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Abstract. Universal hash functions based on univariate polynomials are well known,
e.g. Poly1305 and GHASH. Using Horner’s rule to evaluate such hash functions
require `− 1 field multiplications for hashing a message consisting of ` blocks where
each block is one field element. A faster method is based on the class of Bernstein-
Rabin-Winograd (BRW) polynomials which require b`/2c multiplications and blg `c
squarings for ` ≥ 3 blocks. Though this is significantly smaller than Horner’s rule
based hashing, implementation of BRW polynomials for variable length messages
present significant difficulties. In this work, we propose a two-level hash function
where BRW polynomial based hashing is done at the lower level and Horner’s rule
based hashing is done at the higher level. The BRW polynomial based hashing is
applied to a fixed number of blocks and hence the difficulties in handling variable
length messages is avoided. Even though the hash function has two levels, we show
that it is sufficient to use a single field element as the hash key. The basic idea is
instantiated to propose two new hash functions, one which hashes a single binary
string and the other can hash a vector of binary strings. We describe two actual
implementations, one over F2128 and the other over F2256 both using the pclmulqdq
instruction available in modern Intel processors. On both the Haswell and Skylake
processors, the implementation over F2128 is faster than both an implementation
of GHASH by Gueron; and a highly optimised implementation, also by Gueron, of
another polynomial based hash function called POLYVAL. We further show that the
Fast Fourier Transform based field multiplication over F2256 proposed by Bernstein
and Chou can be used to evaluate the new hash function at a cost of about at most
46 bit operations per bit of digest, but, unlike the Bernstein-Chou analysis, there is
no hidden cost of generating the hash key. More generally, the new idea of building a
two-level hash function having a single field element as the hash key can be applied
to other finite fields to build new hash functions.
Keywords: universal hash function · Horner’s rule · BRW polynomials · two-level
hash function · MAC schemes.

1 Introduction
An important primitive in cryptography is a hash function family with provably low collision
and differential probabilities. Hash functions with provably low collision probability are
called almost universal (AU) and those with provably low differential probability are called
almost XOR universal (AXU). Starting from the work of Carter and Wegman [6], such
hash functions have been used to construct message authentication code (MAC) schemes.
They have also been suggested for the construction of disk encryption and authenticated
encryption.

A well known approach to the construction of an AU hash function is the multilinear
map [8]. This requires ` field multiplications to obtain the digest when the message consists
of ` field elements. The computation can be reduced to about `/2 field multiplication
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by using the pseudo-dot product construction [25]. One problematic issue for both the
multi-linear hash and the pseudo-dot product is that the key for the hash function is as
long as the message.

The problem of long hash keys can be avoided by using another well known approach.
In this approach, the digest is obtained by evaluating a univariate polynomial over a finite
field. The coefficients of the polynomial are the message blocks and the point at which the
polynomial is evaluated is the hash key. As a result, the hash key consists of a single field
element. Using Horner’s rule, a univariate polynomial of degree ` can be evaluated using
` − 1 field multiplications. This cost is about the same as that required for multilinear
map based hash function.

Bernstein [3] built on a previous work by Rabin and Winograd [18] to propose a hash
function using a class of univariate polynomials called the BRW polynomials [19]. The hash
key is still a single element of the field. The main advantage of BRW polynomial based
hashing is that the number of multiplications required for hashing a message consisting
of ` ≥ 3 blocks is b`/2c with an additional blg `c squarings. In fact, what the pseudo-dot
product is to the multilinear hash, the BRW polynomials is to the Horner based hash.

There is, however, an obstacle in efficient implementation of BRW polynomials. The
definition of BRW polynomial is inherently recursive and the computation for an `-block
message requires two recursive calls on messages consisting of smaller number of blocks. In
principle, the recursion can be simulated in a bottom-up fashion. The major problematic
issue is that even the first recursive call cannot be made unless the length of the whole
message is available. The whole message has to be buffered before even the first message
block can be processed. A second problem is that at each point of the computation, it is
quite complicated to figure out the operands that are to be multiplied. Again, in principle
this can be done, but, actually determining the operands requires additional time. Possibly
due to these issues, till date there has been no software efficient implementation of BRW
based hash function. On the other hand, hardware implementations for fixed length inputs
are known [7].

Our Contributions
We investigate the possibility of harnessing the speed of BRW polynomial based hashing
without the associated difficulties in implementation. To this end, our first observation
is that if the number of blocks in a message is a small fixed number, then the above
mentioned difficulties disappear. Making effective use of this observation leads us to
consider a two-level hash design. Suppose BRW is to be applied when the number of blocks
is η. Let us call an η-block message to be a super-block. The input message blocks are
divided into super-blocks and BRW is applied to each super-block. The outputs of these
BRW calls are then combined using a Horner based hashing.

The number of multiplications required for a message consisting of ` super-blocks is
about `η/2 + `− 1 (the precise count is provided later). Applying Horner to such a message
will require `η−1 multiplications while BRW will require `η/2 multiplications. By choosing
a suitable value of η, the number of multiplications required by the new hash function can
be made quite close to that of BRW. Such a two-level strategy has the advantage that it
avoids the difficulties associated with implementing BRW on variable length messages.

The idea of two-level (or, multi-level) hashing is not new and has been proposed in the
literature [22, 17, 20]. Two-level hashing in general requires independent keys for each level.
So, applied directly, the hash key will consist of two field elements. For many applications,
it is desirable to have only a single field element as the overall hash key.

An important aspect of our construction is the fact that the hash key consists of a
single field element. Suppose the hash key for the BRW layer is τ . We show that it is
possible to use a suitable power of τ as the key to the Horner layer. Moreover, if η is one
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less than some power of two, then the required power of τ can be computed using only
one extra squaring over and above the computations required by BRW.

The underlying field for the new hash function can be any field. In particular, this field
can be a suitable binary field or, it can be a field of large characteristic such as F2130−5,
the field which has been used in Poly1305.

To make the ideas concrete, we instantiate the two-level hash construction for the binary
fields F2128 and F2256 . For implementing the new hash functions, the basic requirement
is efficient implementation of multiplication over F2n for n equal to either 128 or 256.
Being a binary field, it is possible to utilise the instruction pclmulqdq available in modern
Intel processors for field multiplication. The instruction pclmulqdq multiplies two 64-bit
polynomials and returns the 128-bit polynomial as the product. Our implementations for
both F2128 and F2256 are based on the pclmulqdq instruction.

A field multiplication in F2n consists of a polynomial multiplication followed by a
reduction modulo the irreducible polynomial representing the field. Late, or, delayed
reduction is a well known technique for speeding up a group of field multiplications.
Essentially, the idea is to perform several polynomial multiplications, add the results and
then perform a single reduction for the entire group of multiplication. This technique
cannot always be applied. We carefully analyse the structure of BRW and identify the
groups of multiplications for which a single reduction suffices. Our implementations of the
hash function for n = 128 and n = 256 make use of delayed reduction to achieve efficiency
improvement.

Several other concrete efficiency issues for BRW have been identified and implemented.
One of these is to perform independent multiplications together so that all the pclmulqdq
instructions for these multiplications can be placed together.

This permits possible utilisation of instruction level pipelining. For n = 128, the
implementation of the new hash function is faster than the implementation of GHASH by
Gueron [26]; on the Haswell processor of Intel, we obtain speed improvements of about 23%
to 49%, while on the Skylake processor, the speed improvements are about 25% to 53%.
In [27], Gueron and Lindell have proposed a new nonce misuse-resistant AEAD scheme
called GCM-SIV. This scheme uses a polynomial based hash function called POLYVAL,
which has a highly optimised implementation by Gueron [9]. The implementation of
the new hash function for n = 128 is faster than the aforementioned implementation of
POLYVAL by 15% to 19% on Haswell processors and by 10% to 15% on Skylake processors.

The work by Bernstein and Chou [4] reports the implementation of a pseudo-dot
product based hash function over F2256 . This implementation does not use the pclmulqdq
instruction and is instead based on the Fast Fourier Transform (FFT) algorithm. The
work shows that the hash function can be computed at the cost of 29 bit operations per
bit of the digest. There is, however, a considerable hidden cost of generating the hash key
which is as long as the message. This cost is not accounted for in the 29 bit operations per
bit measure given in [4].

