of cubic terms will be
zero. It means that there are no cubic terms in S1.5. Due to linearity of the linear diffusion
layer, no cubic terms exist in S2. The highest degree of monomials in S2 is 2, which has
also been verified using SAGE [WD05] by computer. As the algebraic degree of S-box
is 2, degree of a term in the output of 7-round Ascon is at most 25 = 32 times of the
highest degree in S2 (i.e. 2). Thus, the algebraic degree of the 7-round Ascon’s output is
less than or equal to 64, which means that v0v1 . . . v64 will not appear in the output, then
the cube sum of cube {v0, v1, . . . , v64} is zero. When key doesn’t meet the corresponding
conditions, some cubic terms will appear in S2. Therefore, v0v1 . . . v64 will appear in the
output of 7-round.

In details, for a key subset where the key meets the two equations of k0(i+1)+k1(i+1) =
0 and k0(i + 6) + k1(i + 6) = 0 in Eq. (11), we determine the values of (a, b, c, d, e, f) by
testing the cube sum of each of 64 65-dimension cubes indexed by control cube variable
combination. The time complexity of the test is 265 × 64 = 271. We denote this key
subset as Ui which is determined by the two key conditions k0(i + 1) + k1(i + 1) = 0 and
k0(i + 6) + k1(i + 6) = 0, whose size is 2128× 1

4 . Else, we can know that k0(i + 1) + k1(i + 1)
and k0(i + 6) + k1(i + 6) do not equal to 0 at the the same time. Note that the cube
variable v64 is placed in S0[4][i], where i ∈ {0, 1, ..., 63}, however, in CASE 1, we suppose
the related bits in IV are zero, so there are 52 such Uis in total that are determined by 52
sets of two bits key conditions.

CASE 2: some IV bits in Table 4 are 1.

As shown in Table 4, if IV (i + 1) = 1, then the coefficients k0(i + 1) + k1(i + 1) + 1 and
k0(i+1)+k1(i+1)+IV (i+1) are translated to the same one k0(i+1)+k1(i+1)+1. Then,
there is no need to add the auxiliary cube variables S0[4][i + 1] = vi+1. The freed auxiliary
cube variable can be used as control cube variable. In fact, if we use S0[4][i + 1] = vi+1
as a control cube variable, k0(i + 1) + k1(i + 1) + 1 becomes another coefficient that
can be changed to k0(i + 1) + k1(i + 1). Then Eq. (11) is translated to Eq. (12), where
(a, b, c, d, e, f, g) ∈ F 7

2 varies according to different control cube variable combinations.
Therefore, similar to the previous analysis, if a key meets the one bit key condition of
k0(i + 6) + k1(i + 6) = 0, we can obtain the value of (a, b, c, d, e, f, g) by testing the cube
sum of the 27 65-dimension cubes. We denote those keys as a key subset U ′i , whose size
is 2127. Else, we claim k0(i + 6) + k1(i + 6) = 1. The time complexity of the test is
265 × 27 = 272.



k0(i + 1) + k1(i + 1) = a

k0(i + 4) + k1(i + 4) = b

k0(i + 26) + k1(i + 26) = c

k0(i + 3) + k1(i + 3) = d

k0(i + 25) + k1(i + 25) = e

k0(i + 6) + k1(i + 6) = 0
k0(i + 9) + k1(i + 9) = f

k0(i + 31) + k1(i + 31) = g

(12)

Since there are 6 bits of IV are 1, i.e. IV (i + 1) = 1 where (i + 1) ∈ {0, 9, 20, 21, 29, 30},
there are 6 similar equation sets as Eq. (12). For each equation set, there is a bit key

192 Conditional Cube Attack on Round-Reduced ASCON

condition correspondingly, which are listed as follows in Eq. (13) to (18):

k0(5) + k1(5) = 0 (13)
k0(14) + k1(14) = 0 (14)
k0(25) + k1(25) = 0 (15)
k0(26) + k1(26) = 0 (16)
k0(34) + k1(34) = 0 (17)
k0(35) + k1(35) = 0 (18)

Hence, there are 6 such U ′i key subsets corresponding to the above 6 one-bit key conditions,
respectively.

