A Fast Single-Key Two-Level Universal Hash Function

Debrup Chakraborty Sebati Ghosh Palash Sarkar

Indian Statistical Institute, Kolkata

7th March, 2017

Outline

- Introduction
- Our Contribution
- Implementation Results
- Other Contributions

Outline

- Introduction
- 2 Our Contribution
- Implementation Results
- 4 Other Contributions

Universal Hash Function

- Was introduced by Carter and Wegman in 1979.
- It is an important primitive in cryptography.
- Two main objectives:
 - Reducing the computation time (specially multiplication count)
 - Reducing the key size

scheme	# mult	# sqr	key size
Horner	$\ell-1$	_	single field element
Bernstein-Rabin-	$\lfloor \ell/2 \rfloor$	$\lfloor \lg \ell \rfloor$	single field element
Winograd (BRW)			

Table : Univariate polynomial based hashing for message consisting of ℓ blocks for $\ell \geq 3$.

Observation

- BRW polynomials based hash function is advantageous over Horner in terms of operation (field mult.) count.
- Problem is BRW polynomials are inherently recursive; significant implementation overhead for variable length messages.
- If applied on fixed length messages, this difficulty disappear and we can get the benefit of speed.
- Horner can handle arbitrary length messages quite easily.

Objective

- Two-level Hash Function: to combine BRW and Horner to enjoy the benefits of both; apply BRW on fixed length components of the input message and combine the outputs using Horner.
- Use a single field element as the key.
- Propose two-level hash for handling a single binary string (Hash2L) and a vector of binary strings (vecHash2L).
- Optimised implementations of Hash2L over the fields $\mathbb{F}_{2^{128}}$ and $\mathbb{F}_{2^{256}}$.

Outline

- 1 Introduction
- Our Contribution
- Implementation Results
- 4 Other Contributions

Outline

- Introduction
- Our Contribution
 - Design
 - Implementation
- Implementation Results
- 4 Other Contributions

Hash2L: security

• The AXU-bound for Hash2L is $\frac{\ell(d(\eta)+1)+1}{2^n}$ for two distinct messages M and M' with $\text{len}(M) \geq \text{len}(M')$ and ℓ is the number of super-blocks in M. Here, η is the number of blocks in a full super-block.

Note: The last super-block may be a partial one.

Outline

- 1 Introduction
- Our Contribution
 - Design
 - Implementation
- Implementation Results
- 4 Other Contributions

Implementation

- The implementation uses Intel intrinsics, specially the instruction pclmulqdq: takes as input two degree 64 polynomials over \mathbb{F}_2 and returns their product as degree 128 polynomial.
- Timing measurements on both Haswell and Skylake.

Some major optimisations:

• Batch size: grouping pclmulqdq instructions for m independent multiplications together for better instruction pipelining; we have checked for batch sizes ≤ 4 . Finally, we used batch size 3 for n=128 and 1 for n=256 for both BRW and Horner.

$$\mathsf{BRW}_{\tau}(m_1, \dots, m_{31})$$

$$= \mathsf{BRW}_{\tau}(m_1, \dots, m_{15})(\tau^{16} + m_{16}) + \mathsf{BRW}_{\tau}(m_{17}, \dots, m_{31})$$

• Using delayed reduction strategy for computing BRW Polynomials: for $\eta=31,\,8$ reductions suffice.

$$\mathsf{BRW}_{\tau}(m_1, \dots, m_{31})$$

$$= \mathsf{BRW}_{\tau}(m_1, \dots, m_{15})(\tau^{16} + m_{16}) + \mathsf{BRW}_{\tau}(m_{17}, \dots, m_{31})$$

normal strategy:

• Using delayed reduction strategy for computing BRW Polynomials: for $\eta=31,\,8$ reductions suffice.

$$\mathsf{BRW}_{ au}(m_1,\ldots,m_{31})$$

$$= \mathsf{BRW}_{ au}(m_1,\ldots,m_{15})(au^{16}+m_{16}) + \mathsf{BRW}_{ au}(m_{17},\ldots,m_{31})$$
normal strategy:

field multiplication; one reduction

$$\mathsf{BRW}_{ au}(m_1,\ldots,m_{31})$$
 = $\mathsf{BRW}_{ au}(m_1,\ldots,m_{15})(au^{16}+m_{16})$ + $\mathsf{BRW}_{ au}(m_{17},\ldots,m_{31})$ normal strategy: $\underbrace{\mathsf{one}}_{\mathsf{field}}$ field multiplication; $\underbrace{\mathsf{one}}_{\mathsf{reduction}}$ final reduction

$$\mathsf{BRW}_{ au}(m_1,\ldots,m_{31})$$
 = $\mathsf{BRW}_{ au}(m_1,\ldots,m_{15})(au^{16}+m_{16})$ + $\mathsf{BRW}_{ au}(m_{17},\ldots,m_{31})$ normal strategy: XOR the one final field multiplication; one reduction

$$\mathsf{BRW}_{\tau}(m_1, \dots, m_{31})$$

$$= \mathsf{BRW}_{\tau}(m_1, \dots, m_{15})(\tau^{16} + m_{16}) + \mathsf{BRW}_{\tau}(m_{17}, \dots, m_{31})$$

