
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2017, No. 1, pp. 80–105. DOI:10.13154/tosc.v2017.i1.80-105

ISAP – Towards Side-Channel Secure
Authenticated Encryption

Christoph Dobraunig, Maria Eichlseder, Stefan Mangard,
Florian Mendel and Thomas Unterluggauer

Graz University of Technology, Graz, Austria
firstname.lastname@iaik.tugraz.at

Abstract. Side-channel attacks and in particular differential power analysis (DPA)
attacks pose a serious threat to cryptographic implementations. One approach to
counteract such attacks are cryptographic schemes based on fresh re-keying. In
settings of pre-shared secret keys, such schemes render DPA attacks infeasible by
deriving session keys and by ensuring that the attacker cannot collect side-channel
leakage on the session key during cryptographic operations with different inputs.
While these schemes can be applied to secure standard communication settings,
current re-keying approaches are unable to provide protection in settings where the
same input needs to be processed multiple times.
In this work, we therefore adapt the re-keying approach and present a symmetric
authenticated encryption scheme that is secure against DPA attacks and that does
not have such a usage restriction. This means that our scheme fully complies with
the requirements given in the CAESAR call and hence, can be used like other nonce-
based authenticated encryption schemes without loss of side-channel protection. Its
resistance against side-channel analysis is highly relevant for several applications in
practice, like bulk storage settings in general and the protection of FPGA bitfiles and
firmware images in particular.
Keywords: authenticated encryption · fresh re-keying · passive side-channel attacks ·
sponge construction · permutation-based construction

1 Introduction
Motivation. Passive side-channel attacks and in particular differential power analysis
(DPA) pose a serious threat to the security of cryptographic implementations. These
attacks allow to learn information about the secret key that is processed in a device by
observing physical properties, like the power consumption [KJJ99] or the electromagnetic
(EM) field [QS01]. They are a threat whenever a device performs cryptographic operations
with a key that is not known to the holder of a device. This is the case, for example, when
a sensor device is installed in a non-protected area to communicate data to some backend,
when a manufacturer performs an encrypted firmware update on devices in the field, when
a device working on encrypted data is lost, or when a device is rented by one party to
another.

While passive side-channel attacks have mainly been a threat to ATM and pay TV
cards at the time of their publication, these attacks are now relevant to a wide range of
devices of the Internet of Things (IoT). A recent example is the IoT attack by Ronen et
al. [ROSW16], where adjacent Philips Hue smart lamps infect each other with a worm
that has the potential to control the device. One crucial part of this attack is the recovery
of the global AES-CCM key that is used to encrypt and verify firmware updates with
the help of a sophisticated DPA attack. As another prominent example, the keys for

Licensed under Creative Commons License CC-BY 4.0.
Received: 2016-11-23, Accepted: 2017-01-23, Published: 2017-03-08

https://doi.org/10.13154/tosc.v2017.i1.80-105
mailto:firstname.lastname@iaik.tugraz.at
http://creativecommons.org/licenses/by/4.0/

Dobraunig et al. 81

FPGA bitfile encryption of several generations of FPGAs have been revealed by DPA
attacks [MBKP11,MS16].

DPA attacks are the most powerful passive side-channel attacks in practice. They
accumulate information about a cryptographic key by observing multiple en-/decryptions
of different inputs. The fact that different inputs are used allows statistical techniques,
like Bayesian distinguishers [CRR02] or correlation techniques [BCO04], to extract keys
very efficiently.

While these attacks typically require a standard oscilloscope, there are now also open
source projects for attack setups on software implementations [OC14]. Unprotected software
implementations of cryptographic algorithms typically can be broken by observing less
than 100 en- or decryptions with a key [MOP07]. Given the low effort of the attacks, there
is great need for countermeasures.

State of the Art. In order to protect cryptographic keys against side-channel attacks, a
lot of research has been conducted during the last two decades. Today, there essentially
exist two approaches to counteract the attacks. The first approach works by hardening
the implementation of cryptographic algorithms with techniques like hiding [MOP07]
or masking [PR13]. The drawback of this approach is that the overhead for securing
a cryptographic primitive against side-channel attacks is very high and depends on the
cryptographic primitive itself. Therefore, in the past several ciphers have been pro-
posed to reduce this cost. For example, the authenticated ciphers Ascon [DEMS14],
Ketje/Keyak [BDP+14a,BDP+14b], PRIMATES [ABB+14], and SCREAM [GLS+14] of
the ongoing CAESAR competition [CAE14] have all been designed with this goal in mind.
However, the protected implementation of these designs still leads to a significant overhead
and the cost of masking still increases significantly with the protection order [ISW03].

The second approach to counteract side-channel attacks is to change cryptographic
protocols in such a way that certain types of side-channel attacks cannot be performed
at all on the underlying cryptographic primitive. In particular, if the protocol design
inherently prevents DPA attacks, the underlying cryptographic primitive only needs to be
secured against attacks that extract information about the key by observing cryptographic
operations for a single fixed input. Following the definitions in [MOP07], we refer to
the class of attacks that require to observe a device processing the same or a few inputs
as simple power analysis (SPA), whereas we refer to the class of attacks that require
to observe a device processing many different inputs under the same key as differential
power analysis (DPA). A protected implementation of the primitive against SPA attacks
induces a significantly lower overhead than against DPA attacks. An example of such
an approach of inherently preventing DPA attacks is fresh re-keying [MSGR10,MPR+11,
BDH+14,DKM+15] and leakage-resilient cryptography, which brought forth encryption
schemes [Pie09,FPS12], message authentication codes (MACs) [PSV15] and authenticated
encryption schemes [BKP+16].

Schemes with inherent protection against DPA attacks require a side-channel secure
initialization in order to obtain a fresh session key for every cryptographic operation. This
session key is typically derived from a pre-shared master key using a nonce. The purpose of
the secure initialization is to ensure that cryptographic operations for different data inputs
are always done using different keys. Hence, whenever a party encrypts or authenticates
data, a new nonce has to be generated to derive a new session key.

While this effectively prevents DPA attacks on the sender’s encryption or authentication
process, the situation is more challenging for the receivers who perform decryptions or
verifications. While the sender can generate the nonce and thus ensure that session keys
are always fresh, the receiver must process any data he receives, with no control over the
nonce. In order to prevent DPA attacks in these cases, one possible approach is that all
communicating parties contribute to the nonce that is used to derive the session key from

82 ISAP – Towards Side-Channel Secure Authenticated Encryption

a pre-shared master key [MPR+11]. This prevents an attacker from collecting side-channel
information for the decryption of several different ciphertexts under the same nonce (and
thus the same session key). However, this approach requires additional communication or
synchronization between parties, which is often not possible in practice.

Our Contribution. We propose Isap, a symmetric authenticated encryption scheme that
is designed to prevent DPA on both encryption and decryption. Isap fulfills all func-
tional requirements for nonce-based authenticated encryption as defined by the CAESAR
call [CAE14] and at the same time provides protection against DPA attacks for all involved
parties. In addition, Isap limits the attack surface against decryption to SPA attacks and
thus might be the first step towards a fully side-channel secure authenticated encryption
scheme, addressing an open research problem mentioned by Pereira et al. [PSV15] and
Berti et al. [BKP+16].

One of the main observations is that verifying authenticity before decryption protects
the decryption procedure from DPA attacks, whereas the verification itself can be protected
by a suitable derivation of the authentication session key. In addition, we show that sponges
provide an elegant way to argue the resistance of permutation-based designs to SPA attacks.
This flexibility motivates the fact that all building bocks of Isap are based on sponges.

The results of our hardware implementation show that the concrete instances Isap-128
and Isap-128a (that are based on 400-bit Keccak permutations) can be implemented in
a straightforward manner with an area of 14 kGE, with the benefit compared to existing
schemes that Isap provides DPA security up to the same order as the used re-keying
function even for multiple decryption.

Open Questions. Isap protects against DPA and is designed to cope with limited SPA
leakage. However, we still require dedicated countermeasures against SPA on implemen-
tation level. Such countermeasures are particularly crucial for the decryption unit, since
the same data can be decrypted multiple times. This may reduce the measurement noise,
making an SPA attack easier. Quantifying the SPA leakage of an implementation remains
an open problem in practice. Another open question concerns the formal verification of
our side-channel assumptions. While a security proof using state-of-the-art concepts of
leakage-resilient cryptography might be out of reach, since Isap allows multiple decryption
of the same data without introducing new randomness, it is still an open question if parts
of our scheme or some specific properties like its resistance against DPA attacks can be
formally proven.

Outline. We first recall the idea and limitations of fresh re-keying in Section 2. In
Section 3, we specify the sponge-based authenticated cipher Isap. We give the design
rationales of Isap in Section 4, and analyze its security in Section 5. Finally, we provide
implementation results in Section 6 and conclude in Section 7.

2 Background to Re-keying
While cryptographic implementations can be protected via mechanisms like hiding or
masking, frequent re-keying is a countermeasure to DPA that can be seen to work on
protocol level. The idea of frequent re-keying is to prevent DPA on the cryptographic
primitive by limiting the number of processed inputs per key. In other words, it limits the
data complexity for each key by a small number q that renders DPA on the key infeasible
(q-limiting [SPY+10]). It is nowadays a common assumption that small data complexities,
i.e., q = 1 and q = 2, have sufficiently small side-channel leakage and do not allow for
successful key recovery from DPA attacks [BDH+14,Pie09,SPY+10,TS15].

