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Abstract. ChaCha and Salsa are two software oriented stream ciphers that have
attracted serious attention in academic as well as commercial domain. The most
important cryptanalysis of reduced versions of these ciphers was presented by Aumas-
son et al. in FSE 2008. One part of their attack was to apply input difference(s) to
investigate biases after a few rounds. So far there have been certain kind of limited
exhaustive searches to obtain such biases. For the first time, in this paper, we show
how to theoretically choose the combinations of the output bits to obtain significantly
improved biases. The main idea here is to consider the multi-bit differentials as
extension of suitable single-bit differentials with linear approximations, which is
essentially a differential-linear attack. As we consider combinations of many output
bits (for example 19 for Salsa and 21 for ChaCha), exhaustive search is not possible
here. By this method we obtain very high biases for linear combinations of bits in
Salsa after 6 rounds and in ChaCha after 5 rounds. These are clearly two rounds of
improvement for both the ciphers over the existing works. Using these biases we
obtain several significantly improved cryptanalytic results for reduced round Salsa
and ChaCha that could not b obtained earlier. In fact, with our results it is now
possible to cryptanalyse 6-round Salsa and 5-round ChaCha in practical time.
Keywords: Stream Cipher · ChaCha · Salsa · Non-Randomness · Bias · Probabilistic
Neutral Bit (PNB) · ARX Cipher · Differential-Linear Cryptanalysis

1 Introduction
Salsa20 [3] is a stream cipher designed by Bernstein in 2005 as a candidate for the eSTREAM
competition [10]. The original proposal was for 20 rounds. The 12-round variant of Salsa20,
Salsa20/12 was accepted into the final eSTREAM software portfolio. The ChaCha stream
cipher [4], a variant of Salsa, was proposed in early 2008 to conjecturally provide better
diffusion and cryptanalytic resistance over Salsa.

While ChaCha was designed some time back, the cipher has received renewed attention
recently as the standardization process for inclusion of cipher suites based on ChaCha20-
Poly1305 AEAD (ChaCha20 for symmetric encryption, the cipher is subjected to 20 rounds
here and Poly1305 for authentication) in TLS1.3 is almost complete [23]. This in turn
merits further analysis of both ChaCha and Salsa due to their similar structure.
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Related work. Since their inception, both Salsa and ChaCha have undergone significant
cryptanalysis [9, 11, 24, 2, 22, 12, 20, 18, 25, 17, 8] which show weaknesses in the reduced
rounds of the ciphers. The attacks in most cases, apply some input differences to the
initial state to observe output differences after certain rounds and once one can proceed a
few rounds forward as above, it may be possible to invert a few rounds from a final state
to obtain further non-randomness. The most important cryptanalysis in this regard was
proposed by Aumasson et al. at FSE 2008 [2] with the introduction of Probabilistic Neutral
Bits (PNBs). The work by Shi et al [22] introduced the concept of Column Chaining
Distinguisher (CCD) to achieve some incremental advancements over [2] for both Salsa
and ChaCha. Maitra, Paul and Meier [18] studied an interesting observation regarding
round reversal of Salsa, but no significant cryptanalytic improvement could be obtained
using this method. An important contribution of the authors in [18] is to correct some
parameter values of [2] to obtain better attack complexity. Recently, Maitra [17] used a
technique of Chosen IVs to obtain certain improvements over existing results. For this
work we use the concept of differential-linear cryptanalysis [13, 5] which follows the recent
work by Leurent [16].

Additionally, there have been significant developments in the construction of ARX
toolkits [14] with some successful applications [15], but these are yet to exploit Salsa and
ChaCha.

Our Contribution. Existing attempts at cryptanalysis of Salsa and ChaCha have largely
ignored the structure of the ciphers, instead choosing to treat them as a black box to
obtain certain non-randomness (we also call them biases) after a few rounds. In this work,
we study the structure of these ciphers to show, for the first time, how to theoretically
choose combination of output bits to obtain significantly improved biases thus enabling
differential-linear cryptanalysis. With these theoretical results, we use a limited search
over the input differences to obtain the best possible biases known so far. To show the
significance of our analysis, we present the first known biases for 5/6 rounds of Salsa and
4/4.5/5 rounds of ChaCha. Obtaining such multi-bit biases are not possible by exhaustive
search. For example, we consider linear combination of 19-bits for 6 round of Salsa and
that would require a

(512
19
)
search where each case requires significant amount of search

effort to experimentally discover the biases. These lead us, for the first time, towards the
realm of practical attacks in certain cases for these ciphers (till six rounds for Salsa and
five rounds for ChaCha).

Our results explain the dual bit differentials reported by Aumasson et al. in [1]
(technical report version of [2]), which we believe were found by exhaustive search. This
is suggested by the authors in [2], “Unlike Salsa20, our exhaustive search showed no bias
in 4-round ChaCha, be it with one, two, or three target output bits." Using our theoretical
results, we indicate why their exhaustive searches for ChaCha did not yield any bias of
significance. We substantiate our theoretical findings with experiments.

Finally, we revisit the claim in [2] that “Exploiting multi-bit differentials, does not improve
efficiency either". We do so by presenting significantly improved attacks for the reduced
round versions of Salsa (till seven rounds) and ChaCha (till six rounds) than existing results
in the literature. We have summarized our findings along with the other significant attacks
for comparison in Table 1. However, we agree that as the number of rounds increase the
number of Probabilistic Neutral Bits (PNBs) fall rapidly in case of multi-bit differentials
and thus the significance of our results reduces as the number of rounds increases which
is reflected for the attack against 8-round Salsa and 7-round ChaCha, though we could
manage slightly better results than the presently known ones [17]. We leave as future
work the possibility of combining our results with other existing techniques to determine if
further improvement is possible.
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Table 1: Complexity of the attacks for different rounds in the reduced-round versions.
The last row indicates result related to non-randomness. Salsa20/12 is of 12 rounds and
ChaCha20 is of 20 rounds which are proposed by the designer.

Cipher Round/Key length Time Data Reference

Salsa

5/256

2165 26 [9]
2167 27 [25]
255 210 [22]
28 28 This work

6/256
2177 215 [11]
273 216 [22]
232 232 This work

7/256
2151 226 [2]
2148 224 [22]
2139 232 This work
2137 261 This work

8/256
2251 231 [2]
2250 227 [22]

2245.5 296 [17]
2244.9 296 This work

ChaCha

4/256 26 26 This work
4.5/256 212 212 This work
5/256 216 216 This work

6/256

2139 230 [2]
2136 228 [22]
2130 235 This work

2127.5 237.5 This work
2116 2116 This work

7/256

2248 227 [2]
2246.5 227 [22]
2238.9 296 [17]
2237.7 296 This work
2233 228 This work (non-randomness)

Organization of the paper. We give an overview of Salsa and ChaCha in Section 2. In
Section 3, theoretical results are presented along with experiments regarding the new
biases. We describe the implications of our newly discovered biases on the cryptanalysis
of Salsa and ChaCha using Probabilistic Neutral Bits (PNBs) in Section 4. Finally, we
conclude this paper in Section 5.

2 Specifications and Preliminaries

The notations to be used in this paper are presented in the Table 2.
Note that throughout this paper we use ε to denote the bias of an event, which is

actually 2 · Pr(event)− 1.
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Table 2: Notation
Notation Description

X the state matrix of the cipher of 16 words
X(0) initial state matrix
X(R) state matrix after application of R round functions
xi ith word of the state matrix (words arranged in row major)
xi[j] jth bit of ith word
x+ y addition of x and y modulo 232

x− y subtraction of x and y modulo 232

x⊕ y bitwise XOR of x and y
x≪ n rotation of x by n bits to the left
x≫ n rotation of x by n bits to the right

∆x XOR difference of x and x′. ∆x = x⊕ x′
ε(x1⊕···⊕xm) 2 · Pr[∆x1 ⊕ · · · ⊕∆xm = 0]− 1

2.1 Salsa
The cipher state of 16 words, where each word is of 32 bits, can be represented as a 4× 4
matrix. For Salsa, we have the following state matrix

X(0) =


x

(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =


c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

 ,

The matrix on the right shows the initial configuration of the state that takes four predefined
constants c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574
(totaling to 128 bits), 256-bit key k0, . . . , k7, 64-bit nonce v0, v1 and 64-bit counter t0, t1.
For the 128-bit version of Salsa, the key words are repeated twice and the constant values
differ slightly. In this paper we consider the 256-bit version for all the experiments, similar
ideas will work for the 128-bit version though. Further, we will refer to the nonce and
counter words together as IV words.

For Salsa the round function consists of 4 simultaneous applications of the quarterround
function. The quarterround functions is performed on the vector

(
x

(r)
a , x

(r)
b , x

(r)
c , x

(r)
d

)
to

update its values as defined below:

x
(r+1)
b = x

(r)
b ⊕ ((x(r)

a + x
(r)
d ) ≪ 7),

x
(r+1)
c = x

(r)
c ⊕ ((x(r+1)

b + x
(r)
a ) ≪ 9),

x
(r+1)
d = x

(r)
d ⊕ ((x(r+1)

c + x
(r+1)
b ) ≪ 13),

x
(r+1)
a = x

(r)
a ⊕ ((x(r+1)

d + x
(r+1)
c ) ≪ 18).