Similarly, as shown in Table 4, if IV (i + 6) = 1, then the auxiliary cube variable
S0[4][i + 6] = vi+6 is translated as control cube variable. Then, Eq. (11) is translated as
Eq. (19), where (a, b, c, d, e, f, g) ∈ F 7

2 varies according to different control cube variable
combination. We can not translate S0[4][i + 1] = vi+1 and S0[4][i + 6] = vi+6 to control
cube variable simultaneously, because IV (i + 1) = 1 and IV (i + 6) = 1 can not hold
simultaneously according to the given IV .

k0(i + 1) + k1(i + 1) = 0
k0(i + 4) + k1(i + 4) = a

k0(i + 26) + k1(i + 26) = b

k0(i + 3) + k1(i + 3) = c

k0(i + 25) + k1(i + 25) = d

k0(i + 6) + k1(i + 6) = e

k0(i + 9) + k1(i + 9) = f

k0(i + 31) + k1(i + 31) = g

(19)

Similarly, for different IV (i + 6) = 1 where (i + 6) ∈ {0, 9, 20, 21, 29, 30}, there are
totally 6 similar equation sets as Eq. (19). For each equation set, there is a bit key condition
correspondingly, which are also listed as follows in Eq. (20) to (25):

k0(59) + k1(59) = 0 (20)
k0(4) + k1(4) = 0 (21)

k0(15) + k1(15) = 0 (22)
k0(16) + k1(16) = 0 (23)
k0(24) + k1(24) = 0 (24)
k0(25) + k1(25) = 0 (25)

Note that Eq. (15) and (25) are equal. So there are totally 12-1=11 such U ′i key subsets,
where i ∈ {63, 8, 19, 20, 28, 29, 58, 3, 14, 15, 23}3, corresponding to the above 11 different
one-bit key conditions. Each U ′i key subset’s size is 2127. In CASE 1, the indexes i of the
52 Ui key subsets are in {0, 1, 2, ..., 63} − {63, 8, 19, 20, 28, 29, 58, 3, 14, 15, 23, 30} .

The total attack procedures are as follows:

(i) Test the cube sum of 27 65-dimension cubes obtained in CASE 2 and determine 8-bit
key information. If all the cube sums are not zero, the key is not in the corresponding
key subset U ′i .

3The indexes i represent the positions of cube variable v64, i.e. S0[4][i] = v64

Zheng Li, Xiaoyang Dong and Xiaoyun Wang 193

(ii) Repeat step (i) for 11 times according to different one bit key condition shown in
Eq. (13) to Eq. (24), which cover all U ′is .

(iii) Test the cube sum of 26 64-dimension cubes obtained in CASE 1 and determine
8-bit key information. If all the cube sums are not zero, then the key is not in the
corresponding key subset Ui.

(iv) Repeat step (iii) for 52 times to cover all Uis.

The time complexity of the above 4 procedures is 27 × 265 × 11 + 26 × 265 × 52 = 277.2.
In the worst case, if the secret key does not fall into any Ui and U ′i , then the key

falls into a remaining key subset whose size is about 2103.92. We explain the range of the
remaining key subset in details.

We propose a fast key filter phase to get the remaining key subset in the following. We
introduce a array of index KI0 = {5, 14, 25, 26, 34, 35, 59, 4, 15, 16, 24}. In the remaining
key subset, any key does not fall into any U ′i , which means any key does not obey Eq. (13)
to (18) and Eq. (20) to (25). Hence, the keys meet the following conditions in Eq. (26):

k0(i) + k1(i) = 1, i ∈ KI0. (26)

For each of (k0(i), k1(i))(i ∈ KI0), only 2 guesses out of 22 values of (k0(i), k1(i)) obey
the corresponding one of Eq. (26). Each filtration ratio is 1

2 , so 11 (k0(i), k1(i)) lead a
ratio 2−11. Additionally, any key in the remaining key subset does not fall into any Ui,
which means k0(i + 1) + k1(i + 1) = 0 and k0(i + 6) + k1(i + 6) = 0 can not be obeyed at
the same time in Eq. (11). It can be converted to the following tester:

(k0(i + 1) + k1(i + 1) + 1)(k0(i + 6) + k1(i + 6) + 1) = 0 (27)

If we consider the four bits independently, 24 key guesses over k0(i + 1), k1(i + 1), k0(i +
6), k1(i + 6) will be filtered by Eq. (27) with filtration ratio of 3

4 .
As the index varies, it seems that 52 testers for key bits can be performed independently.

However, the relevant key bits intersect for 52 testers. Firstly, we classify the indexes i + 1
and i + 6 for k0 and k1 in Eq. (27) into the following arrays KI1, KI2 and KI3.


KI1 = {40, 45, 50, 55, 60, 1, 6, 11}
KI2 = {31, 36, 41, 46, 51, 56, 61, 2, 7, 12, 17, 22, 27, 32, 37, 42,

47, 52, 57, 62, 3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58, 63}
KI3 = {39, 44, 49, 54}

(28)

KIj doesn’t intersect with each other for j ∈ {0, 1, 2, 3}. In array KI1, suppose that i0 is
an arbitrary element and i1 is next to it, then Eq. (29) should be hold.

