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Abstract. This paper introduces QARMA, a new family of lightweight tweakable
block ciphers targeted at applications such as memory encryption, the generation
of very short tags for hardware-assisted prevention of software exploitation, and the
construction of keyed hash functions.
QARMA is inspired by reflection ciphers such as PRINCE, to which it adds a tweaking
input, and MANTIS. However, QARMA differs from previous reflector constructions in
that it is a three-round Even-Mansour scheme instead of a FX-construction, and its
middle permutation is non-involutory and keyed. We introduce and analyse a family
of Almost MDS matrices defined over a ring with zero divisors that allows us to
encode rotations in its operation while maintaining the minimal latency associated
to {0, 1}-matrices. The purpose of all these design choices is to harden the cipher
against various classes of attacks.
We also describe new S-Box search heuristics aimed at minimising the critical path.
QARMA exists in 64- and 128-bit block sizes, where block and tweak size are equal, and
keys are twice as long as the blocks.
We argue that QARMA provides sufficient security margins within the constraints
determined by the mentioned applications, while still achieving best-in-class latency.
Implementation results on a state-of-the art manufacturing process are reported.
Finally, we propose a technique to extend the length of the tweak by using, for
instance, a universal hash function, which can also be used to strengthen the security
of QARMA.
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6 The QARMA Block Cipher Family

1 Introduction
Research on lightweight block ciphers is motivated by the need to provide an acceptable
security level for specific applications at much lower area, latency, or power consumption
levels than, say, the AES [DR02]. For lightweight ciphers, all components must be tightly
optimised, often leading to original solutions, as embodied by designs like CLEFIA [SSA+07],
KATAN [CDK09], KLEIN [GNL11], LED [GPPR11], PRESENT [BKL+07], PRINCE [BCG+12],
SIMON and SPECK [BSS+13], and MIDORI [BBI+15], to name just a few.

At the same time, research on tweakable block ciphers [LRW02] (TBC) is motivated by
the design of encryption modes of operation and hash functions for specific applications,
such as disk [Mar10] and memory encryption [HT13]. In addition to the secret key and a
plaintext or ciphertext, TBCs accept a third input, the tweak, which is public. The tweak
and key together select the permutation computed by the cipher.

To understand the rationale behind the research into tweakable encryption primitives,
let us consider the problem of memory confidentiality. The simplest encryption mode
is the Electronic Code-Book mode (ECB), whereby each block is simply encrypted with
the same key. However, ECB preserves a lot of the structure of the plaintext in the
ciphertext, making it unsuitable for applications that require a high level of confidentiality.
Among alternatives that hide the structure of the plaintext, for performance reasons a
parallelisable mode is preferred. A common choice is represented by counter based modes,
which turn the block cipher into, essentially, a stream cipher, as used in AEGIS [SCG+03],
in [YEP+06], and in Intel’s SGX [Gue16]. However, these modes require extra memory
for the nonces and are difficult to properly implement in several contexts since they need
a good source of entropy. If nonces are reused, these modes break completely.

In order to be able to target constrained devices, we see then that it is desirable to
have memory encryption primitives that provide some level of nonce misuse resistance, or
can even work without any memory expansion. We consider modes that employ direct
encryption, where the permutation depends on a tweak that can be the physical address of
the block being encrypted, and/or an additional nonce or counter if memory expansion is
allowed. The dependency can be realised in the mode of operation (around a non-tweakable
block cipher) or in the underlying cipher. In the latter case we have a TBC.

The first TBC, the AES submission Hasty Pudding Cipher [Sch99], was quickly followed
by schemes to create TBCs from ordinary primitives used as black boxes [Rog04, LST12,
ST13], the cipher MERCY [Cro00], the cipher THREEFISH at the core of the SKEIN hash
function [FLS+10], and the ciphers Deoxys-BC, Joltik-BC, and Kiasu-BC based on the
TWEAKEY framework [JNP14]. More recently, we have SKINNY and MANTIS [BJK+16].

Unfortunately, most generic constructions to add a tweak to a block cipher or to a
mode of encryption suffer from vastly increased latency. For instance, the XEX [Rog04]
mode of encryption requires an additional encryption operation before the plaintext is
actually encrypted. The deployment of a TBC with latency comparable to a usual block
cipher would therefore improve performance, as long as changing the tweak is inexpensive.

A further application of TBCs is to software security, to enforce code flow integrity
(CFI) by inserting short tags into unused bits of pointers [ARM16, QPS17]. These tags
depend on a secret key and on a public value associated to the pointer’s context. Since the
latter may change often, a TBC is an obvious candidate to implement a CPU instruction
to compute the tags. Since instructions with higher latency inject a longer "bubble" into
the processing pipeline in critical places of the code such as function prologue and epilogue,
reduction of the total latency is critical for this use case as well.

For all mentioned applications area and energy consumption are secondary parameters
with respect to reduction of the total latency: For memory and disk encryption the energy
consumption is dominated by that of the memory or mass storage controller and related
hardware; in a modern CPU a few thousand gates are often nearly negligible.

A tweakable cipher is secure if it cannot be broken even assuming the adversary has
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full tweak control. Hence, designing a TBC is a difficult task as care must be taken in how
the user-controlled tweak is included in the design.

Contents of the Paper. In this work, we propose QARMA (pronounced like the sanskrit
word karma), a family of hardware-oriented lightweight TBCs. QARMA is chiefly meant to
be deployed in fully unrolled or pipelined hardware implementations. In particular, its
design is not intended to facilitate round-based implementations. QARMA targets use cases
such as memory encryption, and short tags for software security.

QARMA is a bricklayer SPN. It reuses some concepts from PRINCE, MIDORI and MANTIS,
but there are important differences both in structure and in choice of components. The
common aspects allow us to focus our analysis on the new ones. The main differences are:

1. QARMA’s structure is an Even-Mansour scheme [EM91, EM97] with a keyed pseudo-
reflector to avoid certain types of cryptanalysis, a departure from the more common
FX-construction [Rog96] used in other reflector designs.

2. To define QARMA’s diffusion layer, we introduce and analyse a family of Almost MDS
matrices defined over the ring with zero divisors Rm = F2[ρ] = F2[X]/(Xm + 1).
This allows us to encode circular rotations in its operation while maintaining the
minimal latency associated to {0, 1}-matrices. To the best of our knowledge this is
the first work addressing the characterization of Almost MDS circulant matrices over
this ring. Such matrices help hedge against some types of iterative characteristics,
invariant subspace attacks, and can be used to construct better central rounds for
reflection ciphers. We also characterise those matrices with equally efficient inverses.

3. We introduce new heuristics to efficiently find S-Boxes with short critical path.

4. The TWEAKEY framework is taken as an inspiration: The bits of key and tweak are not
permuted synchronously, but instead only those of the tweak are shuffled between
rounds; Additionally, a LFSR is used to update the tweak.

QARMA’s latency is sufficiently small to allow usage in a tweaked ECB mode that
eschews the expensive masking value derivation typical of XEX-like constructions. Absolute
minimisation of area is not our primary design goal, so we allow some more expensive
choices to build better security margins.

There are two variants of QARMA that support blocks sizes of n = 64 and n = 128
bits, denoted by QARMA-64 and QARMA-128, respectively. The tweak is also n bits long
and the key is always 2n bits long. QARMA-128 is suitable for higher security memory or
storage encryption. We do not consider the fact that QARMA-128 only supports 256-bit
keys a limitation; in fact the larger key still gives 128 bits of security under Grover’s
algorithm [Gro96], making it preferable over QARMA-64 if post-quantum resistance is desired.
Also note that for storage or memory encryption the use of larger keys is common: for
instance, if AES-128 in XTS-mode is used, 256 bits of key material are already required to
meet NIST FIPS compliance requirements [NIS16, Appendix A.9]. Hence, the same key
storage structures can be reused if QARMA-128 replaces or supplements the AES.

The security of QARMA is thoroughly investigated. We also report on implementation
results with a state-of-the-art FinFet 7 nm manufacturing process.

A further contribution of this paper is the proposal of a simple technique to extend
the length of the tweak of a block cipher that has only a fixed length tweak. The idea
consists in using a universal hash function (such as a multi-linear UHF) to compress a
longer tweak onto the available size. This idea may seem counterintuitive, as it introduces
an additional computational cost to change the tweak. However, in practice the resulting
construction may be more efficient than increasing the number of rounds of the cipher
to include a longer tweak while maintaining the same security level. While this line of
research seems promising, it needs more analysis.
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Figure 2: The Structure of QARMAr

2 Specification of QARMA

2.1 General Definitions and Notation
The overall scheme of the TBC QARMA is depicted in Figure 1. There, and throughout
the paper, a bar over a function – e.g. F – denotes its inverse. QARMA is a three-round
Even-Mansour construction where the permutations are parameterized by a core key, and
the key mixings between rounds are derived from a whitening key. The first and third
permutations are functionally the inverse of each other and are further parameterized by a
tweak. The central permutation is designed to be easily inverted by means of a simple
transformation of the key.

The cipher is depicted in more detail in Figure 2. Both similarities and differences with
respect to previous designs can be clearly seen from the picture.

The keys k0, k1, w0, and w1 are derived from a master key K via a simple key
specialisation. The letters P , C and T denote the plaintext, the ciphertext and the tweak;
S represents a layer of sixteen m-bit S-Boxes, h and τ are permutations, M and Q are
MixColumns-like operations, with Q involutory, and ω is a LFSR.

Write n = 16m with m = 4 or 8. All n-bit values are represented as arrays of sixteen
m-bit cells. Cells are indexed in big endian order (hence, for QARMA-64, bits 63..60 are
contained in the zeroth cell, and bits 3..0 in in the fifteenth cell) while the bits inside a
cell are ordered in little endian order. Any array of sixteen cells is also viewed as a 4× 4
matrix, for instance, the internal state admits representations

IS = s0‖s1‖ · · · ‖s14‖s15 =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 , (1)

so that 4 × 4 matrices operate column-wise on these values by left multiplication. The
plaintext is given as P = p0‖p1‖ · · · ‖p14‖p15, the tweak as T = t0‖t1‖ · · · ‖t14‖t15.
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Throughout the paper, we use the symbol “+” to denote addition in all algebraic
structures. In particular it denotes the exclusive or in the QARMA ciphers, which do not
use modular addition. The symbol tk denotes a (round) tweakey, i.e. a value derived only
from the key, the tweak, and the round constants.

2.2 Key Specialisation
The 2n = 32m-bit key K is first partitioned as w0‖k0 where w0 and k0, the whitening
and core keys, are 16m bits each.

For encryption, put w1 = o(w0) := (w0 ≫ 1) + (w0 � (16m− 1)) and k1 = k0.
Since the first r rounds of the cipher (ignoring initial whitening) differ from last r

rounds solely by the addition of a non-zero constant α, QARMA possesses a property very
similar to PRINCE’s α-reflection: The encryption circuit can be used for decryption when
k0 +α is used as the core key, the whitening keys w0 with w1 are swapped, and k1 = Q ·k0.

2.3 The Forward Round Function
The Forward Round Function R(IS; tk) is composed by four operations, performed in the
following order:

1. AddRoundTweakey. The round tweakey tk defined in § 2.7 is XORed to IS.

2. ShuffleCells. (τ(IS))i = sτ(i) for 0 ≤ i ≤ 15, where τ is the MIDORI cell permuta-
tion, i.e. τ = [ 0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2 ].

3. MixColumns. Each column of the cipher internal state array is multiplied by the
matrix M defined in § 3.1, i.e. IS = M · IS.

4. SubCells. For the chosen S-Box σ, the S layer acts on the state as follows: si 7→σ(si)
for 0 ≤ i ≤ 15. The S-Boxes are defined in §§ 3.3 and 3.4.

A short version of the forward round function exists which omits the ShuffleCells
and MixColumns operations, similarly to the AES final round.