The FFT based multiplication algorithm can also be used with the new hash construction
that we propose. The code for the multiplication algorithm described in [4] is not publicly
available and so we could not carry out a concrete implementation. Instead, we used the
operation counts for direct and inverse FFT, pointwise multiplication and the reduction
algorithm reported in [4], to derive an expression for the number of bit operations per bit
of the digest for the new hash function. For η = 31, this cost is at most about 46, while
for η = 63 or 127, the cost is lower. The cost of 46 bit operations per bit is higher than
the cost of 29 bit operations per bit reported in [4]. On the other hand, unlike [4], in our
case there is no hidden cost of generating the hash key. Securely generating a long hash
key will have a significant cost and if this cost is taken into account, then we expect the
total cost in [4] to be significantly more than the 46 bit operations per bit that we obtain.
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Previous Works
Universal hash functions were introduced by Carter and Wegman [6]. The multilinear hash
function was proposed by Gilbert, MacWilliams and Sloane [8] while the pseudo-dot product
appears in the work of Winograd [25]. Examples of Horner’s rule based polynomial hashing
are Poly1305 [1], PolyR [12], GHASH [15] and POLYVAL [28]. Gueron and Kounavis [10]
described an efficient method for reduction over binary fields. The implementations of both
GHASH [26] and POLYVAL [9] by Gueron use delayed reduction through the use of pre-
computed tables. BRW polynomials were introduced in [3] and hardware implementation
was reported in [7]. Well known constructions of hash functions based on the pseudo-dot
product are UMAC and VMAC. As mentioned earlier, the construction in [4] is a more
recent such construction over F2256 . Nandi [16] has shown a lower bound on the number
of multiplications required for secure hashing which shows that the pseudo-dot and BRW
based hashing essentially require an optimal number of field multiplications. Brief surveys
on various constructions of universal hash functions can be found in [3, 21].

2 Preliminaries
Let D and G be finite non-empty sets. Let {Hτ}τ∈T be an indexed family of functions
such that for each τ , Hτ : D → G. The index set T is considered to be the set of all keys
and a particular τ from T is considered to be the key for Hτ . We define two kinds of
probabilities associated with such a function family.

Collision probability: For distinct x, x′ ∈ D, the collision probability of {Hτ}τ∈T for
the pair (x, x′) is defined to be Prτ [Hτ (x) = Hτ (x′)].

Differential probability: Suppose G is an additively written group. For distinct
x, x′ ∈ D and any y ∈ G, the differential probability of {Hτ}τ∈T for the triplet
(x, x′, y) is defined to be Prτ [Hτ (x)−Hτ (x′) = y].

In the above, the probabilities are taken over uniform random choices of τ from T.
The family {Hτ} is said to be ε-almost universal (ε-AU) if for all distinct x, x′ in D,

the collision probability for the pair (x, x′) is at most ε. The family {Hτ} is said to be
ε-almost XOR universal (ε-AXU) if for all distinct x, x′ in D and any y ∈ G, the differential
probability for the triplet (x, x′, y) is at most ε.

In the following, F will denote a finite field. The group G will be instantiated as the
additive group of F. The two standard operations over F are multiplication and addition.
For x, y ∈ F, the product (resp. sum) of x and y will be denoted as xy (resp. x+ y) as is
conventional. If F is a field of characteristic two, then the sum of x and y will be denoted
as x⊕ y.

2.1 Polynomial Hashing
For ` ≥ 0, the polynomial Hornerτ (m1,m2, · · · ,m`) in the variable τ with m1, . . . ,m` ∈ F
is defined as follows:

If ` = 0, then Hornerτ () = 0; and for ` > 0,

Hornerτ (m1,m2, · · · ,m`)
= m1τ

`−1 +m2τ
`−2 + · · ·+m`−1τ +m`

= (((m1τ +m2)τ +m3)τ + · · ·+m`−1)τ +m`.

 (1)

Note that computing Horner on ` field elements requires `− 1 additions and `− 1 multipli-
cations.

It is well known that {Hornerτ}τ∈F, is ((` − 1)/#F)-AU. Further, the hash function
{τHornerτ}τ∈F is (`/#F)-AXU.
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2.2 BRW Hashing
In [3], Bernstein defined a family of polynomials based on previous work by Rabin and
Winograd [18], later called the BRW polynomials in [19]. For l ≥ 0, BRWτ (m1,m2, · · · ,ml)
with m1, . . . ,ml ∈ F is a polynomial in the variable τ and is defined as follows:

• BRWτ () = 0;
• BRWτ (m1) = m1;
• BRWτ (m1,m2) = m1τ +m2;
• BRWτ (m1,m2,m3) = (τ +m1)(τ2 +m2) +m3;
• BRWτ (m1,m2, · · · ,ml)

= BRWτ (m1, · · · ,mt−1)(τ t +mt) + BRWτ (mt+1, · · · ,ml);
if t ∈ {4, 8, 16, 32, · · · } and t ≤ l < 2t.

Suppose l ≥ 3. Following [3], it can be shown that BRWτ (m1, . . . ,ml) can be computed
using bl/2c multiplications and blg lc additional squarings to compute τ2, τ4, . . ..

Let d(l) denote the degree of BRWτ (m1, . . . ,ml). Then d(l) = 2blg lc+1 − 1 [3] and so
d(l) ≤ 2l− 1 where the bound is achieved if and only if l = 2r for some r ≥ 2 and d(l) = l
if and only if l = 2r+1 − 1 for some r ≥ 1.

It has been proved in [3] that the map from Fl to F[τ ] given by

(m1, . . . ,ml) 7−→ BRWτ (m1, . . . ,ml)

is injective. As a consequence, the hash function {BRWτ}τ∈F, BRWτ : (m1, . . . ,ml) 7→
BRWτ (m1, . . . ,ml) is (d(l)/#F)-AU.

3 Combining BRW with Horner
Both {Hornerτ} and {BRWτ} use a single key τ ∈ F. The number of multiplications in F
required to evaluate the two functions, though, are different. For a message consisting of `
field elements, Horner can be evaluated using `− 1 multiplications, while for ` ≥ 3, BRW
requires b`/2c multiplications plus blog2 `c squarings. In theory, this difference makes
BRW much faster than Horner.

The problem, however, is that the definition of BRW is recursive. It is possible to have
a recursive implementation of BRW. The overhead of such an implementation will nullify
the benefit of lesser number of multiplications. On the other hand, if ` is a fixed integer,
then it is possible to have a very fast non-recursive implementation of BRW.

Horner on the other hand can handle arbitrary values of ` quite easily. So, it makes
sense to try and combine BRW and Horner so that the benefits of both the approaches can
be obtained. One top-level strategy for doing this is the following. Suppose the message is
a bit string which is formatted into a sequence of blocks where each block is an element
of the field F. Divide the sequence of field elements into groups of η blocks (assuming
that η divides the number of blocks in the message). Each such group will be called a
super-block.

We fix the value of η. The function BRW is used to process each super-block. Each
invocation of BRW on a superblock produces a field element. These field elements are
processed using Horner. So, there are two levels of the hash function. At the lower level,
the message is formatted into super-blocks and BRW is used to process the super-blocks,
while at the upper level, Horner is used to process the outputs of the BRW invocations.
Since the number of blocks in a super-block is fixed, a fast non-recursive implementation
of BRW can be used to process the super-blocks. A fast implementation of Horner can be
used to combine the outputs of BRW calls. The number of multiplications required by
this approach is a little greater than that of BRW and is significantly smaller than that of
Horner.



Debrup Chakraborty, Sebati Ghosh and Palash Sarkar 111

An important issue that needs to be properly tackled is the size of the key for the
hash function. Generic approaches to multi-level hash [22, 17, 20] require the key to have
independent components for each level of the hash. For a two-level hash, this would
normally require two independent field elements as the key. It is, however, desirable to use
a single field element as the key. We show how this can be done.

Proposition 1. Let η, ` be positive integers. For M ∈ Fη` write M = (M1, . . . ,M`) where
each Mi ∈ Fη. We define Gτ (M1, . . . ,M`) to be a polynomial in τ in the following manner.

Gτ (M1, . . . ,M`)
= Hornerτd(η)+1 (BRWτ (M1), . . . ,BRWτ (M`))
= τ (d(η)+1)(`−1)BRWτ (M1) + τ (d(η)+1)(`−2)BRWτ (M2) +

· · ·+ τ (d(η)+1)BRWτ (M`−1) + BRWτ (M`). (2)

The following hold for the function G given by (2).

1. The degree of G in τ is `d(η) + `− 1.

2. G injectively maps Fη` to F[τ ].

Consequently, the hash family {Gτ}τ∈F is ((`d(η) + `− 1)/#F)-AU and the hash family
{τ Gτ}τ∈F is ((`d(η) + `)/#F)-AXU.