 (1)

In the odd number rounds, called columnrounds, quarterround is applied to the columns
(x0, x4, x8, x12), (x5, x9, x13, x1), (x10, x14, x2, x6), and (x15, x3, x7, x11). In the even rounds,
called rowrounds, the quarterround is applied to the rows (x0, x1, x2, x3), (x5, x6, x7, x4),
(x10, x11, x8, x9) and (x15, x12, x13, x14). Finally, a keystream block of 16-words (or 512 bits)
is obtained as Z = X(0) +X(R), where “+" symbolizes wordwise addition modulo 232, and
X(R) = roundR(X(0)). For Salsa20, R = 20, but the accepted cipher into eSTREAM [10]
software portfolio is Salsa20/12, where R = 12.

Each Salsa20 round is reversible as the state-transition operations are reversible, i.e., if
X(r+1) = round(X(r)), then X(r) = round−1(X(r+1)), where round−1 is the inverse of round.
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The inverse of the quarterround function on the vector
(
x

(r+1)
a , x

(r+1)
b , x

(r+1)
c , x

(r+1)
d

)
is

defined as:
x

(r)
a = x

(r+1)
a ⊕ ((x(r+1)

d + x
(r+1)
c ) ≪ 18),

x
(r)
d = x

(r+1)
d ⊕ ((x(r+1)

c + x
(r+1)
b ) ≪ 13),

x
(r)
c = x

(r+1)
c ⊕ ((x(r+1)

b + x
(r)
a ) ≪ 9),

x
(r)
b = x

(r+1)
b ⊕ ((x(r)

a + x
(r)
d ) ≪ 7).

 (2)

2.2 ChaCha

X(0) =


x

(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2


Similar to Salsa, the rightmost matrix shows the initial state that takes four predefined
constants c0, . . . , c3 (similar to Salsa), 256-bit key k0, . . . , k7, 32-bit block counter t0 and
96-bit nonce v0, v1, v2. Here the quarterround function consists of four ARX rounds, each of
which comprises of an addition (A), a cyclic left rotation (R) and an XOR (X) operation.
The quarterround function on the vector

(
x

(r)
a , x

(r)
b , x

(r)
c , x

(r)
d

)
:

x
(r)
a′ = x

(r)
a + x

(r)
b ; x

(r)
d′ = x

(r)
d ⊕ x

(r)
a′ ; x

(r)
d′′ = x

(r)
d′ ≪ 16;

x
(r)
c′ = x

(r)
c + x

(r)
d′′ ; x

(r)
b′ = x

(r)
b ⊕ x

(r)
c′ ; x

(r)
b′′ = x

(r)
b′ ≪ 12;

x
(r+1)
a = x

(r)
a′ + x

(r)
b′′ ; x

(r)
d′′′ = x

(r)
d′′ ⊕ x

(r+1)
a ; x

(r+1)
d = x

(r)
d′′′ ≪ 8;

x
(r+1)
c = x

(r)
c′ + x

(r+1)
d ; x

(r)
b′′′ = x

(r)
b′′ ⊕ x

(r+1)
c ; x

(r+1)
b = x

(r)
b′′′ ≪ 7;


(3)

In each of the odd rounds, called columnround, we apply quarterround to the four columns
(x0, x4, x8, x12), (x1, x5, x9, x13), (x2, x6, x10, x14), and (x3, x7, x11, x15). In each of the even
rounds, called diagonalround, we apply quarterround to the diagonals
(x0, x5, x10, x15), (x1, x6, x11, x12), (x2, x7, x8, x13), and (x3, x4, x9, x14). As before, we
define X(R) = roundR(X(0)), and the keystream block Z = X(0) +X(R). For ChaCha20,
R = 20. As with Salsa, each round of ChaCha is reversible.

2.3 Differential
Given two states X(r), X ′(r), we denote the differential of individual words by ∆x(r)

i =
x

(r)
i ⊕ x

′(r)
i . For example, ‘∆x(0)

13 = 25’ means that we have two initial states X(0), X ′(0)

that differ at the 5th bit of the 13th word.
From the perspective of cryptanalysis, we are interested in introducing a difference

at the initial state (call it Input Differential or ID) and then attempt to obtain certain
biases corresponding to combinations of some output bits (call it Output Differential or
OD). In this direction, one can compute Pr(∆x(r)

p [q] = 0|∆x(0)
i = 2j) = 1

2 (1 + εd), where
the probability is estimated for a fixed key and all possible choices of nonces and counter
words, other than the constraints imposed due to the input differences. Here, the bias is
denoted by εd. In fact, one can consider a more general scenario as

Pr

[(⊕
u

∆x(r)
pu [qu]

)
= 0|∆x

(0)
i0

= 2j00 + 2j01 + . . . , ∆x
(0)
i1

= 2j10 + 2j11 + . . . , · · ·

]
= 1

2(1 + εd),

where one may observe the biases of certain linear combination of output differences given
the input differences at one or more positions.
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2.4 Differential-linear analysis
Differential-linear cryptanalysis was discovered by [13, 5] and has since been used for the
cryptanalysis of various ciphers. We follow the recent work by Leurent [16] (without the
partitioning of data). To explain its working we follow the heuristic analysis of [5], and for
simplicity we denote

∆σ = σ ⊕ σ′ =
(⊕

u

∆x(r)
pu [qu]

)
, ρ =

(⊕
v

x(R)
pv [qv]

)
, ρ′ =

(⊕
v

x′(R)
pv [qv]

)
,

where R > r. Since the input difference is implicit, in this section, we don’t specify
it separately. We rewrite the differential bias and the linear approximation as follows,
Pr [∆σ = 0] = Pr [σ ⊕ σ′ = 0] = 1

2 (1 + εd), Pr [σ = ρ] = 1
2 (1 + εL). Given these, we want

to find the bias γ such that

Pr [∆ρ = 0] = Pr [ρ⊕ ρ′ = 0] = 1
2(1 + γ).

Now

Pr[∆σ = ∆ρ] = Pr[σ = ρ] · Pr[σ′ = ρ′] + Pr[σ = ρ] · Pr[σ′ = ρ′]

= 1
2(1 + εL) · 1

2(1 + εL) + 1
2(1− εL) · 1

2(1− εL) = 1
2(1 + ε2

L)

and,

Pr[∆ρ = 0] = Pr[∆σ = 0] · Pr[∆σ = ∆ρ] + Pr[∆σ = 1] · Pr[∆σ = ∆ρ]

= 1
2(1 + εd) ·

1
2(1 + ε2

L) + 1
2(1− εd) ·

1
2(1− ε2

L) = 1
2(1 + εd · ε2

L).

Hence the differential-linear bias is εd · ε2
L. This leads to a distinguisher of complexity

O
(

1
ε2
d
·ε4
L

)
.

Generally we require O( 1
pq2 ) samples when we like to distinguish between two events,

one with probability p and the other with probability p(1 + q), where q is small. For a
detailed understanding on such complexity estimates, one may refer to [6, 7, 21]. In case of
differential-linear cryptanalysis, for each sample, we require two executions of the cipher,
both with same key, but different IVs. Thus, the actual complexity should be multiplied
by two. However, at the time of comparison, we do not multiply the complexity estimates
by two in our results, as it is not done in existing works too.

3 Differential-linear Biases
In this section we develop the theory for selecting specific combination of bits to give high
biases and experimentally substantiate our findings. The main contributions of this section
can be summarized as:
• Develop theory for selecting combination of output bits to obtain significant biases
in Salsa and ChaCha.

• Improve on the best known biases for 4 rounds of Salsa and 3 rounds of ChaCha.

• First reported biases for 5/6 rounds of Salsa and 4/4.5/5 rounds of ChaCha.
In Appendix A, we demonstrate experimentally that these theoretical results extend to

second-order (and higher) differentials.
Due to the slight differences, specifically in the number of updates in a round of Salsa

and ChaCha, we deal with the ciphers differently. But importantly, the underlying idea is
the same in both the cases.
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3.1 Linear approximations with εL = 1
In this subsection we shall deal with the cases where the linear approximations hold with
probability 1. Hence, in this case, Pr[∆ρ = 0] = 1

2 (1 + εd).

3.1.1 Salsa

We start with Salsa as the update functions are easier to handle than those of ChaCha.

Triple bit

Once m rounds of Salsa are run with an input difference, we have the output differences of
the state X(m). The idea is to look for linear operations from the updates that primarily
involve differentials from the mth round. The structure of Salsa allow for us to get these
combinations directly from the quarterround updates. We detail this procedure using the
following lemma and proof.

Lemma 1. Let us define ∆Y (m) = ∆x(m)
α [13] ⊕ ∆x(m)

β [0] ⊕ ∆x(m)
γ [0] and ∆Y ′(m) =

∆x(m)
α′ [18]⊕∆x(m)

β′ [0]⊕∆x(m)
γ′ [0]. Then, after m rounds of Salsa, the following holds :

∣∣ε(Y (m))
∣∣ =

∣∣∣ε(x(m−1)
α [13])

∣∣∣ and
∣∣ε(Y ′(m))

∣∣ =
∣∣∣ε(x(m−1)

α′
[18])

∣∣∣ .
The tuples (α, β, γ) and (α′, β′, γ′) vary depending on whether m is odd or even.