After AddRoundTweakey the tweak T is updated by the function described next.

2.4 The Tweak Update Function
First, the cells of the tweak are permuted as h(T ) = th(0)‖ · · · ‖th(15), where h is the same
permutation h = [ 6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11 ] used in MANTIS.

Then, a LFSR ω updates the tweak cells with indexes 0, 1, 3, 4, 8, 11, and 13. For
m = 4, ω is a maximal period LFSR that maps cell (b3, b2, b1, b0) to (b0 + b1, b3, b2, b1). For
m = 8, it maps cell (b7, b6, . . . , b0) to (b0 + b2, b7, b6, . . . , b1), and its cycles on the non-zero
values have all length 15 or 30.

2.5 The Backward Round Function
The Backward Round Function R(IS; tk) is the inverse of the forward round function R.
Its short form omits ShuffleCells and MixColumns. The tweak update using the inverse
LFSR ω and the inverse permutation h must be applied before AddRoundTweakey.

2.6 The Central Construction and the Pseudo-Reflector
Two central rounds – a forward and a backward one – that use the whitening key instead
of the core key, bracket the cipher’s Pseudo-Reflector P(IS; tk), which is essentially just a
key addition and a matrix multiplication of the internal state. In more detail, this central
construction is defined as follows:



10 The QARMA Block Cipher Family

Algorithm QARMAr Encryption/Decryption
1: Write K = w0‖k0

2: If ENC: w1 7→o(w0), k1 7→k0

If DEC: w1 7→w0, w0 7→o(w0), k1 7→Q · k0, k0 7→ k0 + α
3: IS 7→P + w0

4: for i = 0 to r − 1 do
5: IS 7→R(IS, k0 + T + ci) (short round for i = 0)
6: T 7→ω ◦ h(T )
7: IS 7→R(IS, w1 + T )
8: IS 7→P(IS, k1)
9: IS 7→R(IS, w0 + T )

10: for i = r − 1 down to 0 do
11: T 7→h ◦ ω(T )
12: IS 7→R(IS, k0 + T + ci + α) (short round for i = 0)
13: C 7→IS + w1

Figure 3: The QARMA Algorithm

1. A forward round R.

2. The pseudo-reflector P(IS; tk) i.e.

(a) ShuffleCells.
(b) Multiplication of the state by the involutory matrix Q defined in § 3.1.
(c) AddRoundTweakey. The round tweakey tk is XORed to the state.
(d) Inverse ShuffleCells.

3. A backward round R.

It is clear that if steps (b) and (c) were swapped, then tk would have to be replaced
with Q · tk = Q · tk to obtain the same function. Because of this, if tk is the tweakey used
during encryption, Q · tk must be used instead to decrypt.

2.7 The Encryption and Decryption Algorithm
The encryption algorithm of QARMAr is given in Figure 3. QARMAr has 2 r + 2 rounds.

The round constants are derived from the expansion of the constant π. For the 64-bit
version of QARMA we replace the first block of sixteen digits of the fractional part with
zeros and select the seventh block as the α constant, as shown in Table 1 – as a hommage
to PRINCE. For the 128-bit cipher, instead, we just take the first block of 128 bits in the
fractional part of π as the α constant, set c0 = 0, and then each ci is a successive block
128 bits of π, as shown in Table 2.

Note the constant α is always added to the last r backward rounds. This and the
pseudo-reflector design prevent perfect symmetry in the data obfuscation path.

2.8 Parameters
For QARMAr-64 we choose r = 7, i.e. 16 rounds, but we believe the cipher to be safe against
practical attacks already for r = 6, i.e. 14 rounds, with some use cases even allowing for
r = 5, i.e. 12 rounds. For QARMAr-128 we choose r = 11, i.e. 24 rounds, and believe the
cipher safe against practical attacks already for r = 8, i.e. 18 rounds. We shall argue in
Section 4 that these parameters offer sufficient security margins.
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Table 1: The Round Constants for the 64-bit Ciphers

α = C0AC29B7C97C50DD c0 = 0000000000000000 c1 = 13198A2E03707344
c2 = A4093822299F31D0 c3 = 082EFA98EC4E6C89 c4 = 452821E638D01377
c5 = BE5466CF34E90C6C c6 = 3F84D5B5B5470917 c7 = 9216D5D98979FB1B . . .

Table 2: The Round Constants for the 128-bit Ciphers

α = 243F6A8885A308D3 13198A2E03707344 c0 = 0000000000000000 0000000000000000
c1 = A4093822299F31D0 082EFA98EC4E6C89 c2 = 452821E638D01377 BE5466CF34E90C6C
c3 = C0AC29B7C97C50DD 3F84D5B5B5470917 c4 = 9216D5D98979FB1B D1310BA698DFB5AC
c5 = 2FFD72DBD01ADFB7 B8E1AFED6A267E96 c6 = BA7C9045F12C7F99 24A19947B3916CF7
c7 = 0801F2E2858EFC16 636920D871574E69 c8 = A458FEA3F4933D7E 0D95748F728EB658
c9 = 718BCD5882154AEE 7B54A41DC25A59B5 c10 = 9C30D5392AF26013 C5D1B023286085F0

. . .

2.9 Usage, Modes of Operation, Tweak Extension
QARMA is intended to be used with a single key per application, security domain, and
session, and with a variable tweak that is usually a public token of information.

For memory encryption methods that require dependency on both the physical address
A and a nonce/counter ν, QARMA-128’s tweak input is sufficiently large: A and ν can usually
be just concatenated and padded. This is often not possible with QARMA-64, as the tweak
input is only 64 bits long. However, the tweak may still be computed as β ·A+ γ · ν in an
arithmetic structure (such as a Galois field or a ring of modular integers) where β and γ
are secret values, that is, additional key material. This also leads to the observation that
QARMA’s security may be improved by multiplying the tweak by a second secret key.

This technique can be viewed as a generic method to extend the length of the tweak
beyond n bits for QARMA-n, using a multi-linear universal hash function. We remark that
the loss in latency due to the multiplications may be smaller than with the additional
number of rounds that would be required to mix in more tweak material in a secure way.
In fact, in [BJK+16] the versions of the cipher SKINNY-n with tweakeys of length 2n, resp.
3n require up to 20%, 40% more rounds than the versions with n-bit tweakeys. Looking at
the implementation results in Section 5, similar increases in the number of rounds would
usually exceed the latency of, say, a Galois Multiplication. On the other hand, the number
of possible permutations computed by the primitive is smaller with respect to a design
with a “true” longer tweak, and tweak input collisions are more likely.

In place of Galois or modular multiplication other, lighter functions can be used that
guarantee good diffusion of the bits of the tweak and of the secret value(s). Such a function
does not have to be highly nonlinear. An admissible candidate is the “fresh re-keying”
function described in [MSGR10]. Another one is presented in Appendix B.

3 Design Decisions
We now describe how we chose the building blocks and structure of QARMA. This section is
a “flattening” of the non-linear, often iterative process that led to these choices – there are
by necessity a few forward references, including to the security analysis (Section 4).

3.1 The Diffusion Matrices
3.1.1 Characterisation

QARMA’s diffusion layer is composed of a cell permutation and a matrix multiplication. Its
complexity mostly comes from the matrix. Roughly speaking, the usual requirements on a
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diffusion matrix are:

1. It should guarantee mathematically provable good diffusion.

2. It should be as lightweight as possible.

Regarding the first requirement, diffusion is usually measured by the branch num-
ber [DR02], i.e. the smallest nonzero joint number of active inputs and outputs of the
matrix. For an invertible s × s matrix M , the branch number BM cannot be greater
than s + 1. The MDS (Maximum-Distance Separable) matrices are those that attain
this maximum: They have long been the preferred choice of block cipher designers, but
they tend to lead to expensive implementations. Hence there has been a recent flurry of
research on lighter diffusion layers, culminating with those of PRINCE, PRIDE [ADK+14]
and MIDORI. In particular in MIDORI a {0, 1}-matrix M – namely a matrix whose entries
are in {0, 1} – is used that is Almost MDS, i.e. with BM = s. Almost MDS matrices
have worse diffusion than MDS matrices, but they can be much lighter, so that even if
more rounds are necessary to attain the same level of security than in a design with MDS
matrices, the resulting cipher can still be smaller and faster.

The second requirement is often understood as minimising the weight of the matrix,
but for fully unrolled HW implementations a better statement would be minimising the
maximum of the weights of all the rows, taking into account the weights of the cells, and
the underlying algebraic structure.

From this point of view, {0, 1}-matrices are clearly optimal. They are never MDS, but
they are Almost MDS in dimensions 2, 3, and 4 [CK08], and only in these dimensions.
However, they may also contribute to the weaknesses of some ciphers: In the case of
MIDORI, they permit the propagation of iterative characteristics that are built from the
structure of the set of fixed points of the S-Box. In order to harden against attacks that
exploit these properties it is desirable to have diffusion layers that do not help propagate
such high likelihood characteristics. More in detail, assuming we are using a single type of
S-Box, if the diffusion layer carries the sum of the outputs of two active S-Boxes unchanged
into two different target cells, these cells will carry over the same characteristic twice into
the next S-Box layer: the second copy of that characteristic will come for free.

The intuition is that if the S-Box outputs are subject to different linear transformations
per each target cell before being added, then the two resulting output characteristics will
be different, and at least one will be less likely to propagate through the next S-Box layer.
Hence, we look beyond {0, 1}-matrices. Usually, this means looking at matrices over binary
extension fields.

A problem with matrices over binary extension fields is that any multiplication by
an element different from 0 and 1 requires a modular reduction step (for a polynomial
basis) or expansion step (for a normal basis) which adds latency. So the next logical
step is to consider a different underlying algebraic structure, for instance a quotient ring
Rm = F2[X]/(Xm + 1). The multiplication by the image ρ of X in the ring Rm (an
element such that ρm = 1, and thus such that {1, ρ, ρ2, . . . , ρm−1} is a basis for Rm as a
F2-algebra) is just a simple circular left rotation of the bits, with only signal propagation
latency. Matrices over Rm allow us to easily include rotations in the diffusion layer.

It turns out that, while it seems difficult to construct MDS matrices over generic
rings, with a little effort we can find Almost MDS matrices over quotient rings Rm =
F2[X]/(Xm + 1). Since Rm contains zero divisors (for m ≥ 2), care shall be taken when
constructing invertible matrices. We thus restrict ourselves to the following circulants:

M = circ(0, ρa, ρb, ρc) =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 . (2)
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Theorem 1. Let Rm = F2[ρ] be the quotient ring F2[X]/(Xm + 1) where ρ is the image
of X in R, m ≥ 2. The Almost MDS matrices M of the form (2) over the ring Rm are
precisely the invertible ones, i.e. are those for which ρ4a + ρ4b + ρ4c ∈ R∗m.

Proof. Since det(M) = ρ4a + ρ4b + ρ4c, the invertible matrices are those for which this
value is invertible, i.e. in R∗. Since Almost MDS matrices are invertible by definition, we
need only prove that any M of form (2) has branch number four.

Let us consider a column vector V = (v0, v1, v2, v3)t. We need to verify when the sum
of the weights of V 6= 0 and U := M · V is always at least four, so we need to consider the
cases where V has weights one, two, and three. Since M is circulant, there are only four
distinct cases up to circular permutation of the entries of V :

(i) V = (v0, 0, 0, 0)t with v0 6= 0. Then

U = M · V =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 ·

v0
0
0
0

 =


0

v0 ρ
c

v0 ρ
b

v0 ρ
a


and since ρ is not a zero divisor in R, the vector U has weight 3.

(ii) V = (v0, v1, 0, 0)t with v0, v1 6= 0. Then

U = M · V =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 ·

v0
v1
0
0

 =


v1 ρ

a

v0 ρ
c

v0 ρ
b + v1 ρ

c

v0 ρ
a + v1 ρ

b


and the first two entries of U are nonzero.