Proof. Since each Mi ∈ Fη, the degree of BRWτ (Mi) is d(η) and so the degree of the
polynomial G is (d(η) + 1)(`− 1) + d(η) = `d(η) + `− 1. This proves the first point.

Each Mi ∈ Fη and so for all i, BRWτ (Mi) has degree d(η). Let

BRWτ (Mi) = τd(η)ci,d(η) + τd(η)−1ci,d(η)−1 + · · ·+ τci,1 + ci,0

for some ci,d(η), . . . , ci,1, ci,0 ∈ F which depend on Mi. Using this, we write

Gτ (M1, . . . ,M`)
= τ (d(η)+1)(`−1)+d(η)c1,d(η) + · · ·+ τ (d(η)+1)(`−1)+1c1,1 + τ (d(η)+1)(`−1)c1,0

+τ (d(η)+1)(`−2)+d(η)c2,d(η) + · · ·+ τ (d(η)+1)(`−2)+1c2,1 + τ (d(η)+1)(`−2)c2,0

+ · · ·+
+τ (d(η)+1)(`−i)+d(η)ci,d(η) + · · ·+ τ (d(η)+1)(`−i)+1ci,1 + τ (d(η)+1)(`−i)ci,0

+ · · ·+
+τ2d(η)+1c`−1,d(η) + · · ·+ τd(η)+2c`−1,1 + τd(η)+1c`−1,0

+τd(η)c`,d(η) + · · ·+ τc`,1 + c`,0.

Considered as a polynomial in τ , the coefficients of Gτ (M1, . . . ,M`) are ci,j with 1 ≤ i ≤ `
and 0 ≤ j ≤ d(η). Due to the choice of the key for Horner to be τd(η)+1, each ci,j is
associated with a unique power of τ .

LetM,M ′ ∈ Fη` withM 6= M ′. WriteM ′ = (M ′1, . . . ,M ′`) with eachM ′i ∈ Fη. Let c′i,j
be the coefficients of the polynomialGτ (M ′1, . . . ,M ′`). SinceM 6= M ′, there is an i such that
Mi 6= M ′i . From the injectivity property of BRW, it follows that BRWτ (Mi) 6= BRWτ (M ′i)
and so there is a j ∈ {0, 1, . . . , d(η)} such that ci,j 6= c′i,j . From this it follows that
Gτ (M1, . . . ,M`) 6= Gτ (M ′1, . . . ,M ′`). This shows the second point.

Since for distinctM andM ′, Gτ (M1, . . . ,M`) andGτ (M ′1, . . . ,M ′`) are distinct and have
the same degree, it follows that Gτ (M1, . . . ,M`)−Gτ (M ′1, . . . ,M ′`) is a non-zero polynomial
of degree at most `d(η) + ` − 1. Consequently, the probability that Gτ (M1, . . . ,M`) is
equal to Gτ (M ′1, . . . ,M ′`) is the probability that τ is a root of the non-zero polynomial
Gτ (M1, . . . ,M`)−Gτ (M ′1, . . . ,M ′`). The number of distinct roots of a non-zero polynomial
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Table 1: Summary of the features of the basic scheme, Horner and BRW for hashing η`
blocks with η = 2r+1 − 1 for some r ≥ 1.

scheme # sqr # mult AU bound
Horner – η`− 1 (η`− 1)/#F
BRW blg η`c bη`/2c d(η`)/#F
Gτ r + 1 `(η + 1)/2− 1 (η`+ `− 1)/#F

over a field is at most its degree from which it follows that the required probability is at
most (`d(η) + `− 1)/#F. This shows the AU property.

For the AXU property, we note that the degree of τ Gτ (M1, . . . ,M`) is `d(η) + `. The
rest of the argument is similar to that of the AU propery.

A crucial point in the above construction and the proof is the choice of the appropriate
power of τ as the key for Horner so that the injectivity of Gτ follows directly from the
injectivity of BRWτ . The key for BRWτ is τ and the degree of BRWτ in τ is d(η). Based on
this, the key for Horner is chosen to be τd(η)+1. This ensures that during the computation
of Horner, the BRW polynomials arising from distinct super-blocks do not “overlap”.

For η ≥ 3 suppose r ≥ 1 is such that 2r ≤ η < 2r+1. Then d(η) = 2r+1−1. The number
of multiplications required in evaluating (2) is given by the number of multiplications
required to evaluate all the BRW invocations and the number of multiplications required to
evaluate the single Horner invocation. Each BRW requires bη/2c multiplications and Horner
requires `− 1 multiplications for a total of `bη/2c+ `− 1 multiplications. Additionally,
blg ηc = r squarings are required to compute the powers τ2, . . . , τ2r which are used for
evaluating BRW; an additional squaring is required to compute the power τd(η)+1 = τ2r+1

which is used as a key to Horner. So a total of blg ηc+ 1 squarings are required to compute
all the required powers of τ .

For η = 2r+1 − 1 with r ≥ 1, Table 1 compares the efficiency and security of Gτ with
that of Horner and BRW. The ratio of the number of multiplications required by Gτ
to that required by Horner is (`(η + 1) − 2)/(2(`η − 1)) and the ratio of the number of
multiplications required by BRW to that required by Gτ is 2bη`/2c/(`(η+ 1)−2). Suppose
η = 31: the first ratio is (16` − 1)/(31` − 1) which equals 1/2 for ` = 1 and has the
limiting upper bound of 16/31 ≈ 0.52; the second ratio is b31`/2c/(16`− 1) which equals
1 for ` = 1 and decreases to about 0.97 as ` increases. So, for η = 31, the number of
multiplications required by Gτ is about 50% to 52% of that required by Horner while the
number of multiplications required by BRW is about 97% to 100% of that required by Gτ .

For η = 31, the AU bound for Horner is (31` − 1)/#F; the AU bound for Gτ is
(32`− 1)/#F; and the AU bound for BRW is d(31`)/#F = (2blg(31`)c+1 − 1)/#F. The AU
bound for BRW is in general higher than the AU bound for Gτ . The two bounds can be
equal, e.g. for ` = 1, 2, 4, 8, . . .. On the other hand, the AU bound for BRW can be about
twice as large as the AU bound for Gτ , e.g. for ` = 9, the bound for Gτ is 287/#F and
the bound for BRW is 511/#F.

Overall, Gτ allows a range of efficiency/security trade-offs between BRW and Horner.
By choosing an appropriate value for η, it is possible to attain speed nearly equal to that
of BRW with AU bound not too larger than Horner.

Multi-level hashing: The idea of using BRW at the lower level and Horner at the upper
level can be extended to more than one level. The critical issue is to choose an appropriate
power of τ as the key for each level. While this can be done, extending to more than two
levels results in a rather complicated construction which would mainly be of theoretical,
rather than any practical, interest. So, we did not pursue the idea of multi-level hashing.
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4 Two-Level Hash Function
For practical applications, it is required to handle variable length strings. We show how to
modify the construction in Proposition 1 to be able to do this. For concreteness, in the rest
of the paper we will fix the finite field F to be F2n for some positive integer n. The ideas,
on the other hand, are quite general and can be adapted to work with other finite fields.

The following notation will be used.

• Given a binary string S, let len(S) denote the length of S, i.e., len(S) is the number
of bits in S.

• Given an integer i with 0 ≤ i ≤ 2k − 1, let bink(i) denote the k-bit binary represen-
tation of i.

• Given a positive integer n and a binary string S, let padn(S) denote S||0i where i is
the minimum non-negative integer such that len(S) + i is divisible by n.

Let

D =
2n−1⋃
i=0
{0, 1}i. (3)

The reason for the bound 2n − 1 on the length of the strings in D is that we require the
binary representation of the length of any string in D to fit into an n-bit string. ForM ∈ D,
we define a function superBlksn,η(M) as follows. Consider padn(M) to be formatted into a
sequence of n-bit blocks. Let ` be such that

len(padn(M))
n

= η(`− 1) + λ (4)

for some λ ∈ {1, . . . , η}. Then padn(M) consists of `− 1 full super-blocks and one possibly
partial super-block. Let superBlksn,η(M) denote these super-blocks and we write

superBlksn,η(M) = (M1, . . . ,M`)

where M1, . . . ,M`−1 are full super-blocks (consisting of exactly η n-bit blocks each) and
M` is a possibly partial superblock (consisting of at most η n-bit blocks).

