
Introduction
Our Contribution

Implementation Results
Other Contributions

A Fast Single-Key Two-Level
Universal Hash Function

Debrup Chakraborty Sebati Ghosh Palash Sarkar

Indian Statistical Institute, Kolkata

7th March, 2017

1/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Outline

1 Introduction

2 Our Contribution

3 Implementation Results

4 Other Contributions

2/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Outline

1 Introduction

2 Our Contribution

3 Implementation Results

4 Other Contributions

3/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Universal Hash Function

Was introduced by Carter and Wegman in 1979.

It is an important primitive in cryptography.

Two main objectives:

Reducing the computation time (specially multiplication count)

Reducing the key size

4/22



Introduction
Our Contribution

Implementation Results
Other Contributions

scheme # mult # sqr key size

Horner `− 1 – single field element

Bernstein-Rabin- b`/2c blg `c single field element
Winograd (BRW)

Table : Univariate polynomial based hashing for message consisting of `
blocks for ` ≥ 3.

5/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Observation

BRW polynomials based hash function is advantageous over
Horner in terms of operation (field mult.) count.

Problem is BRW polynomials are inherently recursive;
significant implementation overhead for variable length
messages.

If applied on fixed length messages, this difficulty disappear
and we can get the benefit of speed.

Horner can handle arbitrary length messages quite easily.

6/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Objective

- Two-level Hash Function: to combine BRW and Horner to
enjoy the benefits of both; apply BRW on fixed length
components of the input message and combine the outputs
using Horner.

- Use a single field element as the key.

- Propose two-level hash for handling a single binary string
(Hash2L) and a vector of binary strings (vecHash2L).

- Optimised implementations of Hash2L over the fields F2128

and F2256 .

7/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Outline

1 Introduction

2 Our Contribution

3 Implementation Results

4 Other Contributions

8/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Outline

1 Introduction

2 Our Contribution
Design
Implementation

3 Implementation Results

4 Other Contributions

9/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Hash2L: flowchart

padn(·)

M

division into superblocks

padn(M)

BRWτ(·) BRWτ(·) · · · BRWτ(·)

M1 M2
M`

τ

Hornerτd(η)+1(·)

BRWτ (M1) BRWτ (M2) BRWτ (M`)

τ d(η)+1

· · ·

τ 2

τ

binn(len(M))

⊕
τbinn(len(M))

τ2Hornerτd(η)+1(·)

Hash2Lτ(M)

10/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Hash2L: flowchart

padn(·)

M

division into superblocks

padn(M)

BRWτ(·) BRWτ(·) · · · BRWτ(·)

M1 M2
M`

τ

Hornerτd(η)+1(·)

BRWτ (M1) BRWτ (M2) BRWτ (M`)

τ d(η)+1

· · ·

τ 2

τ

binn(len(M))

⊕
τbinn(len(M))

τ2Hornerτd(η)+1(·)

Hash2Lτ(M)

10/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Hash2L: flowchart

padn(·)

M

division into superblocks

padn(M)

BRWτ(·) BRWτ(·) · · · BRWτ(·)

M1 M2
M`

τ

Hornerτd(η)+1(·)

BRWτ (M1) BRWτ (M2) BRWτ (M`)

τ d(η)+1

· · ·

τ 2

τ

binn(len(M))

⊕
τbinn(len(M))

τ2Hornerτd(η)+1(·)

Hash2Lτ(M)

10/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Hash2L: flowchart

padn(·)

M

division into superblocks

padn(M)

BRWτ(·) BRWτ(·) · · · BRWτ(·)

M1 M2
M`

τ

Hornerτd(η)+1(·)

BRWτ (M1) BRWτ (M2) BRWτ (M`)

τ d(η)+1

· · ·

τ 2

τ

binn(len(M))

⊕
τbinn(len(M))

τ2Hornerτd(η)+1(·)

Hash2Lτ(M)

10/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Hash2L: flowchart

padn(·)

M

division into superblocks

padn(M)

BRWτ(·) BRWτ(·) · · · BRWτ(·)

M1 M2
M`

τ

Hornerτd(η)+1(·)

BRWτ (M1) BRWτ (M2) BRWτ (M`)

τ d(η)+1

· · ·

τ 2

τ

binn(len(M))

⊕
τbinn(len(M))

τ2Hornerτd(η)+1(·)

Hash2Lτ(M)

10/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Hash2L: flowchart

padn(·)