• Case I. m odd: (α, β, γ) ∈ { (12, 4, 8), (1, 9, 13), (6, 14, 2), (11, 3, 7) },
(α′, β′, γ′) ∈ { (0, 8, 12), (5, 13, 1), (10, 2, 6), (15, 7, 11) }

• Case II. m even: (α, β, γ) ∈ { (3, 1, 2), (4, 6, 7), (9, 11, 8), (14, 12, 13) },
(α′, β′, γ′) ∈ { (0, 2, 3), (5, 7, 4), (10, 8, 9), (15, 13, 14) }

Proof. We will focus on two updates in the quarterround of the mth round. Namely,
x

(m)
d = x

(m−1)
d ⊕ ((x(m)

c + x
(m)
b ) ≪ 13) and x(m)

a = x
(m−1)
a ⊕ ((x(m)

d + x
(m)
c ) ≪ 18) where

a, b, c and d take values according to the described specifications for Salsa. Converting them
to bit equations, x(m)

d [i+ 13] = x
(m−1)
d [i+ 13]⊕ x(m)

c [i]⊕ x(m)
b [i]⊕Ccarry[i], x(m)

a [i+ 18] =
x

(m−1)
a [i + 18] ⊕ x(m)

d [i] ⊕ x(m)
c [i] ⊕ C ′carry[i]. When i = 0, C ′carry[i] = Ccarry[i] = 0 and

the carry variables in this case will henceforth be ignored. Due to the linearity of the
operations, the differential equations follow directly.

∆x(m)
d [13]⊕∆x(m)

c [0]⊕∆x(m)
b [0] = ∆x(m−1)

d [13],

∆x(m)
a [18]⊕∆x(m)

d [0]⊕∆x(m)
c [0] = ∆x(m−1)

a [18].

Since we are interested solely with the bias, the corresponding bias equations are,
ε(x(m)

d
[13]⊕x(m)

c [0]⊕x(m)
b

[0]) = ε(x(m−1)
d

[13]), ε(x(m)
a [18]⊕x(m)

d
[0]⊕x(m)

c [0]) = ε(x(m−1)
a [18]). Further,

taking the absolute value of the bias,∣∣∣ε(x(m)
d

[13]⊕x(m)
c [0]⊕x(m)

b
[0])

∣∣∣ =
∣∣∣ε(x(m−1)

d
[13])

∣∣∣ ,∣∣∣ε(x(m)
a [18]⊕x(m)

d
[0]⊕x(m)

c [0])

∣∣∣ =
∣∣∣ε(x(m−1)

a [18])

∣∣∣ .
To obtain the tuples (α, β, γ) and (α′, β′, γ′), we replace a, b, c and d by their relevant

values.
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In essence, the lemma states that we are able to find a linear approximation of an
active bit (in certain positions) from round m to round m+ 1 with probability 1. This
gives rise to previously unknown biases for 5 rounds of Salsa, and substantially higher
biases for the 4 rounds. There have been previously reported biases for 5 rounds of Salsa
in [11, 18]. However, those biases require differences in the key-bits in addition to the IV
bits, and hence cannot be considered for cryptanalytic attacks. This is because the attack
model only accepts differences in IV’s, given that there will be no control over the secret
key bits.

We have presented some of the 4 round biases in Table 8 (in Appendix B) and 5 round
biases in Table 3. These are experimental results and we emphasize that, in this section,
we generally study the biases which are at least 0.01. Thus, it is enough for us to estimate
the biases as the average over 220 randomly chosen keys and IV’s during experimentation.
However, when the biases become low for higher rounds, then we increase the experimental
runs and report them explicitly. For our limited search, we search over all 128 single bit
input differences in the IV to obtain significant biases in the specific multi-bit combination.
For a specific single input difference, we look at only 8 possible (see Lemma 1) 3 bit
combinations in the output state to see which of them give the highest bias (8 instead of(512

3
)
).

Table 3: Best triple bit differentials for 5 rounds of Salsa
ID OD Bias

∆x(0)
7 = 20 ∆x(5)

9 [0]⊕∆x(5)
13 [0]⊕∆x(5)

1 [13] −0.1142
∆x(0)

8 = 20 ∆x(5)
2 [0]⊕∆x(5)

14 [0]⊕∆x(5)
6 [13] −0.0982

∆x(0)
8 = 27 ∆x(5)

2 [0]⊕∆x(5)
14 [0]⊕∆x(5)

6 [13] −0.0758
∆x(0)

8 = 227 ∆x(5)
3 [0]⊕∆x(5)

7 [0]⊕∆x(5)
11 [13] −0.0613

∆x(0)
8 = 230 ∆x(5)

2 [0]⊕∆x(5)
14 [0]⊕∆x(5)

6 [13] 0.0583
∆x(0)

7 = 230 ∆x(5)
9 [0]⊕∆x(5)

13 [0]⊕∆x(5)
1 [13] 0.0559

∆x(0)
7 = 218 ∆x(5)

2 [0]⊕∆x(5)
14 [0]⊕∆x(5)

6 [13] 0.0512
∆x(0)

7 = 227 ∆x(5)
2 [0]⊕∆x(5)

14 [0]⊕∆x(5)
6 [13] −0.0507

Now consider the input and output difference as explained in the first row of Table 3.
The input difference is ∆x(0)

7 [0], the output difference is ∆x(5)
9 [0]⊕∆x(5)

13 [0]⊕∆x(5)
1 [13] and

the bias εd has been observed as −0.1142. This bias after 5 rounds immediately provides
a distinguisher with time and data complexity 1

1
2 ·ε

2
d

< 154. That is with 28 samples, it is
enough to distinguish 5-round Salsa from a uniform random source.

These sets of 3 multi-bits can be further combined, but care should be taken with
regards to the independence assumptions. In our case, we use independence assumptions
in a very limited setting.

Dual bit

We have seen how we can express a single active bit from a round of Salsa as a linear
combination of 3 bits from the next round. One naturally asks if it would work for
combinations of two output bits. The answer for the dual bits is less favourable. We shall
see that we can combine certain combinations of two output bits to get some reduction in
bias from previous round, but in practice these do not yield useful results beyond round 4.

As before, we have the following lemma.

Lemma 2. Let ∆Y (m) = ∆x(m)
α [9]⊕∆x(m)

β [0] and ∆Y ′(m−1) = ∆x(m−1)
α [9]⊕∆x(m−1)

γ [0].
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After m rounds of Salsa, the following is true

∣∣ε(Y (m))
∣∣ =

∣∣ε(Y ′(m−1))
∣∣ . (4)

The tuple (α, β, γ) varies depending on whether m is odd or even.

• Case I. m odd: (α, β, γ) ∈ { (8, 4, 0), (13, 9, 5), (2, 14, 10), (7, 3, 15) }

• Case II. m even: (α, β, γ) ∈ { (2, 1, 0), (7, 6, 5), (8, 11, 10), (13, 12, 15) }

Proof. We use the following quarterround update: x(m)
c = x

(m−1)
c ⊕ ((x(m)

b + x
(m)
a ) ≪ 9).

The remaining proof follows similar to the previous lemma.

In itself, the lemma might not seem useful. If we need to apply the Piling-Up Lemma
[19] to ∆Y ′(m−1), we require ∆x(m−1)

α [9] and ∆x(m−1)
γ [0] to be independent. While this

does not hold theoretically, for practical purposes it seems to hold good. Hence, we can
rewrite (4) as ∣∣ε(Y (m))

∣∣ ≈ ∣∣∣ε(x(m−1)
α [9])

∣∣∣ · ∣∣∣ε(x(m−1)
γ [0])

∣∣∣ (5)

The fact that the assumption holds good for practical purposes is illustrated in Table 4,
where, for notational convenience we denote ∆A = ∆x(m−1)

α [9] and ∆B = ∆x(m−1)
γ [0].

Table 4: Best dual bit differentials for m = 4, characterized by α, β and i.
ID (α, β, γ) ε(Y (m)) ε(A) · ε(B)

∆x(0)
8 = 226 (7,6,5) −0.6143 −0.6107

∆x(0)
7 = 226 (2,1,0) −0.5708 −0.5684

∆x(0)
8 = 227 (7,6,5) 0.4677 0.4642

∆x(0)
7 = 227 (2,1,0) 0.4616 0.4584

∆x(0)
7 = 228 (2,1,0) 0.3201 0.3153

∆x(0)
8 = 228 (7,6,5) 0.3193 0.3146

The above observations explain the dual multi-bit differentials observed in [2], and also
provide similar previously unobserved biases. To observe these dual bit differentials, we
require two highly biased single bit differentials from the previous round. Due to the lack
of such high single output bit differential biases starting with the 4th round, we do not
observe these dual bit biases starting from the 5th round.

3.1.2 ChaCha

While the results pertaining ChaCha are in similar vein to those of Salsa, we follow a
different path to obtain them. This is because of the increased number of operations in an
update in ChaCha. First, we split each update of the ChaCha quarterround and write them
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as bit equations only using the XOR operation,

x
(m−1)
a′ [i] = x(m−1)

a [i]⊕ x(m−1)
b [i]⊕ C1

carry[i],

x
(m−1)
d′ [i] = x

(m−1)
a′ [i]⊕ x(m−1)

d [i], x(m−1)
d′′ [i+ 16] = x

(m−1)
d′ [i] (6)

x
(m−1)
c′ [i] = x(m−1)

c [i]⊕ x(m−1)
d′′ [i]⊕ C2

carry[i],

x
(m−1)
b′ [i] = x

(m−1)
c′ [i]⊕ x(m−1)

b [i], x(m−1)
b′′ [i+ 12] = x

(m−1)
b′ [i] (7)

x(m)
a [i] = x

(m−1)
a′ [i]⊕ x(m−1)

b′′ [i]⊕ C3
carry[i],

x
(m−1)
d′′′ [i] = x(m)

a [i]⊕ x(m−1)
d′′ [i], x(m)

d [i+ 8] = x
(m−1)
d′′′ [i] (8)

x(m)
c [i] = x

(m−1)
c′ [i]⊕ x(m)

d [i]⊕ C4
carry[i]

x
(m−1)
b′′′ [i] = x(m)

c [i]⊕ x(m−1)
b′′ [i] x(m)

b [i+ 7] = x
(m−1)
b′′′ [i] (9)

At round m we have access to the differentials of the variables of the form x(m). From
them, as in Salsa, we would like to obtain partial or complete information of the differentials
of the variables from round m− 1.