Theorem 1. Let D be as given in (3). Define a hash family {Hash2Lτ}τ∈F2n where
Hash2Lτ : D → {0, 1}n such that for M ∈ D,

Hash2Lτ (M)
= τ2Hornerτd(η)+1(BRWτ (M1), . . . ,BRWτ (M`))⊕ τbinn(len(M)) (5)

where (M1, . . . ,M`) = superBlksn,η(M).
Let M and M ′ be distinct elements of D with len(M) ≥ len(M ′). For a uniform random

τ ∈ F2n and any β ∈ F2n

Pr
τ

[Hash2Lτ (M)⊕ Hash2Lτ (M ′) = β] ≤ `(d(η) + 1) + 1
2n (6)

where ` is the number of super-blocks in M .

Proof. The proof follows if we can show that Hash2Lτ (M)⊕Hash2Lτ (M ′)⊕β is a non-zero
polynomial in τ of degree at most `(d(η) + 1) + 1. The maximum degree of Hash2Lτ (M)
as a polynomial in τ is `d(η) + `− 1 + 2 = `(d(η) + 1) + 1. So, we only need to argue that
P = Hash2Lτ (M)⊕ Hash2Lτ (M ′)⊕ β is a non-zero polynomial.
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First suppose that len(M) 6= len(M ′). The coefficient of τ in Hash2Lτ (M) is binn(len(M))
and the coefficient of τ in Hash2Lτ (M ′) is binn(len(M ′)) 6= binn(len(M)). So, P is a non-
zero polynomial in τ .

So, suppose that len(M) = len(M ′). Then ` = `′ and an argument similar to that
provided for Proposition 1 shows that P is a non-zero polynomial in τ . The only difference
with the argument in Proposition 1 is that the last super-blocks M` and M ′` may be partial.
This, however, does not affect the argument, since the property that M` 6= M ′` implies
BRWτ (M`) 6= BRWτ (M ′`) is preserved.

Remark: The manner in which Hash2Lτ (M) has been defined ensures the AXU property.
If only the AU property is desired, then one can define Hash2Lτ (M) to be

τHornerτd(η)+1(BRWτ (M1), . . . ,BRWτ (M`))⊕ binn(len(M)).

This requires one less multiplication.

4.1 Hashing a Vector of Strings
The hash family Hash2L handles a single binary string. We show how to extend it to
handle a vector where each component is a binary string.

The parameters n and η are defined as in the case of Hash2L. We define the hash family

{vecHash2Lτ}τ∈F2n such that vecHash2Lτ : VD → F2n . (7)

The domain VD consists of variable length vectors of binary strings. Formally,

VD =
255⋃
k=0

{
(M1, . . . ,Mk) : 0 ≤ len(Mi) ≤ 2n−16 − 1

}
. (8)

The reason for the bound k ≤ 255 is that we require the binary representation of k to fit
into a byte. Similarly, the reason for the bound len(Mi) ≤ 2n−16 − 1 is that we require the
binary representation of the length of any Mi to fit into n− 16 bits. If k = 0, then the
input is the empty list. Note that this input is different from the input where k = 1 and
M1 is the empty string.

The computation of the output of vecHash2Lτ is shown in Table 2.

Theorem 2. Let k ≥ k′ ≥ 0; M = (M1, . . . ,Mk) and M′ = (M ′1, . . . ,M ′k′) be two distinct
vectors in VD. For a uniform random τ ∈ F2n and for any β ∈ F2n ,

Pr
τ

[vecHash2Lτ (M)⊕ vecHash2Lτ (M′) = β] ≤ max (k + (d(η) + 1)Λ, k′ + (d(η) + 1)Λ′)
2n (9)

where Λ =
∑k
i=1 `i and Λ′ =

∑k′

i=1 `
′
i.

Proof. Quantities corresponding to M ′ will have the superscript ′.
For i = 1, . . . , k and 1 ≤ j ≤ `i, the degree of BRWτ (Mi,j) is d(η) for 1 ≤ j < `i and it

is at most d(η) for j = `i. Write

BRWτ (Mi,j) = ci,j,0 ⊕ ci,j,1τ ⊕ · · · ⊕ ci,j,d(η)τ
d(η)

where the c’s depend on the Mi’s. So, each Mi contributes at most `i(d(η) + 1) + 1
coefficients

ci,1,0, . . . , ci,1,d(η), . . . , ci,`i,0, . . . , ci,`i,d(η), Li

to vecHash2Lτ (M). The total number of coefficients is at most k + (d(η) + 1)Λ. The last
step in the digest computation increases the degree by one and so the maximum degree of
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Table 2: Computation of vecHash2L.

vecHash2Lτ (M1, . . . ,Mk)
if k == 0 return 1nτ ;
digest = 0n;
for i = 1, . . . , k − 1 do

(Mi,1, . . . ,Mi,`i) = superBlksn,η(Mi);
Li = binn(len(Mi));
for j = 1, . . . , `i do

digest = τd(η)+1digest⊕ BRWτ (Mi,j);
end for;
digest = τdigest⊕ Li;

end for;
(Mk,1, . . . ,Mk,`k) = superBlksn,η(Mk);
Lk = bin8(k)||08||binn−16(len(Mk));
for j = 1, . . . , `k do

digest = τd(η)+1digest⊕ BRWτ (Mk,j);
end for;
digest = τdigest⊕ Lk;
digest = τdigest;
return digest.

vecHash2Lτ (M) is equal to the maximum number of coefficients in vecHash2Lτ (M). The
degree of

P = vecHash2Lτ (M)⊕ vecHash2Lτ (M′)⊕ β

is max (k + (d(η) + 1)Λ, k′ + (d(η) + 1)Λ′). The result follows if we can show that P is a
non-zero polynomial in τ . The detailed proof is divided into several cases.

Case k′ = 0: Since M 6= M′, it follows that k > 0. vecHash2Lτ (M ′) equals 1nτ . Since
k > 0, vecHash2Lτ (M) is of the form Lkτ ⊕ τ2(· · · ) where

Lk = bin8(k)||08||binn−16(len(Mk)) 6= 1n.

So, P is a non-zero polynomial.

Case k > k′ > 0: In this case, vecHash2Lτ (M) is of the form Lkτ ⊕ τ2(· · · ) and
vecHash2Lτ (M ′) is of the form L′k′τ ⊕ τ2(· · · ) where

Lk = bin8(k)||08||binn−16(len(Mk)) 6= bin8(k′)||08||binn−16(len(M ′k′)) = L′k′ .

So, again P is a non-zero polynomial.

Case k = k′ > 0: There are two subcases to consider.

Sub-case (a): There is some i such that len(Mi) 6= len(M ′i). Let i be the maximum such
value and so, len(Mj) = len(M ′j) for j = i+ 1, . . . , k. Since len(Mi) 6= len(M ′i), it follows
that Li 6= L′i. Let s = 1 + (k− i) +

∑k
j=i+1 `j(d(η) + 1) = 1 +(k′− i) +

∑k′

j=i+1 `
′
j(d(η) + 1).

Then the coefficient of τs in P is Li ⊕ L′i 6= 0. So, again P is a non-zero polynomial.
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Sub-case (b): In this case, len(Mi) = len(M ′i) for i = 1, . . . , k. As a result, in this case
the number of components and the length of all the components in M and M′ are equal.
Since M 6= M′, it follows that there must be some s such that Ms 6= M ′s.

Since len(Ms) = len(M ′s), it follows that the number of superblocks of Ms and M ′s
are equal, i.e., `s = `′s. The super-blocks corresponding to Ms are Ms,1, . . . ,Ms,`s while
the super-blocks corresponding to M ′s are M ′s,1, . . . ,M ′s,`s . Since Ms 6= M ′s, at least one
of the superblocks must be unequal. Let t ∈ {1, . . . , `s} be such that Ms,t 6= M ′s,t. By
the injectivity of BRW, it follows that BRWτ (Ms,t) 6= BRWτ (M ′s,t) and so there is a
k ∈ {0, . . . , d(η)} such that cs,t,k 6= c′s,t,k. As a result, P is a non-zero polynomial.

This completes all the cases and the proof.

5 Implementations Based on pclmulqdq
Our target platform were the Intel processors which support the pclmulqdq instruction.
This instruction takes as input two degree 64 polynomials over F2 (represented as two
64-bit words) and returns as output the degree 128 polynomial which is the product of the
two input polynomials. The implementation was done using Intel intrinsics.

We report implementations for n = 128 and n = 256. For n = 128, F2128 was represented
using the irreducible polynomial σ(x) = x128 ⊕ x7 ⊕ x2 ⊕ x⊕ 1 and for n = 256, F2256 was
represented using the irreducible polynomial σ(x) = x256 ⊕ x10 ⊕ x5 ⊕ x2 ⊕ 1. In both
cases, σ(x) is of the form xn ⊕ g0(x) where g0(x) is a polynomial of degree less than n/2
having exactly 4 non-zero coefficients.