M

division into superblocks

padn(M)

BRWτ(·) BRWτ(·) · · · BRWτ(·)

M1 M2
M`

τ

Hornerτd(η)+1(·)

BRWτ (M1) BRWτ (M2) BRWτ (M`)

τ d(η)+1

· · ·

τ 2

τ

binn(len(M))

⊕
τbinn(len(M))

τ2Hornerτd(η)+1(·)

Hash2Lτ(M)

10/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Hash2L: flowchart

padn(·)

M

division into superblocks

padn(M)

BRWτ(·) BRWτ(·) · · · BRWτ(·)

M1 M2
M`

τ

Hornerτd(η)+1(·)

BRWτ (M1) BRWτ (M2) BRWτ (M`)

τ d(η)+1

· · ·

τ 2

τ

binn(len(M))

⊕
τbinn(len(M))

τ2Hornerτd(η)+1(·)

Hash2Lτ(M)

10/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Hash2L: security

The AXU-bound for Hash2L is `(d(η)+1)+1
2n for two distinct

messages M and M ′ with len(M) ≥ len(M ′) and ` is the
number of super-blocks in M. Here, η is the number of blocks
in a full super-block.

Note: The last super-block may be a partial one.

11/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Outline

1 Introduction

2 Our Contribution
Design
Implementation

3 Implementation Results

4 Other Contributions

12/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Implementation

The implementation uses Intel intrinsics, specially the
instruction pclmulqdq: takes as input two degree 64
polynomials over F2 and returns their product as degree 128
polynomial.

Timing measurements on both Haswell and Skylake.

13/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Implementation (contd.)

Some major optimisations:

Batch size: grouping pclmulqdq instructions for m
independent multiplications together for better instruction
pipelining; we have checked for batch sizes ≤ 4. Finally, we
used batch size 3 for n = 128 and 1 for n = 256 for both
BRW and Horner.

14/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Implementation (contd.)

Using delayed reduction strategy for computing BRW
Polynomials: for η = 31, 8 reductions suffice.

BRWτ (m1, . . . ,m31)

= BRWτ (m1, . . . ,m15)(τ16 + m16) + BRWτ (m17, . . . ,m31)

normal strategy:

field multiplication;
one reduction

one final
reduction

XOR the
results

15/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Implementation (contd.)

Using delayed reduction strategy for computing BRW
Polynomials: for η = 31, 8 reductions suffice.

BRWτ (m1, . . . ,m31)

= BRWτ (m1, . . . ,m15)(τ16 + m16) + BRWτ (m17, . . . ,m31)

normal strategy:

field multiplication;
one reduction

one final
reduction

XOR the
results

15/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Implementation (contd.)

Using delayed reduction strategy for computing BRW
Polynomials: for η = 31, 8 reductions suffice.

BRWτ (m1, . . . ,m31)

= BRWτ (m1, . . . ,m15)(τ16 + m16) + BRWτ (m17, . . . ,m31)

normal strategy:

field multiplication;
one reduction

one final
reduction

XOR the
results

15/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Implementation (contd.)

Using delayed reduction strategy for computing BRW
Polynomials: for η = 31, 8 reductions suffice.

BRWτ (m1, . . . ,m31)

= BRWτ (m1, . . . ,m15)(τ16 + m16) + BRWτ (m17, . . . ,m31)

normal strategy:

field multiplication;
one reduction

one final
reduction

XOR the
results

15/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Implementation (contd.)

Using delayed reduction strategy for computing BRW
Polynomials: for η = 31, 8 reductions suffice.

BRWτ (m1, . . . ,m31)

= BRWτ (m1, . . . ,m15)(τ16 + m16) + BRWτ (m17, . . . ,m31)

normal strategy:

field multiplication;
one reduction

one final
reduction

XOR the
results

15/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Implementation (contd.)

Using delayed reduction strategy for computing BRW
Polynomials: for η = 31, 8 reductions suffice.

BRWτ (m1, . . . ,m31)

= BRWτ (m1, . . . ,m15)(τ16 + m16) + BRWτ (m17, . . . ,m31)

normal strategy:

field multiplication;
one reduction

one final
reduction

XOR the
results

15/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Implementation (contd.)

Using delayed reduction strategy for computing BRW
Polynomials: for η = 31, 8 reductions suffice.

BRWτ (m1, . . . ,m31)

= BRWτ (m1, . . . ,m15)(τ16 + m16) + BRWτ (m17, . . . ,m31)

15/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Implementation (contd.)