Dobraunig et al. 83

Frequent re-keying was first proposed for protecting embedded devices such as RFID
tags [MSGR10,Koc03]. On the encryption of every new plaintext P , the block cipher E is
provided with a new session key K∗. This session key K∗ is derived from a pre-shared
master secret K and a nonce N that is randomly generated on the tag. This inherently
prevents DPA on the session key K∗ of the block cipher E. However, for key derivation it
requires a re-keying function g : (K,N) 7→ K∗ that is easy to protect against both SPA
and DPA attacks.

2.1 Secure Re-Keying Function

A secure re-keying function g : (K,N) 7→ K∗ derives a new session key K∗ from a master
key K and a fresh nonce N and needs to be secure against both SPA and DPA attacks.
This security against side-channel attacks can be achieved either on an algorithmic level,
or by countermeasures for implementations. Hence, several options for choosing and
implementing secure re-keying functions have been proposed.

For instance one option is to build g in such a way that it is easy to secure by
classical countermeasures like masking. This is the basic idea of fresh re-keying described
in [MSGR10,MPR+11], which uses a polynomial multiplication of K and N to implement
g. This multiplication can be masked easily. However, as pointed out in [BFG14,BCF+15,
GJ16,PM16], the algebraic structure of a multiplication opens the door to attacks on g and
the encryption. Recently, this issue has been addressed by Dziembowski et al. [DFH+16],
who propose two new schemes based on learning parity with leakage and learning with
rounding.

A second option presented in [SPY+10,FPS12] is based on the classical GGM con-
struction [GGM86]. The GGM construction can be used to mix a secret K with a public
N in a tree-like approach, where on each tree level, exactly one bit of the public N is
absorbed. Starting with s0 = K, the key si+1 is computed by encrypting one of two
predefined plaintexts P0, P1 with the key si, depending on the i-th bit of N . The output
of the last level is then, after postprocessing, used as the session key K∗. In this approach,
an attacker only obtains the leakage for two inputs P0 and P1 to collect information about
each si. The construction is thus 2-limiting and is usually considered to be secure against
DPA.

Another option presented in [MSJ12,BDH+14] also originates from the classical GGM
construction. It follows the idea of [SPY+10] by extending the number of observable
measurements per key and deriving a leakage-resilient pseudo-random function (LR-PRF)
from common block cipher designs to achieve secure re-keying. The main assumption
of this approach is that the attacker is not able to distinguish the leakage of different
hardware components on a chip.

E

g

P

K N

K∗

Tag Reader

C

(a) Protecting one party.

E

g

P

K NA

K∗

A

E

g

P

KNB

K∗

B

C

(b) Protecting both parties.

Figure 1: Re-keying of block ciphers.

84 ISAP – Towards Side-Channel Secure Authenticated Encryption

2.2 Limitations and Open Problems
One major problem of re-keying schemes such as in Figure 1a is that the reader remains
vulnerable to DPA attacks. For instance, such a re-keying scheme can successfully prevent
DPA attacks on a device that solely performs encryption or authentication of messages,
i.e., the sender of a message, but fails to protect a device performing decryptions or
verifications, i.e., the receiver of a message. This is caused by the lack of control of a
decryption device on the nonce N and allows attackers to send arbitrary messages to the
decryption device using the same nonce N for all sent messages. This malicious procedure
results in different messages being decrypted using the same session key K∗. As a result,
decryption is vulnerable to DPA, and more concretely, it is the multiple decryption with
the same session key K∗ that causes this DPA vulnerability. This problem of securing
decryption against side-channel attacks was also mentioned by Pereira et al. [PSV15] and
Berti et al. [BKP+16].

In order to prevent this kind of DPA attacks, the receiver either needs to be protected
by other means [MSGR10], or the receiver needs to be stateful in order to prevent
decryption with the same session key twice, or all communication parties are required to
contribute to the nonce that is used to derive the session key from a pre-shared master
key [MPR+11] as shown in Figure 1b. However, the requirement of both sender and
receiver being stateful bears some practical downsides ranging from synchronisation issues
between sender and receiver to potential denial-of-service attacks, e.g., if the nonce is
a counter and the receiver rejects all messages with a nonce smaller than the last valid
nonce which is stored at the receiver. Also the option that all communication parties
are required to contribute to the nonce is impractical in several prominent use cases,
such as unidirectional/broadcast communication and encrypted storage. Recently, the
need for DPA protection in these settings has been pointed out by attacks targeting the
decryption of firmware images [ROSW16], or FPGA bitfiles [MBKP11,MS16]. While it
is impossible to let a receiver contribute to the nonce in unidirectional communication
settings, the additional overhead of letting each receiver contribute to the nonce in a
broadcast setting could potentially make an application unpractical. In encrypted storage,
the receiving device simply cannot contribute to the nonce, but must be able to decrypt
the encrypted data, e.g., an encrypted FPGA bitfile, in all situations and possibly multiple
times. To maintain DPA security in this case, one idea would be to re-encrypt the stored
data whenever it is read. In practice, however, this is often not possible, e.g., due to the
limited number of write operations in flash memory. Moreover, repeated re-encryption can
eventually result in a loss of confidentiality [UWM17]. In the next section, we therefore
present Isap, a new authenticated encryption scheme that is also secure against DPA
attacks in these scenarios.

3 Specification of ISAP
Isap is a family of authenticated ciphers focusing to be secure against passive side-channel
attacks. Its functional interface is the same as specified by the CAESAR competition
for authenticated encryption [CAE14]: Isap encrypts a plaintext P to a ciphertext C.
Additionally, an attached authentication tag T asserts the authenticity of both the plaintext
and any optional (unencrypted) associated data A. Each encryption call requires a unique
nonce N as an additional input to “randomize” the encryption. Corresponding to the
CAESAR call, Isap maintains security no matter how the nonce N is chosen, as long as
the same nonce is never used for encryption with the same secret key twice. In this section,
we define the Isap authenticated cipher (Subsection 3.1) and its building blocks:

• IsapEnc, a cipher that computes the ciphertext C from the plaintext P and nonce
N using the secret key KE (Subsection 3.3).

Dobraunig et al. 85

• IsapMac, a message authentication code that computes the authentication tag T
from the ciphertext C, associated data A, and nonce N using the secret key KA

(Subsection 3.2).

• IsapRk, a function used internally by IsapMac to absorb the secret key KA

(Subsection 3.2).

We propose to implement each building block with variants of the sponge construction
using the same permutation size, but different round numbers and rates. We specify several
recommended parameter sets in Subsection 3.4.

3.1 Authenticated Encryption Scheme
Isap is a family of sponge-based authenticated encryption schemes Isapr1,r2,r3

a,b,c -k, where
the key size k defines the security level. Isap is an Encrypt-then-MAC design and uses two
k-bit keysKA andKE (K = KA‖KE) for IsapMac and IsapEnc, respectively. The length
of the tag T and nonce N is also k bits. Each family member is additionally parametrized
by several parameters: different round numbers a, b, and c for the permutations and
different rates r1, r2, and r3.

The inputs for the authenticated encryption algorithm E are the secret keyK = KA‖KE ,
the public nonce N , and associated data A and plaintext P of arbitrary length. Its outputs
are the tag T and the ciphertext C with the exact same length as the plaintext P :

E(K,N,A, P) = (C, T).

The inputs for the authenticated decryption algorithm D are the secret key K = KA‖KE ,
the public nonce N , the tag T , and associated data A and ciphertext C of arbitrary length.
Its outputs are the plaintext P if the verification succeeds, or ⊥ if the verification fails:

D(K,N,A,C, T) ∈ {P,⊥}.

Isap is based on the well-established Encrypt-than-MAC paradigm. Hence, Isap is
composed of an encryption algorithm IsapEncr2,r3

b,c -k and a message authentication code
IsapMacr1,r2

a,b,c -k. The interaction between them is captured in Algorithm 1, where the
authenticated encryption E and authenticated decryption D are specified.

Algorithm 1: Authenticated encryption and decryption procedures.

Auth. Encryption E(K,N,A, P)
Input: key K = KA‖KE ,

KA ∈ {0, 1}k, KE ∈ {0, 1}k,
Nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
plaintext P ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}∗,
tag T ∈ {0, 1}k

Encryption
C ← IsapEncr2,r3

b,c -k(KE , N, P)
Authentication

T ← IsapMacr1,r2
a,b,c -k(KA, N, A, C)

return C, T

Auth. Decryption D(K,N,A,C, T)
Input: key K = KA‖KE ,

KA ∈ {0, 1}k, KE ∈ {0, 1}k,
Nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
ciphertext C ∈ {0, 1}∗,
Tag T ∈ {0, 1}k

Output: plaintext P ∈ {0, 1}∗, or ⊥

Verification
T ′ ← IsapMacr1,r2

a,b,c -k(KA, N, A, C)
if T 6= T ′ return ⊥

Decryption
P ← IsapEncr2,r3

b,c -k(KE , N, C)
return P

86 ISAP – Towards Side-Channel Secure Authenticated Encryption

3.2 Authentication Part

For our message authentication code IsapMac, we turn a sponge-based hash function into
a suffix-MAC as shown in Figure 2. While the data is absorbed as in a sponge, we use a
duplex-like approach to inject the secret key KA. Here, the k-bit outer part of the state
is processed together with the secret key KA to derive a session key K∗A, which is then
further used as the outer part.