(k0(i0) + k1(i0) + 1)(k0(i1) + k1(i1) + 1) = 0 (29)

For 28 guesses of k0(i) + k1(i), i ∈ KI1, 55 values meet above conditions Eq. (29). So
KI1 provides a filtration ratio of 55

28 . Similarly, for KIj(j ∈ {2, 3}), the filtration ratios
are 9227465

233 , 8
24 , respectively. Due to the disappearances of key in any Ui of CASE 1, it

provides a filtration ratio equals 55
28 × 9227465

233 × 8
24 = 2−13.08. The disappearance of key in

any Ui and U ′i gives a total filtration ratio of 2−11 × 2−13.08. Since, the filter phase can
be performed for each parts of the key independently, the time complexity is about 211

checks of Eq. (26) and 28 + 233 + 24 = 233.1 checks of Eq. (29).
After the filter phase, all the remaining keys should be checked by a (nonce, plaintext,

ciphertext, tag) pair to determine the right one. The size remaining key subset size is

194 Conditional Cube Attack on Round-Reduced ASCON

about 2128−11× 2−13.08 = 2103.92. So in the worst case, the total complexity is 211 + 233.1 +
2103.92 + 277.2 = 2103.92.

In the best case, if the secret key falls into the intersection of all 11 U ′is, denoted
as weak-key set, whose size is 2128−11 = 2117. 52 bits4 key information are recovered and
other 128− 52 = 76 bits key are recovered by exhaustive search. The total time complexity
to recover the right key for the 2117 weak-key set is about 276 + 27 × 265 × 11 = 277.

7 Discussion on Ascon-128a and Ascon v1.1
For attacks on 5/6-round initialization of Ascon-128a, with the same cubes and conditions
to Ascon-128, key recovery can be performed in the same time and data complexity.

In the attack on 7-round initialization of Ascon, as CASE 2 described in Section 6,
it is considered specially when IV bits are 1. Since the IV s used by Ascon-128 and
Ascon-128a are slightly different, the attack on 7-round Ascon-128a is a little different
from that on Ascon-128. The details are described in Appendix C. The total time
complexity of the 7-round attack on Ascon-128a is about 2103.45.

Ascon v1.1 is a previous version. As the tweak only affects the ordering of constants
in pb, our attacks can also be applied to it.

8 Conclusion
This paper improves the previous cube-like attack on Ascon by the generalized conditional
cube attack and the cube-like key-subset technique. Different from previous cube-like method
or conditional cube method [DMP+15, HWX+, DEMS15b], we release the restriction that
all cube variables must not multiply with each other in the first round. This makes it
possible for the 7-round key-recovery attack on Ascon which needs more cube variables
to construct some new cubes with bigger dimension. In each of the new cubes, two cube
variables multiply with each other to generate quadratic terms after the first round. In
the second round, by restraining some bit conditions of the key and adding some auxiliary
variables, the quadratic terms of cube variables do not multiply with other monomials
of cube variables. Interestingly, we finally divide the full key space into 63 key subsets
and one remaining set according to different key bit conditions. In each subset, some
65-dimension cubes are constructed. Then, by testing the cube sum of these cubes, we
determine which subsets the secret key falls into. If all the cube tests fail, we claim that
the key falls into the remaining set and search it for the right one. This leads to a 7-round
key-recovery attack on Ascon with time complexity 2103.92. Moreover, if the key falls into
a weak-key set, whose size is 2117, the total complexity is reduced to 277. We also give the
first practical key-recovery attack on 6-round Ascon. Those are the best attacks on the
round-reduced Ascon.

Acknowledgments
We would like to thank Itai Dinur, Willi Meier, Senyang Huang and the anonymous
reviewers who helped improve this paper. This work is supported by China’s 973 Program
(No. 2013CB834205), the Strategic Priority Research Program of the Chinese Academy
of Sciences (No. XDB01010600), the National Natural Science Foundation of China (No.
61672019 and 61402256), the Fundamental Research Funds of Shandong University (No.
2016JC029), and the Foundation of Science and Technology on Information Assurance
Laboratory (No. KJ-15-002).

4Note that for 11 U ′is, we get 11 sets of equations, such as Eq. (19). totally 11 × 8 = 88 linear equations
on key bits are retrieved. However, the linear equations may repeat, and only 52 linear equations are left.

Zheng Li, Xiaoyang Dong and Xiaoyun Wang 195

References
[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube

testers and key recovery attacks on reduced-round MD6 and trivium. In Orr
Dunkelman, editor, FSE 2009, volume 5665 of Lecture Notes in Computer
Science, pages 1–22. Springer, 2009.