Using delayed reduction strategy for computing BRW
Polynomials: for η = 31, 8 reductions suffice.

BRWτ (m1, . . . ,m31)

= BRWτ (m1, . . . ,m15)(τ16 + m16) + BRWτ (m17, . . . ,m31)

Delayed reduction
strategy:

only polynomial multiplication;
no reduction

avoid final reduction

XOR the results and do
one reduction on the sum

15/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Implementation (contd.)

Using delayed reduction strategy for computing BRW
Polynomials: for η = 31, 8 reductions suffice.

BRWτ (m1, . . . ,m31)

= BRWτ (m1, . . . ,m15)(τ16 + m16) + BRWτ (m17, . . . ,m31)

Delayed reduction
strategy: only polynomial multiplication;

no reduction

avoid final reduction

XOR the results and do
one reduction on the sum

15/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Implementation (contd.)

Using delayed reduction strategy for computing BRW
Polynomials: for η = 31, 8 reductions suffice.

BRWτ (m1, . . . ,m31)

= BRWτ (m1, . . . ,m15)(τ16 + m16) + BRWτ (m17, . . . ,m31)

Delayed reduction
strategy: only polynomial multiplication;

no reduction
avoid final reduction

XOR the results and do
one reduction on the sum

15/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Design
Implementation

Implementation (contd.)

Using delayed reduction strategy for computing BRW
Polynomials: for η = 31, 8 reductions suffice.

BRWτ (m1, . . . ,m31)

= BRWτ (m1, . . . ,m15)(τ16 + m16) + BRWτ (m17, . . . ,m31)

Delayed reduction
strategy: only polynomial multiplication;

no reduction
avoid final reduction

XOR the results and do
one reduction on the sum

15/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Outline

1 Introduction

2 Our Contribution

3 Implementation Results

4 Other Contributions

16/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Timing Measurements: for F2128

length of message in bytes
512 1024 4096 8192

Hash2L 0.88 0.687 0.498 0.463

GHASH (Gueron) 1.15 1.02 0.93 0.91
(23.5%) (32.6%) (46.5%) (49.1%)

POLYVAL (Gueron) 1.09 0.81 0.602 0.567
(19.3%) (15.2%) (17.3 %) (18.3%)

Table : Cycles per byte for computing Hash2L, GHASH and POLYVAL on Haswell.

length of message in bytes
512 1024 4096 8192

Hash2L 0.667 0.468 0.33 0.301

GHASH (Gueron) 0.89 0.77 0.67 0.65
(25.1%) (39.2%) (50.7%) (53.7%)

POLYVAL (Gueron) 0.79 0.55 0.369 0.339
(15.6%) (14.9%) (10.6%) (11.2%)

Table : Cycles per byte for computing Hash2L, GHASH and POLYVAL on Skylake.

17/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Timing Measurements: for F2256

length of message in bytes
512 1024 4096 8192

Hash2L 1.4 0.95 0.718 0.67

Table : Cycles per byte for computing Hash2L on Haswell.

length of message in bytes
512 1024 4096 8192

Hash2L 1.11 0.758 0.562 0.525

Table : Cycles per byte for computing Hash2L on Skylake.

18/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Another measure

According to bit operations per bit of the digest

- Bernstein and Chou (SAC-2014) report this count for a
pseudo-dot product based hash function implementation over
F2256 , based on the Fast Fourier Transform (FFT) based
multiplication algorithm to be 29.

- But, this figure excludes the cost for generating the long key,
which is expected to be significant in a platform not
supporting AES-NI instructions.

- For Hash2L, this cost is at most about 46 for η = 31.

- But, in this case there is no hidden cost for generating the key.

19/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Outline

1 Introduction

2 Our Contribution

3 Implementation Results

4 Other Contributions

20/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Appendix

In the paper you can find the following also:

- detailed construction of vecHash2L.

- detailed security proofs for both Hash2L and vecHash2L.

- detail on implementation of field multiplication

- precise counts of arithmetic operations for computing BRW.

- more detail on implementation of BRW.

- analysis of timing measurements obtained.

- detail calculation of bit operations count w.r.t. the SAC-2014
paper of Bernstein and Chou.

21/22



Introduction
Our Contribution

Implementation Results
Other Contributions

Thank You!

22/22


	Introduction
	Our Contribution
	Design
	Implementation

	Implementation Results
	Other Contributions