(iii) V = (v0, 0, v2, 0)t with v0, v2 6= 0. Then

U = M · V =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 ·

v0
0
v2
0

 =


v2 ρ

b

v0 ρ
c + v2 ρ

a

v0 ρ
b

v0 ρ
a + v2 ρ

c


and there is nothing to prove also in this case.

(iv) V = (v0, v1, v2, 0)t with v0, v1, and v2 6= 0. Then

U = M · V =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 ·

v0
v1
v2
0

 =


v1 ρ

a + v2 ρ
b

v0 ρ
c + v2 ρ

a

v0 ρ
b + v1 ρ

c

v0 ρ
a + v1 ρ

b + v2 ρ
c

 =


u0
u1
u2
u3


and we need to prove that at least one of the ui, 0 ≤ i < 4, must be non-zero.
Assuming the contrary, we obtain v2 = v1 ρ

a−b from u0 = 0 and v0 = v1 ρ
−b+c from

u2 = 0. Substituting in the relation for u3 = 0 we obtain

0 = v1 ρ
a−b+c + v1 ρ

b + v1 ρ
a−b+c = v1 ρ

b

whence v1 = 0, a contradiction.

Note that the branch number is tight. For vectors V of weight between one and three and
entries vi which are either 0 or 1 + ρ+ ρ2 + . . .+ ρm−1, it is wt(V ) + wt(U) = 4.
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Remark 1. If m = 4 or 8, then all matrices (2) are invertible. In fact, for m = 4 the
determinant ρ4a + ρ4b + ρ4c is always 1 and for m = 8 it is equal to either 1 or ρ4.

Now let us consider the matrices of type (2) with equally lightweight inverse.
Theorem 2. Let Rm = F2[X]/(Xm + 1) = F2[ρ] be defined as in Theorem 1. The
Almost MDS matrices M = circ(0, ρa, ρb, ρc) that admit an inverse of the same form
M = circ(0, ρd, ρe, ρf ), i.e. with entries of weight at most one, are those that satisfy
a ≡ c+ τ where 2 τ ≡ 0 mod m (for odd m this implies τ = 0, for even m it can be τ = 0
or m/2). In this case, the parameters of the matrix M are: d ≡ a − 2 b, e ≡ −b, and
f ≡ d+ τ mod m.

The involutory matrices M are those for which, additionally, 2 b ≡ 0.
Proof. Since M and M are circulant, M ·M = I is equivalent to

ρa+f + ρb+e + ρc+d

ρb+f + ρc+e

ρa+d + ρc+f

ρa+e + ρb+d

 =


1
0
0
0

 (3)

Ignoring for the moment the first component in (3), we see that

(i) b+ f ≡ c+ e , (ii) a+ d ≡ c+ f , (iii) a+ e ≡ b+ d mod m .

Upon adding relations (i), (ii) and (iii) we get 2 a+ (d+ e+ f) = 2 c+ (d+ e+ f) ≡ 0,
in other words 2 (a− c) ≡ 0 mod m, whence a ≡ c+ τ where 2 τ ≡ 0 mod m. Replacing
this into (ii) we obtain at once d ≡ f + τ , which is equivalent to f ≡ d+ τ . In particular,
a+ f ≡ c+ d mod m holds always, which means that ρa+f and ρc+d cancel out in the
first relation in (3), and it must be ρb+e = 1, i.e. e ≡ −b mod m. Finally, substituting in
relation (iii) we obtain d ≡ a− 2 b mod m.

The last statement is proved by substituting a ≡ d into d ≡ a− 2 b mod m.

Remark 2. Hence, there are two degrees of freedom to define the matrices M , and one
extra bit in case m is even. If M has to be involutory, there is only one degree of freedom
(and two bits for even m).
Remark 3. An analogue of Theorem 1 holds over fields F2m as well. A matrix M =
circ(0, A,B,C) = with ABC 6= 0 is invertible if and only if its determinant A4+B4+C4 6= 0,
in which case it is Almost MDS. However, the multiplications by A, B, or C are circuits
of non-negligible depth, unless they are equal to 1.
Remark 4. This is not the only work on diffusion matrices on rings other than a finite
field. Dehnavi et al. [DRS+14, DRS15, RDS+14] study matrices over rings Fm2 where the
ring operations are the bitwise XOR and AND. They build MDS matrices whose entries
are sums of rotations or shifts. Their research does not consider Almost MDS matrices,
and even though their operations are efficient, they are not concerned with minimising the
depth. In fact, their diffusion layers have a much higher latency than ours. Also for the
MDS matrices in [SS16] the goal is to minimise the total XOR count and their matrices
lead to circuits with longer critical path.

3.1.2 Selection

Besides the MIDORI circulant M0 := circ(0, 1, 1, 1) we considered several other matrices.
1. For QARMA-64 (m = 4) we initially restricted our attention to the involutory matrices

M4,1 = Q4,1 = circ(0, ρ, ρ2, ρ3) ,

M4,2 = Q4,2 = circ(0, ρ, ρ2, ρ) , and
M4,3 = Q4,3 = circ(0, 1, ρ2, 1) .
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2. For QARMA-128 (m = 8) we considered

M8,1 = Q8,1 = circ(0, ρ2, ρ4, ρ6) ,

M8,2 = Q8,2 = circ(0, ρ, ρ4, ρ5) ,

M8,3 = Q8,3 = circ(0, 1, ρ4, 1) , and
M8,4 = circ(0, ρ, ρ2, ρ5) with Q8,4 = circ(0, ρ, ρ4, ρ) .

Note that M8,1, M8,2, M8,3, and Q8,4 are involutory, and M8,4 = circ(0, ρ5, ρ6, ρ).

We selected these matrices and then among them according to various criteria, which
we describe in the following. (The order does not signify importance.)

The first criterion is the number of fixed points of the matrix Q, in order to improve
the cryptographic properties of the central construction (cf. § 4.4). From this points
of view, optimal involutory matrices over R4 are Q4,2 and Q4,3, that have the optimal
number of 232 fixed points (cf. Lemma 1 in [SBY+15]), and Q8,4 that attains the minimum
of 264 fixed points. Note that Q4,1 has 248 fixed points, Q8,1 has 296 fixed points, and
M8,2 = Q8,2 has 272 fixed points (cf. Appendix C), which is close to optimal.

The second criterion is the number of active S-Boxes in linear and related-tweak differen-
tial trails. In [MWGP11] it is shown how to use mixed integer linear programming (MILP)
to count the active S-Boxes in these trails. The technique has been extended to tweakable
ciphers in [BJK+16]. An important part of the MILP method is the determination of a
set of equations to model the action of the diffusion matrix M , i.e. the set of possible
combinations of active cells in a state column and in the column obtained by multiplying it
by M . Different Almost MDS matrices do not necessarily have the same diffusion patterns,
even if we restrict to circulants of the form circ(0, x, y, z) with non-zero x, y, and z. Hence,
we have first determined the diffusion patterns for each matrix, by means of a simple and
fast exhaustive enumeration over all possible inputs. Our matrices fall into two different
classes:

1. Class I includes M0, M4,1 and M8,1; and

2. Class II includes M4,2, M4,3, M8,2, M8,3, M8,4 and Q8,4.

Other matrices with less relative differences in the rotations or, if involutory, with more
fixed points, have not been taken into account.

Class I matrices have 51 possible active column-to-column state transitions, of which
the 67 transitions of Class II matrices are a superset. These transitions are depicted in
Figures 4 and 5, for Class I and II matrices, respectively. We note that the exhaustive
enumeration method yields the following result.

Proposition 1. All the matrices over R4 and R8 characterised in Theorem 2 (i.e. the
circulants M = circ(0, ρa, ρb, ρc) that admit an inverse of the same form) have only two
possible column-to-column active state transition sets, namely those in Figures 4 and 5.

We modelled these two different behaviours in MILP to compute lower bounds for the
numbers of active S-Boxes in both the linear (and differential) and related-tweak settings.
Note that in the related-tweak model we are not including the key. We display these
results in Table 3. The results for the linear setting have been computed on the whole
cipher for r ≤ 6 and just half of the cipher (only forward rounds) for r ≥ 7, in which case
the objective value has been doubled. In the related-tweak setting, for r ≥ 9 we either
model only half of the cipher or use a dual bound for the whole cipher.

The structures of QARMA and MANTIS are not identical, hence it is possible that a
different tweak permutation could give better bounds for QARMA. However, the bounds for
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Figure 4: The Column-wise Active State Transitions for Class I Matrices
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Figure 5: The Column-wise Active State Transitions for Class II Matrices
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Table 3: Lower Bounds on the Number of Active S-Boxes

QARMA with Class I Diffusion Matrices

r 3 4 5 6 7 8 9 10 11

Linear 32 50 64 ≥ 70 ≥ 76 ≥ 82 ≥ 100 ≥ 114 ≥ 124
Rel. Tweak 16 24 34 44 52 60 ≥ 64 ≥ 70 ≥ 78

QARMA with Class II Diffusion Matrices

r 3 4 5 6 7 8 9 10 11

Linear 32 50 60 ≥ 68 ≥ 74 ≥ 82 ≥ 98 ≥ 112 ≥ 120
Rel. Tweak 14 24 30 42 48 58 ≥ 62 ≥ 68 ≥ 76

Comparison: MANTIS (Class I Diffusion Matrix and no ShuffleCells in Reflector)

r 3 4 5 6 7 8

Linear 32 46 60 ≥ 68 ≥ 76 ≥ 82
Rel. Tweak 12 20 34 44 50 56

the two ciphers are quite close (and sometimes slightly better because of the improved
diffusion in the center, cf. § 4.4), so we decided to keep the same tweak permutation.

The bounds on the active S-Boxes between the two matrix classes are also very similar.
Hence, the class of a matrix will not be used to choose one matrix over another unless all
other parameters are equal.

The third criterion is the overall minimisation of the maximum probability of non-trivial
differentials on two active cells inside a column through the following operations: an S-Box
layer, the diffusion matrix and a second S-Box layer. For each input differential (two cells)
we determine the output differential (also on two cells) with the highest likelihood, and
then we average these probabilities. The minimum of this average is achieved with M4,2
and M8,4 for all chosen S-Boxes (see §§ 3.3 and 3.4).

For m = 4 and with the S-Box σ1, the average occurrence of a differential goes from
31.64/256 with the MIDORI circulant, to 18.11/256 with M4,3, then 16.94/256 with M4,1,
and finally to 8.52/256 with M4,2. (Actually, a slightly better value, 8.28/256 could be
reached with M ′ = circ(0, 1, ρ, 1), but this matrix is non-involutory, and therefore the
fourth criterion below would not apply.)

For m = 8 and with the 8-bit S-Box constructed from σ1 (cf. § 3.4), the average goes
from ≈ 253/216 with M0 and M8,3 to ≈ 140/216 with M8,1 to values ≈ 28/216 with M8,2,
M8,4 or Q8,4.

Changing S-Boxes does not significantly alter these values.
This proves that the desired goal of increased independence of the outputs, and

corresponding disruption of differential characteristics, can be achieved.

Finally, the fourth criterion is the applicability of our analysis of invariant subspace
attacks (cf. § 4.3) and its outcome. The analysis assumes a single involutory matrix is
used in order to get invariant subspaces that are as close as possible to the whole space.
This prompted us to choose M8,2 over the pair (M8,4, Q8,4) that was used in a previous
revision of QARMA-128. Using M8,2 for the whole cipher seems to provide better resistance
against these attacks than using the other shortlisted matrices.