We draw a derivation graph to indicate this. The nodes that contain variables which
can be completely determined are indicated by a full circle, otherwise they are indicated
by a dotted circle. Arrows leaving a dotted circle are also dotted to indicate they do not
carry complete information of the variable. We trivially observe that none of the variables
from round m− 1 can be determined completely. For notational convenience we put only
the variable into each node of the graph, but it is implicit that we are considering the
differentials of these variables. Using the derivation graph and equations (6) to (9), we

x(m)
a x

(m)
b

x(m)
c x

(m)
d

x
(m)
b′′′

x
(m)
d′′′

x
(m)
b′′

x
(m)
a′

x
(m)
c′

x
(m)
d′′

x
(m)
b′

x
(m)
d′

x(m)
ax

(m)
b

x(m)
c x

(m)
d

express differentials of variables in round m− 1 by differentials of variables in round m.

∆x
(m−1)
b

[i] = ∆x
(m−1)
b′ [i] ⊕ ∆x

(m−1)
c′ [i]

= ∆x
(m)
b

[i + 19] ⊕ ∆x
(m)
c [i + 12] ⊕ ∆x

(m)
d

[i] ⊕ ∆x
(m)
c [i] ⊕ ∆C4

carry[i] (10)
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∆x
(m−1)
a [i] = ∆x

(m−1)
a′ [i] ⊕ ∆x

(m−1)
b

[i] ⊕ ∆C1
carry[i]

= ∆x
(m)
a [i] ⊕ ∆x

(m)
b

[i + 7] ⊕ ∆x
(m)
b

[i + 19] ⊕ ∆x
(m)
c [i + 12]

⊕ ∆x
(m)
d

[i] ⊕ ∆C4
carry[i] ⊕ ∆C1

carry[i] ⊕ ∆C3
carry[i] (11)

∆x
(m−1)
c [i] = ∆x

(m−1)
c′ [i] ⊕ ∆x

(m−1)
d′′ [i] ⊕ ∆C2

carry[i]

= ∆x
(m)
d

[i] ⊕ ∆x
(m)
c [i] ⊕ ∆x

(m)
d

[i + 8] ⊕ ∆x
(m)
a [i] ⊕ ∆C2

carry[i] ⊕ ∆C4
carry[i] (12)

∆x
(m−1)
d

[i] = ∆x
(m−1)
d′ [i] ⊕ ∆x

(m−1)
a′ [i]

= ∆x
(m)
d

[i + 24] ⊕ ∆x
(m)
a [i + 16] ⊕ ∆x

(m)
a [i] ⊕ ∆x

(m)
c [i] ⊕ ∆x

(m)
b

[i + 7] ⊕ ∆C3
carry[i] (13)

For εL = 1, the structure of ChaCha allows us to set i = 0 in each of the above equations
for the carry to vanish completely. These observations lead to the following lemma, and
the proof follows as before.

Lemma 3. Let

∆A(m) = ∆x(m)
α [0]⊕∆x(m)

β [7]⊕∆x(m)
β [19]⊕∆x(m)

γ [12]⊕∆x(m)
δ [0]

∆B(m) = ∆x(m)
β [19]⊕∆x(m)

γ [0]⊕∆x(m)
γ [12]⊕∆x(m)

δ [0]

∆C(m) = ∆x(m)
δ [0]⊕∆x(m)

γ [0]⊕∆x(m)
δ [8]⊕∆x(m)

α [0]

∆D(m) = ∆x(m)
δ [24]⊕∆x(m)

α [16]⊕∆x(m)
α [0]⊕∆x(m)

γ [0]⊕∆x(m)
β [7]

After m rounds of ChaCha, the following holds:

∣∣ε(A(m))
∣∣ =

∣∣∣ε(x(m−1)
α [0])

∣∣∣, ∣∣ε(B(m))
∣∣ =

∣∣∣∣ε(x(m−1)
β

[0])

∣∣∣∣ ,∣∣ε(C(m))
∣∣ =

∣∣∣ε(x(m−1)
γ [0])

∣∣∣, ∣∣ε(D(m))
∣∣ =

∣∣∣ε(x(m−1)
δ

[0])

∣∣∣ .
The tuples (α, β, γ, δ) vary depending on whether m is odd or even.

• Case I. m odd: (α, β, γ, δ) ∈ { (0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 14, 2), (3, 7, 11, 15) }

• Case II. m even: (α, β, γ, δ) ∈ { (0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14) }

We demonstrate the experimental support of this lemma in Table 9 (in Appendix B)
and table 5. For ChaCha, the lemma requires a combination of either 4 or 5 output bits
for biases to propagate one round. This clarifies why the authors of [2] could not find
significant biases for all combinations of two and three bits. A brute force search for all
possible 4 or 5 bit combinations would be infeasible given the current computing resources.
We use a limited search similar to the one described for Salsa.

Considering the first row of Table 5, we note εd = 0.1984 and thus 1
1
2 ·ε

2
d

< 51. That
is with 26 samples, it is enough to distinguish 4-round ChaCha from a uniform random
source.

3.1.3 ChaCha Half Round

In this section, for the first time to our knowledge, we discuss the biases of a ChaCha
half round. From (3) and equations (6) to (9), an important observation is that the
equations (6)-(7) are almost the same as those of (8)-(9) with differences only in the
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Table 5: Best multi-bit differentials for 4 rounds of ChaCha
ID OD Bias

∆x(0)
12 = 221 ∆x(4)

2 [0]⊕∆x(4)
7 [7]⊕∆x(4)

7 [19]⊕∆x(4)
8 [12]⊕∆x(4)

13 [0] 0.1984
∆x(0)

14 = 221 ∆x(4)
0 [0]⊕∆x(4)

5 [7]⊕∆x(4)
5 [19]⊕∆x(4)

10 [12]⊕∆x(4)
15 [0] 0.1979

∆x(0)
15 = 221 ∆x(4)

1 [0]⊕∆x(4)
6 [7]⊕∆x(4)

6 [19]⊕∆x(4)
11 [12]⊕∆x(4)

12 [0] 0.1973
∆x(0)

13 = 221 ∆x(4)
3 [0]⊕∆x(4)

4 [7]⊕∆x(4)
4 [19]⊕∆x(4)

9 [12]⊕∆x(4)
14 [0] 0.1972

∆x(0)
13 = 29 ∆x(4)

3 [0]⊕∆x(4)
4 [7]⊕∆x(4)

4 [19]⊕∆x(4)
9 [12]⊕∆x(4)

14 [0] −0.1427
∆x(0)

14 = 29 ∆x(4)
0 [0]⊕∆x(4)

5 [7]⊕∆x(4)
5 [19]⊕∆x(4)

10 [12]⊕∆x(4)
15 [0] −0.1424

∆x(0)
12 = 29 ∆x(4)

2 [0]⊕∆x(4)
7 [7]⊕∆x(4)

7 [19]⊕∆x(4)
8 [12]⊕∆x(4)

13 [0] −0.1419
∆x(0)

15 = 29 ∆x(4)
1 [0]⊕∆x(4)

6 [7]⊕∆x(4)
6 [19]⊕∆x(4)

11 [12]⊕∆x(4)
12 [0] −0.1417

numeric argument to the cyclic rotations. This allows us to split the quarterround into two
(unequal) “halves”.

We rewrite equations (6)-(7) as the first “half” (m to m+ 0.5) of a round of ChaCha as:

x(m+0.5)
a [i] = x(m)

a [i]⊕ x(m)
b [i]⊕ C1

carry[i]

x
(m)
d′ [i] = x(m+0.5)

a [i]⊕ x(m)
d [i]

x
(m+0.5)
d [i+ 16] = x

(m)
d′ [i]

and

x(m+0.5)
c [i] = x(m)

c [i]⊕ x(m+0.5)
d [i]⊕ C2

carry[i]

x
(m)
b′ [i] = x(m+0.5)

c [i]⊕ x(m)
b [i]

x
(m+0.5)
b [i+ 12] = x

(m)
b′ [i]

Using similar techniques to those discussed in the previous section, we represent bits of
a variable of round m using bits from variables of round m+ 0.5 using the equations above.

x(m)
a [i] = x(m+0.5)

a [i]⊕ x(m+0.5)
b [i+ 12]⊕ x(m+0.5)

c [i]⊕ C1
carry[i] (14)

x
(m)
b [i] = x

(m+0.5)
b [i+ 12]⊕ x(m+0.5)

c [i] (15)

x(m)
c [i] = x(m+0.5)

c [i]⊕ x(m+0.5)
d [i]⊕ C2

carry[i] (16)

x
(m)
d [i] = x

(m+0.5)
d [i+ 16]⊕ x(m+0.5)

a [i] (17)

Interestingly, we see that bias of variables x(m)
b [i] and x(m)

d [i] can be derived from round
m+ 0.5 without any reduction in value for all i. This follows from the fact that there are
no carry bits in equations (15) and (17). We shall exploit this property of the half round,
along with the results discussed in the previous section to push biases over 1.5 rounds.

Observe equation (12). When i = 0,

∆x(m−1)
c [0] = ∆x(m)

d [0]⊕∆x(m)
c [0]⊕∆x(m)

d [8]⊕∆x(m)
a [0]

only one term on the right side of the equation has a non-zero bit position. Similarly, if
we consider the other equations (11), (10) and (13) with i = 0, each of them have more
than one term with non-zero bit positions1. But of the 4 equations, only (12) has non-zero
bit positions limited to the b and d variables. This allows us to bypass the need to deal
with carry differentials for the “half” round.

