Design of Lightweight Linear Diffusion Layers from Near-MDS Matrices

Chaoyun Li¹ Qingju Wang^{1,2}

¹imec and COSIC, KU Leuven

²DTU Compute, Technical University of Denmark

March 6, 2017

DTU

Outlines

Constructions of Near-MDS Matrices

3 Near-MDS Matrices with Lowest XOR Count

4 Security Analysis

5 Conclusion

Lightweight cryptography

- Meet the security requirements of ubiquitous computing - Internet of Things (IoT)
- Explore the tradeoffs between implementation cost and security

Linear diffusion layers

- Confusion and Diffusion (Shannon 1949)
 - SPN structure: Nonlinear layer and linear diffusion layer
- Diffusion matrices
 - Spread internal dependency
 - Provide resistance against differential/linear attacks (Daemen and Rijmen 2002)
 - \hookrightarrow The focus of attention in lightweight cryptography

MDS matrices

Direct construction

MDS matrix in MixColumns of AES (Daemen and Rijmen 2002)

circ(2, 3, 1, 1) =	2 1 1 3	3 2 1 1	1 3 2 1	1 1 3 2).

Efficiency

Direct constructions are costly in hardware

MDS matrices

Direct construction

MDS matrix in MixColumns of AES (Daemen and Rijmen 2002)

airc(2, 2, 1, 1) =	(2 1	3 2	1 3	1 1		
circ(2, 5, 1, 1) =		1	1	2	3	1 ·	
	l	3	1	1	2)	

Recursive construction

Recursive MDS in PHOTON and LED (Guo *et al.* 2011)

$$A^{4} = \left(\begin{array}{rrrrr} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 1 & 4 \end{array}\right)^{4} = \left(\begin{array}{rrrrr} 1 & 2 & 1 & 4 \\ 4 & 9 & 6 & 17 \\ 17 & 38 & 24 & 66 \\ 66 & 149 & 100 & 11 \end{array}\right)$$

Efficiency

- Direct constructions are costly in hardware
- 2 Recursive constructions are lighweight but need additional clock cycles

Near-MDS matrices

Near-MDS matrices

An $n \times n$ matrix M is *near-MDS* if $\mathcal{B}_d(M) = \mathcal{B}_l(M) = n$

- Suboptimal diffusion but require less area than MDS
- Better tradeoff of security and efficiency - FOAM framework (Khoo et al. 2014)

Near-MDS matrices

Near-MDS matrices

An $n \times n$ matrix M is *near-MDS* if $\mathcal{B}_d(M) = \mathcal{B}_l(M) = n$

- Suboptimal diffusion but require less area than MDS
- Better tradeoff of security and efficiency - FOAM framework (Khoo et al. 2014)

Our goal

Construct lightweight near-MDS matrices over finite fields

Investigate near-MDS matrices with minimal implementation cost

Outlines

2 Constructions of Near-MDS Matrices

Near-MDS Matrices with Lowest XOR Count

Security Analysis

Previous work

The 4 \times 4 near-MDS matrix

$$\operatorname{circ}(0,1,1,1) = \left(\begin{array}{rrrr} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right)$$

- + Implementation cost can be only 50% of MDS matrix in AES
- + With lowest XOR count among all near-MDS matrices of order 4
- + Involutory
- * Used in PRINCE, FIDES, PRIDE, Midori, MANTIS

Nonexistence result for n > 4 (Choy and Khoo 2008)

 $\{0,1\}$ -matrix of order *n* cannot be near-MDS

Search strategy

- Generic matrices
- Special form
- Maximize occurrences of 0,1 and minimize the number of distinct entries

Main approach

- Consider generic circulant/Hadamard matrices with entries 0 and xⁱ, first search matrices consisting of 0, 1, x, x⁻¹, x²
- Check near-MDS property and generate conditions for the matrix to be near-MDS
- Substitute x with the lightest α ∈ 𝔽_{2^m} satisfying all the conditions