In light of these observations, we choose the matrix M4,2 = Q4,2 for QARMA-64, and the
matrix M8,2 = Q8,2 for QARMA-128.
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3.2 The Central Construction
Reflection attacks are a specific class of cryptanalysis originally developed against 2K-
DES [Kar07] but that can be particularly efficient against PRINCE-like ciphers [SBY+15]:
If the reflector has too many fixed points, there will be a self-differential with a zero
difference after the round key addition at its sides, that may propagate outwards with a
palindromic structure if a matching self-differential with a difference of α exists. With
respect to MANTIS, by design we took an important step towards resistance against such
attacks. The matrix we chose for QARMA-64 has 232 fixed points out of 264 values, which is
the minimum for a linear function (cf. Lemma 1 in [SBY+15]), whereas the MIDORI and
MANTIS circulant M0 has 248 (the matrix for QARMA-128 has 272 fixed points out of 2128,
close to the minimum of 264, whereas M0 has 296 fixed points over R4×4

8 ). But, we decided
to take also an additional countermeasure.

Suitable whitening around the reflector can prevent these attacks, provided that the
two whitenings always have a non constant difference as a function of the whitening key.
The PRINCE whitening key expansion was designed this way [BCG+12, § 3.4]: for any value
of z, equation w0 + w1 = z has exactly one solution. In fact, the map w0 7→ o(w0) = w1

is a (linear) orthomorphism, i.e. both o and x 7→ x + o(x) are permutations. Thus, an
attacker that does not know w0 cannot make any assumption about the difference after the
whitening. Since the same tweak is added on both sides, it does not affect the difference.

The central addition of a core key derived round key serves to continue the regular key
mixing in the cipher and also to make the pseudo-reflector in general not involutory, with
an unpredictable difference at its sides. Since there are values of the core key for which
the central rounds are involutory, we intentionally do not add also the tweak in the middle
to prevent attacks that could exploit this.

An analysis of the security implications of our central construction is given in § 4.4.
Finally, the cryptanalysis in [Din15], even though it does not (yet?) lead to practical

attacks, further motivates our departure from pure FX-constructions, especially since
QARMA’s permutations are not ideal.

3.3 Selection of the 4-Bit S-Boxes
Despite the existence of excellent classifications of 4-bit S-Boxes [LP07, Saa11], choosing
the right S-Box for a given application is still a non-trivial task. The cipher’s designer must
balance on one side desirable cryptographic properties and on the other one performance
and cost aspects, such as critical path length and area. The critical path of a circuit is the
longest sequence of sequential operations from an input to an output: As it determines
the latency of the circuit, for our applications it is a more important parameter than area.

In the case of PRINCE the S-Box was chosen to be 4-bit to reduce total complexity and
critical path, but once this decision had been made, the choice seems to have been driven
essentially by cryptographic properties. At the opposite side of the spectrum, the MIDORI
designers did not hesitate to choose an S-Box with cryptographic properties that are not
optimal. Indeed, the particular values of the four fixed points and the limited round key
mixing allowed a vast class of weak keys to be found [GJN+16]. The problem here were
not the fixed points per se, but the fact that the set of their values were preserved under
round key addition and linear layer.

QARMA can use three S-Boxes: a very small involutory one with complexity similar to
that of MIDORI, but with improved cryptographic properties; an S-Box which is affine
equivalent to the S-Box S6 defined in the PRINCE paper; and an involutory one designed
so that its complexity falls in between.

A key instrument in choosing these S-Boxes is an automated approach for determining
S-Boxes with bounded path delay. The designers of MIDORI observe that the path delay is
highly related to the dependency of the computation. The path delay is estimated using
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a metric called the depth of a circuit, defined as the sum of sequential path delays of
basic operations such as AND, OR, NAND, NOR, XOR, XNOR and NOT (we also consider
ternary and quarternary operators).

To find the MIDORI S-Boxes, all involutory S-Boxes have been examined in order of
increasing depth. This method can be slow and memory intensive, for instance, if all
S-Boxes have to be generated first, synthesized and then sorted. We replace these expensive
search methodologies by slightly less precise heuristics.

3.3.1 Identifying S-Boxes with Almost Optimal Path Delay

Let us consider the MIDORI S-Box Sb0 as an example. The SOP (sum-of-products) of the
least significant bit of the output corresponds to the Boolean function wyz+wyz+xz+xy
on the variables {w, x, y, z} (x := NOT(x)). Applying de Morgan’s theorem, we see
that this can be evaluated as the NAND, actually the NAND4 of the four expressions
NAND3(w, y, z), NAND3(w, y, z), NAND2(x, z), and NAND2(x, y). A NAND4 gate can be
implemented (with some complication because of wiring) with a depth of 2, and thus by
using a layer of NOT’s of depth 0.5, a layer with two NAND3’s and two NAND2’s with a
depth of 1.5, and the NAND4 gate, this output bit can be implemented with a depth of
4. However, the SOP of the negation of the same output bit is xyz + wx+ yz which can
be implemented as the NAND3 of NAND3(x, y, z), NAND2(w, x), and NAND2(y, z) – with
a total depth of 3.5. Negating it and applying de Morgan’s theorem again, the original
function can be represented as the NOR3 of NOR3(x, y, z), NOR2(w, x), NOR2(y, z), which
has a depth of 3. Similar considerations hold for the other output bits.
Remark 5. In general, considering the SOP and the NOT-SOP of each output bit we can
always match the claimed minimal depth of all the S-Boxes from the literature that we
have sampled, or exceed this depth by at most 0.5.

Therefore we sieve the S-Boxes by computing the SOP and NOT-SOP of each output
bit by the Quine-McCluskey algorithm [Qui52, McC56]. We initially consider, for instance,
only those S-Boxes whose output bits can be all expressed as sums of at most three
products, each one having at most weight 3 – or as the negations of products of at most
three sums of weight at most 3. We verify if these S-Boxes satisfy additional cryptographic
constraints – and if no matching S-Boxes are found we gradually increase the complexity
of the allowed expressions. By allowing generalised NAND and NOR gates, we get tighter
upper bounds for the depth. Gradually, we restrict the cryptographic properties until we
get a manageable set of S-Boxes that can be further studied.

3.3.2 Desirable Cryptographic Properties

For various ciphers, there are several interesting cryptographic properties that have been
required for S-Boxes, depending on the requirements of the cipher and the structure of
other cipher components. For 4-bit S-Boxes, optimal properties are the following:

S1 The maximal probability of a differential is 1/4.

S2 The maximal absolute bias of a linear approximation is 1/4.

S3 Each of the 15 non-zero component functions has algebraic degree 3.

Bijective 4-Bit S-Boxes that satisfy Properties S1 and S2 are indeed called optimal
in [LP07], where they are shown to satisfy additional properties, such as optimal resistance
against algebraic cryptanalysis, a fact which we shall exploit in the security analysis.
Sometimes the first two properties are strengthened, as in the PRINCE S-Boxes, as follows:

S1’ Property S1 holds and there are exactly 15 differentials with probability 1/4.
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Table 4: Summary of Properties of the MIDORI, PRINCE and QARMA S-Boxes

S-Box MIDORI
PRINCE

σ0 σ1
σ2

Direct Inverse Direct Inverse

Max. prob. of a differential 1/4 1/4 1/4 1/4 1/4 1/4 1/4
# with max. probability 24 15 15 18 15 15 15

Max. bias of a lin. approx. 1/4 1/4 1/4 1/4 1/4 1/4 1/4
# with max. bias 36 30 30 32 30 30 30

Algebraic Degree 3 3 3 3 3 3 3
# components of deg 3, 2 12, 3 15, 0 15, 0 14, 1 15, 0 15, 0 15, 0

Algebraic Immunity 2 2 2 2 2 2 2
Branch Number 2 2 2 2 2 2 2
Fixed Points 4 0 0 2 0 0 0
Minimal depth (GE) 3.5 5 4.5 3.5 4 4.5 4
Minimal area (GE) 12.8 20.2 19 14.17 16.5 20.2 19

S2’ Property S2 holds and there are exactly 30 linear approximations with absolute bias
1/4.

Finally, another important property is the full diffusion property:

S4 Each input bit of the S-Box shall influence each output bit non-linearly.

This property is easily verified from the SOP of each output bit: each input bit should be
present in each output bit in at least one product of weight at least two.

Property S4 is very important in the design of the second MIDORI S-Box, to ensure
proper diffusion of the input bits to all bits of the state. We shall consider also of the
following slightly relaxed version of Property S4, that, as defined in § 3.4, will suffice to
ensure an analogous diffusion property with our design:

S4’ At least three input bits of the S-Box influence each output bit non-linearly, and there
is at most one input bit that influences only three output bits non-linearly;

We now describe the three S-Boxes that we have selected for QARMA and compare them
to the MIDORI and PRINCE S-Boxes, whose properties have been the starting point for our
own investigation. Several properties of these S-Boxes are summarised in Tables 4 and 5.
Minimal depth and minimal area refer to our implementation (cf. Section 5).

3.3.3 A Lightweight MIDORI-like S-Box with Improved Cryptographic Properties

The MIDORI S-Box has four fixed points, three non-zero component functions of algebraic
degree just 2, and it satisfies Properties S1, S2, and S4’, but not S1’ and S2’. We aim at
improving on some of these parameters.

We use the candidate sieving technique described at the end of § 3.3.1 to search the
involutory S-Boxes with no more than four fixed points. In order to search them all, we
modify Prissette’s algorithm [Pri10] to enumerate all fixed-point free involutions over a
specific set to generate all involutions with a specific subset of fixed points.

We found an alternative with the same depth but only two fixed points, and only one
non-zero component function of algebraic degree 2 instead of three.

This S-Box, that we propose for the lightest versions of QARMA is

σ0 := [ 0, 14, 2, 10, 9, 15, 8, 11, 6, 4, 3, 7, 13, 12, 1, 5 ] .

It has two fixed points instead of four. Interestingly, this S-Box improves on the MIDORI
one also on the number of differentials and linear approximations of maximal likelihood or
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Table 5: The Bit-Flipping Pattern of Various S-Boxes

σ0 & MIDORI Times b bits are flipped

Flipping bit one two three four

0 5 2 1 0
1 4 4 0 0
2 5 2 1 0
3 2 4 2 0

σ1 Times b bits are flipped

Flipping bit one two three four

0 3 4 1 0
1 3 4 1 0
2 3 4 1 0
3 3 4 1 0

σ2 Times b bits are flipped

Flipping bit one two three four

0 2 1 4 1
1 2 4 2 0
2 2 3 2 1
3 6 2 0 0

σ2 Times b bits are flipped

Flipping bit one two three four

0 5 1 1 1
1 2 3 2 1
2 2 5 0 1
3 3 2 3 0

PRINCE Times b bits are flipped

Flipping bit one two three four

0 5 2 1 0
1 2 2 4 0
2 4 4 0 1
3 4 2 2 0

PRINCE inv Times b bits are flipped

Flipping bit one two three four

0 4 2 2 0
1 2 3 2 1
2 4 1 2 1
3 5 2 1 0

bias: respectively 18 and 32 versus 24 and 36 for the MIDORI S-Box (cf. Table 4). Hence
it satisfies Properties S1, S2, and S4’, and with respect to Properties S1’ and S2’, even
though it does not satisfy them, it is closer to the ideal minima than the MIDORI S-Box.

We also consider the output weight distribution of single bit input differentials. For
our S-Boxes we display this in Table 5. The MIDORI S-Box and σ0 have the same the
bit-flipping patterns, and a single bit input difference will produce a single bit output
difference with likelihood 1/2.

The critical path is 3.5GE as for the MIDORI S-Box, its area is 14.17GE in the process
used in our implementation (compared to 12.8GE for the MIDORI S-Box), cf. Section 5.

The search lasted only a few seconds on a single core of a 2,4 GHz Intel Core i7 laptop.
Interestingly, we found no S-Box where the values of the two fixed points differ on more

than one bit, which implies that in this situation it is important that the diffusion layer
does not always map these values onto themselves and the round constants influence other
bits as well, to prevent characteristics that map a small subset of possible states onto itself.
This is one of the motivations in the design of the linear layer in § 3.1.