[BDP+16] Guido Berton, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. CAESAR submission: Ketje v2, 2016. http://
competitions.cr.yp.to/round3/ketjev2.pdf.

[com14] The CAESAR committee. CAESAR: Competition for authenticated encryp-
tion: Security, applicability, and robustness, 2014. http://competitions.
cr.yp.to/caesar.html.

[DEMS15a] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläf-
fer. Ascon v1.1. submission to the CAESAR competition, 2015. http:
//competitions.cr.yp.to/round2/asconv11.pdf.

[DEMS15b] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Cryptanalysis of ascon. In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048
of Lecture Notes in Computer Science, pages 371–387. Springer, 2015.

[DLJW15] Xiaoyang Dong, Leibo Li, Keting Jia, and Xiaoyun Wang. Improved attacks on
reduced-round camellia-128/192/256. In Kaisa Nyberg, editor, CT-RSA 2015,
volume 9048 of Lecture Notes in Computer Science, pages 59–83. Springer,
2015.

[DLWQ17] Xiaoyang Dong, Zheng Li, Xiaoyun Wang, and Ling Qin. Cube-like Attack on
Round-Reduced Initialization of Ketje Sr. IACR Trans. Symmetric Cryptol.,
2017(1), 2017. http://eprint.iacr.org/2017/159.

[DMP+15] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Cube attacks and cube-attack-like cryptanalysis on the round-reduced
keccak sponge function. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, volume 9056 of Lecture Notes in Computer Science,
pages 733–761. Springer, 2015.

[DPAB12] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Guido Bertoni.
Permutation-based encryption, authentication and authenticated encryption.
In Workshop Records of DIAC 2012, pages 159–170, 2012.

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials.
In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of Lecture Notes
in Computer Science, pages 278–299. Springer, 2009.

[DS11] Itai Dinur and Adi Shamir. Breaking grain-128 with dynamic cube attacks.
In Antoine Joux, editor, FSE 2011, volume 6733, pages 167–187. Springer,
2011.

[FV13] Pierre-Alain Fouque and Thomas Vannet. Improving key recovery to 784 and
799 rounds of trivium using optimized cube attacks. In Shiho Moriai, editor,
FSE 2013, volume 8424 of Lecture Notes in Computer Science, pages 502–517.
Springer, 2013.

[HWX+] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan
Zhao. Conditional cube attack on reduced-round Keccak sponge function.
EUROCRYPT 2017 (to appear). http://eprint.iacr.org/2016/790.

http://competitions.cr.yp.to/round3/ketjev2.pdf
http://competitions.cr.yp.to/round3/ketjev2.pdf
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/round2/asconv11.pdf
http://competitions.cr.yp.to/round2/asconv11.pdf
http://eprint.iacr.org/2017/159
http://eprint.iacr.org/2016/790

196 Conditional Cube Attack on Round-Reduced ASCON

[KMN10] Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional differ-
ential cryptanalysis of nlfsr-based cryptosystems. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages
130–145. Springer, 2010.

[LJWD15] Leibo Li, Keting Jia, Xiaoyun Wang, and Xiaoyang Dong. Meet-in-the-middle
technique for truncated differential and its applications to CLEFIA and
camellia. In Gregor Leander, editor, FSE 2015, volume 9054, pages 48–70.
Springer, 2015.

[NIS] NIST. Advanced encryption standard (AES) (november 2001), federal infor-
mation processing standards publication fips 197.

[WD05] Stein William and Joyner David. SAGE: system for algebra and geometry
experimentation. ACM SIGSAM Bulletin, 39(2):61–64, 2005.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 19–35. Springer, 2005.

[WYY05] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search
attacks on SHA-0. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 1–16. Springer, 2005.

Zheng Li, Xiaoyang Dong and Xiaoyun Wang 197

A Parameters sets

Parameters sets for attacks on 5/6-round initialization of Ascon are listed in Table 7/8
respectively.

B Test 2

B.1 Test 2 for 5-round initialization of Ascon-128

We test 5-round cube sums over a 17-dimension random cube with 1000 keys. The random
cube set in two-word nonce is as Figure 5, where each grey bit represents one cube variable
in the two-word nonce. For each bit of the 64-bit output of 5-round initialization of
Ascon-128, the accumulation and the ratio of nonzero cube sums among 1000 keys are
listed in Table 9.