• Using delayed reduction strategy for computing BRW Polynomials: for $\eta=31,\,8$ reductions suffice.

$$\mathsf{BRW}_{\tau}(m_1, \dots, m_{31}) \\ = \mathsf{BRW}_{\tau}(m_1, \dots, m_{15})(\tau^{16} + m_{16}) + \mathsf{BRW}_{\tau}(m_{17}, \dots, m_{31})$$

Delayed reduction strategy:

$$\mathsf{BRW}_{ au}(m_1,\ldots,m_{31})$$

$$= \mathsf{BRW}_{ au}(m_1,\ldots,m_{15})(au^{16}+m_{16}) + \mathsf{BRW}_{ au}(m_{17},\ldots,m_{31})$$

$$\begin{array}{cccc} \mathsf{Delayed\ reduction} & & & \\ \mathsf{strategy:} & \mathsf{only\ polynomial\ multiplication;} & & & \\ & & \mathsf{no\ reduction} & & & \\ \end{array}$$

$$\mathsf{BRW}_{ au}(m_1,\ldots,m_{31})$$

$$= \mathsf{BRW}_{ au}(m_1,\ldots,m_{15})(au^{16}+m_{16}) + \mathsf{BRW}_{ au}(m_{17},\ldots,m_{31})$$

$$\mathsf{Delayed\ reduction}$$

$$\mathsf{strategy:} \quad \mathsf{only\ polynomial\ multiplication;} \quad \mathsf{avoid\ final\ reduction}$$

• Using delayed reduction strategy for computing BRW Polynomials: for $\eta=31,\,8$ reductions suffice.

$$\mathsf{BRW}_{ au}(m_1,\ldots,m_{31})$$
 = $\mathsf{BRW}_{ au}(m_1,\ldots,m_{15})(au^{16}+m_{16})$ + $\mathsf{BRW}_{ au}(m_{17},\ldots,m_{31})$ $\mathsf{Delayed\ reduction}$ only polynomial multiplication; no reduction

XOR the results and do one reduction on the sum

Outline

- Introduction
- Our Contribution
- Implementation Results
- 4 Other Contributions

Timing Measurements: for $\mathbb{F}_{2^{128}}$

	length of message in bytes			
	512	1024	4096	8192
Hash2L	0.88	0.687	0.498	0.463
GHASH (Gueron)	1.15	1.02	0.93	0.91
	(23.5%)	(32.6%)	(46.5%)	(49.1%)
POLYVAL (Gueron)	1.09	0.81	0.602	0.567
	(19.3%)	(15.2%)	(17.3 %)	(18.3%)

 $\textbf{Table:} \ \ \textbf{Cycles per byte for computing Hash2L, GHASH and POLYVAL on } \ \ \textbf{Haswell.}$

	length of message in bytes			
	512	1024	4096	8192
Hash2L	0.667	0.468	0.33	0.301
GHASH (Gueron)	0.89	0.77	0.67	0.65
	(25.1%)	(39.2%)	(50.7%)	(53.7%)
POLYVAL (Gueron)	0.79	0.55	0.369	0.339
	(15.6%)	(14.9%)	(10.6%)	(11.2%)

Table: Cycles per byte for computing Hash2L, GHASH and POLYVAL on Skylake.

Timing Measurements: for $\mathbb{F}_{2^{256}}$

	length of message in bytes			
	512	1024	4096	8192
Hash2L	1.4	0.95	0.718	0.67

Table: Cycles per byte for computing Hash2L on Haswell.

	length of message in bytes			
	512	1024	4096	8192
Hash2L	1.11	0.758	0.562	0.525

Table: Cycles per byte for computing Hash2L on Skylake.

Another measure

According to bit operations per bit of the digest

- Bernstein and Chou (SAC-2014) report this count for a pseudo-dot product based hash function implementation over $\mathbb{F}_{2^{256}}$, based on the Fast Fourier Transform (FFT) based multiplication algorithm to be 29.
 - But, this figure excludes the cost for generating the long key, which is expected to be significant in a platform not supporting AES-NI instructions.
- For Hash2L, this cost is at most about 46 for $\eta = 31$.
 - But, in this case there is no hidden cost for generating the key.

Outline

- 1 Introduction
- Our Contribution
- Implementation Results
- Other Contributions

Appendix

In the paper you can find the following also:

- detailed construction of vecHash2L.
- detailed security proofs for both Hash2L and vecHash2L.
- detail on implementation of field multiplication
- precise counts of arithmetic operations for computing BRW.
- more detail on implementation of BRW.
- analysis of timing measurements obtained.
- detail calculation of bit operations count w.r.t. the SAC-2014 paper of Bernstein and Chou.

Thank You!