Absorb Squeeze

As

pa pa

N A1

pa

r1

Ct

pa pa

c1

C1

0∗‖1

y

KA

pa

gr1

c1

r1

c1

r1

c1

K∗
A

k k

T

k

IV1

k

Figure 2: IsapMac used for authentication.

Alternatively, IsapMac can be seen as a sponge-based suffix-MAC, which uses a
function g to absorb the secret key KA instead of an XOR operation. Similar to fresh
re-keying schemes [MSGR10], the sole purpose of g is to protect the static master key KA

against various classes of passive side-channel attacks, most prominently differential power
analysis. Hence, we will subsequently call g our re-keying function. In our case, we will
use IsapRk as re-keying function, which is shown in Figure 3.

IsapMac computes the tag T as follows. Both associated data A and ciphertext C
are each padded using a 10∗ padding to a length that is a multiple of the rate r1. The
internal state is initialized with the k-bit nonce N and a constant initial value IV1. Then,
s blocks of associated data A1...s and t blocks of ciphertext C1...t are absorbed using the
a-round permutation pa. Similar to Ascon [DEMS14], the XOR of a single bit ‘1’ to the
inner part of the state serves as domain separation between associated data and ciphertext.
Note that a dedicated domain separation between nonce and associated data is not needed,
since the nonce is of a fixed length of k bits. Finally, the key KA is absorbed via g and
the k-bit tag T is squeezed after a final call of the permutation.

Absorb Squeeze

r2

yw

pb pc
KA

c2

r2

y1

pc

c2

K∗
A

k

pb

r2

y2

c2IV2

k

Figure 3: IsapRk used to process the master key KA.

Dobraunig et al. 87

Instead of a plain XOR, the function g(KA, y) = K∗A is used to absorb KA. To evaluate
g, its internal state is initialized with the key KA and a constant IV2, followed by an
application of the c-round permutation pc. The k-bit value y is absorbed using a rate
size r2 and the b-round permutation pb. Finally, the output K∗A is squeezed using a rate
size k and the c-round permutation pc. The details of IsapMac and IsapRk are also
summarized in Algorithm 3 in the appendix. For verification, the tag T ′ is re-computed in
the same way from the received nonce N , associated data A, and ciphertext C.

3.3 Encryption Part
To encrypt the plaintext, we use a sponge-based construction very similar to IsapRk (see
Figure 4). We initialize the internal state with the secret key KE and a constant IV3,
followed by an application of the c-round permutation pc. The k-bit nonce N is absorbed
using a rate of r2 bits and the b-round permutation pb. Then, we squeeze a keystream of
the same length as the plaintext P using a rate of r3 bits and the c-round permutation pc.
The ciphertext C is computed as the XOR of the plaintext P and the keystream.

For decryption, the same keystream is computed from the nonce N and XORed to
the ciphertext C to obtain the plaintext P . The detailed procedures for encryption and
decryption are also given in Algorithm 4 in the appendix.

r2

Nu

c3

pb pc pc pc
KE

Pv−1

Absorb Squeeze

c2

r3 r3r2

N1

pc

c2 c3

P1

C1 Cv−1

Pv

Cv

r3

IV3

k

Figure 4: IsapEnc used for encryption.

3.4 Instantiations and Parameter Values
We propose to instantiate the required permutations pa, pb, and pc from the 400-bit
permutations Keccak-p[400,nr], which are the application of the last nr rounds of
Keccak-f [400] [Nat15]. Hence, the only difference between pa, pb, and pc is the different
number of rounds a, b, and c that is used. A detailed specification of Keccak-p[400,nr],
including the state layout and specification of the inner and outer state parts, can be found
in the submission document of the CAESAR candidate Keyak [BDP+14b].

Table 1 summarizes the recommended parameter sets for Isap. The first, Isap-128, is
based on a conservative choice of the relevant parameters based on our design rationale
and security analysis given in Section 4 and Section 5. Additionally, we also specify a more
aggressive choice of parameters in Isap-128a to encourage further cryptanalysis as well
as side-channel analysis. Both algorithms are designed to achieve 128 bits cryptographic
security and practical security against side-channel attacks assuming an SPA-secure
implementation.

The constant initial values IV1, IV2, IV3, which serve as domain separation between
the different algorithms, are specified in Table 2. They are defined as the concatenated bit

88 ISAP – Towards Side-Channel Secure Authenticated Encryption

Table 1: Recommended parameter configurations for Isap.

Name Security level Bit size of Rounds
k r1 r2 r3 a b c

Isap-128 128 144 1 144 20 12 12
Isap-128a 128 144 1 144 16 1 8

values of the used parameter set, plus a different constant for each value, where each entry
occupies 1 byte of space. The initial values are then padded with zeros until they reach
the length of the permutation minus k bits. In the case of Isap-128 and Isap-128a, the
IVs have a length of 272 bits, which is more than needed for the desired security level of
128 bits.

Table 2: Initial values for Isap.

Isapr1,r2,r3
a,b,c -k

IV1 1‖a‖b‖c‖r1‖r2‖r3‖k‖0∗
IV2 2‖a‖b‖c‖r1‖r2‖r3‖k‖0∗
IV3 3‖a‖b‖c‖r1‖r2‖r3‖k‖0∗

Isap-128
IV1 0x01140c0c90019080*

IV2 0x02140c0c90019080*

IV3 0x03140c0c90019080*

Isap-128a
IV1 0x0110010690019080*

IV2 0x0210010690019080*

IV3 0x0310010690019080*

4 Design Rationale
The main goal of Isap is to provide security against passive side-channel attacks by design,
while still providing good performance and a low hardware footprint. While mechanisms
to counteract side-channel attacks and in particular DPA within the cipher itself (e.g.,
masking) lead to significant overheads and increase with the protection order, approaches
based on fresh re-keying lead to much lower overheads. However, state-of-the-art schemes
based on re-keying lack security against DPA in scenarios that require multiple decryption
of the same input (with the same session key). Isap is designed to be secure also in such
scenarios.

4.1 An Authenticated Encryption Mode Secure Against DPA
For discussing the security of our scheme against differential power analysis (DPA), we
prefer to give a more general, high-level view on our mode in Algorithm 2 to better extract
the underlying idea. In contrast to the condensed and interwoven descriptions of IsapMac,
IsapRk, and IsapEnc, the description in Algorithm 2 clearly shows the fresh re-keying
roots of our scheme. Here, we essentially use the same assumptions and requirements as
other re-keying schemes. Namely, we assume g1, g2 to be (DPA and SPA) secure re-keying
functions and assume the implementations of ENC , DEC , and MAC to be secure against
SPA attacks when processing arbitrarily long messages. However, there are no requirements
on the implementation of the hash function H, since it processes only publicly known data.

To achieve security against DPA, our authenticated encryption mode in Algorithm 2
incorporates the re-keying approach discussed in Section 2 in an efficient Encrypt-then-
MAC scheme. While simple re-keying of both a MAC and an encryption scheme can

Dobraunig et al. 89

Algorithm 2: Authenticated encryption and decryption procedures.

Auth. Encryption E(K,N,A, P)
Input: key K = KA‖KE ,

KA ∈ {0, 1}k, KE ∈ {0, 1}k,
Nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
plaintext P ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}∗,
tag T ∈ {0, 1}k

Encryption
K∗E = g1(N, KE)
C = ENCN,K∗

E
(P)

Authentication
y = H(N, A, C)
K∗A = g2(y, KA)
T = MACK∗

A
(y)

return C, T

Auth. Decryption D(K,N,A,C, T)
Input: key K = KA‖KE ,

KA ∈ {0, 1}k, KE ∈ {0, 1}k,
Nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
ciphertext C ∈ {0, 1}∗,
Tag T ∈ {0, 1}k

Output: plaintext P ∈ {0, 1}∗, or ⊥

Verification
y = H(N, A, C)
K∗A = g2(y, KA)
T ′ = MACK∗

A
(y)

if T 6= T ′ return ⊥
Decryption

K∗E = g1(N, KE)
P = DECN,K∗

E
(C)

return P

only provide security for the encryption process, our scheme achieves side-channel security
for multiple decryption as well. Namely, the verification guarantees the security of the
decryption part in case of maliciously modified ciphertexts, while the MAC is protected
by making its session key depend on the authenticated message itself. In the following, we
give a detailed discussion on the DPA security of the two parts encryption/decryption and
authentication/verification.

Encryption/Decryption. The encryption and decryption part is an instance of fresh-
rekeying such as in [MSGR10,MPR+11]. Such schemes for fresh re-keying combine an
SPA-secure encryption scheme ENC with a (DPA and SPA) secure re-keying function
g1 : (KE , N) 7→ K∗E . As the nonce N that is used to derive the session key K∗E must not
be repeated, fresh session keys are guaranteed and DPA on the encryption scheme ENC is
effectively prevented.