3.3.4 A Compact, Optimal, Involutory S-Box

We found also the following involutory S-Box with no fixed points:

σ1 := [ 10, 13, 14, 6, 15, 7, 3, 5, 9, 8, 0, 12, 11, 1, 2, 4 ] .

The output weight distribution for single bit input differentials is given in Table 5. For any
b, each input bits has the same number of 1-bit to b-bit differentials – this is the reason we
call this S-Box homogeneous. This may make individual bits less distinguishable from each
other, for instance under a threat model for physical attacks that takes into account power
consumption. σ1 satisfies Properties S1’, S2’, S3 and S4. Its depth is 4 and the area is
16.5GE. This is the default S-Box for QARMA in all its versions.
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Figure 6: The Construction of the 8-bit S-Box Σ of QARMA-128
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Figure 7: Alignment of Output and Input Bits of Consecutive Instances of the 8-bit
Composite S-Box

3.3.5 The Lightweight S-Box from the PRINCE Family

It may be requested that the S-Box is non-involutory. For this purpose, we have filtered
all the S-Boxes allowed for PRINCE, which fall into eight affine equivalence classes. These
S-Boxes all satisfy Properties S1’ and S2’, as well as S3 and S4.

In fact, we selected an S-Box which is affine equivalent to the S-Box S6 as defined in
the PRINCE paper, because it and its inverse can be implemented with depths of 4.5 and 4
respectively, which seem to be optimal among all PRINCE S-Boxes according to the bounds
provided by our search tools. This S-Box and its inverse are:

σ2 = [ 11, 6, 8, 15, 12, 0, 9, 14, 3, 7, 4, 5, 13, 2, 1, 10 ]
σ2 = [ 5, 14, 13, 8, 10, 11, 1, 9, 2, 6, 15, 0, 4, 12, 7, 3 ] .

These depths are smaller than those required by the default PRINCE S-Box, and the area
is the same – approximately 20.2GE for the S-Box and 19GE for its inverse.

All the non-zero component functions have algebraic degree 3. The S-Box has no fixed
points and the output weight distribution for single bit input differentials for both σ2 and
σ2 is given in Table 5. It has are less single bit to single bit differentials than the standard
PRINCE direct and inverse S-Boxes.

3.4 The 8-bit S-Boxes
As in MIDORI-128 we construct an 8-bit S-Box Σ by placing two instances of a single 4-bit
S-Box in parallel. However, we wire the input and output bits in a single and simpler
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Figure 8: Three-Round Full Diffusion Property

way, as shown in Figure 6, which is asymmetric. The S-Box σ is one of the S-Boxes σi
described in § 3.3. If we write a 8-bit cell of the state as (x7, x6, x5, x4, x3, x2, x1, x0), σ is
applied to (x7, x6, x5, x4) producing the output bits (x′7, x′5, x′3, x′1), and to (x3, x2, x1, x0)
producing the output bits (x′6, x′4, x′2, x′0), and the output of the combined 8-bit S-Box is
(x′7, x′6, x′5, x′4, x′3, x′2, x′1, x′0). Since the construction is not symmetric, the opposite wiring
must be implemented for Σ.

The rationale behind this is that in combination with the chosen matrices M , if the
output of Σ is cyclically rotated by any amount of bits and then fed into another instance
of Σ, exactly 2 bits of the output of one of the two 4-bit S-Boxes in the first Σ are wired
into each of the two 4-bit S-Boxes of the second instance of Σ. This is clear because all the
outputs of one instance of σ will be wired into the even numbered bits of the output of Σ,
and the outputs of the other instance of σ into the bits in the odd numbered positions of
the output of Σ, so any group of four cyclically adjacent output bits of Σ will be equally
partitioned among the two sources. This is also graphically depicted in Figure 7.

If the 4-bit S-Box σ satisfies Property S4, a three-round full diffusion property as in
MIDORI-128 (Theorem 1 in [BBI+15]) still holds, namely any input bit nonlinearly affects
all 128 bits of the state after 3 full rounds (i.e. not short rounds). This serves in order
to avoid having an independence property similar to the one exploited in the attack on
full-round KLEIN [LN14], in other words to make sure that the cipher does not act like two
64-bit ciphers side by side. Full diffusion holds even under weaker Property S4’, which
means that the S-Box σ0 can be used also in QARMA-128. In the following Theorem we give
a proof of this fact.

Theorem 3. In QARMA-128, any input bit nonlinearly affects all 128 bits of the state after
three rounds, intended as the first short round, two full rounds, and the diffusion layer of
the following one.

Proof. Let us assume the weaker Property S4’, and use Figure 8 as a graphical aid.
An input bit affects (at least) three bits in the same 8-bit cell after the first S-Box

layer. Because of the construction of the 8-Bit S-Box these bits are all in either the
even-numbered or the odd-numbered output bits. Hence, regardless of the rotation induced
by the matrix layer, two bits influence one half of the inputs to a 8-bit S-Box in the next
round, and at least one bit influences the other half of the inputs to that S-Box.

This means that after the second S-Box layer at least 7 = 4 + 3 bits are affected per
cell, which implies that all 8 output bits are affected after the third S-Box layer.
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3.5 The ω Function
The indexes of the tweak register modified by ω have been chosen along the length 14
cycle of the tweak cell permutation - and one along the length 2 cycle (1, 5) - in order to
minimise the number of cell values with the same difference to the corresponding cells
of the round constants (and so make partial slide attacks less likely) and maximise the
spread of different values if one starts with a non-zero tweak with all equal cells.

3.6 The Round Constants
We did not consider sparse constants: since they are hardwired, and XOR and XNOR have
the same costs, generating the round tweakey has the same cost regardless of the Hamming
weight of the constants.

4 Security Analysis
Security Model. We shall assume the attacker does not have control on the key, but she
may have full control on the tweak. A TBC is understood to offer n bits of (time-data
tradeoff) security if no better attacks are possible than time 2n−d−ε with 2 d chosen or
known {plaintext, ciphertext, tweak} triples, for a small ε (e.g. 2).
Remark 6. In some applications, such as memory encryption, adversarial control on the
tweak may be somewhat limited, for instance it may be only passive. A further technique to
reduce adversarial control on the tweak used in the block cipher itself has been introduced
in § 2.9. Designing a cipher under the above security model will therefore exceed the
requirement of such a use case, strengthening the security margins.

4.1 Common Attacks on Block Ciphers
One of our goals was to be able to carry over as much as possible of the security analysis
of MIDORI and MANTIS while at the same time improving both diffusion characteristics and
the bounds deriving from the cryptanalysis of Even-Mansour schemes. This is achieved by
giving the forward rounds a similar structure to the MIDORI rounds.

Linear and Differential Cryptanalysis. Looking at Table 3, we see that no related-tweak
linear or differential distinguisher based on a characteristic has likelihood better than 2−60

for QARMA-64 already when r = 5, and note that not only the bounds are not tight (bounds
would be only tight if the S-Boxes could be chosen freely for each cell and round), but
they also express a security level without taking whitening into account. (With r = 6 this
probability already decreases to 2−88.) QARMA7-64 has four more rounds, which should
provide a sufficient security margin.

QARMA-128’s state can be viewed as thirty-two 4-bit cells, but we did not find this
partition useful for a security analysis based on trails. The main reason is that the 8-bit
S-Box construction Σ (cf. Figure 6), has branch number 2 viewed as a map from two
4-bit cells (x7, x6, x5, x4) and (x3, x2, x1, x0) to two 4-bit cells (x′i+7, x

′
i+6, x

′
i+5, x

′
i+4) and

(x′i+3, x
′
i+2, x

′
i+1, x

′
i+0) for any value of i with the indexes taken mod 8. Hence, if the input

is active, only one of the two 4-bit outputs is guaranteed to be active. Heuristically, after
the first round we can estimate that if one of the two 4-bit outputs in a 8-bit cell is active,
then the other output is active with a likelihood of 75%. This tells us that the actual
active S-Box counts are most likely much larger than the counts given in Table 3, and for
this reason we did not require r = 12 to assume security against linear and differential
attacks for QARMA-128. However, a bound along these lines can probably only be proved by
converting the cell-wise MILP model into a bit-wise one, which would be computationally
infeasible, except for a very small number of rounds.
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Table 6: Upper Bounds on the Algebraic Degree of QARMA

Rounds 1 2 3 4 5 6 7 8 · · ·

QARMA-64 3 9 27 51 59 62 63 63 · · ·
QARMA-128 3 9 27 81 112 122 126 127 · · ·

Slide Attacks. The cipher uses four different types of rounds, five if we include the
pseudo-reflector. Even similar rounds are distinguished by the addition of the different
round constants. Hence, it seems that slide attacks can not present a threat to QARMA.

Impossible Differential and Zero-Correlation Linear Cryptanalysis. To verify the resis-
tance against these attacks, we use the characteristic matrix technique from [SLG+16]. It
is easy to verify that either going through three rounds or (at least) two rounds and the
pseudo-reflector one obtains a all-non-zeros product of characteristic matrices, concluding
that r = 3 is already sufficient to avoid the attacks.

Boomerang, Integral and Meet-in-the-Middle Attacks. The arguments in the MIDORI
paper against these attacks can be applied straightforwardly. For instance, it should be
difficult to construct meet-in-the-middle attacks on 11 rounds on QARMA-64 or QARMA-128.
Indeed, there is a meet-in-the-middle key recovery attack to 10-round QARMA-64 with the
outer whitening removed [ZD16] that uses 253 chosen plaintexts and has a time complexity
of 270.1 encryptions, with a memory footprint of 2123.6 bits. Against 10-round QARMA-128
without outer whitening, the same attack has complexities of 2105 chosen plaintexts, time
2141.7 encryptions, and 2240.6 bits of memory. It does not seem to be extendable further.

4.2 Algebraic Attacks
We consider the applicability of algebraic attacks [CP02] on QARMAr-n. For this purpose
we view the S-Box layer of QARMA-128 as 32 4-bit S-Boxes and consider the output bit
intertwining as part of the diffusion layer.

We first argue that QARMA-n has sufficiently many rounds to reach maximum algebraic
degree n− 1. Using [BCC11, Theorem 2], we see that if Fi is the function formed by the
first i rounds of QARMA-n, the following bound

deg(Fi+1) ≤ min
(

3 · Fi, n−
⌈
n− deg(Fi)

γ

⌉)
holds, where for our (4-bit) S-Boxes γ = 3. We thus obtain the upper bound for the
algebraic degree in Table 6, from which we infer that QARMA-64 and QARMA-128, that have
at least 12 and 18 rounds in their most aggressive versions, should have sufficiently many
rounds to reach maximum degree.

Let us count the quadratic equations and variables. Our 4-bit S-Boxes are optimal
according to the definition in [LP07], where it is also proved that they are described by
e = 21 quadratic equations in the v = 8 input/output variables over F2. Hence, the entire
system for a fixed-key QARMAr-n permutation consists of n4 · (2r+ 2) · e quadratic equations
in n

4 ·(2r+2) ·v variables. For QARMA7-64 this translates to 5376 equations in 2048 variables,
and for QARMA11-128 to 16128 equations in 6144 variables. For comparison, a fixed-key
AES-128 permutation consists of 6400 equations in 2560 variables, and a fixed-key AES-256
permutation consists of 8960 equations in 3584 variables.

While it is still unclear whether algebraic attacks can be effective against the AES, it is
also clear that QARMA-64 may be more amenable to such attacks. However, the sizes of the
systems are roughly of the same magnitude, suggesting similar resistance. The situation
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Figure 10: Propagation of Invariant Subspace Cosets Through the Central Construction

is akin to that of PRINCE and MANTIS, whose equation systems are slightly smaller. The
situation is very different for QARMA-128, where the system is significantly larger than
AES-128’s – and in fact even larger than the system for AES-256 – implying that QARMA-128
should offer much better resistance against algebraic cryptanalysis.