We report timings on two different machines. For the timing measurements, we followed
the strategy of [13]. The first timing measurements were taken on a single core of a machine
with Intel Core i7-4790 Haswell @ 3.60GHz. The second timing measurements were taken
on a single core of a machine with Intel Core i7-6500U Skylake @ 2.5GHz. In both cases,
the operating system was 64-bit Ubuntu-14.04-LTS and the C code was complied using
GCC version 4.8.4. The code is publicly available1.

5.1 Field Multiplication
The multiplication of two 128-bit polynomials using the schoolbook method requires 4
pclmulqdq calls and using Karatsuba’s algorithm requires 3 pclmulqdq calls. The multi-
plication of two 256-bit polynomials using the schoolbook method requires 16 pclmulqdq
calls and using Karatsuba’s algorithm requires 9 pclmulqdq calls. The reduction step can
also be computed using pclmulqdq calls. From the work of Gueron and Kounavis [10]
one obtains that for n = 128, 2 pclmulqdq calls are sufficient for the reduction while for
n = 256, 4 pclmulqdq calls are sufficient. Details are provided in Section 5.2 below.

Batch multiplications: Suppose m independent multiplications are to be computed.
The code can be arranged such that the pclmulqdq instructions for these multiplications
can be grouped together. This may help the instruction scheduler to utilise instruction
pipelining to speed up the computation. We have experimented with values of m ≤ 4 and
have found some speed improvements. In theory, the speed improvement should continue
as m increases. In practice, however, this does not always happen.

5.2 Efficient Reduction
Let n be a positive even integer and F2n be represented by an irreducible polynomial σ(x)
of degree n over F2. Elements of F2n are represented using polynomials over F2 of degrees
less than n. Let a = a(x) and b = b(x) be two elements of F2n . The computation of

1https://github.com/sebatighosh/HASH2L.git

https://github.com/sebatighosh/HASH2L.git
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ab = a(x)b(x) mod σ(x) consists of two steps. In the first step, a(x) and b(x) are multiplied
together to obtain a result e(x) of degree less than 2n− 1 and then e(x) is reduced modulo
σ(x) to obtain the desired result. Let e(x) = a(x)b(x) and write e(x) = d(x)⊕c(x)xn where
c(x) and d(x) have degrees less than n. The essential task is to compute c(x)xn mod σ(x).
A method for doing this was described by Gueron and Kounavis [10]. We review their
method and determine the number of pclmulqdq instructions required for the reduction
for both n = 128 and n = 256.

Let q(x) and p(x) be such that c(x)xn = q(x)σ(x)⊕ p(x) with deg(q),deg(p) ≤ n− 1.
The goal is to find p(x). Write σ(x) = xn ⊕ σ∗(x), where deg(σ∗) ≤ n − 1. The
equation c(x)xn = q(x)σ(x)⊕ p(x) becomes c(x)xn = q(x)xn ⊕ q(x)σ∗(x)⊕ p(x) and so
p(x) = q(x)σ∗(x) mod xn. So, finding q(x) is sufficient for obtaining p(x).

Let q+(x) and p+(x) be such that x2n = q+(x)σ(x)⊕ p+(x) with deg(p+) ≤ n− 1 and
deg(q+) = n. So,

c(x)x2n = q(x)σ(x)xn ⊕ p(x)xn
⇒ c(x)(q+(x)σ(x)⊕ p+(x)) = q(x)σ(x)xn ⊕ p(x)xn
⇒ c(x)q+(x)σ(x)⊕ c(x)p+(x) = q(x)σ(x)xn ⊕ p(x)xn

⇒
⌊
c(x)q+(x)σ(x)⊕c(x)p+(x)

x2n

⌋
=

⌊
q(x)σ(x)xn⊕p(x)xn

x2n

⌋
⇒

⌊
c(x)q+(x)σ(x)

x2n

⌋
=

⌊
q(x)σ(x)
xn

⌋
.

In the above the following two facts have been used: deg(cp+) ≤ 2n−2 and deg(p) ≤ n−1.
Let u(x) be of degree at most n− 1, v1(x) of degree at most 2n− 1 and v2(x) of degree at
most n−1 such that c(x)q+(x)σ(x) = u(x)x2n⊕v1(x) and q(x)σ(x) = u(x)xn⊕v2(x). From
this we obtain c(x)q+(x)σ(x)/xn = u(x)xn⊕v1(x)/xn = q(x)σ(x)⊕v2(x)⊕v1(x)/xn. This
is re-written as c(x)q+(x)/xn = q(x)⊕ v2(x)/σ(x)⊕ v1(x)/σ(x)xn. Since deg(v2) ≤ n− 1,
bv2(x)/σ(x)c = 0 and since deg(v1) ≤ 2n − 1, bv1(x)/(σ(x)xn)c = 0. So, we obtain
q(x) = bc(x)q+(x)/xnc .

Further simplifications: Suppose n is even, and σ∗(x) = g0(x) with deg(g0) < n/2.
So, σ(x) = xn ⊕ g0(x). We have xn = σ(x) ⊕ g0(x) and so x2n = σ2(x) ⊕ g0(x2). Since
deg(g0) ≤ n/2 − 1, deg(g0(x2)) ≤ n − 2. So, q+(x) = σ(x) and p+(x) = g0(x2). Write
c(x) = c1(x)xn/2 ⊕ c0(x) where deg(c1),deg(c0) < n/2. Consider the product

c(x)q+(x) = c(x)σ(x) = c(x)(xn ⊕ g0(x)) = c(x)xn ⊕ c(x)g0(x)
= c(x)xn ⊕ (c1(x)xn/2 ⊕ c0(x))g0(x) = c(x)xn ⊕ xn/2c1(x)g0(x)⊕ c0(x)g0(x).

Since deg(c0g0) ≤ n− 2, b(c0g0)/xnc = 0 and we have

q(x) =
⌊
c(x)q+(x)

xn

⌋
= c(x)⊕

⌊
xn/2c1(x)g0(x)

xn

⌋
= c(x)⊕

⌊
c1(x)g0(x)
xn/2

⌋
.

Write q(x) = q1(x)xn/2 ⊕ q0(x) with deg(q1),deg(q0) < n/2. Since deg(c1),deg(g0) < n/2,
it follows that deg(c1g0) < n − 1 and so b(c1(x)g0(x))/xn/2c is a polynomial of degree
less than n/2. So, we have q(x) = c1(x)xn/2 ⊕ c0(x) ⊕

⌊
(c1(x)g0(x))/xn/2⌋ . In effect,

q1(x) = c1(x) and q0(x) = c0(x)⊕b(c1(x)g0(x))/xn/2c. Computing q(x) requires computing
c1(x)g0(x) which accounts for one n/2-bit polynomial multiplication.

Given q(x), p(x) is obtained as p(x) = q(x)σ∗(x) mod xn = q(x)g0(x) mod xn =
q1(x)g0(x)xn/2 ⊕ q0(x)g0(x) mod xn = c1(x)g0(x)xn/2 ⊕ q0(x)g0(x) mod xn. The product
c1(x)g0(x) has already been computed. So, computing p(x) requires another additional
n/2-bit polynomial multiplication, namely q0(x)g0(x). So, the entire reduction can be
carried out using 2 n/2-bit polynomial multiplications. For n = 128, n/2 = 64 and the two
n/2-bit polynomial multiplications can be computed using 2 pclmulqdq calls. The entire
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Table 3: Efficiency and AU bound for BRWτ (m1, . . . ,mη) over F2n with η = 2r+1− 1 ≥ 3.

# sqr # n-bit XORs # poly mult # red AU bnd
r 14 · 2r−2 − 4 2r − 1 2r−1 η/2n

reduction e(x) mod σ(x) requires a total of 7 instructions. For n = 256, n/2 = 128 and
an n/2-bit polynomial multiplication is a 128-bit polynomial multiplication. We choose
g0(x) to have degree less than 64. Since c1(x) is a polynomial of degree less than 128,
the product c1(x)g0(x) can be computed using 2 pclmulqdq instructions. Similarly, the
product q0(x)g0(x) can also be computed using 2 pclmulqdq instructions. So, 4 pclmulqdq
instructions are sufficient for the reduction and the code for computing e(x) mod σ(x)
requires a total of 14 instructions.