However, for decryption, there is the threat that an adversary could exploit multiple
decryptions with the same session key K∗E and induce a DPA setting within the decryption
DEC by using different data, since multiple calls of DEC with the same nonce N are
allowed. To prevent such a DPA scenario in our mode, verification is performed prior
to decryption. Decrypting two different messages (associated data and ciphertext) with
the same K∗E indicates either a collision of g1 for fixed KE (depends on concrete instance
of g1, but usually negligible probability), or two ciphertexts that have been encrypted
using the same nonce N . Since we require unique nonces, the latter implies that either
the ciphertexts are identical, or one ciphertext has been forged. If a cryptographically
secure MAC is used, the probability of a successful forgery is negligible and thus the tag
verification will fail for one of the ciphertexts with overwhelming probability.

Authenticated ciphers require that no decrypted plaintext is released if tag verification
fails. To ensure protection against DPA attacks, we go one step further and require a failed
verification to abort the authenticated decryption process, so that the decryption part
DEC never starts. This ensures that the same session key K∗E is never used to decrypt
distinct ciphertexts with DEC . Therefore, the verification is responsible for precluding
DPA attacks on the decryption.

Authentication/Verification. The authentication/verification shown in Algorithm 2 is
based on a hash-then-MAC paradigm. Here, a session key K∗A is first derived via a

90 ISAP – Towards Side-Channel Secure Authenticated Encryption

secure re-keying function g2 from the hash value y that is computed from the nonce N ,
associated data A, and ciphertext C using a cryptographic hash function H. Then, a
message authentication code (MAC) is used to compute the tag T from the hash value
y and the session key K∗A. This is similar to the construction of Pereira et al. [PSV15],
who designed a leakage-resilient MAC based on the hash-then-MAC paradigm as well.
However, the main difference to our approach is that in [PSV15], a random nonce N is
used to derive the session key in the re-keying function. This, however, cannot provide
protection against DPA for multiple verifications. Contrary to that, we use the hash of the
message y = H(N,A,C) to derive the session key K∗A in order to securely allow multiple
verifications while still providing protection against DPA.

In more detail, the MAC in Algorithm 2 computes the tag T using a different session
key K∗A for every distinct message (N , A, and C), because distinct messages result in
distinct hash values in the absence of collisions. Hence, DPA on the MAC is prevented
during the generation of the tag T as the same session key K∗A is never used to authenticate
distinct messages.

While the scheme by Pereira et al. [PSV15] also provides side-channel security during
tag generation by the use of a unique nonce input N to the re-keying function, tag
verification imposes different challenges. In fact, during tag verification one cannot rely on
the uniqueness of the nonce anymore, because an attacker can usually modify the message
(N , A, and C) to provoke multiple verifications with different data under the same nonce
N and thus allowing for a DPA scenario. However, the MAC in Algorithm 2 prevents such
a DPA scenario on the session key K∗A, since K∗A is bound to the data it processes. Namely,
as y depends on the message (N , A, and C), the MAC session key K∗A = g(y,KA) changes
whenever the data changes. Adversaries cannot predictably influence y due to the use of a
cryptographic hash function H. This guarantees that the key K∗A is unique for every new
message as long as there is neither a collision in the hash function H nor in the re-keying
function g2. Thus, DPA on the session key K∗A is effectively prevented during verification.

Note however that collisions in the re-keying function g2 or the hash function H may
result in the same session key K∗A being used in MAC computations of different messages,
thus allowing for a DPA. Yet, collisions in g2 depend on the secret key K∗A and therefore
inputs causing collisions in g2 cannot be calculated off-line. In contrast, collisions in the
hash value y are directly observable and can be calculated off-line. The complexity of
calculating collisions off-line is determined by the size of the hash. The generic complexity
of finding a collision for an m-bit hash function is 2m/2. Hence, the size of the hash needs
to be chosen depending on the potential threat of such an event, which depends on the
concrete choice of functions for MAC and g2.

4.2 Sponges and Side-Channels Leakage
While the mode of Subsection 4.1 ensures protection of the encryption, ENC , decryption
DEC , and message authentication code MAC against DPA, the primitives implementing
ENC , DEC , and MAC still have to withstand SPA attacks. Moreover, SPA protection is
also mandatory for the implementations of g1 and g2, in addition to the requirement that
they provide protection against DPA. Besides dedicated countermeasures like, e.g., shuffling,
the order of the executed instructions, and already the choice of the used algorithms for
encryption/decryption and MAC, play an important role for the resistance of the design
against SPA.

Our choice for sponge-based designs is motivated by their suitability to model SPA
leakage. Namely, the sponge parameters provide a convenient tool to argue on the side-
channel security of keyed sponge constructions given bounded side-channel leakage of the
single permutation.

For illustration, we model the leakage from a permutation p by allowing an adversary
to learn a certain amount of the state between subsequent permutation calls as depicted in

Dobraunig et al. 91

p p
c

r r

`i `i+1

(a) Leaking permutations

p p
c′

r r

`i + `i+1

(b) Sponge model

Figure 5: Leakage of information in sponge-based constructions.

Figure 5. Hereby, we use ` to denote the amount of information (in bits) that an attacker
can learn about the state from the collected side-channel information. We do not care
how and where the leakage is created within p, but let the adversary account the learned
information to either the input or the output state of p. Therefore, given two consecutive
permutations p with leakages `i and `i+1, respectively, the maximum an adversary might
learn about the state is `i + `i+1. This means that if each leakage `i, `i+1 is bounded by λ
bits and the adversary can optimally combine these two leakages, the adversary will learn
at most 2λ bits of the state between the respective two permutation calls.

The basic idea now is to use the sponge parameters to express a construction’s capability
to cope with the leakage generated by the permutation. In particular, the sponge parameters
are adjusted according to the amount of information an adversary learned about the secret
state. This means that if the adversary learns 2λ bits of the internal, secret state, the
leaked bits can be considered as an increase of the rate, i.e., r′ = r + 2λ, which results
in a smaller capacity c′ = c− 2λ and thus reduced security. However, a reduced security
level corresponding to a capacity of c− 2λ bits is still guaranteed by the cryptographic
properties of the permutation and the associated constrained-input constrained-output
(CICO) problem [BDPV11a]. Sponge-based constructions can thus be considered to have
bounded security loss for bounded leakage of the permutation.

Clearly, the challenge in practice is to build an implementation that bounds the leakage
of p. Especially if many different types of devices have to use the same cryptographic
algorithm it might be infeasible to make any realistic assumptions about the leakage of p.
Nevertheless, the advantage of the sponge-based construction is that besides standard SPA
countermeasures, like hiding and masking, the capacity is an additional and very natural
security parameter that helps to increase the ability of a design to withstand side-channel
attacks in practice.

While the above modelling and arguing about the leakage is quite useful, it points out
a problem with the absorption of the key. If a key is directly absorbed, the upcoming
permutation call directly leaks information about the key bits via side-channels. This has
a direct effect on the security of the scheme if the used key length matches the security
level. Hence, we propose to store the expanded key, after the application of pc, for IsapRk
and IsapEnc.

Besides giving a useful tool to model and argue about the SPA resistance, sponge-based
constructions provide other significant advantages:

• The sponge construction is well-studied and has been analyzed and proven secure for
different applications in a large amount of publications [JLM14,ADMV15,BDPV11b].

• It allows to implement a wide range of primitives (hash, MAC, cipher).

• Elegant and simple design, obvious state size, no key schedule, key is injected once.

• Little implementation overhead for decryption, since no inverse building blocks
(permutation) are needed.

92 ISAP – Towards Side-Channel Secure Authenticated Encryption

4.3 Design of IsapMac
To get more insight into the design rationals behind IsapMac, we first take a look at a
direct instantiation of the authentication/verification described in Algorithm 2. Figure 6
sketches such an instantiation using a sponge-based hash function and suffix MAC. In
contrast to the description in Algorithm 2, the MAC is computed directly using the data
instead of the hash value. This leads to a construction where the data is processed twice.

C1

p

Ct

p p

y

p

K∗
A

TN

IV

IV

C1

p

Ct

p p

N

IV

IV

KA

g

Figure 6: Sketch of authentication/verification using sponge-based hash and suffix MAC.

However, it is possible to omit the hash function and process the key in a manner
that resembles the duplex construction [BDPV11b]. As shown in Figure 7, the outer part
of the state is used to derive a session key K∗A, which is then absorbed. This principle
is further tweaked (e.g., by implicitly assuming that the employed re-keying function
is g(KA, y) ⊕ y to eliminate the XOR used to absorb K∗A) which leads to IsapMac as
presented in Subsection 3.2 (Figure 2). An alternative way of interpreting IsapMac is
to see it as sponge-based suffix-MAC that uses a secure re-keying function g to absorb
the secret key KA instead of an XOR. Due to the simplicity of this description, we have
chosen to stick to it throughout the paper.

Bertoni et al. [BDPV11a] showed that one can always turn a sponge into a MAC by
either putting the key before (prefix-MAC) or after the message (suffix-MAC), as this
always gives a pseudo-random function as long as the sponge itself behaves like a random
oracle. Compared to a “standard” sponge-based suffix-MAC, IsapMac uses a secure
re-keying function g to absorb the secret key KA. While there are several options for
g, e.g., the polynomial multiplication in [MSGR10], we use the function IsapRk as g.

C1

p

Ct

p p

y

p

K∗
A

TN

IV

IV

KA

g

Figure 7: Sketch of authentication/verification just using a sponge-based suffix MAC.