1When i > 0, each of the mentioned equations already have a carry bit involved, and hence not of
interest to us.
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As consecutive rounds are different, the roles of variables a, b, c and d change over
these two rounds. This leads to complications, but for simplicity, we illustrate our method
using an example.

Consider ∆x(3)
8 [0]. Since x8 always takes the value of variable c in the update operations,

we shall illustrate how we move this bias without diminishing its value over 1.5 rounds
using equations (12), (14), (16) and (17). Care must be taken to consider updates from
the even round (3 to 4) and half an odd round (4 to 4.5).

∆x(3)
8 [0] = ∆x(4)

2 [0]⊕∆x(4)
8 [0]⊕∆x(4)

13 [8]⊕∆x(4)
13 [0]

=
(

∆x(4.5)
2 [0]⊕∆x(4.5)

6 [12]⊕∆x(4.5)
10 [0]

)
⊕
(

∆x(4.5)
8 [0]⊕∆x(4.5)

12 [0]
)

⊕
(

∆x(4.5)
1 [0]⊕∆x(4.5)

13 [16]
)
⊕
(

∆x(4.5)
1 [8]⊕∆x(4.5)

13 [24]
)

= ∆x(4.5)
1 [0]⊕∆x(4.5)

1 [8]⊕∆x(4.5)
2 [0]⊕∆x(4.5)

6 [12]⊕∆x(4.5)
8 [0]

⊕∆x(4.5)
10 [0]⊕∆x(4.5)

12 [0]⊕∆x(4.5)
13 [16]⊕∆x(4.5)

13 [24]

Similar equations can be defined for x9, x10 and x11 (all variable c in the update
operations). Further, using a limited search over the input differences, the best obtained
4.5-round multi bit differentials are presented in Table 10 in Appendix B. Essentially, we
have now been able to move certain linear approximations across 1.5 rounds without any
reduction in bias.

Following Table 10, we consider the input difference ∆x(0)
13 [13] and the output difference

∆x(4.5)
0 [0] ⊕ ∆x(4.5)

0 [8] ⊕ ∆x(4.5)
1 [0] ⊕ ∆x(4.5)

5 [12] ⊕ ∆x(4.5)
11 [0] ⊕ ∆x(4.5)

9 [0] ⊕ ∆x(4.5)
15 [0] ⊕

∆x(4.5)
12 [16]⊕∆x(4.5)

12 [24]. The value of εd is 0.0282. This bias after 4.5 rounds provides a
distinguisher with time and data complexity 1

1
2 ·ε

2
d

< 2515. That is with 212 samples, it is
enough to distinguish 4.5-round ChaCha from a uniform random source.

3.2 Linear Approximation with εL < 1
In this section we study the linear approximations which hold with probability < 1. The
non linearity in Salsa and ChaCha arise solely from modular addition. We use some classical
results of the linear approximation of addition (one may refer to [26] for more detailed
analysis).
Lemma 4. For the modular addition operation s = a + b, the approximation s[i] =
a[i]⊕ b[i]⊕ a[i− 1] holds with probability 3

4 .
Next we define a linear mask that will prove useful in the subsequent results.

Definition 1. Γi denotes a linear masking vector over GF (2) which has 1 only in positions
of i and i+ 1. Then, given 32-bit x, x · Γi = x[i+ 1]⊕ x[i] where · denotes the standard
inner product.

Using this linear mask, the following result can be obtained.
Lemma 5. Given x, y ∈ {0, 1}32, the following holds for 0 ≤ i ≤ 30:

Pr [Γi · (x+ y) = x[i+ 1]⊕ y[i+ 1]] = 1
2
(
1− 1

2
)
.

The sketch of the proof can be found in Appendix C.1. For subtraction, a similar result
is obtained and due to its similarity with the previous result, we skip the proof.
Lemma 6. Given x, y ∈ {0, 1}32, the following holds for 0 ≤ i ≤ 30:

Pr [Γi · (x− y) = x[i+ 1]⊕ y[i+ 1]] = 1
2
(
1 + 1

2
)
.

In the case of both Salsa and ChaCha, we consider linear approximations with one
active input bit and multiple active output bits. The approximations follow from the
structure of the ciphers and the above discussed results.
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3.2.1 Salsa

We start with linear approximations over one round that hold with probability less than 1.
This follows from the repeated application of the previous lemmas.

Lemma 7. For one active input bit in round m − 1 and multiple active output bits in
round m, the following holds:

x
(m−1)
b [i + 7] = x

(m)
b [i + 7]⊕ x(m)

a [i]⊕ x(m)
a [i− 1]⊕ x

(m)
d [i− 18]⊕ x(m)

c [i− 18]⊕ x
(m)
d [i]

⊕ x(m)
c [i− 13]⊕ x

(m)
b [i− 13]⊕ x

(m)
b [i− 14], w.p. 1

2

(
1− 1

23

)
x(m−1)

c [i + 9] = x(m)
c [i + 9]⊕ x

(m)
b [i]⊕ x(m)

a [i]

⊕ x(m)
a [i− 1]⊕ x

(m)
d [i− 18]⊕ x(m)

c [i− 18], w.p. 1
2

(
1− 1

22

)
x

(m−1)
d [i + 13] = x

(m)
d [i + 13]⊕ x(m)

c [i]⊕ x
(m)
b [i]⊕ x

(m)
b [i− 1], w.p. 1

2

(
1 + 1

2

)
x(m−1)

a [i + 18] = x(m)
a [i + 18]⊕ x

(m)
d [i]⊕ x(m)

c [i]⊕ x(m)
c [i− 1], w.p. 1

2

(
1 + 1

2

)
However, since this reduces the differential bias considerably in each case, the result by

itself is not useful.
Experimentally, the most significant biases for 4 rounds of Salsa are in xd, hence we

limit our focus for linear approximations over 2 rounds to an input active bit in xd. Using
Lemma 1, we first apply a linear approximation to xd to get an approximation with 3 bits
that occur with probability 1. To each of the three bits we apply the above lemma to get
an approximation over 2 rounds, m to m + 2. Here we have considered the case for m
even, while the case for m odd is symmetric in nature.

Lemma 8. When m is even, each of the following holds with probability 1
2
(
1 + 1

26

)
.

x
(m)
1 [13] = x

(m+2)
9 [0]⊕ x

(m+2)
8 [19]⊕ x

(m+2)
11 [19]⊕ x

(m+2)
11 [18]⊕ x

(m+2)
13 [0]⊕ x

(m+2)
12 [23]

⊕ x
(m+2)
15 [23]⊕ x

(m+2)
15 [22]⊕ x

(m+2)
14 [5]⊕ x

(m+2)
13 [5]⊕ x

(m+2)
1 [13]⊕ x

(m+2)
0 [6]⊕ x

(m+2)
0 [5]

⊕ x
(m+2)
3 [20]⊕ x

(m+2)
2 [20]⊕ x

(m+2)
3 [6]⊕ x

(m+2)
2 [25]⊕ x

(m+2)
1 [25]⊕ x

(m+2)
1 [24],

x
(m)
6 [13] = x

(m+2)
14 [0]⊕ x

(m+2)
13 [19]⊕ x

(m+2)
12 [19]⊕ x

(m+2)
12 [18]⊕ x

(m+2)
2 [0]⊕ x

(m+2)
1 [23]

⊕ x
(m+2)
0 [23]⊕ x

(m+2)
0 [22]⊕ x

(m+2)
3 [5]⊕ x

(m+2)
2 [5]⊕ x

(m+2)
6 [13]⊕ x

(m+2)
5 [6]⊕ x

(m+2)
5 [5]

⊕ x
(m+2)
4 [20]⊕ x

(m+2)
7 [20]⊕ x

(m+2)
4 [6]⊕ x

(m+2)
7 [25]⊕ x

(m+2)
6 [25]⊕ x

(m+2)
6 [24],

x
(m)
11 [13] = x

(m+2)
3 [0]⊕ x

(m+2)
2 [19]⊕ x

(m+2)
1 [19]⊕ x

(m+2)
1 [18]⊕ x

(m+2)
7 [0]⊕ x

(m+2)
6 [23]

⊕ x
(m+2)
5 [23]⊕ x

(m+2)
5 [22]⊕ x

(m+2)
4 [5]⊕ x

(m+2)
7 [5]⊕ x

(m+2)
11 [13]⊕ x

(m+2)
10 [6]⊕ x

(m+2)
10 [5]

⊕ x
(m+2)
9 [20]⊕ x

(m+2)
8 [20]⊕ x

(m+2)
9 [6]⊕ x

(m+2)
8 [25]⊕ x

(m+2)
11 [25]⊕ x

(m+2)
11 [24],

x
(m)
12 [13] = x

(m+2)
4 [0]⊕ x

(m+2)
7 [19]⊕ x

(m+2)
6 [19]⊕ x

(m+2)
6 [18]⊕ x

(m+2)
8 [0]⊕ x

(m+2)
11 [23]

⊕ x
(m+2)
10 [23]⊕ x

(m+2)
10 [22]⊕ x

(m+2)
9 [5]⊕ x

(m+2)
8 [5]⊕ x

(m+2)
12 [13]⊕ x

(m+2)
15 [6]⊕ x

(m+2)
15 [5]

⊕ x
(m+2)
14 [20]⊕ x

(m+2)
13 [20]⊕ x

(m+2)
14 [6]⊕ x

(m+2)
13 [25]⊕ x

(m+2)
12 [25]⊕ x

(m+2)
12 [24].