4.3 Invariant Subspace Cryptanalysis
Invariant subspace attacks such as those successfully mounted against MIDORI-64 [GJN+16]
are a threat to any key-alternating block cipher with a PRINCE-like key schedule, including
QARMA. Introduced in [LAAZ11] to cryptanalyse PRINTcipher and improved in [LMR15] to
break Robin, iSCREAM, and Zorro, these attacks exploit a proper subspace V of the entire
state space that is invariant up to translation under the round functions. This immediately
leads to a distinguisher: if initial and final state, i.e. plaintext and ciphertext, belong to
certain (possibly different) cosets of V, then the key k (or its subkeys) must belong to a
specific coset of V as well and thus k is a weak key that can be at least brute-forced in
time strictly smaller than brute-forcing the whole key space.

Here we only consider the simple type of attack where all the affine subspaces between
the rounds are cosets of the same vector subspace V . This is the same setting of the attacks
mentioned above. In particular, also MIDORI uses different types of rounds.

In Figure 9 we depict the first three rounds of the forward part of QARMA, where Ti is
the value of the tweak at the i-th round, 0 ≤ i ≤ r.

Put `(x) := (τ ◦M)(x) and assume that (S ◦ `)(u+V) = v+V where V ⊆ F16m
2 . Since

we are assuming that the first short round maps a certain coset x+ V of V to v + V, we
have that ` maps u+ V to x+ V. Since ` is a linear operator not only over R4×4

m (where
Rm is the ring defined in § 3.1) but also when considered as a mapping of F16m

2 onto itself,
we have `(u) + `(V) = `(u+ V) = x+ V for some x, whence `(V) = V and x+ `(u) ∈ V.

We now see that all ci + Ti, i ≥ 1 in the forward part of QARMA must belong to a
fixed coset z + V of V and therefore all (ci + Ti) + (c1 + T1) ∈ V, i ≥ 1 (this also implies
k0 ∈ (u + v + z) + V). Note that we are not making an assumption on c0 + T because
once the cosets are known to which the core and whitening keys must belong in order to
form a weak key, the coset of P is easily derived.

A further observation is that the easiest form of such an attack implies that the
transitions in the backward rounds of QARMA mirror those of the forward rounds. Hence
α = (ci + Ti) + (ci + α+ Ti) ∈ V as well; If the cosets properly chain through the forward
rounds, then they automatically chain through the backward rounds as well.

Now, in order to understand the action of τ on the cosets, let us consider the central
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Table 7: Average and Ranges for the Lower Bounds on the Dimensions of Invariant
Subspaces of QARMA and MANTIS, Comparing Different Diffusion Matrices

r 4 5 6 7 8

QARMA-64 /M4,2 Average 54.41 60.32 62.08 63.02 63.51
Range [41..58] [48..62] [52..63] [55..64] [58..64]

QARMA-64 /M4,3 Average 50.51 57.46 59.95 61.38 62.39
Range [36..54] [45..60] [51..61] [53..62] [56..63]

QARMA-64 /M0 Average 38.66 47.15 51.90 54.91 57.18
Range [28..41] [35..51] [41..54] [45..56] [50..58]

MANTIS Average 39.59 46.92 52.93 55.37 57.31
Range [32..41] [38..48] [46..54] [50..56] [51..58]

r 7 8 9 10 11 12

QARMA-128 /M8,2 Average 122.17 123.61 124.72 125.69 126.51 127.15
Range [115..123] [117..124] [120..125] [121..126] [122..127] [124..128]

QARMA-128 /M8,3 Average 105.45 114.01 117.92 120.01 121.50 122.73
Range [93..108] [104..116] [109..120] [112..121] [115..122] [118..123]

QARMA-128 /M0 Average 82.43 92.17 99.61 104.17 107.17 109.58
Range [73..84] [80..94] [84..104] [94..106] [98..108] [101..110]

construction, with coset propagation as in Figure 10. Proceeding from the two sides
towards the center, we see that the image of v + V under τ equals k0 + `(v) + V – in other
words it must be a coset of V, and therefore τ(V) = V. Since V is invariant under τ and
` = τ ◦M , it is invariant also under M .

This allows us to construct a space U that must be contained in any invariant subspace
V of the cipher. It is generated by the vectors α, ci + c1 + Ti + T1, 1 ≤ i < r, and by the
vectors obtained repeatedly applying τ and M to this initial set. If U is very large in Fn2 ,
i.e. it has small codimension, then the same is true of any invariant subspace V.

In the case of QARMA7-64, for T = 0 this space has dimension 62. For QARMA11-128 with
T = 0 this space has dimension 127. We also computed the dimension of the space V for
one million random values of T for various values of the parameter r, for both QARMAr-64
and QARMAr-128, using the matrices selected in § 3.1 and other candidates, including the
MIDORI circulant M0. The resulting values of the average dimension of U together with
the smallest and largest dimensions found are reported in Table 7.

The smallest values in each range are very rare; calculating dim(U) for QARMA7-64 for
ten million random T ’s we obtain that the dimensions from 55 to 64 occur respectively 2,
27, 252, 1783, 10338, 60780, 369443, 1748626, 4839951, and 2968798 times. It is likely that
smaller values occur, but are even rarer.
Remark 7. This data suggests that the smallest invariant subspace is at least almost
the whole keyspace for the recommended values of r, and using the selected matrices,
essentially giving no weak key classes.

The obvious question now is, what happens if we take into account the action of S as
well, for instance using the algorithm presented in [LMR15] taking U as the nucleon? To
answer this question, we have combined the code used in [LMR15] with our implementations
of the construction of U . So far we have not been able to find any invariant subspace with
codimension larger than 1 regardless of the choice of S-Box and tweak for QARMAr-64, resp.
QARMAr-128 for r ≥ 4, resp. r ≥ 7.

Remark 8. Using the MIDORI matrix, or the discarded matrices listed in § 3.1.2, we obtain
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spaces U of smaller dimension. This is clearly correlated to the presence of rotations, i.e.
the more entries are equal to 1, the smaller is U .

The analysis for QARMA-64 with the MIDORI circulant applies with trivial changes to
MANTIS as well, and the resulting dimensions are quite close. Interestingly, the spaces
found for MANTIS usually have slightly larger dimension that those for QARMA-64 with the
MIDORI matrix, in other words without the ω LFSR the dimensions are larger. The same
phenomenon does not occur with QARMA-64 (using M4,2) and with QARMA-128 (using M8,2):
The average dimensions obtained removing ω show fluctuations by less than ±0.2, and are
therefore not reported.
Remark 9. Our analysis leaves the possibility that for some very rare tweak values there
could be a weak set of keys. It is an open question how to determine these tweaks (if they
exist) and how to exploit the weakness of the keys in this case.
Remark 10. To prove bounds for all tweak values seems to be outside the scope of current
techniques. An analysis along the lines of the subspace trail cryptanalysis [GRR16, GR16],
which would include the cases where the round functions may map cosets of different
spaces would shed a better light on the resistance of QARMA against these types of attacks.

4.4 Security Implications of the Central Construction
It is tempting to dismiss the possibility of reflection attacks or attacks on Even-Mansour
schemes with involutions simply on the basis that the pseudo-reflector do not constitute an
involution. However, the central construction still shows high likelihood self-differentials
that depend on k1, warranting a closer analysis. For simplicity, we use a single matrix M
in the analysis of the central construction here to simplify the notation. This does not
change the results discussed here.

Besides the whitening and the central key addition, a further crucial difference with
respect to MANTIS is the use of two additional ShuffleCells layers. Without them the
central group of state transformations formed by M , S, M , addition of k1, S and M layers
would only act independently on four partitions of the state, each consisting of four cells.
Indeed, with ShuffleCells, better diffusion is achieved: for instance, in QARMA-64 any
single bit of the state on one side of the central construction affects non-linearly at least
four bits in each of twelve cells (out of sixteen) on the opposite side, as opposed to just
four cells without ShuffleCells – and it affects non-linearly all bits of the state after just
one more round, up from all bits in twelve cells. A similar property holds for QARMA-128.
These results are proved similarly to Theorem 3.

A tangible effect is that the active S-Box counts in Table 3 for both Class I and II
matrices are often larger by a count of 2 or 4 than if we evaluate them without modelling
the two ShuffleCells operations.1

Related to this is the fact that the central constructions in PRINCE and MANTIS are
unkeyed. This means that (in non-differential attacks) guessing the state before the
construction gives the state after the construction practically for free. In the case of
PRINCE in [RR16] this led to attacks with a complexity slightly lower than the security
claim for the full cipher. The middle key addition prevents this type of cryptanalysis as
well (and, as explained in Section 5, it does not increase latency).

However, the most important security improvement is regarding (analogues of) reflection
attacks. We use Figure 11 as a reference in the following.

The pseudo-reflector is an involution if and only if the key k1 is a fixed point of M (so
there are 232 such values for QARMA-64. resp. 272 for QARMA-128), and if ∆ = 0 then also

1Also, if we use MILP to count the number of linearly or non-related-tweak differentially active S-Boxes
through the two rounds before and the two rounds after the pseudo-reflector we verify that we have at
least sixteen active S-Boxes with the ShuffleCells and only eight without. This result holds for both
Class I and Class II matrices. This means that the two sub-ciphers of QARMA are better “coupled” by the
central rounds when the additional ShuffleCells are included.
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Figure 11: Reflection Self-Differentials

∆′′ = 0, but at this point the formation of reflection characteristics is thwarted by the
use of the whitening keys in the central rounds, unless w0 + w1 = α or 0, which happens
for exactly two values of w0. We conclude that in this setting for only one key K in 295

(for QARMA-64, resp. 2183 for QARMA-128) a reflection attack could be attempted: In the
case of iterative characteristics, if the palindromic structure begins with a ∆′′′ = α, the
successive differences are 0, then α again, and so on; if the structure begins with a ∆′′′ = 0,
the differences are α, 0, and so on. At the last round the attacker can only try to guess
whether the difference has propagated, because of the whitening. Then, the considerations
in [SBY+15] would apply, for which, in the case of QARMA7-64, we believe similar attack
complexities as in PRINCE to hold (and correspondigly higher complexities would hold for
QARMA11-128).

If k1 is not a fixed point of M , i.e. k1 ∈ ker(M + I), then the pseudo-reflector cannot
have fixed points, since every such fixed point z would satisfy both z = M · z + k1 and
z = M ·z+M ·k1, which is a contradiction. So attacks based on ∆ = 0 cannot be mounted.
But this cannot exclude other types of characteristics.

In fact, for any fixed k1, the self-differential ∆ can take only 232 (resp. 256) equiprobable
values, which depend only on the class of k1 in R4×4/ Im(M+I). In fact, if x+Mx+k1 = ∆,
then (x+ `)+M(x+ `)+(k1 +(M + I)`) = ∆, and there is a 1-1 correspondence x↔ x+ `
between the sets of values for which this difference holds for the two keys.

These values ∆ can then propagate to values ∆′′ with some probability, and for each
such ∆′′ there are two value of w0 for which ∆′′′ = ∆′′+ (w0 +w1) = α or 0. This leads to
analogues of attacks based on the second type of middle-round characteristic in [SBY+15].
Now, we see that for each core key, text and tweak, there are two whitening keys in 264

(resp. 2128) that allow a reflection attack to be bootstrapped. So an attacker would attempt
to change texts and tweaks hoping that the correct differential ∆′′ is hit that leads to
∆′′′ = α or 0, and each time verifying whether the differential holds. Unless k1 is unknown,
no assumption on ∆ can be done.

The improvement with respect to the attacks on reflection ciphers is that the likelihood
of a useful differential ∆′′′ decreases from 2−32 (resp. 2−64) to 2−63 (resp. 2−127) and so
we get correspondingly reduced success likelihoods – the final probabilities are not as small
as our estimates above regarding the ∆ = 0 case (in fact, we obtain 2−107 and 2−189,
respectively), but most likely with data requirements (upwards of 260 for QARMA-64, for
instance) that will not compromise the desired level of tradeoff security. Deriving more
precise complexity estimations is definitely an important area of research.