Dobraunig et al. 93

Table 3: Complexity for receiving a v-collision for a 128-bit session key k2.
v 2 3 4 5 · · · 34
complexity 264.5 286.2 297.1 2103.8 · · · 2128

Although IsapRk is not a permutation for a fixed key as, e.g., a polynomial multiplication,
we do not expect any negative consequences on the security when absorbing the secret key
via a function that ideally behaves like a pseudo-random function.

Instead of using a distinct padding or frame bits for domain separation between
associated data and ciphertext, we follow the approach of Ascon [DEMS14] and XOR a
single ‘1’ to the inner part of the state. Although this reduces the capacity by one bit in
the worst case, the practical security loss is considered to be negligible.

IsapMac prevents DPA on the tag computation in two ways. First, and as shown in
Figure 2, the MAC session key K∗A is derived from the hash value y and the MAC master
key KA via a secure re-keying function g, thus prohibiting DPA on KA. Second, the design
prevents DPA on the MAC session key K∗A by binding it to the data being processed, thus
leading to different MAC session keys K∗A for different data.

As already mentioned before, a collision in y allows for two side-channel measurements
of the MAC using different data but the same MAC session key K∗A. This holds true
for IsapMac as well. Yet, to perform a successful DPA, usually more than two traces
will be needed to recover one fixed session key K∗A. Such a setting occurs with hash
multi-collisions. The generic complexity for finding a v-collision is v

√
v! · 2m(v−1) [STKT06].

Luckily, the complexity is quite high already for small values of v as shown in Table 3 for
a 128-bit value y.

However, we want to stress that even though a DPA attack exploiting multi-collisions
might be able to recover the session key K∗A of IsapMac, this does not imply a key
recovery attack on the master key KA, since our used re-keying function g (IsapRk) is
hard to invert.

4.4 Design of IsapRk
The re-keying function IsapRk used in IsapMac is a sponge-based design as depicted
in Figure 3. When setting the rate r2 to 1, the design is related to the classical GGM
construction [GGM86] and can be seen as their sponge-based equivalent, similar to [TS14].
The basic idea in IsapRk is to make DPA infeasible by reducing the input data complexity
accordingly. For this purpose, a secret state is constantly updated with small portions of
of public data by repeating two phases, (1) modifying the secret state according to the
public data, and (2) updating the state such that predictions on the future state based on
the absorbed public data become infeasible.

Sponge-based constructions are an ideal choice to implement this basic idea as the
rate directly influences the input data complexity for each permutation. IsapRk follows
this approach and first initializes the internal state by applying the initial permutation pc

to the padded master key KA. Then, IsapRk repeatedly injects r2 nonce bits into the
state, each separated by a permutation call pb. After full absorption of the nonce and
finalization using pc, the session key K∗A is output. This working principle is similar to
sponge instances of a prefix-MAC. While for general MAC computations the absorption
rate can be as big as the state size [BDPV12], IsapRk uses a small absorption rate r2 = 1
to limit the data complexity exploitable in a DPA.

In terms of DPA security, a permutation pb will produce the leakages for two different
public inputs, thus IsapRk is 2-limiting per permutation call. This results in IsapRk
being a secure re-keying function (regarding DPA) under the assumption that the combined
leakage resulting from the processing of two different public inputs is bounded such that

94 ISAP – Towards Side-Channel Secure Authenticated Encryption

DPA on the secret state is infeasible. This is a common assumption also used in recent
block-cipher based instantiations of the GGM construction by Faust et al. [FPS12] or the
2PRG primitive by Standaert et al. [SPY+10]. The reason for using a different permutation
pc at the beginning of IsapRk lies in the fact that some of the concrete instances of
IsapRk use a small number of rounds for pb compared to pc and we want to ensure good
diffusion of the key bits across the whole state before the first non-secret bits are absorbed.

4.5 Design of IsapEnc
The encryption algorithm IsapEnc is an instance of fresh re-keying [MSGR10,MPR+11]
that combines the secure re-keying function IsapRk in the initialization phase with a
sponge-based stream cipher in the processing phase. However, for the analysis it is more
natural to see it as an extension of IsapRk with a longer squeezing phase to produce a
keystream of arbitrary length.

As the initialization part is equivalent to IsapRk, it is secure against passive side-
channel attacks in consideration of the same aspects, i.e., a small rate r2 = 1 to inject the
nonce N with low data complexity. To obtain cryptographic security on the processing part
of IsapEnc, the nonce N must not be repeated for different plaintexts. This guarantees
that the key stream is unpredictable and unique for different encryptions. As a consequence,
DPA on the encryption itself is prevented as well. Moreover, as a part of the authenticated
encryption scheme Isap, IsapEnc remains secure against DPA also for multiple decryption
of the same data, since it is guaranteed that this data is always decrypted under the same
nonce. As mentioned before, current schemes lack this functionality and become vulnerable
to DPA if an attacker tampers with the ciphertext or nonce. In IsapEnc, such attack
becomes infeasible by using the generic composition Encrypt-then-MAC, i.e., performing
verification prior to decryption. Namely, the authentication part aborts the process if
tag verification fails, which ensures that the same key is never used to decrypt distinct
ciphertexts. Hence, the authentication part precludes DPA attacks on the decryption part.

4.6 Choice of the Permutation
In the case of sponge-based constructions, minimal suitable bit-sizes for permutations are
tightly coupled with the aimed security level. Both instances Isap-128 and Isap-128a target
128-bit security. Hence, the capacity of IsapMac should be at least 256 bits, since it is a
sponge-based suffix MAC and thus, we have to rely on the results of Bertoni et al. [BDPV08].
If we want to output the tag with one permutation call, while still retaining 256 bits for
the capacity, this implies a minimal permutation size of 384 bits. Since Isap-128 and
Isap-128a are also aimed for lightweight and low-cost applications, while high performance
applications are not the main target, we do not want to increase the rate much and
hence want to stay close to 384 bits. However, there is a lack of well-analyzed 384-bit
permutations. Thus, we opted to use the well established and analyzed Keccak-p[400,nr]
permutations [Nat15].

Parameters for IsapMac. Since we aim for 128-bit security, we use IsapMac for both
instances with a capacity c1 of 256 bits, while allowing the remaining 144 bits as rate r1.
For the conservative choice Isap-128, we choose pa to be the permutation Keccak-f [400]
(Keccak-p[400,20]) that has 20 rounds as specified in the the Keccak SHA-3 submission
(Version 3.0) [BDPV11c]. Since Keccak is the winner of the SHA-3 competition, its
variants have been well analyzed. However, current attacks are far away from threatening
full-round versions of Keccak. Therefore, we use for our aggressive variant Isap-128a
the initial Keccak-p[400,16] with 16 rounds as proposed in the Keccak sponge function
family main document (Version 1.2) [BDPV09].

Dobraunig et al. 95

Parameters for IsapRk and IsapEnc. Both IsapRk and IsapEnc are keyed sponge-
based constructions with clearly separated absorbing and squeezing phases. According to
recent results [BDPV12,GPT15,MRV15], we could set the capacity during the absorbing
phase to c2 = 0 and the capacity during the squeezing phase to a minimum of c3 = 128
bits. However, we also have to bear side-channel attacks in mind. Hence, we set the rate
to r1 = 1, making the scheme essentially 2-limiting per permutation call pb, while setting
the rate r3 = 144 bits to match the block size of IsapMac. In terms of our arguments
of Subsection 4.2, this means that an attacker has to learn about 136 bits of information
during invocations of pb and about 64 bits of information via side-channels during the
invocation of pc, before the attacker is able to invert the sponge with a complexity less
than 2128 to recover the secret key.

For the number of rounds for Isap-128, the CAESAR candidate Keyak serves as
orientation. Hence, we use Keccak-p[400,12] for pb and pc. As for Keyak, we expect 12
rounds to be enough to create an unpredictable key-stream during the squeezing phase.
Moreover, 12 rounds provide a clear separation between the single-bit injections during
the absorption, so that partially known/leaked information about the internal secret state
cannot be combined over one permutation call.

The CAESAR candidate Ketje serves as inspiration for the aggressive version Isap-
128a. Similar to Ketje, only one round separates the absorption of the one bit elements
using Keccak-p[400,1] for pb. Note that here the side-channel leakage between single
permutation calls can clearly be combined. For the squeezing phase, we orient the number
of rounds on the “stride” permutation call of Ketje Sr, which has 6 rounds. However,
in contrast to Ketje Sr, we have a higher rate of 144 bits during the squeezing phase.
Hence, we have decided to add an additional security margin of 2 rounds and use the 8
round permutation Keccak-p[400,8] for pc.

5 Security Analysis
Due to the prominence of Keccak [BDPV11c] as winner of the SHA-3 competition [Nat12],
and Keyak [BDP+14b] and Ketje [BDP+14a] as submissions to CAESAR [CAE14], a
plethora of cryptanalytic results for keyed and unkeyed sponge and duplex constructions
using round reduced versions of the Keccak-f permutations, as well as on the permutations
exist. While arguably the majority of the analyses focuses on the 1600-bit variant of the
Keccak-f permutation, the similarity in structure of the permutation usually allows to
apply the same techniques on smaller permutation variants. A good overview on existing
analysis results on Keccak can be found in [JN15]. In this section, we recapitulate the
from our point of view most relevant attacks on Keccak and discuss the applicability to
our schemes. Finally, we conclude this section with a note on the side-channel security of
Isap.