5.3 Arithmetic Operations for Computing BRW
Let η = 2r+1 − 1 ≥ 3. Suppose Ar+1 is the number of field additions required to
evaluate BRWτ (m1, . . . ,mη). Then Ar+1 = 2 + 2Ar, r ≥ 2 and using A2 = 3, we have
Ar+1 = 5 · 2r−1 − 2 for r ≥ 1.

The number of multiplications for computing BRWτ (m1, . . . ,mη) is bη/2c = 2r − 1.
Two field elements β and γ are represented using polynomials over F2 of degrees less than
n. Let us denote these polynomials as β(x) and γ(x). As described above, the computation
of βγ is done in two steps, namely a polynomial multiplication followed by a reduction.

For computing BRW, it is possible to reduce the number of reductions. We describe
this with respect to F2n , but, the general idea also applies to other fields. While computing
BRWτ (m1, . . . ,mη) with η = 2r+1 − 1 ≥ 3, the product of BRWτ (m1, . . . ,m2r−1) and
(τ2r +m2r ) is added to BRWτ (m2r+1, . . . ,m2r+1−1). This involves a reduction step in the
computation of the product BRWτ (m1, . . . ,m2r−1)(τ2r +m2r ) and a reduction step in the
computation of the output of BRWτ (m2r+1, . . . ,m2r+1−1). These two reductions can be
combined into a single reduction in the following manner. Perform the polynomial multi-
plication of BRWτ (m1, . . . ,m2r−1) and (τ2r +m2r ); compute BRWτ (m2r+1, . . . ,m2r+1−1)
without the final reduction; add the two polynomials; then perform a reduction on the
resulting polynomial.

For η = 2r+1 − 1 ≥ 3, let Rr+1 be the number of reductions required to compute
BRWτ (m1, . . . ,mη) with R2 = 1. The computation of BRWτ (m1, . . . ,m2r−1) requires Rr
reductions; the computation of BRWτ (m2r+1, . . . ,m2r+1−1) without the final reduction
requires Rr−1 reductions; and there is a final reduction. So, Rr+1 = Rr+(Rr−1)+1 = 2Rr
for r ≥ 2, R2 = 1 and we obtain Rr+1 = 2r−1.

A field addition in F2n is XOR of two n-bit strings. In trying to reduce the number of
reductions, the number of n-bit XORs go up. Unreduced quantities are 2n-bit polynomials
and adding together two such polynomials require 2 n-bit XORs. Further, the cross product
terms of the different multiplications are first added together and then shifted. This requires
an extra n-bit XOR per delayed reduction. Let Nr+1 be the number of n-bit XORs required
to evaluate BRWτ (m1, . . . ,mη) with η = 2r+1 − 1 ≥ 3. Then Nr+1 = 2Nr + 4 for r ≥ 2
with N2 = 3 so that Nr+1 = 14 · 2r−2 − 4.

The relevant parameters for computing BRWτ (m1, . . . ,mη) along with the AU bound
are summarised in Table 3.

5.4 Computing BRW Polynomials
For the actual implementation, for both n = 128 and n = 256, we set η = 31, i.e., the
number of n-bit blocks in a super-block is 31. For the two-level hash function, the last
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super-block can be partial. So, we did separate implementations of BRW for handling
number of blocks from 1 to 31. Below we provide the details for the BRW implementation
for 31-block inputs.

On a 31-block input, BRW requires a total of 15 n-bit multiplications. There is
some amount of parallelism in these multiplications. A convenient way to bring out this
parallelism is to represent the BRW computation using a tree as has been done in [7]. Such
a tree depicts the dependencies among the multiplications required for BRW computation.
We omit the details of how the tree is constructed as these details are not directly relevant
to the present work.

The relevant part of a 31-block BRW tree is shown in Figure 1. Each node is marked
by an even number between 2 and 30 corresponding to the 15 multiplications that are
required. (For the reason why the node labels are 2 to 30 instead of 1 to 15, we refer
to [7].) If there is an edge from a lower marked node to a higher marked node, then the
multiplication corresponding to the lower marked node has to be computed before the
multiplication corresponding to the higher marked node. So, for example, the multiplication
corresponding to node 2 has to be computed before the multiplication corresponding to
node 4 can be computed and the multiplications corresponding to nodes 8, 12 and 14 have
to be computed before the multiplication corresponding to node 16 can be computed.

141062 18 22 26 30

4 12 20 28

8 24

16

Figure 1: The 31-block BRW tree.

Nodes which are not connected by an edge are independent and can be computed in
parallel. For example, the eight multiplications at the lowest level are independent; the four
multiplications at the next level are independent; and so on. There are, however, other ways
to group the independent multiplications. Such groupings allow using batch multiplications
to speed up the computations. Using batch size 3 as given below is particularly nice since
the 15 multiplications can be cleanly grouped into 5 batches of 3 multiplications each.
Batch size 3: {2, 6, 10}, {14, 18, 22}, {26, 30, 4}, {20, 12, 8}, {28, 24, 16}.

In conjunction with the above, we also implemented the delayed reduction strategy
described in Section 5.3. From Table 3, for η = 31, 15 multiplications of n-bit polynomials,
8 reductions and 52 n-bit XORs are required.
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5.5 Decimated Horner

Given a sequence of n-bit blocksm1, . . . ,m` and a positive integer d ≥ 1, Hornerτ (m1, . . . ,m`)
can be computed as

Hornerτ (m1, . . . ,m`) = τρ−1Hornerτd(m1,md+1,m2d+1, . . .)
⊕ · · ·
⊕ τρ−ρHornerτd(mρ,md+ρ,m2d+ρ, . . .)
⊕ τd−1Hornerτd(mρ+1,md+ρ+1,m2d+ρ+1, . . .)
⊕ · · ·
⊕ τd−(d−ρ)Hornerτd(md,m2d,m3d, . . .) (10)

where ρ = ` mod d. We call this d-decimated Horner computation. In (10), the d calls to
Horner are independent leading to d independent multiplications at each step with the
boundary conditions appropriately handled. These d independent multiplications can
be computed as a batch multiplication. After the individual Horner calls are completed,
the outputs are multiplied by τρ−1, . . . , 1, τd−1, . . . , τρ which can be done as a batch
multiplication with batch size d− 1 (since one multiplication is by 1).

5.6 Implementation of Hash2L

During implementation, there is a choice of batch size for BRW. For n = 128, we have
found that choosing the batch size to be 3 provides slightly better speed compared to
choosing the batch size to be 1. So, for n = 128, we implemented BRW using batch size 3
and 3-decimated Horner. For n = 256, however, there does not seem to be any noticeable
improvement in speed by choosing the batch size to be greater than 1. So, in this case, we
implemented both BRW and Horner using batch size 1.

Table 4: Cycles per byte for computing Hash2L, GHASH and POLYVAL on Haswell. For
both n = 128 and n = 256, Karatsuba gave better performance compared to the schoolbook
method.

128-bit 256-bit
length of message in bytes length of message in bytes

512 1024 4096 8192 512 1024 4096 8192
Hash2L 0.88 0.687 0.498 0.463 1.4 0.95 0.718 0.67

GHASH [26] 1.15 1.02 0.93 0.91 – – – –
(23.5%) (32.6%) (46.5%) (49.1%) – – – –

POLYVAL [9] 1.09 0.81 0.602 0.567 – – – –
(19.3%) (15.2%) (17.3 %) (18.3%) – – – –



Debrup Chakraborty, Sebati Ghosh and Palash Sarkar 121

Table 5: Cycles per byte for computing Hash2L, GHASH and POLYVAL on Skylake. For
n = 128, schoolbook was faster than Karatsuba, while for n = 256, Karatsuba was faster.

128-bit 256-bit
length of message in bytes length of message in bytes

512 1024 4096 8192 512 1024 4096 8192
Hash2L 0.667 0.468 0.33 0.301 1.11 0.758 0.562 0.525

GHASH [26] 0.89 0.77 0.67 0.65 – – – –
(25.1%) (39.2%) (50.7%) (53.7%) – – – –

POLYVAL [9] 0.79 0.55 0.369 0.339 – – – –
(15.6%) (14.9%) (10.6%) (11.2%) – – – –

Timing results on the Haswell and the Skylake processors are presented in Tables 4
and 5 respectively. The percentage figures indicate the percentage of speed improvement
obtained by our implementation of Hash2L over the publicly available implementations of
GHASH and POLYVAL. The implementation of GHASH is by Gueron and has been taken
from [26]. The implementation uses a delayed reduction strategy whereby a single reduction
is done per four polynomial multiplications. This strategy requires pre-computing a table
consisting of 4 consecutive powers of the hash key. The implementation of POLYVAL is also
by Gueron and has been taken from [9]. This implementation also uses a delayed reduction
strategy, but here a single reduction is done per eight polynomial multiplications. Hence,
it requires a pre-computed table consisting of 8 consecutive powers of the hash key. Thus,
the implementation of POLYVAL in [9] requires half the number of reductions required by
the implementation of GHASH in [26] which leads to significant speed up. We note that
an implementation of GHASH using one reduction per 8 polynomial multiplications will
have the same performance as that of the implementation of POLYVAL in [9].