Remark 1. We are interested in the case when m = 4, and the above linear approximation
has 1 active bit in round 4 and 19 active bits in round 6. The εd useful in this scenario is
with ID at x(0)

7 [0], OD at x(4)
1 [13] and value εd = −0.1142 ≈ − 1

23.13 . As we described in
Section 3.1.1, this extends to 5-round differential-linear bias with εL = 1, which is available
in the first row of Table 3. Now, for the 6-th round, we have εL = 1

26 . This gives a total
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differential-linear 6th round bias of εd ·ε2
L ≈ − 1

215.13 . This leads to a six round distinguisher
with complexity ≈ 232. We ran experiments with 242 randomly chosen key and IVs for the
output difference with 19 bits, i.e., ∆x(6)

0 [6]⊕∆x(6)
0 [5]⊕∆x(6)

1 [13]⊕∆x(6)
1 [25]⊕∆x(6)

1 [24]⊕
∆x(6)

2 [25]⊕∆x(6)
2 [20]⊕∆x(6)

3 [6]⊕∆x(6)
3 [20]⊕∆x(6)

11 [19]⊕∆x(6)
11 [18]⊕∆x(6)

8 [19]⊕∆x(6)
9 [0]⊕

∆x(6)
15 [23]⊕∆x(6)

15 [22]⊕∆x(6)
12 [23]⊕∆x(6)

13 [0]⊕∆x(6)
13 [5]⊕∆x(6)

14 [5]. The experimental bias
-0.000028 exactly supports the probability as we described above.

We have briefly sketched the proof for one case each of Lemma 7 and Lemma 8 in
Appendix C.2 and C.3.

This method becomes hard to handle for linear approximations with 3 rounds, but we
can still obtain the value of the linear bias over 3 rounds. This is done by counting the
number of variables of type xa, xb, xc and xd in an equation from Lemma 8. The counts
in the form (Variable Type, # occurrences) are (xa, 4), (xb, 4), (xc, 5), and (xd, 6).

One should note that one of the xd variables allow for linear approximation 1, and is
hence discounted in further calculations. Following from Lemmas 7 and 8, we can calculate
the probability of the bias for three rounds. The calculation leads to a linear bias over 3
rounds of value εL = 1

26+4·1+4·3+5·2+5·1 = 1
237 . For the εd previously considered, this leads to

a 7 round bias of εd · ε2
L ≈ 1

295.13 . However, the distinguisher for this bias has a complexity
of 2191 which is worse than the best known 7 round attack and further, for a similar reason
this method is unlikely to work for 8 rounds of Salsa.

3.2.2 ChaCha

The method for ChaCha follows from the ideas used in Salsa.

Lemma 9. For one active input bit in round m − 1 and multiple active output bits in
round m, the following holds.

x
(m−1)
b [i] = x

(m)
b [i+ 19]⊕ x(m)

c [i+ 12]⊕ x(m)
d [i]⊕ x(m)

c [i]⊕ x(m)
d [i− 1] w.p. 1

2
(
1 + 1

2
)
,

x
(m−1)
a [i] = x

(m)
a [i]⊕ x(m)

b [i+ 7]⊕ x(m)
b [i+ 19]⊕ x(m)

c [i+ 12]⊕ x(m)
d [i]⊕ x(m)

b [i+ 18]⊕
x

(m)
c [i+ 11]⊕ x(m)

d [i− 2]⊕ x(m)
d [i+ 6] w.p. 1

2
(
1 + 1

24

)
,

x
(m−1)
c [i] = x

(m)
d [i]⊕x(m)

c [i]⊕x(m)
d [i+ 8]⊕x(m)

a [i]⊕x(m)
a [i− 1]⊕x(m)

d [i+ 7]⊕x(m)
d [i− 1]

w.p. 1
2
(
1 + 1

22

)
,

x
(m−1)
d [i] = x

(m)
d [i+ 24]⊕ x(m)

a [i+ 16]⊕ x(m)
a [i]⊕ x(m)

c [i]⊕ x(m)
b [i+ 7]⊕ x(m)

c [i− 1]⊕
x

(m)
b [i+ 6] w.p. 1

2
(
1 + 1

2
)
.

We follow the method used for finding biases for 4.5 rounds of ChaCha. But at this
point we are unable to proceed further due to the restriction that linear approximations
must hold with probability 1. We pick xc as it has the only one non LSB term in Lemma
3. The LSB terms are approximated one round further using Lemma 3, but the other term
uses the above lemma to derive the following result.
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Lemma 10. Each of the following holds with probability 1
2
(
1 + 1

2
)
.

x
(3)
8 [0] = x

(5)
13 [24]⊕ x(5)

1 [16]⊕ x(5)
1 [0]⊕ x(5)

9 [0]⊕ x(5)
5 [7]

⊕ x(5)
12 [0]⊕ x(5)

8 [0]⊕ x(5)
12 [8]⊕ x(5)

0 [0]⊕ x(5)
2 [0]⊕ x(5)

6 [7]

⊕ x(5)
6 [19]⊕ x(5)

10 [12]⊕ x(5)
14 [0]⊕ x(5)

13 [0]⊕ x(5)
1 [24]⊕ x(5)

1 [8]

⊕ x(5)
9 [8]⊕ x(5)

5 [15]⊕ x(5)
9 [7]⊕ x(5)

5 [14]

x
(3)
9 [0] = x

(5)
14 [24]⊕ x(5)

2 [16]⊕ x(5)
2 [0]⊕ x(5)

10 [0]⊕ x(5)
6 [7]

⊕ x(5)
13 [0]⊕ x(5)

9 [0]⊕ x(5)
13 [8]⊕ x(5)

1 [0]⊕ x(5)
3 [0]⊕ x(5)

7 [7]

⊕ x(5)
7 [19]⊕ x(5)

11 [12]⊕ x(5)
15 [0]⊕ x(5)

14 [0]⊕ x(5)
2 [24]⊕ x(5)

2 [8]

⊕ x(5)
10 [8]⊕ x(5)

6 [15]⊕ x(5)
10 [7]⊕ x(5)

6 [14]

x
(3)
10 [0] = x

(5)
15 [24]⊕ x(5)

3 [16]⊕ x(5)
3 [0]⊕ x(5)

11 [0]⊕ x(5)
7 [7]

⊕ x(5)
14 [0]⊕ x(5)

10 [0]⊕ x(5)
14 [8]⊕ x(5)

2 [0]⊕ x(5)
0 [0]⊕ x(5)

4 [7]

⊕ x(5)
4 [19]⊕ x(5)

8 [12]⊕ x(5)
12 [0]⊕ x(5)

15 [0]⊕ x(5)
3 [24]⊕ x(5)

3 [8]

⊕ x(5)
11 [8]⊕ x(5)

7 [15]⊕ x(5)
11 [7]⊕ x(5)

7 [14]

x
(3)
11 [0] = x

(5)
12 [24]⊕ x(5)

0 [16]⊕ x(5)
0 [0]⊕ x(5)

8 [0]⊕ x(5)
4 [7]

⊕ x(5)
15 [0]⊕ x(5)

11 [0]⊕ x(5)
15 [8]⊕ x(5)

3 [0]⊕ x(5)
1 [0]⊕ x(5)

5 [7]

⊕ x(5)
5 [19]⊕ x(5)

9 [12]⊕ x(5)
13 [0]⊕ x(5)

12 [0]⊕ x(5)
0 [24]⊕ x(5)

0 [8]

⊕ x(5)
8 [8]⊕ x(5)

4 [15]⊕ x(5)
8 [7]⊕ x(5)

4 [14]

Remark 2. With ID at x(0)
13 [13], OD at x(3)

11 [0], we obtain εd = −0.0272 ≈ − 1
25.2 . As we

described in Section 3.1.2, this extends to 4-round differential-linear bias with εL = 1,
when the OD is x(4)

1 [0] ⊕ x(4)
11 [0] ⊕ x(4)

12 [8] ⊕ x(4)
12 [0]. Further, in this section it is shown

that x(3)
11 [0] = x

(5)
12 [24] ⊕ x(5)

0 [16] ⊕ x(5)
0 [0] ⊕ x(5)

8 [0] ⊕ x(5)
4 [7] ⊕ x(5)

15 [0] ⊕ x(5)
11 [0] ⊕ x(5)

15 [8] ⊕
x

(5)
3 [0]⊕x(5)

1 [0]⊕x(5)
5 [7]⊕x(5)

5 [19]⊕x(5)
9 [12]⊕x(5)

13 [0]⊕x(5)
12 [0]⊕x(5)

0 [24]⊕x(5)
0 [8]⊕x(5)

8 [8]⊕
x

(5)
4 [15]⊕ x(5)

8 [7]⊕ x(5)
4 [14] with probability 1

2
(
1 + 1

2
)
. The gives a total differential-linear

5th round bias of εd · ε2
L ≈ −0.0068 = − 1

27.2 . This leads to a 5 round distinguisher with
complexity ≈ 216.
Remark 3. As with Salsa, extending 3 rounds come at a cost. As discussed prior to
the above lemma, for ChaCha, setting i = 0 in Lemma 3 allows linear approximation of
probability 1 for LSB variables. The cost is thus determined by the non LSB variables. A
simple count of the non LSB variables in the form (Variable Type, # non LSB occurrence)
gives (xa, 3), (xb, 5), (xc, 3), and (xd, 2). Now, using the probabilities of Lemma 9
and Lemma 10 (to attach the corresponding weight to each variable), the linear bias is
εL = 1

21+3·4+5·1+3·2+2·1 = 1
226 . This leads to a 6 round bias of ε2

Lεd ≈ 1
257.2 . The distinguisher

for this bias has a complexity of 2116 which is the currently best known 6 round attack on
ChaCha.