5.1 Permutation
Zero-sum distinguishers [AM09, BC10] are the permutation distinguishers penetrating
the highest number of rounds. They exploit the low algebraic degree of the Keccak-f
permutations creating sets of inputs and outputs, which sum to zero. Guo et al. [GLS16]
present zero-sum distinguishers for 12 rounds of Keccak-f [1600] with a complexity of
265 using a 3-round linear structure in the middle of the permutation, while achieving 282

using a 2-round linear structure. They also claim for the 12-round 400-bit permutation
Keccak-p[400,12] zero-sum distinguishers with a complexity 282 using a 2-round linear
structure, while 3-round structures seem to be inapplicable. However, to mount an attack
using zero-sum distinguishers on sponges, an attacker would have to be able to choose
inputs in the middle of the permutation. Thus, no attacks on Keyak and Ketje with

96 ISAP – Towards Side-Channel Secure Authenticated Encryption

the 12-round Keccak-p permutations are known that exploit zero-sum distinguishers.
Therefore, we conclude that the same is true for Isap-128, which also uses 12 rounds for
IsapEnc and IsapRk.

5.2 IsapRk and IsapEnc
IsapRk and IsapEnc are sponge-based constructions where the secret key is injected
during the beginning of the absorption phase, similar to a Keccak prefix-MAC, Keyak,
or Ketje. We refer to such constructions as keyed sponges. The attacks penetrating
the highest number of rounds for keyed sponges exploit the low algebraic degree of the
Keccak-f permutations. This includes the cube-like attacks by Dinur et al. [DMP+15],
who present amongst others a keystream prediction for a Keccak-based stream cipher
which uses 9 rounds of the 1600-bit permutation to achieve 512-bit security with time
complexity 2256. Huang et al. [HWX+17] present conditional cube attacks, including a
key-recovery attack on 8 rounds of Keyak with a time complexity of 274.

In the case of Isap-128, two factors prohibit those attacks. First of all, the permutation
has 12 rounds, whereas the attacks are only capable of penetrating at most 9 rounds.
Second, the nonce N or the hash value y are absorbed bitwise separated by 12 rounds of
the permutation, which significantly reduces the ability of an attacker to exploit cubes
in the first place. For Isap-128a, the number of rounds between the bitwise injections of
the nonce N or the hash value y is reduced to one. Still, this means having at least 128
rounds from the point where the key is introduced up to the point when a part of the state
is leaked. Hence, we expect that conditional cube and cube-like attacks do not work on
Isap-128a.

Another important attack vector are linear and differential attacks. These are especially
relevant in the case of Isap-128a, where only the 1-round permutation is used for absorption
and the 8-round permutation is used for squeezing the sponge. While having, e.g., colliding
differential trails during absorption would also imply problems for Ketje, the situation
changes for the squeezing phase. Due to the increased rate used in Isap-128a compared to
Ketje, an attacker has more freedom. For this reason, we have increased the number of
rounds to 8 for pc.

5.3 IsapMac
Since IsapMac is a suffix-MAC, attacks when unkeyed sponges are used as hash functions
are also of concern. For instance, collision attacks on the hashing part of IsapMac have
the potential to allow for forgeries. For Keccak, collision attacks for up to 5 rounds were
proposed by Dinur et al. [DDS13]. Recently, the 5-round challenges for 1600-bit and 800-bit
permutations of the Keccak crunchy crypto collision contest [BDPV14] have been solved,
while the 5-round challenge for the 400-bit permutation is still open. Regarding pre-image
attacks, attacks for up to 4 rounds for variants of Keccak exist [MPS13,GLS16]. Taking
these results together with the result for keyed sponges of Subsection 5.2, we conclude that
having 20 rounds in the case of Isap-128 and even 16 rounds in the case of Isap-128a
provide a sufficient security margin for IsapMac.

5.4 On the Side-Channel Security of Isap
While Isap has been designed to be secure against DPA attacks, care has do be taken
regarding SPA attacks. Although the single components IsapMac, IsapRk and IsapEnc
of Isap have been designed keeping their resistance against SPA attacks in mind, additional
countermeasures on implementation level for all components might be needed. In particular
for the decryption, where several measurements for the same data are possible, dedicated
countermeasures against SPA attacks are crucial.

Dobraunig et al. 97

As already pointed out by Medwed et al. [MSJ12], the concrete security of a construction
against side-channel attacks highly depends on the way it is implemented and on the
platform on which it is executed. For instance, they show that an implementation of
the GGM construction using AES-128 on an 8-bit microcontroller can be broken by
using template attacks. By making assumptions on the implementation, e.g., parallel
execution of the S-boxes, Medwed et al. [MSJ12] and follow-up work [MSNF16] are able to
provide security guarantees with respect to side-channel attacks for their constructions. In
contrast, in this work we do not make any assumption on the way Isap is implemented
and on the countermeasures used to protect the implementations. Clearly, an 8-bit
microcontroller implementation needs more sophisticated SPA countermeasures than a
parallel implementation of the round function. We consider the evaluation of the SPA
resistance of various implementation strategies for Isap to be an interesting topic for
further research.

6 Implementation
We implemented our authenticated encryption scheme Isap in the two configurations
Isap-128 and Isap-128a as presented in Table 1. The actual implementation of both
configurations is the same except for the number of rounds. The implementations employ a
single instance of the 400-bit Keccak permutation that performs one round per cycle. The
number of rounds performed is chosen at runtime depending on the executed algorithm, i.e.,
IsapEnc, IsapMac, or IsapRk. The synthesis results using a 130 nm UMC technology
are shown in Table 4. The choice of 130 nm UMC technology is motivated by the tools
which are available to us.

Table 4: Implementation of the AE modes (130 nm).

Function Area Frequency Initialization Runtime per Block
[kGE] [MHz] [cycles] [µs] [cycles] [µs]

Isap-128 14.0 169 3 401 20.1 36 0.20
Isap-128a 14.0 169 564 3.3 28 0.16

Area. As Isap-128 and Isap-128a use the same implementation design, they each consume
14.0 kGE of chip area. Most of the chip area is due to the Keccak core, which consumes
8.3 kGE. The remaining logic is required for multiplexing and a temporary state register
to hold the hash value within IsapMac when performing the secure re-keying function
IsapRk. A sole implementation of the secure re-keying function IsapRk yields roughly
the same size as the Keccak core itself and is thus slightly smaller than other re-keying
functions like a masked polynomial multiplication [MSGR10] or an implementation of the
GGM tree using an AES core computing 1 round per cycle [SPY+10].

Runtime. The measured runtime is broken down into two parts: the time for performing
initialization, and the time for encrypting and authenticating a 144-bit message block. The
runtime of performing initialization is dominated by performing the re-keying operations in
both IsapEnc and IsapMac and is independent of the length of the message. Its impact
on runtime thus vanishes for long messages. The runtime for processing a single 144-bit
block is also independent of the length of the message, but strongly influences the overall
runtime for long messages.

Compared to the conservative parameterization Isap-128, the more aggressive parame-
ters of Isap-128a yield a speed-up of 83% for initialization and 22% for the processing of
a message block. While the very high speed-up during initialization is highly beneficial

98 ISAP – Towards Side-Channel Secure Authenticated Encryption

for short messages, the speed-up observed for encryption and authentication of a 144-bit
message block dominates for long messages.

Comparison. Isap is an efficient authenticated encryption scheme with low hardware
footprint that prevents DPA by design. While Isap is based on a standard implementation
of the 400-bit Keccak permutation and thus only adds a little hardware overhead, a
first-order secure threshold implementation increases the area by a factor of 3–4 [BDN+13].
Similar for AES the area for first-order secure masked implementations [DRB+16,GMK17]
increases accordingly. When higher-order DPA security is required, the hardware overhead
of masking rises even more [GMK17]. Consequently, the implementation cost of standard
authenticated encryption modes for AES such as AES-CCM and AES-GCM secured via
masking rises accordingly.

7 Conclusion and Open Questions

While current authenticated encryption schemes such as the CAESAR candidates Ascon,
Ketje/Keyak, PRIMATES, and SCREAM are designed to reduce the overhead of side-
channel countermeasures like masking on an implementation level, we explored in this
work how side-channel attacks can be tackled on an algorithmic level, while still fulfilling
the functional requirements of the CAESAR call. Probably the most notable resulting
restriction of this is that it is not possible to make any assumptions on the choice of
the nonce, besides the fact that the nonce has to be unique per encryption (e.g. it must
be possible to implement the nonce as simple counter on encryption side). Hence, the
decrypting/verification unit has no influence on the choice of the nonce and thus has to
allow multiple decryptions/verifications of (different) ciphertexts with the same nonce.

As a result, we proposed Isap, an authenticated encryption scheme that incorporates
ideas from fresh re-keying to withstand DPA attacks. In contrast to existing fresh re-keying
schemes, Isap protects the decryption/verification unit against DPA attacks, although the
decryption/verification unit does not contribute to the nonce that is used for encryption.
This feature does not only reduce communication overhead, but it enables several use cases
that are not feasible with current re-keying schemes such as simply storing encrypted data
and decrypting it later multiple times. The results of our hardware implementation show
that the concrete instances Isap-128 and Isap-128a can be implemented in a straightforward
manner with an area of only 14 kGE, while offering security against DPA attacks even for
multiple decryption. Therefore, we think that Isap is a valuable addition to the existing
pool of symmetric authenticated encryptions schemes and hope that its novel underlying
ideas and concepts will stimulate discussion and trigger future work in this direction.