For POLYVAL, both intrinsics and assembly codes are provided and it is mentioned that
the performance of both the codes are similar. Since, we have implemented in intrinsics, we
chose to compare to the intrinsics implementation in [9]. We measured the time required
by the intrinsics implementation of GHASH in [26] and of POLYVAL in [9] on the same
machine where we measured the time required by Hash2L.

For timing each of Hash2L, GHASH and POLYVAL, the hash key was updated in every
iteration. This ensured that the timing measurements included the time for pre-computing
the powers of τ in case of Hash2L and the pre-computed tables in Gueron’s implementations
of both GHASH and POLYVAL.

From the results in Tables 4 and 5 we find that Hash2L is about 23% to 49% faster
than GHASH and about 15% to 19% faster than POLYVAL on the Haswell processor. On
Skylake processor, these figures are about 25% to 53% and 10% to 15% respectively.

In theory, the number of multiplications required by Hash2L is slightly more than half
the number of multiplications required by GHASH or POLYVAL. This, however, does not
directly turn into a roughly two times speed improvement for the following reasons. First,
the strategy of delayed reduction used in GHASH and POLYVAL to some extent mitigates
the effect of requiring about two times as many multiplications for short messages. Second,
the code for GHASH is much more simpler and smaller than that for Hash2L and this has
an effect on the overall speed.

To summarise, the speed improvements that we are able to achieve are indicative of the
algorithmic superiority of Hash2L over Horner based hash computations such as GHASH
and POLYVAL. We do not claim that our code provides the fastest possible timing for
Hash2L. Experts on intrinsics and assembly programming should be able to tune the code
to achieve even higher speeds. Further, we have considered only η = 31 for implementation.
It would be interesting to explore the speed achievable using other values of η. We leave
these as interesting work for the future.
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6 Implementation Strategy Without Using pclmulqdq
For n = 256, Bernstein and Chou [4] have provided a description of how to implement binary
field arithmetic using the Fast Fourier Transform (FFT) algorithm. The method does not
require the pclmulqdq instruction. The following counts of number of bit operations are
provided in [4]. Forward Fourier transform: 4068−656 = 3412 bit operations without radix
conversions; pointwise multiplications: 64 · 110 bit operations; inverse Fourier transform:
5996 bit operations; reduction: 992 bit operations.

In the FFT based polynomial multiplication, the inverse Fourier transform is applied
to the pointwise product. As pointed out in [4], to compute an expression of the type
a1a2 + b1b2, it is equivalent to compute the pointwise multiplications for a1, a2 and b1, b2;
add the vectors; and then perform a single inverse Fourier transform. So, whenever a sum
of products of polynomials is to be computed, a single inverse Fourier transform suffices.
In the present context, this means that the number of inverse Fourier transforms to be
computed is equal to the number of reductions.

We consider the use of this strategy for computing Hash2L. The polynomial multi-
plication and reduction procedures used in [4] can be directly considered in the present
context.

Suppose η = 2r+1 − 1 ≥ 3. From Table 3, computing BRWτ (m1, . . . ,mη) requires
14 · 2r−2 − 4 256-bit XORs; 2(2r − 1) forward Fourier transforms (each polynomial
multiplication requires two forward Fourier transforms); 2r − 1 pointwise multiplications;
2r−1 inverse Fourier transforms; and 2r−1 reductions. The total number of bit operations
for computing BRWτ (m1, . . . ,mη) comes to

256(14 · 2r−2 − 4) + 2 · 3412 · (2r − 1) + (64 · 110)(2r − 1) + 5996 · 2r−1 + 992 · 2r−1

= 18254 · 2r − 14888. (11)

The number of bits in (m1, . . . ,mη) is 256η = 256 · (2r+1 − 1) and so the number of bit
operations per bit for computing BRWτ (m1, . . . ,mη) is

Br+1 = 18254 · 2r − 14888
256 · (2r+1 − 1) .

We have B2 ≈ 28.2, B3 ≈ 32.4, B4 ≈ 34.2, B5 ≈ 34.9, B6 ≈ 35.3, B7 ≈ 35.5.
For Hash2L having η` 256-bit blocks, there are ` super-blocks consisting of η 256-

bit blocks each. Processing these super-blocks require Br+1 bit operations per block.
Additionally, the ` blocks which are produced as the output of the ` BRW invocations
are processed using Horner. For achieving AXU, this requires ` field multiplications. In
the multiplications of Horner computation, one of the operands is always τ2r+1 and so the
number of forward Fourier transforms is ` + 1 (one transform for each of the ` blocks,
plus a transform for τd(η)+1) instead of 2`. In addition to these, there are ` pointwise
multiplications; ` inverse Fourier transforms; ` reductions; and ` 256-bit XORs. Plugging
in the number of bit operations for each of the aforementioned operations shows that a
total of 17696`+ 3412 bit operations are required for evaluating Horner. Since there are a
total of η` 256-bit blocks, the number of bit operations per bit for evaluating Horner is
(17696`+ 3412)/(256 · η`) = 69.125/(2r+1 − 1) + 13.22/(`(2r+1 − 1)).

There is an additional cost for computing the powers τ2, τ4, . . . , τ2r+1 . Each of these
is a squaring and requires 17440 bit operations for a total of 17440 · r bit operations
to compute all the powers. Amortised over the entire computation, the cost per bit for
computing the powers is (17440 · r)/(256 · η`).

So, the total number of bit operations per bit for computing Hash2L on η` 256-bit
blocks with η = 2r+1 − 1 is

Cr+1 = Br+1 + 69.125/(2r+1 − 1) + (68.125 · r + 13.22)/(`(2r+1 − 1)).
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We have C2 ≈ 51.2 + 27.1/`, C3 ≈ 42.3 + 21.4/`, C4 ≈ 38.8 + 14.5/`, C5 ≈ 37.2 + 9.2/`,
C6 ≈ 36.4 + 5.6/`, C7 ≈ 36.0 + 3.3/`.

Choosing η = 31 = 25−1 shows that the number of bit operations per bit for computing
Hash2L is 37.2 + 9.2/` ≤ 46.4 By choosing η = 63 or 127, it is possible to lower the number
of bit operations per bit though this is still greater than the 29 bit operations per bit
required for the pseudo-dot product [4]. The main reason behind the cost of Hash2L being
higher than that of the pseudo-dot product is that in the later case, there is a single inverse
Fourier transform and a single reduction for the entire computation. The problem with
the pseudo-dot product, however, is that the hash key is as long as the message. The cost
of securely generating this key will be significant and has not been considered in [4].

Remark: The complete Hash2L requires an additional multiplication to process the block
containing the message length. The above cost measure does not include this multiplication.
The reason is that a complete hash function based on the pseudo-dot product will also
require such a multiplication and this is not covered by the figure of 29 bit operations per
bit reported in [4].

7 Message Authentication Code
A well known method for constructing a nonce-based MAC scheme from a hash function is
the following [24]. Let F : K ×N → {0, 1}n be a mapping and {Hτ}τ∈T with Hτ :M→
{0, 1}n be a hash family. The key space for the MAC scheme is K × T, the nonce space is
N and the message space isM. Given a nonce N and a message M , the output of the
MAC scheme under a key (K, τ) is

(N,M) (K,τ)−→ FK(N)⊕Hτ (M). (12)

It is possible to instantiate the hash function H using Hash2L. In this case, the message M
is a binary string. More generally, it is possible to instantiate H using vecHash2L in which
case the message M is a vector where each component is a binary string. The function
FK can be either a block cipher or a stream cipher.

Analysis of this scheme under the assumption that F is either a pseudo-random function
(PRF) or a pseudo-random permutation (PRP) has a long history starting from [24] with
the best known bounds appearing in [2]. If F is instantiated using a stream cipher, then
security is based on the assumption that F is a PRF while if F is instantiated using a block
cipher, then security is based on the assumption that F is a PRP. The overall security
bound for the MAC scheme is obtained from the security assumption on F and the AXU
bound on Hτ . These bounds are derived in [2] and so we do not repeat them here.