To obtain the exact active output bits, we need to start expanding each term on the
right side of the equations in Lemma 10. Depending on whether the term is LSB or not
we would apply either Lemma 3 or Lemma 9 to do so. The exact number of bits is not
easy to estimate without explicitly writing down the terms as cancellations may occur.
Due to the high complexity of the the distinguisher, it is impossible to verify this bias
experimentally. This method is unlikely to be useful for 7 or more rounds of ChaCha.



Arka Rai Choudhuri and Subhamoy Maitra 277

4 Implication of the new biases towards the cryptanalysis
using Probabilistic Neutral Bits (PNBs)

The only cryptanalytic attack known for reduced round Salsa and ChaCha are using the
decade old proposal of [1, 2]. The basic idea was to move forward a few rounds identifying
a bias corresponding to one or more input bit differences and at the same time coming back
through a few rounds considering that a few key bits (PNBs) will not affect the reversal
much and thus one does not require to search those bits initially. Thus, only searching a
subset of all the key bits, one may deduce whether the could identify those bits successfully
by the help of a distinguisher. In case that is possible, we have the complexity of exhaustive
search in that subset multiplied by the complexity of checking the distinguisher plus the
complexity of the exhaustive search for the PNBs. Since this idea has been discussed in
quite a few papers in great details [1, 2, 18, 17], we refer to these papers and skip the
technical details. The main terms involved in assessing the complexity of this attack, as
referred in the above-mentioned papers, are as follows:

- Bias in the forward direction after r rounds: εd.
- The n number of PNBs given a bias γ that relates to the threshold probability 1

2 (1+γ)
to choose the PNBs. The number of non-PNB key bits are thus m = 256− n.

- The bias εa in the reverse direction considering all the PNBs for R− r rounds.
- The bias ε which is generally approximated as εa · εd and considered for calculating

the overall complexity of the attack on R rounds of the cipher.
- Following [1, 2], given the number of samples N and the probability of false alarm is

Pfa = 2−α, the complexity of the attack is given by

2m(N + 2nPfa) = 2mN + 2256−α, where N ≈
(√

α log 4 + 3
√

1− (ε)2

ε

)2

,

for probability of non-detection Pnd = 1.3× 10−3.
The main advantage we obtain here is we have significant biases for 5 and 6 rounds of

Salsa as well as 4, 4.5 and 5 rounds of ChaCha. Thus, while comparing with the existing
attack complexities, we need to come back less number of rounds while considering the
PNBs. As correctly envisaged in earlier works [1, 2], while we consider the number of
PNBs for multi-bit output differences, it reduces drastically in comparison to single-bit.
That is why we could not increase the attack for more rounds than the existing works.
However, for smaller number of reverse rounds, the number of PNBs are quite significant
and that helps us to improve the existing complexities by a huge margin in certain cases
as explained in Table 1. This works significantly better than existing results for 7 rounds
of Salsa and 6 rounds of ChaCha. However, for 8 rounds of Salsa and 7 rounds of ChaCha
we could only obtain slight improvements.

4.1 Salsa
For Salsa we have already described that we get the best known biases for 4, 5 and 6
rounds and that provides real time cryptanalysis of Salsa till 6 rounds that could not be
achieved earlier. Now we consider the cases for 7 and 8 rounds. Note that, the biases
have been calculated so far with a set of random keys and IV’s as described in the earlier
section. In this section, we run the experiments afresh as we need to run the experiments
with the same key and different IV’s in each run. We go for a number of such runs and
then take the median value as considered in [1, 2] so that it is expected that the results
will work for at least half of the randomly chosen keys. Here we run each experiment for
230 randomly chosen IV’s to get the average and then go for 256 such runs to obtain the
median values.
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4.1.1 7-round

Consider the input difference ∆x(0)
7 [0], which we will use for all the PNB based analysis

here. First we take the output difference ∆x(5)
9 [0]⊕∆x(5)

13 [0]⊕∆x(5)
1 [13] as in the first row

of Table 3. Here we go forward 5 rounds and come back 2 rounds. We have 149 PNBs here
when we consider γ = 0.27. We obtained εa = 0.002510, εd = −0.116754, ε = −0.000294.
This gives us the data complexity of 231.5 and time complexity of 2138.5 for α = 124.

We can still make it better by going forward 6 rounds and coming back 1 round only
with the same input difference. However, for the output difference will now consider 19
bits, i.e., we will take ∆x(6)

0 [6]⊕∆x(6)
0 [5]⊕∆x(6)

1 [13]⊕∆x(6)
1 [25]⊕∆x(6)

1 [24]⊕∆x(6)
2 [25]⊕

∆x(6)
2 [20]⊕∆x(6)

3 [6]⊕∆x(6)
3 [20]⊕∆x(6)

11 [19]⊕∆x(6)
11 [18]⊕∆x(6)

8 [19]⊕∆x(6)
9 [0]⊕∆x(6)

15 [23]⊕
∆x(6)

15 [22]⊕∆x(6)
12 [23]⊕∆x(6)

13 [0]⊕∆x(6)
13 [5]⊕∆x(6)

14 [5]. We have 180 PNBs here when we
consider γ = 0.3. The median value of εa is checked here through experiments which is
0.000386. We consider the estimated value of εd = −0.000028 as in Section 3.2.1. Then we
estimate ε = εd · εa. This gives us the data complexity of 260.95 and time complexity of
2136.98 for α = 125.

4.1.2 8-round

Here we need to follow the idea of chosen IV cryptanalysis as explained in [17]. Corre-
sponding to the two key words in a column and given the constant word, we choose only
those IV words such that the number of differences after the quarterround is the same as
in the case when the modulo addition + (nonlinear) is replaced by the linear operation ⊕.
The differential thus passes with probability one. This happens for proper choices of IV
words given the key words. Naturally, one may require an additional data complexity of
232·3 = 296 at maximum for maintaining the information regarding the proper choice of
IV’s.

In this case we go forward 5 rounds and come back 3 rounds (going forward 6 rounds
and coming back 2 rounds, we do not get better result here). We consider the input and
output difference as explained in the first row of Table 3. The input difference is ∆x(0)

7 [0],
the output difference is ∆x(5)

9 [0]⊕∆x(5)
13 [0]⊕∆x(5)

1 [13]. We have 40 PNBs here when we
consider γ = 0.1 and further we add two more PNBs by trial and error. The PNBs can be
represented as 0x7e000000, 0x00000000, 0x000001c0, 0x07800800 (0x03800800), 0x00080000,
0x0003fff0 (0x0001fff0), 0x001e0000, 0x807e0003. The 32-bit binary patterns correspond to
the PNBs when we have a 1. For two words, we have a corresponding pair in parenthesis,
showing the initial PNBs that we obtained for γ = 0.1 and then we have added one more
key-bit in each case after several experiments. That is, we consider 42 PNBs in total. We
run each experiment for 234 randomly chosen IV’s for each randomly selected key and go
for 2048 such runs to obtain the median values. Note that out of these runs, we could
obtain 1003 runs (around half) where we have proper choices of IV’s in approximately
232 cases. The rest of the runs are for such randomly chosen keys that there is no IV so
that the difference(s) pass with probability one. Based on these 1003 data, we obtained
εa = 0.000752, εd = −0.233198, ε = −0.000178. Note that the εd bias gets doubled when
we consider the chosen IVs and this helps in obtaining better complexity as discovered
in [17]. This gives us N = 230.78 and time complexity of 2244.85 for α = 15.5. The data
complexity in this case is 296 in worst case similar to that of [17] as discussed above. Thus,
this provides comparable result as could be obtained in [17].

4.2 ChaCha
We have already described that it is possible to obtain distinguishers for 4, 4.5 and 5
rounds of ChaCha in real time. Now let us consider the PNB based attacks.
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4.2.1 6-round

For the 6-round cryptanalysis, we run each experiment for 234 randomly chosen IV’s
to get the average and then go for 256 such runs to obtain the median values. First
consider the ID and OD as in the first row of Table 5. We go forward 4 rounds and
come back 2 rounds. We have 159 PNBs here when we consider γ = 0.4. We obtained
εa = 0.000534, εd = 0.212786, ε = 0.000110. This gives us the data complexity of 234.39

and time complexity of 2131.40 for α = 131.
This may also be studied as 4.5 rounds forward and 1.5 rounds backward with the ID

(same as above) and OD as in the first row of Table 10. With γ = 0.5, we have 161 PNBs in
this case. With similar experiments, we obtain εa = 0.003958, εd = 0.026652, ε = 0.000106.
This provides the data complexity of 234.51 and time complexity of 2129.53 for α = 133.

However, the best result can be obtained when we go forward 5 rounds and come back 1
round. We use the ID, OD as given in Section 3.2.2 considering the linear combination of
21 bits at the output. With γ = 0.5, we have 166 PNBs in this case. Then experimentally,
we obtain εa = 0.0028, εd = 0.0068, and estimate ε = εa · εd = 0.000019. This provides the
data complexity of 237.5 and time complexity of 2127.5 for α = 135.

4.2.2 7-round

Here we need to go for chosen-IV cryptanalysis as in [17]. With 4-round forward and 3-round
backward or 5-round forward and 2 round backward, we could not achieve competitive
complexity as attained in [17]. However, with 4.5-round forward and 2.5-round backward
(see Figure 1), we could manage comparable complexity as in [17].