0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0

0 0 1 0

Figure 5: The Random Cube Set with Dimension 17

B.2 Test 2 for 6-round initialization of Ascon-128

We test 6-round cube sums over a 33-dimension random cube with 982 keys. The random
cube set in two-word nonce is as Figure 6, where each grey bit represents one cube variable
in the two-word nonce. For each bit of the 64-bit output of 6-round initialization of
Ascon-128, the accumulation and the ratio of nonzero cube sums among 982 keys are
listed in Table 10.

1 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1

0 1 0 0 0 0 0

Figure 6: The Random Cube Set with Dimension 33

C Attacks on 7-round initialization of Ascon-128a

The complexity of the attack on 7-round initialization of Ascon-128a is analysed carefully
here. With 0 refers to the most significant bit, in Ascon-128 six bits of IV value 1, whose
indexes are {0, 9, 20, 21, 29, 30}, while it turns to 5 bits for Ascon-128a, whose indexes are
{0, 8, 20, 21, 28}. We compute the complexity of the worst case similar to Ascon-128. The
range of the remaining key subset is analysed as follow. We denote the index set of key
bits certainly determined by CASE 2 as

KI0 = {4, 12, 24, 25, 32, 53, 61, 13, 10, 17} (30)

For each of (k0(i), k1(i))(i ∈ KI0), only 2 guesses out of 22 values of (k0(i), k1(i)) obey
the corresponding one of Eq. (26) with KI0 in Eq. (30). Each filtration ratio is 1

2 , so 10
(k0(i), k1(i)) lead a ratio 2−10. Additionally, the index sets of key bits certainly influenced

198 Conditional Cube Attack on Round-Reduced ASCON

Table 7: Parameters Set for Attack on the 5-round Initialization of Ascon
k0(t)

(1)

cube variables

S0[4][t]=v0,S0[4][5+t]†=v1,S0[4][8+t]=v2,S0[4][12+t]=v3,
S0[4][14+t]=v4,S0[4][15+t]=v5,S0[4][18+t]=v6,
S0[4][19+t]=v7,S0[4][21+t]=v8,S0[4][27+t]=v9,
S0[4][28+t]=v10,S0[4][30+t]=v11,S0[4][34+t]=v12,
S0[4][37+t]=v13,S0[4][49+t]=v14,S0[4][50+t]=v15.

nonce

S0[3][t]=0,S0[3][5+t]=0,S0[3][8+t]=0,S0[3][12+t]=0,
S0[3][14+t]=0,S0[3][15+t]=0,S0[3][18+t]=0,S0[3][19+t]=0,
S0[3][21+t]=0,S0[3][27+t]=0,S0[3][28+t]=0,S0[3][30+t]=0,
S0[3][34+t]=0,S0[3][37+t]=0,S0[3][49+t]=0,S0[3][50+t]=0.

key information If a cube sum is nonzero, k0(t) = 1.

(2)

cube variables

S0[4][t]=v0,S0[4][5+t]=v1,S0[4][7+t]=v2,S0[4][8+t]=v3,
S0[4][14+t]=v4,S0[4][15+t]=v5,S0[4][24+t]=v6,
S0[4][27+t]=v7,S0[4][30+t]=v8,S0[4][34+t]=v9,
S0[4][37+t]=v10,S0[4][41+t]=v11,S0[4][43+t]=v12,
S0[4][49+t]=v13,S0[4][50+t]=v14,S0[4][52+t]=v15.

nonce

S0[3][t]=0,S0[3][5+t]=0,S0[3][7+t]=0,S0[3][8+t]=0,
S0[3][14+t]=0,S0[3][15+t]=0,S0[3][24+t]=0,S0[3][27+t]=0,
S0[3][30+t]=0,S0[3][34+t]=0,S0[3][37+t]=0,S0[3][41+t]=0,
S0[3][43+t]=0,S0[3][49+t]=0,S0[3][50+t]=0,S0[3][52+t]=0.

key information If a cube sum is nonzero, k0(t) = 0.
k0(t) + k1(t)‡

(3)

cube variables

S0[3][t]=S0[4][t]=v0,S0[3][1+t]=v1,S0[3][4+t]=v2,
S0[3][5+t]=v3,S0[3][6+t]=v4,S0[3][8+t]=v5,S0[3][14+t]=v6,
S0[3][15+t]=v7,S0[3][16+t]=v8,S0[3][17+t]=v9,
S0[3][20+t]=v10,S0[3][26+t]=v11,S0[3][27+t]=v12,
S0[3][29+t]=v13,S0[3][30+t]=v14,S0[3][33+t]=v15.

nonce

S0[4][1+t]=0,S0[4][4+t]=0,S0[4][5+t]=0,S0[4][6+t]=0,
S0[4][8+t]=0,S0[4][14+t]=0,S0[4][15+t]=0,S0[4][16+t]=0,
S0[4][17+t]=0,S0[4][20+t]=0,S0[4][26+t]=0,S0[4][27+t]=0,
S0[4][29+t]=0,S0[4][30+t]=0,S0[4][33+t]=0.

key information If a cube sum is nonzero, k0(t) + k1(t) = 1.