Instantiation at the 128-bit security level: It is possible to use a 128-bit block
cipher such as AES to instantiate FK . The size of K could be any of the options allowed
for AES and the size of N will be 128 bits. It is also possible to instantiate F using a
stream cipher whose key size is at least 128 bits.

Instantiation at the 256-bit security level: A 128-bit block cipher such as AES
cannot be directly used to instantiate F at the 256-bit security level. Instead, a stream
cipher supporting a 256-bit key can be directly used to instantiate F .

8 Comparison to Some Previous Works
We consider some of the important universal hash functions and corresponding MAC
schemes that have been proposed. The discussion is divided into two parts. In the first
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part, we consider schemes for which the keys to the hash function are long and in the
second part, we consider schemes for which the keys to the hash functions are short.

8.1 Comparison to Schemes Using Long Hash Keys
UMAC [5] and VMAC [11]: The core of the MAC scheme UMAC is the hash function NHT

which is based on integer arithmetic. This hash function processes an `-block message
with each block being w-bit long to produce a digest of size 2tw for some parameter t ≥ 1.
The construction is essentially the pseudo-dot product. The collision probability is 2−tw.
The hash key consists of `+ 2(t− 1) w-bit blocks. So, the length of the hash key is longer
than the length of the message to be hashed. The core of VMAC is the hash function
VHASH which is also based on integer arithmetic and requires a key which is longer than
the message.
Auth256 [4]: The core of Auth256 is the hash function Hash256. This hash function
uses arithmetic over GF (2256) to compute a pseudo-dot product. The key is as long as
the message which results in collision probability being at most 2−256 and differential
probability being at most 2−255. The work [4] reports an implementation of Hash256 using
a tower field representation and a new FFT-based algorithm for field multiplication. It
does not use the pclmulqdq instruction on Intel processors.

A more recent proposal of a hash function which uses a long key is [14]. The idea of this
construction is based on that of VHASH, except that the computation is over F264 . The
hash function produces 64-bit outputs. We note that more than 10 years ago, Bernstein
had commented [23] that a 64-bit digest provides inadequate security.

For hash functions using long keys, in practice, the key has to be generated using either
a stream cipher or a block cipher mode of operation. This leads to both efficiency and
security issues as mentioned below.

Efficiency: Generation of the key can be either done on the fly, or, it could be pre-
computed and stored. Both the approaches have problems. Generating the key on
the fly requires significant additional time which should be included in the total
time for hashing. However, the above mentioned schemes do not report this time.
On the other hand, pre-computing and storing a large key has its own problems.
To quote Bernstein [2], the large key “creates a huge speed penalty: cache misses
become much more common and much more expensive.”

Security: The analysis of the scheme given in (12) is well known whenK and τ are chosen
independently and uniformly at random with the best known bounds appearing in [2].
However, if τ is generated using a mode of operation of a block or a stream cipher,
then there are two issues. If the key for the mode of operation used to generate τ is
the same as that of F , then the independence condition is violated. Even if the key
for the mode of operation is independent of the key for F , using a mode of operation
to generate τ violates the uniform distribution property of τ . Consequently, if τ is
generated using a mode of operation, the analysis and the bounds provided in [2] do
not direcly apply and a fresh analysis and security bound need to be worked out. In
fact, there has been a lengthy discussion on this issue [23] in the context of UMAC
where Bernstein had strongly argued for the necessity of precise security statement
and proof for UMAC. By the same reasoning, a precise security statement and proof
is also required for Auth256 which is not available in [4].

While the above issues are relevant for hash functions which use long keys, we note below
two issues which are particularly relevant to Hash256 and Auth256.

1. Hash256 avoids using pclmulqdq under the rationale that not all processors provide
this instruction. Consider this issue in conjunction with the requirement of generating
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the hash key using AES in counter mode. Processors which do not provide an
instruction similar to pclmulqdq are unlikely to provide support in the instruction
set for AES. So, on such processors, the generation of the hash key will take
significantly more time than the actual hashing. This time is neither reported nor
considered in [4].

2. The digest size of Hash256 is 256 bits and so the goal of Auth256 is the 256-bit security
level. It is suggested in [4] that the hash key can be generated using counter-mode
AES. Since AES is a 128-bit block cipher, a direct use of counter-mode AES will not
provide security at the 256-bit level. So, a combination of Hash256 with counter-mode
AES is unlikely to provide 256-bit security. A further issue is that of instantiating F
in (12) using AES. The output of F is required to be 256 bits long and since AES
is a 128-bit cipher, it cannot be directly used to instantiate F . Since [4] does not
provide a clear description of how the hash key for Hash256 is to be generated and
how F is to be instantiated, the acutal security claim of Auth256 at the 256-bit level
is unclear.

In terms of efficiency, [4] reports a cost of 29 bit operations per bit for computing Hash256
along with a hidded cost of generating the hash key. Any secure method for generating the
long hash key will have a significant cost. In Section 6, we have shown that choosing η = 31
leads to a cost of at most 46.4 bit operations per bit. There is, however, no associated
hidden cost of generating the hash key. The cost can be made lower by choosing a higher
value of η. While the comparison in terms of bit operation counts is indicative, it would
have been better to obtain the actual speed measurements. Since the code for Hash256 is
not (yet) publicly available, we were unable to do this.

8.2 Comparison to Schemes Using Short Hash Keys
Poly1305 [1]: This is a usual univariate polynomial hashing using Horner. The arithmetic
is over the prime field Fp with p = 2130 − 5. Clever use of floating point techniques are
made to provide efficient implementation. For Haswell, the best reported speed we could
find is 0.65 cycles/byte using 64-bit AVX2 instructions2. For Skylake, we were unable to
locate a speed report.
GHASH [15]: This is also a usual univariate polynomial hashing using Horner. In this case,
the arithmetic is over the field F2128 . Since this hash function forms a part of the NIST
standard there has been much research in efficient implementation of this function. In fact,
one of the reasons for Intel to include the pclmulqdq instruction is to be able to efficiently
implement GHASH. The best known implementation of GHASH using pclmulqdq is by
Gueron [26].
POLYVAL [28]: This is also a univariate polynomial hashing algorithm. More precisely,
this is a byte-swapped version of GHASH, applied over byte-swapped message. In this
case also, the arithmetic is over the field F2128 . The highly optimised implementation of
POLYVAL using pclmulqdq is due to Gueron [9].

All three of Poly1305, GHASH and POLYVAL are computed using Horner and hence,
require ` − 1 multiplications for evaluating an `-block message. The design approach
proposed here, on the other hand, requires a little more than `/2 multiplications. So,
inherently this approach is faster than each of those hash schemes. We have instantiated
this approach over binary fields to develop Hash2L. On the other hand, if one wishes to work
over prime fields, it is equally possible to instantiate the approach over any appropriate
field such as F2130−5.

The hash key for Poly1305, GHASH, POLYVAL and also Hash2L is a single field element.
So, in terms of key agility, there is no difference between these four algorithms. The

2https://www.openssl.org/blog/blog/2016/02/15/poly1305-revised/

https://www.openssl.org/blog/blog/2016/02/15/poly1305-revised/


126 A Fast Single-Key Two-Level Universal Hash Function

collision probabilities for Poly1305, GHASH and POLYVAL are those obtained from the
usual Horner style hash and hence are only slightly lower than that of Hash2L. See Table 1
for more details.

Poly1305, GHASH and POLYVAL are designed for the 128-bit security level. The
instantiation of Hash2L at the 128-bit security level turns out to be faster than all of these
functions on Haswell processor of Intel; it is faster than GHASH and POLYVAL on Skylake;
and we were unable to locate a speed report for Poly1305 on Skylake. We expect the
128-bit version of Hash2L to be faster than GHASH and POLYVAL on any platform and
to be faster than Poly1305 on any processor which supports the pclmulqdq instruction.
The comparison of Hash2L to Poly1305 on processors which do not provide support for
pclmulqdq cannot be determined without getting into the details of a particular processor.

9 Conclusion
In this work, we have shown how to combine the BRW family of polynomials with the Horner
based polynomial evaluation to design a new hash function. The number of multiplications
required for computing the digest is a little more than that for BRW polynomials. The
advantage is that the implementation difficulties of BRW polynomials for variable length
messages are eliminated. The combination is a two-level hash with BRW at the lower
level and Horner at the higher level. The hash key is a single field element and has been
appropriately used to work for both the levels. Concrete instantiations of the hash function
over binary fields have been reported. The idea, on the other hand, is quite general and
applies to other fields as well. A possible future work is to explore this idea to build
concrete hash functions over other finite fields.
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