Also, the impossibility to control the self-differentials when k1 and/or w0 are unknown
should prevent analysis based on impossible reflection characteristics.
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4.5 Attacks on Even-Mansour Schemes
Recall that the whitening key derivation function o(·) is an orthomorphism. Many of
the attacks described in this subsection apply to single-key Even-Mansour schemes. If
orthomorphisms are used to create a key schedule, the complexity of the attacks usually
increases and approaches that of schemes with independent keys or using independent
permutations (see [CLL+14] for the two-round case). We are not claiming that QARMA’s
structure offers the security of an EM scheme with independent keys and permutations,
but for the attack complexity estimates in the following that are made under a single key
assumption, the results are likely not tight. Finally, consider that attacks on EM schemes
assume the use of random permutations, whereas the concrete functions we are using are
far from that, so the considerations here do not exclude attacks that additionally exploit
some property of our permutations, but only apply to generic attacks.

An analogue of the cryptanalysis described in [DDKS13] seems unlikely: The single-key
three-round with an involution attack is the one that seems closer to our design. It can
be adapted at once observing that, for each fixed core key, the mapping x 7→ ∆ assumes
only 2n/2 values which occur 2n/2 times each (with respect to the notation in [DDKS13],
this is in-degree t). This leads to a time/data/memory (T/D/M) tradeoff of TD = 23n/2,
where the data consists of known texts and memory is online storage. The attack has to
be repeated for each candidate core key in order to determine the whitening key as well,
so we obtain T = 27n/4, D = 23n/4 and M = D. Since evaluations of the sub-ciphers can
be done for pairs of core keys (k0, k0 + α), the memory usage can be halved. For QARMA-64
this turns into an attack with 2112 time and 247 data.

The single-key two-round attack can be applied, under the assumption that for, a known
core key, a certain ∆ will occur with likelihood 2−n/2 (but choosing the plaintext does
not seem to give control on this event). In this case the cipher collapses into a single-key
two-round EM construction, not a single round EM, because o(·) is an orthomorphism. For
each core key, time complexity is slightly smaller than 2n, data (known texts) is slightly
smaller than 23n/4, and memory is around 2n/4. The time complexity must be multiplied
by 2n to cover all core keys, and the data by 2n/2 because of the usable proportion, whereas
online memory usage stay the same. We do get an attack with T slightly better than brute
force, but TD ∼ 214n/4.

These estimates are all better than the corresponding complexities for attacks on the
simpler FX-construction used, say, in PRINCE.

Similarly, for the attacks in [DDKS15], with the same likelihoods for a known central
difference ∆ for a certain core key (resp. class), the equations to solve for the whitening
key (and possibly the remaining bits of the core key) would still correspond to the whole
cipher minus the central construction, so we do not expect it to be significantly easier than
attempting to exploit reflection characteristics.

Finally, we also observe that a three-round, two-key EM scheme, according to [DDKS14]
is attacked with a time/data tradeoff of TD = 22n where M = D (for unkeyed permuta-
tions). It is an open question whether our scheme, with a second key derived from the
first by means of an orthomorphism offers the same security bound.

4.6 Security Claims
Similarly to MANTIS and PRINCE, for QARMA7-64 and QARMA11-128, we claim that they attain
n bits of tradeoff security.

The attacks on MANTIS described in [DEKM16] do not apply to QARMA because of the
different choices of S-Boxes, the use of the new Almost-MDS matrices and the new central
construction. Despite this, we do not claim security against practical attacks already for
QARMA5-64 in the sense defined for MANTIS and PRINCE, i.e. that no related-tweak attack
should be applicable with less than 230 chosen or 240 known text pairs. We suggest that
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QARMA5-64 should be used only if the output is heavily truncated (as in the generation of
very short tags) or tweak masking/extension is used, and in all other cases the security
against practical attacks in the above sense applies first to QARMA6-64.

Regarding QARMA-128, if a 192-bit security level is required, we believe that QARMA9-128
offers it with a substantial security margin. However, we recommend to use QARMAr-128
at the 256 bit security level with r = 11, and to use a parameter r < 11 only with tweak
masking/extension.

4.7 Security for Specific Applications
Software Security. One of the applications of QARMA, as mentioned at the beginning of
the paper, is to software security. A common mitigation against vulnerability exploitation
techniques such as return oriented programming (ROP) and jump oriented programming
(JOP) consists in the enforcement of control flow integrity (CFI) [ABEL05]. CFI ensures
that the control flow of the application stays within the control flow graph, as determined
ahead of execution. In order to achieve this, several techniques can be employed, including
stack canaries and the shadow stack, with potentially high performance costs [DMW15],
and even encrypting the stack [TCV04] with expensive cryptographic techniques.

A different approach consists in taking advantage of the fact that some bits are unused
in 64-bit pointers, depending on the environment between 3 and 32 bits. We therefore
compute a keyed and tweaked tag of the pointer and insert it in its unused bits – where
the key is controlled by a higher execution environment and the tweak is a context (e.g.
current address/function, or the unique label of a connected component of the call graph).
The tagged pointer is then verified before use. For instance, if the pointer is the link
register, it is tagged at a function’s prologue and it is verified at the function’s epilogue
before returning to the caller. This gives a low security level per pointer, but guessing more
pointer tags becomes increasingly more difficult and significantly raises the bar for the
adversary. In particular, only very short ROP chains may be still feasible with a likelihood
acceptable for the attacker, and only for the shortest tags – reducing the complexity of the
work also for the code auditors.

In our applications these tags are computed by truncating QARMA’s output to 32 bits
or less. This also means that attacks on QARMA should have complexity lower than 232 in
order to speed up software exploitation attacks, and the attacker must be able to read
the stack (possibly with invasive hardware techniques) only obtaining a limited number
known truncated ciphertexts. In light of our analysis, this seems extremely unlikely.

More details can be found in [ARM16, QPS17].

Memory Encryption. In the introduction we have argued why TBCs are ideally suitable
for applications such as memory encryption when the permutation computed by the cipher
must be a function not only of the secret key, but also of the memory address and/or a
nonce or counter. QARMA was designed to meet the requirements of this use case.

Even if Galois multiplication or another “tweak masking” function is used to mask
the tweaking value(s) or to extend the tweak length as described in § 2.9, the resulting
additional latency will often be still significantly lower than the expensive key derivation,
say, in the XEX mode. Tweak masking can also be used with any instance of QARMA to
provide additional hedging against related-tweak and invariant subspace cryptanalysis.

Hashing. Just as the SKEIN hash function [FLS+10] is designed around THREEFISH, we
can adapt SKEIN’s UBI Chaining Mode to construct a hash function from QARMA. The
result is a 64- or 128-bit keyed hash function, which is not acceptable for high-security
applications. This is however useful in use cases where the QARMA functionality is already
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exposed through the ISA and the security goal is to raise the bar for the adversary instead
of making an attack absolutely unfeasible.

5 Hardware Implementation
The most important property of implementations of QARMA is the latency, which is strictly
correlated to the critical path length, usually measured in NAND gate equivalents (GE).

It is very difficult to provide a fair comparison of different ciphers across multiple
papers, since they are often implemented using different synthesis toolchains, libraries,
and manufacturing processes – with 0.18µm processes at 100KHz being quite common.
The low frequency helps because most symmetric cryptographic algorithms will run in
a clock cycle, and pipelining can be avoided, thus levelling the ground, but it might not
necessarily reflect the reality of contemporary high-performance hardware.

We are in the fortunate situation where there are few ciphers that (may) target our use
cases, so it is not unduly challenging to provide a sufficiently complete comparison. We use
a FinFet 7 nm manufacturing process. Our gate library contains different variants of each
of the basic gates, differentiated both in number of inputs and drive strength. The GE
number is computed with respect to the smallest NAND gate in the library, the standard
4T cell. The area ratios between the various standard gates may differ from other, more
commonly used libraries: For instance, whereas XOR = XNOR = 2 NAND as usual for
the timing path, we have XOR = XNOR = 2.75 NAND for the area. Besides 3- and 4-way
classical gates, the library contains several composite gates, such as (x, y, z) 7→ (x ∧ y) ∨ z
and (x, y, z) 7→ x ∧ (y ∨ z), also with negated inputs.

We first report on our implementations of QARMA-64, PRINCE and MANTIS. The results
are given in Table 8. All our implementations allow registers and pipeline stage boundaries
to be placed between any two rounds, including the central construction, using parameters
set at synthesis time. For instance, QARMA7-64 can be instantiated as a single cycle
implementation for low frequencies, but it can also be split into two, three, or any number
of stages up to 16, in order to be pipelined at very high frequencies.

We synthesised each algorithm twice, targeting minimum area and minimum delay, for
unrolled, non-pipelined single cycle operations. In order to achieve this and to ease the
synthesis process, we kept clock frequencies low with respect to production runs (which
require pipelining). Minimum area was always attained at 100Mhz and synthesis was
relatively fast – usually less than 1000 core seconds on a dedicated server. However, in
the minimum delay case the synthesis software had to perform several optimisations, and
synthesising one instance of QARMA-64 easily took more than 8000 core seconds.

In Table 9 we report results for QARMA-128 and the AES. Because of the predictably
even larger synthesis times for QARMA-128, we have considered first individual rounds and
then stitched the circuits together. As a result the results could likely be slightly, but
not significantly, improved. The AES-128 implementation was already available, however
we note that it is pipelined, and that is why we decided to report also the latency of a
single full round. The full AES delays we list in Table 9 are extrapolations based on the
latency of each component in the implementation, and they are only an approximation of
the delays the ciphers would have if pipelining were to be removed.

One notices immediately that for the minimum area synthesis results the area in GE of
PRINCE and MANTIS is bigger than the values given for instance, in [BCG+12] and [BJK+16],
and the difference is considerably bigger for MANTIS. There are a few possible reasons for
this discrepancy:

1. The geometries are much smaller than in the processes usually reported in the
literature on lightweight ciphers. As a result the synthesis software needs to place
more gates with high driving strength, which have larger area, to counter leakage.
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Table 8: Delay and Area for QARMA-64, MANTIS and PRINCE, all fully unrolled

Targeting Minimum Area Minimum Delay

Delay Area Delay Area

Cipher ns µm2 GE ns µm2 GE

QARMA5-64-σ0 4.52 733.0 13395 2.20 1238.1 22626
QARMA6-64-σ0 5.28 836.7 14984 2.45 1403.0 25640
QARMA7-64-σ0 6.04 953.0 17109 2.75 1595.3 29154
QARMA8-64-σ0 6.59 1053.3 18942 3.14 1778.9 32637
QARMA5-64-σ1 5.07 752.5 13751 2.43 1406.3 25700
QARMA6-64-σ1 5.80 882.4 16126 2.84 1592.7 29106
QARMA7-64-σ1 6.23 1004.8 18362 3.25 1879.9 34354
QARMA8-64-σ1 6.63 1125.9 20575 3.56 2065.6 37749
QARMA5-64-σ2 4.96 791.9 14472 2.42 1474.0 26937
QARMA6-64-σ2 5.69 919.0 16795 2.84 1704.1 31142
QARMA7-64-σ2 6.17 1042.7 19055 3.19 1931.4 35296
QARMA8-64-σ2 6.61 1153.2 21075 3.60 2145.9 39216
MANTIS5 4.41 660.7 12075 2.20 1152.3 21058
MANTIS6 5.11 764.4 13968 2.56 1359.1 24837
MANTIS7 5.85 866.3 15831 2.94 1532.1 27998
MANTIS8 6.48 956.2 17474 3.33 1699.3 31054
PRINCE 4.07 476.2 8703 2.12 1119.8 20464
Mult. in F264 1.05 715.9 13083 0.44 924.6 16897

2. The ratio of the area of XOR/XNOR gates to NAND gates is higher than in other
libraries. As a result, the diffusion layer and the (twea)key addition carry more
relative weight. This is only partially offset by the use of smaller combined gates.