Lightweight near-MDS circulant matrices

Generic near-MDS circulant matrices of order $5 \le n \le 9$

- Near-MDS property holds for almost all finite fields
- Occurrences of 0,1 maximized
- Only four distinct entries $0, 1, x, x^{-1}$

Example

is near-MDS over \mathbb{F}_{2^m} if α is not a root of the following polynomials

$$x, x+1, x^2+x+1$$

Comparison with MDS matrices

XOR count of α

Number of XOR operations required to implement $\alpha \cdot \beta$ with arbitrary β

XOR counts of best known lightweight MDS and near-MDS circulant matrices over \mathbb{F}_{2^8}

Involutory near-MDS matrices

Hadamard matrices

- Easy to be involutory
- Efficient implementation

Involutory near-MDS Hadamard matrices of order 8

- 2688 matrices with five distinct entries $0, 1, x, x^{-1}, x^2$
- Two different equivalence classes

$$\begin{array}{l} \mathrm{had} \big(0, x^2, x^{-1}, x^2, x^{-1}, x, x, 1 \big) \\ \mathrm{had} \big(0, x^2, x^{-1}, x^{-1}, x^2, x, x, 1 \big) \end{array}$$

Outlines

Constructions of Near-MDS Matrices

Output State St

4 Security Analysis

5 Conclusion

Near-MDS matrices with minimal implementation cost

- Focus on the total XOR count of the near-MDS matrices
- Comparison with all near-MDS matrices of the same order
- For $2 \le n \le 4$, binary circulant matrices achieve lowest XOR count

Near-MDS circulant matrices of order 7,8

Theorem

If α is the lightest element in $\mathbb{F}_{2^m} \setminus \{0,1\}$ and satisfies the near-MDS conditions, then the following near-MDS circulant matrices have lowest XOR counts. For any $4 \le m \le 2048$, the matrices always have instantiations with lowest XOR count over \mathbb{F}_{2^m} .

n	Coefficients of the first row	Conditions
7	$(0, \alpha, 1, \alpha^{-1}, 1, 1, 1)$	x, x + 1, x2 + x + 1, x3 + x + 1 x3 + x2 + 1, x4 + x3 + x2 + x + 1
8	$(0, \alpha, 1, \alpha, \alpha^{-1}, 1, 1, 1)$	$\begin{array}{c} x,x+1,x^2+x+1,x^3+x+1\\ x^3+x^2+1,x^4+x^3+x^2+x+1\\ x^5+x^4+x^3+x^2+1 \end{array}$

Proof sketch

- Determine the maximum occurrences of 0 and 1 for all near-MDS matrices
- Show circulant matrices attain the maximum occurrences of 0 and 1 simultaneously
- Solution The remaining entries (α and α^{-1}) all have the smallest XOR count

Proof sketch

- Determine the maximum occurrences of 0 and 1 for all near-MDS matrices
- Show circulant matrices attain the maximum occurrences of 0 and 1 simultaneously
- Solution The remaining entries (α and α^{-1}) all have the smallest XOR count
- For 4 ≤ m ≤ 2048, there always exists α which is the lightest element in F_{2^m} \ {0,1} and satisfies the near-MDS conditions (Beierle *et al.* CRYPTO 2016)

Proof sketch

- Oetermine the maximum occurrences of 0 and 1 for all near-MDS matrices
- Show circulant matrices attain the maximum occurrences of 0 and 1 simultaneously
- Solution The remaining entries (α and α^{-1}) all have the smallest XOR count
- For 4 ≤ m ≤ 2048, there always exists α which is the lightest element in F_{2^m} \ {0,1} and satisfies the near-MDS conditions (Beierle *et al.* CRYPTO 2016)

For m > 2048

The existence of lightest α satisfying the near-MDS conditions?