(4) cube variables

S0[3][t]=v0,S0[3][5+t]=v1,S0[3][8+t]=v2,S0[3][14+t]=v3,
S0[3][15+t]=v4,S0[3][16+t]=v5,S0[3][17+t]=v6,
S0[3][20+t]=v7,S0[3][27+t]=v8,S0[3][29+t]=v9,
S0[3][30+t]=v10,S0[3][33+t]=v11,S0[3][34+t]=v12,
S0[3][35+t]=v13,S0[3][37+t]=v14,S0[3][38+t]=v15.

key information If a cube sum is nonzero, k0(t) + k1(t) = 0.

(5) cube variables

S0[3][t]=v0,S0[3][5+t]=v1,S0[3][8+t]=v2,S0[3][14+t]=v3,
S0[3][15+t]=v4,S0[3][27+t]=v5,S0[3][29+t]=v6,
S0[3][30+t]=v7,S0[3][34+t]=v8,S0[3][36+t]=v9,
S0[3][37+t]=v10,S0[3][38+t]=v11,S0[3][39+t]=v12,
S0[3][45+t]=v13,S0[3][49+t]=v14,S0[3][50+t]=v15.

key information If a cube sum is nonzero, k0(t) + k1(t) = 0 .
†: (5+t) means (5+t) mod 64, similarly (x+t) means (x+t) mod 64 in Table 7 and 8.
‡: k0(t) + k1(t) should reverse when t ∈ {56, 57, 58, 59} in Table 7 and 8.

Zheng Li, Xiaoyang Dong and Xiaoyun Wang 199

Table 8: Parameters Set for Attack on the 6-round Initialization of Ascon
k0(t)

(1)

S0[3][t]=S0[4][t]=v0,S0[3][1+t]=v1,S0[3][4+t]=v2,S0[3][5+t]=v3,
S0[3][6+t]=v4,S0[3][7+t]=v5,S0[3][8+t]=v6,S0[3][10+t]=v7,
S0[3][13+t]=v8,S0[3][14+t]=v9,S0[3][15+t]=v10,S0[3][16+t]=v11,
S0[3][17+t]=v12,S0[3][24+t]=v13,S0[3][26+t]=v14,S0[3][27+t]=v15,

cube S0[3][30+t]=v16,S0[3][34+t]=v17,S0[3][35+t]=v18,S0[3][37+t]=v19,
S0[3][40+t]=v20,S0[3][41+t]=v21,S0[3][43+t]=v22,S0[3][46+t]=v23,
S0[3][48+t]=v24,S0[3][49+t]=v25,S0[3][50+t]=v26,S0[3][52+t]=v27,
S0[3][56+t]=v28,S0[3][59+t]=v29,S0[3][60+t]=S0[4][60+t]=v30,
S0[3][63+t]=S0[4][63+t]=v31.

key If a cube sum is nonzero, k0(t) = 1.

(2)

S0[3][t]=S0[4][t]=v0,S0[3][1+t]=v1,S0[3][4+t]=v2,S0[3][5+t]=v3,
S0[3][6+t]=v4,S0[3][8+t]=v5,S0[3][9+t]=v6,S0[3][12+t]=v7,
S0[3][14+t]=v8,S0[3][15+t]=v9,S0[3][16+t]=v10,S0[3][17+t]=v11,
S0[3][18+t]=v12,S0[3][19+t]=v13,S0[3][21+t]=v14,S0[3][26+t]=v15,

cube S0[3][27+t]=v16,S0[3][28+t]=v17,S0[3][30+t]=v18,S0[3][34+t]=v19,
S0[3][35+t]=v20,S0[3][37+t]=v21,S0[3][40+t]=v22,S0[3][46+t]=v23,
S0[3][48+t]=v24,S0[3][49+t]=v25,S0[3][50+t]=v26,S0[3][53+t]=v27,
S0[3][56+t]=v28,S0[3][59+t]=v29,S0[3][60+t]=S0[4][60+t]=v30,
S0[3][63+t]=S0[4][63+t]=v31.

key If a cube sum is nonzero, k0(t) = 0.
k0(t) + k1(t)

(3)