Acknowledgments

The authors would like to thank Mario Werner for many helpful discussions and providing
his hardware description of Keccak.

The research leading to these results has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant
agreement No 644052 (HECTOR) and agreement No 681402 (SOPHIA).

Furthermore, this work has been supported in part by the Austrian Research Promotion
Agency (FFG) under grant number 845589 (SCALAS) and by the Austrian Science Fund
(project P26494-N15).

Dobraunig et al. 99

References
[ABB+14] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel,

Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs.
Submission to the CAESAR competition: http://competitions.cr.yp.to,
2014.

[ADMV15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security
of keyed sponge constructions using a modular proof approach. In Gregor
Leander, editor, FSE 2015, volume 9054 of LNCS, pages 364–384. Springer,
2015.

[AM09] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for reduced
Keccak-f and for the core functions of Luffa and Hamsi. https://131002.
net/data/papers/AM09.pdf, 2009.

[BC10] Christina Boura and Anne Canteaut. A zero-sum property for the KECCAK-f
permutation with 18 rounds. In ISIT 2010, pages 2488–2492. IEEE, 2010.

[BCF+15] Sonia Belaïd, Jean-Sébastien Coron, Pierre-Alain Fouque, Benoît Gérard, Jean-
Gabriel Kammerer, and Emmanuel Prouff. Improved side-channel analysis of
finite-field multiplication. In Tim Güneysu and Helena Handschuh, editors,
CHES 2015, volume 9293 of LNCS, pages 395–415. Springer, 2015.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, 2004.

[BDH+14] Sonia Belaïd, Fabrizio De Santis, Johann Heyszl, Stefan Mangard, Marcel
Medwed, Jörn-Marc Schmidt, François-Xavier Standaert, and Stefan Tillich.
Towards fresh re-keying with leakage-resilient PRFs: Cipher design principles
and analysis. J. Cryptographic Engineering, 4(3):157–171, 2014.

[BDN+13] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen,
and Gilles Van Assche. Efficient and first-order DPA resistant implementations
of Keccak. In Aurélien Francillon and Pankaj Rohatgi, editors, CARDIS 2013,
volume 8419 of LNCS, pages 187–199. Springer, 2013.

[BDP+14a] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Ketje. Submission to the CAESAR competition: http:
//competitions.cr.yp.to, 2014.

[BDP+14b] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Keyak. Submission to the CAESAR competition:
http://competitions.cr.yp.to, 2014.

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the indifferentiability of the sponge construction. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 181–197. Springer, 2008.

[BDPV09] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Kec-
cak sponge function family main document (Version 1.2). http://keccak.
noekeon.org/Keccak-main-1.2.pdf, 2009.

[BDPV11a] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Cryp-
tographic sponge functions (Version 0.1). http://sponge.noekeon.org/,
2011.

http://competitions.cr.yp.to
https://131002.net/data/papers/AM09.pdf
https://131002.net/data/papers/AM09.pdf
http://competitions.cr.yp.to
http://competitions.cr.yp.to
http://competitions.cr.yp.to
http://keccak.noekeon.org/Keccak-main-1.2.pdf
http://keccak.noekeon.org/Keccak-main-1.2.pdf
http://sponge.noekeon.org/

100 ISAP – Towards Side-Channel Secure Authenticated Encryption

[BDPV11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the sponge: Single-pass authenticated encryption and other applications.
In Ali Miri and Serge Vaudenay, editors, SAC 2011, volume 7118 of LNCS,
pages 320–337. Springer, 2011.

[BDPV11c] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. The
Keccak SHA-3 submission (Version 3.0). http://keccak.noekeon.org/
Keccak-submission-3.pdf, 2011.

[BDPV12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Permutation-based Encryption, Authentication and Authenticated Encryp-
tion. DIAC Workshop Record (http://www.hyperelliptic.org/djb/diac/
record.pdf), 2012.

[BDPV14] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak
crunchy crypto collision and pre-image contest. http://keccak.noekeon.
org/crunchy_contest.html, 2014.

[BFG14] Sonia Belaïd, Pierre-Alain Fouque, and Benoît Gérard. Side-channel analysis
of multiplications in GF(2128) – Application to AES-GCM. In Palash Sarkar
and Tetsu Iwata, editors, ASIACRYPT 2014, volume 8874 of LNCS, pages
306–325. Springer, 2014.

[BKP+16] Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, and
François-Xavier Standaert. Leakage-resilient and misuse-resistant authen-
ticated encryption. Cryptology ePrint Archive, Report 2016/996, 2016.
http://eprint.iacr.org/2016/996.

[CAE14] CAESAR committee. CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness. http://competitions.cr.yp.to/,
2014.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES
2002, volume 2523 of LNCS, pages 13–28. Springer, 2002.

[DDS13] Itai Dinur, Orr Dunkelman, and Adi Shamir. Collision attacks on up to 5
rounds of SHA-3 using generalized internal differentials. In Shiho Moriai,
editor, FSE 2013, volume 8424 of LNCS, pages 219–240. Springer, 2013.

[DEMS14] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon. Submission to the CAESAR competition: http://competitions.cr.
yp.to, 2014.

[DFH+16] Stefan Dziembowski, Sebastian Faust, Gottfried Herold, Anthony Journault,
Daniel Masny, and François-Xavier Standaert. Towards sound fresh re-keying
with hard (physical) learning problems. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, volume 9815 of LNCS, pages 272–301. Springer,
2016.

[DKM+15] Christoph Dobraunig, François Koeune, Stefan Mangard, Florian Mendel, and
François-Xavier Standaert. Towards fresh and hybrid re-keying schemes with
beyond birthday security. In Naofumi Homma and Marcel Medwed, editors,
CARDIS 2015, volume 9514 of LNCS, pages 225–241. Springer, 2015.

http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://www.hyperelliptic.org/djb/diac/record.pdf
http://www.hyperelliptic.org/djb/diac/record.pdf
http://keccak.noekeon.org/crunchy_contest.html
http://keccak.noekeon.org/crunchy_contest.html
http://eprint.iacr.org/2016/996
http://competitions.cr.yp.to/
http://competitions.cr.yp.to
http://competitions.cr.yp.to

Dobraunig et al. 101

[DMP+15] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Cube attacks and cube-attack-like cryptanalysis on the round-reduced
Keccak sponge function. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, volume 9056 of LNCS, pages 733–761. Springer, 2015.

[DRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+ 1 shares in hardware. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813
of LNCS, pages 194–212. Springer, 2016.

[FPS12] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical leakage-
resilient symmetric cryptography. In Emmanuel Prouff and Patrick Schaumont,
editors, CHES 2012, volume 7428 of LNCS, pages 213–232. Springer, 2012.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

[GJ16] Qian Guo and Thomas Johansson. A new birthday-type algorithm for attack-
ing the fresh re-keying countermeasure. Cryptology ePrint Archive, Report
2016/225, 2016. http://eprint.iacr.org/2016/225.

[GLS+14] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici,
François Durvaux, Lubos Gaspar, and Stéphanie Kerckhoff. SCREAM. Submis-
sion to the CAESAR competition: http://competitions.cr.yp.to, 2014.

[GLS16] Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applications to
cryptanalysis of round-reduced Keccak. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, volume 10031 of LNCS, pages 249–274,
2016.

[GMK17] Hannes Gross, Stefan Mangard, and Thomas Korak. An efficient side-channel
protected aes implementation with arbitrary protection order. In Helena
Handschuh, editor, CT-RSA 2017, volume 10159 of LNCS, pages 95–112.
Springer, 2017.

[GPT15] Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. The exact PRF security
of truncation: Tight bounds for keyed sponges and truncated CBC. In Rosario
Gennaro and Matthew Robshaw, editors, CRYPTO 2015, volume 9215 of
LNCS, pages 368–387. Springer, 2015.

[HWX+17] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan
Zhao. Conditional cube attack on reduced-round Keccak sponge function. In
EUROCRYPT 2017, 2017. (to appear).

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, 2003.

[JLM14] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 security in
sponge-based authenticated encryption modes. In Palash Sarkar and Tetsu
Iwata, editors, ASIACRYPT 2014, volume 8873 of LNCS, pages 85–104.
Springer, 2014.

[JN15] Jérémy Jean and Ivica Nikolic. Internal differential boomerangs: Practical
analysis of the round-reduced Keccak-f permutation. In Gregor Leander,
editor, FSE 2015, volume 9054 of LNCS, pages 537–556. Springer, 2015.

http://eprint.iacr.org/2016/225
http://competitions.cr.yp.to

102 ISAP – Towards Side-Channel Secure Authenticated Encryption

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO ’99, volume 1666 of LNCS, pages
388–397. Springer, 1999.

[Koc03] Paul Kocher. Leak Resistant Cryptographic Indexed Key Update, US Patent
6539092, 2003.

[MBKP11] Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar. On the
vulnerability of FPGA bitstream encryption against power analysis attacks:
extracting keys from Xilinx Virtex-II FPGAs. In Yan Chen, George Danezis,
and Vitaly Shmatikov, editors, CCS 2011, pages 111–124. ACM, 2011.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
– Revealing the secrets of smart cards. Springer, 2007.