3. At finer processes, wiring also has a larger relative area impact, and, besides the
data obfuscation path and the key schedule, tweakable ciphers need to carry along
the tweak as well.

The last two points also explain the fact that the area difference between PRINCE and
MANTIS is in our implementations larger than in [BJK+16].

A surprising outcome of the implementations is that the versions of QARMA based on σ2
often slightly outperform those based on σ1, whereas the latter consistently have slightly
smaller area. This means that the synthesis tools performed some optimisations on the σ2
variants that were not obvious at the time of the S-Box design.

Note also that the delays of MANTIS and QARMA-64 using the S-Box σ0 are quite close,
despite the fact that the middle key addition is on the critical path of the data obfuscation
path. In fact, this key addition does not add latency, since it follows a matrix multiplication,
that for each output bit needs to compute two XORs, which are cascaded, resulting in a
circuit with a depth of two XORs. The key addition is a third XOR, that can be computed
in parallel with the first one, so we obtain a tree of three XORs with the same depth of
two XORs. In any case, QARMA-64 is latency-wise competitive with respect to MANTIS also
when other S-Boxes are used, while (possibly) offering better hedging against various types
of cryptanalysis.

With respect to PRINCE, the most obvious comparison is done pitting a single QARMA7-
64 instance against PRINCE used in a XEX-like construction where PRINCE’s whitening
key is derived using a second PRINCE instance and Galois multiplication is used on the
whitening key for each following block in the same cache line. Even using QARMA’s largest
implementation (using the σ2 S-Box) with QARMA we have a latency of 6.17 ns for the first
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Table 9: Delay and Area for QARMA-128 (fully unrolled), and the AES (pipelined)

Targeting Minimum Area Minimum Delay

Delay Area Delay Area

Cipher ns µm2 GE ns µm2 GE

QARMA9-128-σ0 7.15 2321.4 42423 3.79 3844.6 70260
QARMA10-128-σ0 7.95 2528.2 46203 4.16 4225.8 77226
QARMA11-128-σ0 8.71 2732.2 49931 4.53 4607.0 84192
QARMA9-128-σ1 7.43 2461.0 44975 4.03 4430.6 80969
QARMA10-128-σ1 8.15 2707.2 49475 4.40 4866.0 88926
QARMA11-128-σ1 8.88 2947.9 53872 4.80 5301.4 96883
QARMA9-128-σ2 7.38 2552.4 46645 4.18 4632.5 84658
QARMA10-128-σ2 8.12 2804.2 51246 4.60 5087.7 92977
QARMA11-128-σ2 8.84 3027.4 55325 4.99 5520.3 100883

AES-128, pipelined 15.67 3894.1 71164 Note: The latency of one
AES-256, pipelined 21.99 5533.7 101128 full AES round is 1.58 ns

block for a total area of 19055GE, whereas with PRINCE the latency is at least 8.14 ns
and the circuit has a total area of 8703 × 2 + 13083 = 30489 GE (including the Galois
multiplication). If both the whitening and core PRINCE keys depend on the tweak, as
in [BDA15], we may need a total of three PRINCE instances and one Galois multiplier, bring
the area requirement to 8703× 3 + 13083 = 39192 GE.

Hence, in a complete solution QARMA-64 has both an area and a latency advantage with
respect to a solutions designed around a non-tweakable cipher. With the 128-bit versions
(comparing with the AES) the area and latency advantages increase further.

6 Conclusions and Open Questions
We have introduced QARMA, a new lightweight TBC family that comes in 64 and 128 bit
block and tweak sizes, aimed at 128 and 256 bit levels of security, respectively.

QARMA-64 is the standard block cipher used in the ARMv8.3-A ISA extensions for
pointer authentication [ARM16], which have been designed by Qualcomm’s Product
Security Team [AKT14, QPS17].

A memory encryption engine designed around QARMA can offer both area and latency
advantages with respect to solutions designed around non-tweakable ciphers.

The cipher’s security has been analysed and we believe it offers reasonable security
margins with the recommended numbers of rounds. However, there is need for more
cryptanalysis of the integral and structural types, including subspace trail cryptanalysis.

We believe that QARMA can spur research into the analysis of reflection-like differentials
in ciphers that are symmetric around a non-involutory structure. An open question is how
to design MILP models for counting active S-Boxes in order to attain better bounds on
the number of the active 4-bit halves in QARMA-128’s (and MIDORI-128’s) 8-bit S-Boxes –
without using models that are bit-wise throughout, which quickly become impractical.

Finally, the tweak masking/extension technique proposed in § 2.9 still needs to be
properly analysed.
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A Test Vectors
We include here test vectors for all versions of QARMA.

A.1 QARMA-64 with M = Q = M4,2

P = fb623599da6e8127 T = 477d469dec0b8762
w0 = 84be85ce9804e94b k0 = ec2802d4e0a488e9

Using the S-Box σ0.

QARMA64_5
C = 3ee99a6c82af0c38

QARMA64_6
C = 9f5c41ec525603c9

QARMA64_7
C = bcaf6c89de930765

Using the S-Box σ1.

QARMA64_5
C = 544b0ab95bda7c3a

QARMA64_6
C = a512dd1e4e3ec582

QARMA64_7
C = edf67ff370a483f2

Using the S-Box σ2.

QARMA64_5
C = c003b93999b33765

QARMA64_6
C = 270a787275c48d10

QARMA64_7
C = 5c06a7501b63b2fd

A.2 QARMA-128 with M = Q = M8,2

P = 2fdbb6a2c395e959 fdfa964e98c1a2e7 T = 242767fd3486a96d fe9c904be82756a2
w0 = 58948b7ef8e5ec7e f9f8f014de0924eb k0 = 4e7ce2081002eda4 fe20aaa4d868be09

Using the S-Box σ0.

QARMA128_9
P = 2fdbb6a2c395e959 fdfa964e98c1a2e7
C = 81c82ecc34cd73df d221ec5485dc6914

QARMA128_10
P = 2fdbb6a2c395e959 fdfa964e98c1a2e7
C = b9f9d94168846c8c ce53883f43cb747b

QARMA128_11
P = 2fdbb6a2c395e959 fdfa964e98c1a2e7
C = 4fb6e28d37fa1bee c3c75c071674cd3c

Using the S-Box σ1.

QARMA128_9
P = 2fdbb6a2c395e959 fdfa964e98c1a2e7
C = e73be2739636da81 d6b5b9dbdd2a9254

QARMA128_10
P = 2fdbb6a2c395e959 fdfa964e98c1a2e7
C = 2c4a4f3d45fd9e09 74b12238e0f469ce

QARMA128_11
P = 2fdbb6a2c395e959 fdfa964e98c1a2e7
C = 2d548c30ba8bf609 5434fb10681bc829

Using the S-Box σ2.

QARMA128_9
P = 2fdbb6a2c395e959 fdfa964e98c1a2e7
C = 33e2698893f1903a 93169b32d1ba3cb1

QARMA128_10
P = 2fdbb6a2c395e959 fdfa964e98c1a2e7
C = 4674845c356a8f85 066f74e93ed65f55

QARMA128_11
P = 2fdbb6a2c395e959 fdfa964e98c1a2e7
C = 272827c10d18fb6e e76d4284ecdb41d1

B Alternative Tweak Masking Function
We describe now a different candidate for modifying the tweak using a key, specially
designed for 64-bit values, the scrambler. Depicted in Figure 12, it follows the Kam and
Davida methodology to design tree-structured substitution-permutation networks [KD79].
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Kam and Davida provide a concrete construction method, by means of which, a complete
SPN with block size of n = mg bits can be built using g substitution layers, constructed
from m-bit S-Boxes, and g − 1 bit permutation layers. Our parameters are (m, g) = (4, 3).
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Figure 12: The Kam-Davida Three-Round 64-bit Scrambler

In order for each input bit to the scrambler to influence each output bit of the scrambler
non-linearly, it is necessary that each input bit of the S-Box influences each output bit of
the S-Box non-linearly (cf. § 3.3.2). This also means that in order to obtain full diffusion
to the output the S-Box σ0 should not be used, but σ1 and σ2 are good choices.

With respect to Figure 12, the scrambler’s layers are designed as follows:

• At the beginning, IS is an address or a nonce t.

• If the internal state is represented as IS[63..0], the functions gi, g′i, g′′i update the i-th
4-bit segment IS[4 i+ 3 .. 4 i] of IS, as follows:

– gi(IS[4 i+ 3 .. 4 i]) = σ(IS[4 i+ 3 .. 4 i] + β[4 i+ 3 .. 4 i]);
– g′i(IS[4 i+ 3 .. 4 i]) = σ(IS[4 i+ 3 .. 4 i] + (t≫ 32)[4 i+ 3 .. 4 i]); and
– g′′i (IS[4 i+ 3 .. 4 i]) = σ(IS[4 i+ 3 .. 4 i] + β[4 i+ 3 .. 4 i]).

• The permutation layer P0 maps the bit with index 16 a+ 4 b+ c of the state to the
bit with index 16 a+ 4 c+ b for 0 ≤ a, b, c ≤ 3.

• The permutation layer P1 maps the bit with index 16 a + b to the bit with index
4 b+ a for 0 ≤ a ≤ 3, 0 ≤ b ≤ 15.

Cryptographically, when analysed as a large, 64-bit S-Box, the scrambler is sub-optimal.
In fact in [WT85] it was shown that Kam-Davida networks dampen the avalanche property
somewhat. The extent to which this may be relevant for our applications will have to be
studied.

C Proof that M8,2 has 272 Fixed Points on the State
Proposition 2. The matrix M = circ(0, ρ, ρ4, ρ5) acting on R4×4 where R is the ring
R8 = F2[ρ] = F2[X]/(X8 + 1) has 272 fixed points.
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Proof. Since M acts on the four columns of R4×4 independently, it will suffice to establish
that the number of fixed points of M acting on R4, i.e. on columns, is 218. A vector
V = (v0, v1, v2, v3)t is a fixed point of M if and only if

(M + I) · V =


v0 + v1 ρ+ v2 ρ

4 + v3 ρ
5

v0 ρ
5 + v1 + v2 ρ+ v3 ρ

4

v0 ρ
4 + v1 ρ

5 + v2 + v3 ρ
v0 ρ+ v1 ρ

4 + v2 ρ
5 + v3

 =


u0
u1
u2
u3


is zero. Now, 0 = u0 + v1 ρ, we get v0(1 + ρ6) + v2(ρ2 + ρ4) = 0 or, in other words

(1 + ρ2)(v0 + v2 ρ
4) = 0

which means that v0 is equal to v2 ρ
4 up to an element annihilated by 1 + ρ2, i.e.

v0 = v2 ρ
4 + (1 + ρ2 + ρ4 + ρ6) ζ .

Similarly,
v1 = v3 ρ

4 + (1 + ρ2 + ρ4 + ρ6) ζ ′ .

Note that ζ and ζ ′ are effectively defined modulo 1 + ρ2, and they can only define four
distinct values of v0 (resp. v1) for each fixed value of v2 (resp. v3). Substituting these
expressions for v0 and v1 in u0 = 0 (or u2 = 0) we get

(1 + ρ2 + ρ4 + ρ6)(ζ + ρ ζ ′) = 0 .

We see that for each value of ζ there is a unique ζ ′ (modulo 1 + ρ2) such that the last
equation is satisfied. Using u1 (or u3) in place of u0 or u2 leads to the same result. The
elements in ker(M + I) ⊆ R4 are thus uniquely determined by two components and a
single two bit value, resulting in a cardinality of 218.
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