S0[3][t]=S0[4][t]=v0,S0[3][1+t]=v1,S0[3][4+t]=v2,S0[3][5+t]=v3,
S0[3][6+t]=v4,S0[3][8+t]=v5,S0[3][14+t]=v6,S0[3][15+t]=v7,
S0[3][16+t]=v8,S0[3][17+t]=v9,S0[3][20+t]=v10,S0[3][26+t]=v11,
S0[3][27+t]=v12,S0[3][29+t]=v13,S0[3][30+t]=v14,S0[3][33+t]=v15,

cube S0[3][34+t]=v16,S0[3][35+t]=v17,S0[3][37+t]=v18,S0[3][38+t]=v19,
S0[3][39+t]=v20,S0[3][40+t]=v21,S0[3][46+t]=v22,S0[3][48+t]=v23,
S0[3][49+t]=v24,S0[3][50+t]=v25,S0[3][55+t]=v26,S0[3][56+t]=v27,
S0[3][58+t]=v28,S0[3][59+t]=v29,S0[3][62+t]=v30,S0[3][63+t]=v31.

key If a cube sum is nonzero, k0(t) + k1(t) = 1.

(4)

S0[3][t]=v0,S0[3][1+t]=v1,S0[3][3+t]=v2,S0[3][4+t]=v3,
S0[3][5+t]=v4,S0[3][6+t]=v5,S0[3][8+t]=v6,S0[3][14+t]=v7,
S0[3][15+t]=v8,S0[3][16+t]=v9,S0[3][17+t]=v10,S0[3][20+t]=v11,
S0[3][26+t]=v12,S0[3][27+t]=v13,S0[3][29+t]=v14,S0[3][30+t]=v15,

cube S0[3][33+t]=v16,S0[3][34+t]=v17,S0[3][35+t]=v18,S0[3][37+t]=v19,
S0[3][38+t]=v20,S0[3][39+t]=v21,S0[3][40+t]=v22,S0[3][46+t]=v23,
S0[3][49+t]=v24,S0[3][50+t]=v25,S0[3][55+t]=v26,S0[3][58+t]=v27,
S0[3][59+t]=v28,S0[3][60+t]=v29,S0[3][62+t]=v30,S0[3][63+t]=v31.

nonce S0[4][t]=0.
key If a cube sum is nonzero, k0(t) + k1(t) = 0.

(5)

S0[3][t]=v0,S0[3][1+t]=v1,S0[3][4+t]=v2,S0[3][5+t]=v3,S0[3][6+t]=v4,
S0[3][8+t]=v5,S0[3][9+t]=S0[4][9+t]=v6,S0[3][11+t]=S0[4][11+t]=v7,
S0[3][14+t]=v8,S0[3][15+t]=v9,S0[3][16+t]=v10,
S0[3][18+t]=S0[4][18+t]=v11,S0[3][24+t]=S0[4][24+t]=v12,
S0[3][26+t]=v13,S0[3][27+t]=v14,S0[3][29+t]=v15,S0[3][30+t]=v16,

cube S0[3][34+t]=v17,S0[3][36+t]=v18,S0[3][37+t]=v19,S0[3][38+t]=v20,
S0[3][39+t]=v21,S0[3][45+t]=v22,S0[3][47+t]=S0[4][47+t]=v23,
S0[3][48+t]=v24,S0[3][49+t]=v25,S0[3][50+t]=v26,S0[3][56+t]=v27,
S0[3][58+t]=v28,S0[3][59+t]=v29,S0[3][60+t]=v30,S0[3][63+t]=v31.

nonce S0[4][t]=0,S0[4][4+t]=0,S0[4][16+t]=0,S0[4][58+t]=0,S0[4][63+t]=0.
key If a cube sum is nonzero, k0(t) + k1(t) = 0.

200 Conditional Cube Attack on Round-Reduced ASCON

Table 9: Statistics of Nonzero Cube Sums in the 64-bit Output of 5-round Ascon-128

bit #nonzero %nonzero bit #nonzero %nonzero
0 0 0 32 125 0.125
1 268 0.268 33 110 0.11
2 0 0 34 0 0
3 0 0 35 6 0.006
4 198 0.198 36 37 0.037
5 91 0.091 37 350 0.35
6 75 0.075 38 0 0
7 14 0.014 39 92 0.092
8 31 0.031 40 282 0.282
9 92 0.092 41 0 0
10 74 0.074 42 0 0
11 16 0.016 43 20 0.02
12 123 0.123 44 0 0
13 0 0 45 6 0.006
14 0 0 46 106 0.106
15 75 0.075 47 0 0
16 0 0 48 92 0.092
17 22 0.022 49 4 0.004
18 86 0.086 50 61 0.061
19 0 0 51 75 0.075
20 92 0.092 52 31 0.031
21 4 0.004 53 0 0
22 0 0 54 0 0
23 125 0.125 55 0 0
24 95 0.095 56 272 0.272
25 0 0 57 0 0
26 26 0.026 58 0 0
27 31 0.031 59 156 0.156
28 92 0.092 60 0 0
29 0 0 61 19 0.019
30 16 0.016 62 28 0.028
31 134 0.134 63 0 0