[MPR+11] Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu Renauld,
and François-Xavier Standaert. Fresh re-keying II: Securing multiple parties
against side-channel and fault attacks. In Emmanuel Prouff, editor, CARDIS
2011, volume 7079 of LNCS, pages 115–132. Springer, 2011.

[MPS13] Pawel Morawiecki, Josef Pieprzyk, and Marian Srebrny. Rotational cryptanal-
ysis of round-reduced Keccak. In Shiho Moriai, editor, FSE 2013, volume
8424 of LNCS, pages 241–262. Springer, 2013.

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of full-state
keyed sponge and duplex: Applications to authenticated encryption. In Tetsu
Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, volume 9453 of LNCS,
pages 465–489. Springer, 2015.

[MS16] Amir Moradi and Tobias Schneider. Improved side-channel analysis attacks on
Xilinx bitstream encryption of 5, 6, and 7 series. In François-Xavier Standaert
and Elisabeth Oswald, editors, COSADE 2016, volume 9689 of LNCS, pages
71–87. Springer, 2016.

[MSGR10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and
Francesco Regazzoni. Fresh re-keying: Security against side-channel and
fault attacks for low-cost devices. In Daniel J. Bernstein and Tanja Lange, ed-
itors, AFRICACRYPT 2010, volume 6055 of LNCS, pages 279–296. Springer,
2010.

[MSJ12] Marcel Medwed, François-Xavier Standaert, and Antoine Joux. Towards
super-exponential side-channel security with efficient leakage-resilient PRFs.
In Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume
7428 of LNCS, pages 193–212. Springer, 2012.

[MSNF16] Marcel Medwed, François-Xavier Standaert, Ventzislav Nikov, and Martin
Feldhofer. Unknown-input attacks in the parallel setting: Improving the
security of the CHES 2012 leakage-resilient PRF. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, volume 10031 of LNCS, pages
602–623, 2016.

[Nat12] National Institute of Standards and Technology. SHA-3 competition. http:
//csrc.nist.gov/groups/ST/hash/sha-3/index.html, 2007–2012.

[Nat15] National Institute of Standards and Technology. FIPS PUB 202: SHA-
3 Standard: Permutation-Based Hash and Extendable-Output Functions.
Federal Information Processing Standards Publication 202, U.S. Department
of Commerce, August 2015.

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

Dobraunig et al. 103

[OC14] Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An open-source
platform for hardware embedded security research. In Emmanuel Prouff,
editor, COSADE 2014, volume 8622 of LNCS, pages 243–260. Springer, 2014.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Antoine Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 462–482. Springer,
2009.

[PM16] Peter Pessl and Stefan Mangard. Enhancing side-channel analysis of binary-
field multiplication with bit reliability. In Kazue Sako, editor, CT-RSA 2016,
volume 9610 of LNCS, pages 255–270. Springer, 2016.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 142–159. Springer, 2013.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-
resilient authentication and encryption from symmetric cryptographic primi-
tives. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM
CCS 2015, pages 96–108. ACM, 2015.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
measures and counter-measures for smart cards. In Isabelle Attali and
Thomas P. Jensen, editors, E-smart 2001, volume 2140 of LNCS, pages
200–210. Springer, 2001.

[ROSW16] Eyal Ronen, Colin O’Flynn, Adi Shamir, and Achi-Or Weingarten. IoT goes
nuclear: Creating a ZigBee chain reaction. Cryptology ePrint Archive, Report
2016/1047, 2016. http://eprint.iacr.org/2016/1047.

[SPY+10] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater,
Moti Yung, and Elisabeth Oswald. Leakage resilient cryptography in practice.
In Ahmad-Reza Sadeghi and David Naccache, editors, Towards Hardware-
Intrinsic Security – Foundations and Practice, Information Security and
Cryptography, pages 99–134. Springer, 2010.

[STKT06] Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday
paradox for multi-collisions. In Min Surp Rhee and Byoungcheon Lee, editors,
ICISC 2006, volume 4296 of LNCS, pages 29–40. Springer, 2006.

[TS14] Mostafa M. I. Taha and Patrick Schaumont. Side-channel countermeasure
for SHA-3 at almost-zero area overhead. In HOST 2014, pages 93–96. IEEE
Computer Society, 2014.

[TS15] Mostafa M. I. Taha and Patrick Schaumont. Key updating for leakage resiliency
with application to AES modes of operation. IEEE Trans. Information
Forensics and Security, 10(3):519–528, 2015.

[UWM17] Thomas Unterluggauer, Mario Werner, and Stefan Mangard. Side-channel
plaintext-recovery attacks on leakage-resilient encryption. In DATE 2017,
2017. (to appear).

http://eprint.iacr.org/2016/1047

104 ISAP – Towards Side-Channel Secure Authenticated Encryption

A Algorithms

Algorithm 3: Suffix MAC IsapMac and re-keying function IsapRk.

IsapMacr1,r2
a,b,c -k (KA, N , A, C)

Input: key KA ∈ {0, 1}k,
nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
ciphertext C ∈ {0, 1}∗

Output: tag T ∈ {0, 1}k

` = |A| mod r1
A1 . . . As ← r1-bit blocks of A ‖ 1 ‖ 0r1−1−`

` = |C| mod r1
C1 . . . Ct ← r1-bit blocks of C ‖ 1 ‖ 0r1−1−`

S ← N ‖ IV1
S ← pa(S)

Absorbing Associated Data
for i = 1, . . . , s do

S ← pa((Sr1 ⊕Ai) ‖Sc1)
S ← S ⊕ (0r1+c1−1 ‖ 1)

Absorbing Ciphertext
for i = 1, . . . , t do

S ← pa((Sr1 ⊕ Ci) ‖Sc1)
Squeezing Tag

K∗A ← IsapRkr2
b,c-k(KA, dSek)

S ← pa(K∗A ‖ bScr1+c1−k)
T ← dSek
return T

IsapRkr2
b,c-k(KA, y)

Input: key KA ∈ {0, 1}k,
y ∈ {0, 1}∗

Output: sessionkey K∗A ∈ {0, 1}k

` = |y| mod r2
if ` = 0 then

y1 . . . yw ← r2-bit blocks of y
else

y1 . . . yw ← r2-bit blocks of y ‖ 0r2−`

S ← KA ‖ IV2
Absorb

S ← pc(S)
S ← (Sr2 ⊕ y1) ‖Sc2

for i = 2, . . . , w do
S ← pb(S)
S ← (Sr2 ⊕ yi) ‖Sc2

Squeeze
S ← pc(S)
K∗A ← dSe

k

return K∗A

Dobraunig et al. 105

Algorithm 4: Encryption and decryption functions.

IsapEncr2,r3
b,c -k(KE , N, P)

Input: key KE ∈ {0, 1}k,
nonce N ∈ {0, 1}k,
plaintext P ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}∗

` = |N | mod r2
if ` = 0 then

N1 . . . Nu ← r2-bit blocks of N
else

N1 . . . Nu ← r2-bit blocks of N ‖ 0r2−`

` = |P | mod r3
if ` = 0 then

P1 . . . Pv ← r3-bit blocks of P
else

P1 . . . Pv ← r3-bit blocks of P ‖ 0r3−`

S ← KE ‖ IV3
Absorb

S ← pc(S)
S ← (Sr2 ⊕N1) ‖Sc2

for i = 2, . . . , u do
S ← pb(S)
S ← (Sr2 ⊕Ni) ‖Sc2

Squeeze
for i = 1, . . . , v do

S ← pc(S)
Ci ← Sr3 ⊕ Pi

if ` > 0 then Cv ← dCve`
return C1 ‖ . . . ‖Cv

IsapDecr2,r3
b,c -k(KE , N,C)

Input: key KE ∈ {0, 1}k,
nonce N ∈ {0, 1}k,
ciphertext C ∈ {0, 1}∗

Output: plaintext P ∈ {0, 1}∗

` = |N | mod r2
if ` = 0 then

N1 . . . Nu ← r2-bit blocks of N
else

N1 . . . Nu ← r2-bit blocks of N ‖ 0r2−`

` = |C| mod r3
if ` = 0 then

C1 . . . Cv ← r3-bit blocks of C
else

C1 . . . Cv ← r3-bit blocks of C ‖ 0r3−`

S ← KE ‖ IV3
Absorb

S ← pc(S)
S ← (Sr2 ⊕N1) ‖Sc2

for i = 2, . . . , u do
S ← pb(S)
S ← (Sr2 ⊕Ni) ‖Sc2

Squeeze
for i = 1, . . . , v do

S ← pc(S)
Pi ← Sr3 ⊕ Ci

if ` > 0 then Pv ← dPve`
return P1 ‖ . . . ‖Pv

	Introduction
	Background to Re-keying
	Secure Re-Keying Function
	Limitations and Open Problems

	Specification of ISAP
	Authenticated Encryption Scheme
	Authentication Part
	Encryption Part
	Instantiations and Parameter Values

	Design Rationale
	An Authenticated Encryption Mode Secure Against DPA
	Sponges and Side-Channels Leakage
	Design of IsapMac
	Design of IsapRk
	Design of IsapEnc
	Choice of the Permutation

	Security Analysis
	Permutation
	IsapRk and IsapEnc
	IsapMac
	On the Side-Channel Security of Isap

	Implementation
	Conclusion and Open Questions
	Algorithms