Results for n = 5, 6

Theorem

For any $m \ge 3$, if α and β are lightest elements in $\mathbb{F}_{2^m} \setminus \{0, 1\}$ and $\beta^2 + \beta + 1 \ne 0$, the following two matrices have the lowest XOR count. For any $4 \le m \le 2048$, the matrices always have instantiations with lowest XOR count over \mathbb{F}_{2^m} .

$$\begin{pmatrix} 0 & \alpha & 1 & 1 & 1 \\ 1 & 0 & \alpha & 1 & 1 \\ 1 & 1 & 0 & \alpha & 1 \\ \alpha & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix} and \begin{pmatrix} 0 & \beta & \beta & 1 & 1 & 1 \\ 1 & 0 & 1 & \beta & 1 & 1 \\ 1 & 1 & 0 & 1 & \beta & 1 \\ 1 & 1 & \beta & 0 & 1 & \beta \\ 1 & \beta & 1 & 1 & 0 & \beta \\ \beta & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Results for n = 5, 6

Theorem

For any $m \ge 3$, if α and β are lightest elements in $\mathbb{F}_{2^m} \setminus \{0, 1\}$ and $\beta^2 + \beta + 1 \ne 0$, the following two matrices have the lowest XOR count. For any $4 \le m \le 2048$, the matrices always have instantiations with lowest XOR count over \mathbb{F}_{2^m} .

$$\begin{pmatrix} 0 & \alpha & 1 & 1 & 1 \\ 1 & 0 & \alpha & 1 & 1 \\ 1 & 1 & 0 & \alpha & 1 \\ \alpha & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix} and \begin{pmatrix} 0 & \beta & \beta & 1 & 1 & 1 \\ 1 & 0 & 1 & \beta & 1 & 1 \\ 1 & 1 & 0 & 1 & \beta & 1 \\ 1 & 1 & \beta & 0 & 1 & \beta \\ 1 & \beta & 1 & 1 & 0 & \beta \\ \beta & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

- Circulant matrices cannot achieve the minimal values
- They can be very close to

Chaoyun Li, Qingju Wang (imec and COSIC

FSE 2017 Presentation

Outlines

- Constructions of Near-MDS Matrices
- 3 Near-MDS Matrices with Lowest XOR Count

4 Security Analysis

5 Conclusion

Primary security analysis

• Lower bounds on the number of differential and linear active S-boxes for SPN structures using near-MDS matrices

п	# Rounds															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
4	0	4	7	16	17	20	23	32	33	36	39	48	49	52	55	64
5	0	5	9	25	26	30	34	50	51	55	59	75	76	80	84	102
6	0	6	11	36	37	42	47	72	73	78	83	108	109	114	119	144
7	0	7	13	49	50	56	62	98	99	105	111	147	148	154	160	196
8	0	8	15	64	65	72	79	128	129	136	143	192	193	200	207	256

Primary security analysis

• Lower bounds on the number of differential and linear active S-boxes for SPN structures using near-MDS matrices

									// D	d a						
n	# Rounds															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
4	0	4	7	16	17	20	23	32	33	36	39	48	49	52	55	64
5	0	5	9	25	26	30	34	50	51	55	59	75	76	80	84	102
6	0	6	11	36	37	42	47	72	73	78	83	108	109	114	119	144
7	0	7	13	49	50	56	62	98	99	105	111	147	148	154	160	196
8	0	8	15	64	65	72	79	128	129	136	143	192	193	200	207	256

• Linear layers based on near-MDS matrices can provide sufficient security with well-chosen nonlinear layers

Outlines

- Constructions of Near-MDS Matrices
- 3 Near-MDS Matrices with Lowest XOR Count
- 4 Security Analysis

Conclusion

Proposed lightweight matrices

- Near-MDS circulant matrices of order $n \leq 9$
- Involutory near-MDS matrices of order 8

Matrices over \mathbb{F}_{2^m} with lowest XOR counts for $4 \le m \le 2048$

- n = 7, 8, circulant matrices achieve the lowest XOR count
- *n* = 5, 6, the XOR counts of circulant matrices are very close to the minimum values

Future work

- Design of involutory near-MDS matrices of order not a power of 2
- Further security analysis of the primitives based on near-MDS matrices

Chaoyun Li, Qingju Wang (imec and COSIC

Thank you:) Any questions?

Chaoyun Li, Qingju Wang (imec and COSIC