Zheng Li, Xiaoyang Dong and Xiaoyun Wang 201

Table 10: Statistics of Nonzero Cube Sums in the 64-bit Output of 6-round Ascon-128

bit #nonzero %nonzero bit #nonzero %nonzero
0 512 0.521385 32 488 0.496945
1 528 0.537678 33 483 0.491853
2 494 0.503055 34 506 0.515275
3 489 0.497963 35 487 0.495927
4 501 0.510183 36 503 0.51222
5 499 0.508147 37 488 0.496945
6 481 0.489817 38 487 0.495927
7 492 0.501018 39 499 0.508147
8 472 0.480652 40 491 0.5
9 501 0.510183 41 479 0.48778
10 472 0.480652 42 483 0.491853
11 479 0.48778 43 465 0.473523
12 504 0.513238 44 494 0.503055
13 491 0.5 45 478 0.486762
14 511 0.520367 46 492 0.501018
15 500 0.509165 47 474 0.482688
16 474 0.482688 48 499 0.508147
17 485 0.49389 49 479 0.48778
18 484 0.492872 50 508 0.517312
19 482 0.490835 51 486 0.494908
20 469 0.477597 52 479 0.48778
21 491 0.5 53 500 0.509165
22 492 0.501018 54 487 0.495927
23 493 0.502037 55 496 0.505092
24 477 0.485743 56 495 0.504073
25 519 0.528513 57 477 0.485743
26 498 0.507128 58 497 0.50611
27 507 0.516293 59 489 0.497963
28 484 0.492872 60 494 0.503055
29 501 0.510183 61 494 0.503055
30 493 0.502037 62 484 0.492872
31 482 0.490835 63 483 0.491853

202 Conditional Cube Attack on Round-Reduced ASCON

by CASE 1 is as follow:

KI1 = {30, 35, 40, 45, 50, 55, 60, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56}
KI2 = {2, 7}
KI3 = {9, 14, 19}
KI4 = {15, 20}
KI5 = {28, 33, 38, 43, 48}
KI6 = {29, 34, 39, 44, 49, 54, 59, 0, 5}
KI7 = {37, 42, 47, 52, 57, 62, 3, 8}
KI8 = {58, 63}

(31)

As shown in Eq. (30) and (31), KIj doesn’t intersect with each other for j ∈ {0, 1, ..., 8}.
In each of KIj(j ∈ {1, ..., 8}), suppose that i0 is an arbitrary index and i1 is next to it,
then Eq. (32) should be hold.

(k0(i0) + k1(i0) + 1)(k0(i1) + k1(i1) + 1) = 0 (32)

For KIj(j ∈ {1, ..., 8}), the filtration ratios are 10946
219 , 3

22 , 5
23 , 3

22 , 13
25 , 89

29 , 55
28 , 3

22 respectively.
Due to the disappearance of key in any Ui of CASE 1, it provides a filtration ratio equals
2−14.55 which is the product of the ratios above. The keys passed all the above testers will
be checked by a (nonce, plaintext, ciphertext, tag) pair to determine the right one.

The disappearance of key in any Ui and U ′i give a total filtration ratio of 2−10× 2−14.55,
and the keys with key bits passed through the testers above are exactly keys in the
remaining key subset whose size is 2128−10 × 2−14.55 = 2103.45. So in worst case, omitting
complexity of cube computation, the total complexity is 2103.45.

	Preliminaries
	Notations
	Brief Description of Ascon
	Properties of S-box
	Our Attack Assumptions

	Related Work
	Cube Attack
	Dynamic Cube Attack
	Conditional Differential Cryptanalysis

	Cube-like Attack Models
	Generalizing Conditional Cube Attack
	The Cube-like Key-subset Technique
	Applications and Rationality test

	Attack on 5-round initialization of Ascon
	Attack on 6-round initialization of Ascon
	Attack on 7-round initialization of Ascon
	Discussion on Ascon-128a and Ascon v1.1
	Conclusion
	Parameters sets
	Test 2
	Test 2 for 5-round initialization of Ascon-128
	Test 2 for 6-round initialization of Ascon-128

	Attacks on 7-round initialization of Ascon-128a