[ ]
∆X(0)

[ ]
∆X(1)

[ ]
∆X(2)

[ ]
∆X(3)

[ ]
∆X(4)

[ ]
∆X(4.5)

cr dr cr dr
1
2 cr

(a) Forward direction for 4.5 rounds

[ ]
∆X(4.5)

[ ]
∆X(5)

[ ]
∆X(6)

[ ]
∆X(7)

cr−1dr−11
2 cr−1

(b) Reverse direction for 2.5 rounds

Figure 1: The two steps procedure for attacking 7 rounds of ChaCha using a 4.5 round bias.
The columnround (shortened to cr) and diagonalround (shortened to dr) are represented by
red and blue arrows respectively.The half round of ChaCha discussed earlier is represented
by a dashed arrow. We follow the same notations for the reverse rounds.

We have 50 PNBs here when we consider γ = 0.27. We run each experiment for 234

randomly chosen IV’s and go for 2048 such runs. Out of these runs, we get 1572 many
cases where the differences pass with probability one in the first round. Based on these
1572 many data, we obtained εa = 0.001162, εd = 0.136828, ε = 0.000152. This provides
N = 231.6 and time complexity 2237.65 for α = 23. The data complexity here is similar
to [17], which is 296 in worst case.

4.2.3 7-round: Non-randomness

In [18], it has been discussed that choosing one or more differences in proper locations
one may reverse one round of Salsa such that no difference is introduced in the constant
locations. Thus, we may have differences in key or IV bits and we may consider that as the
starting point. In this manner we may have the biases visible with the same value for one
more round. Similar technique works for ChaCha also, and we show that it is possible to
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come back half of the initial column round. Let us describe this with an example. Consider
that we have a difference ∆x(0.5)

13 [13]. If one comes back half round then it is possible to
obtain valid initial states with differences in the keyword k5 (i.e., x9) and IV v0 (i.e., x13).
This provide the IDs. With such input key and IV differences, we obtain output difference
∆x(4.5)

3 [0] ⊕ ∆x(4.5)
3 [8] ⊕ ∆x(4.5)

0 [0] ⊕ ∆x(4.5)
4 [12] ⊕ ∆x(4.5)

10 [0] ⊕ ∆x(4.5)
8 [0] ⊕ ∆x(4.5)

14 [0] ⊕
∆x(4.5)

15 [16]⊕∆x(4.5)
15 [24] with a bias εd = 0.774648.

We have 51 PNBs here when we consider γ = 0.27. We run each experiment for 230

randomly chosen IV’s and go for 256 such runs. We obtained εa = 0.000788, ε = 0.000614.
This provides the data complexity 227.8 and time complexity 2232.8 for α = 28. We
reemphasize that this improved result is to demonstrate non-randomness only and not
cryptanalysis of the cipher as we have to accept differences in the key-bits too in addition
to IV bit differences.

5 Conclusion
In this paper, we develop the first known theoretical results with respect to choosing
a combination of output bits to obtain significantly improved biases. Building on this
theory, and a limited search, we obtain the best known biases for 4 rounds of Salsa and 3
rounds of ChaCha. Using our strategy, after almost a decade, we report first known biases
for 5/6 rounds of Salsa and 4/4.5/5 rounds of ChaCha. We also demonstrate that our
theory extends to higher order differentials. Such multi-bit biases cannot be identified
by exhaustive search methods due to the huge complexity involved. That is, the main
contribution of this work is to identify how to obtain biased multi-bit differentials of Salsa
and ChaCha by theoretical analysis. Surprisingly, such efforts have never been reported in
literature and the ciphers have been studied primarily as black boxes while exploring the
differentials. Automated search techniques did not provide much significant results either.
This is the first time we looked into the structure of the ciphers in great details to obtain
such highly biased multi-bit differentials.

Despite prior claims that multi-bit differentials cannot be effectively used in an attack,
we obtain best known results in both Salsa and ChaCha using multi-bit output differentials.
Significantly, for the lower rounds of Salsa (5 and 6) and ChaCha (4, 4.5 and 5), we move
the attacks into practical realms for the first time. One may have a look at Table 1 in
the introduction to see how it took quite a few years to achieve such low complexities
for practical attacks. Further we could significantly improve the time complexities for
7-round Salsa and 6-round ChaCha. Due to the significant reduction of PNBs for more
reverse rounds, we could only manage to slightly improve the existing time complexities
for 8-round Salsa and 7-round ChaCha. We believe that our techniques might be advanced
further to obtain better cryptanalysis for these ciphers.
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A Higher Order Differentials
In this section we refer to some ID/OD combinations in Section 3.1 for studying the higher
order differentials. The notation follows from the work in [22] and is a slight departure
from the notations being used thus far. The reader should note that the notations used in
this section are limited only to this section. For instance, we use matrices of the form Xi

for i > 0 where we define ∆Xi = X0 ⊕Xi. We refer to a word u of ∆Xi by ∆xi,u.

A.1 Second-Order Differential
Let X(0)

0 be the initial state matrix, X(0)
1 , X(0)

2 and X(0)
3 be the associated initial matrices

with a single-bit input difference ∆x(0)
1,i1 = 2j1 , a single-bit input difference ∆x(0)

2,i2 = 2j2

and the double-bit differences ∆x(0)
3,i1 = 2j1 and ∆x(0)

3,i2 = 2j2 respectively. The second
order single-bit output difference after r rounds is defined as

∆x(r)
p [q] = ∆x(r)

0,p[q]⊕ x
(r)
1,p[q]∆x

(r)
2,p[q]⊕ x

(r)
3,p[q].

For input X, this is denoted by (∆x(r)
p [q] | ∆x(0)

i1
[j1],∆x(0)

i2
[j2]). Similar to the bias defined

earlier, the bias of the second order output difference is denoted by

Pr[∆x(r)
p [q] | ∆x(0)

i1
[j1] = 1,∆x(0)

i1
[j1] = 1] = 1

2(1 + εd),

where the probability holds over all keys, nonces and counters.

A.2 Second Order Multi-bit Differential
Shi et al. [22] reported high single bit second order differentials for 4 rounds of Salsa and
3 rounds of ChaCha. Our theoretical results for multi-bits discussed earlier extend directly
to the second order differentials due to the linearity of operations. This is illustrated for
Salsa in Table 6 (better biases compared to first order differential as in Table 3) and for
ChaCha in Table 7 (better biases compared to first order differential as in Table 5).

Table 6: Best second order triple bit differentials for 5 rounds of Salsa
ID : ∆x(0)

i1
[j1],∆x(0)

i2
[j2] OD Bias

∆x(0)
7 = 217,∆x(0)

8 = 223 ∆x(5)
9 [0]⊕∆x(5)

13 [0]⊕∆x(5)
1 [13] 0.3310

∆x(0)
7 = 217,∆x(0)

8 = 224 ∆x(5)
9 [0]⊕∆x(5)

13 [0]⊕∆x(5)
1 [13] 0.3232

∆x(0)
7 = 217,∆x(0)

8 = 225 ∆x(5)
9 [0]⊕∆x(5)

13 [0]⊕∆x(5)
1 [13] 0.3212

∆x(0)
7 = 217,∆x(0)

8 = 226 ∆x(5)
9 [0]⊕∆x(5)

13 [0]⊕∆x(5)
1 [13] 0.3096

∆x(0)
7 = 217,∆x(0)

8 = 227 ∆x(5)
9 [0]⊕∆x(5)

13 [0]⊕∆x(5)
1 [13] 0.3010

∆x(0)
7 = 217,∆x(0)

8 = 228 ∆x(5)
9 [0]⊕∆x(5)

13 [0]⊕∆x(5)
1 [13] 0.2914

∆x(0)
7 = 217,∆x(0)

8 = 210 ∆x(5)
9 [0]⊕∆x(5)

13 [0]⊕∆x(5)
1 [13] 0.2808

∆x(0)
7 = 217,∆x(0)

8 = 229 ∆x(5)
9 [0]⊕∆x(5)

13 [0]⊕∆x(5)
1 [13] 0.2800

But unfortunately, as remarked by Shi et al. in [22], we do not know how to use these
high biases to good effect when considering the reverse rounds. We refer the reader to [22]
for details regarding construction of Row Chaining Distinguishers (RCD) for second order
differentials.

We ran extensive tests to observe third order differentials for Salsa and ChaCha, but
were unable to obtain significantly better biases than those of second order.

The limited search differs slightly from the case of the first order differential. Here, we
search over all possible pairs and triplets of input differences in the IV for second and third
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Table 7: Best second order 5-bit differentials for 4 rounds of ChaCha
ID : ∆x

(0)
i1

[j1], ∆x
(0)
i2

[j2] OD Bias
∆x

(0)
14 = 215, ∆x

(0)
15 = 215 ∆x

(4)
1 [0]⊕∆x

(4)
6 [7]⊕∆x

(4)
6 [19]⊕∆x

(4)
11 [12]⊕∆x

(4)
12 [0] −0.4314

∆x
(0)
12 = 215, ∆x

(0)
13 = 220 ∆x

(4)
3 [0]⊕∆x

(4)
4 [7]⊕∆x

(4)
4 [19]⊕∆x

(4)
9 [12]⊕∆x

(4)
14 [0] −0.4313

∆x
(0)
13 = 215, ∆x

(0)
14 = 220 ∆x

(4)
0 [0]⊕∆x

(4)
5 [7]⊕∆x

(4)
5 [19]⊕∆x

(4)
10 [12]⊕∆x

(4)
15 [0] −0.4311

∆x
(0)
12 = 220, ∆x

(0)
15 = 215 ∆x

(4)
2 [0]⊕∆x

(4)
7 [7]⊕∆x

(4)
7 [19]⊕∆x

(4)
8 [12]⊕∆x

(4)
13 [0] −0.4308

∆x
(0)
14 = 216, ∆x

(0)
15 = 220 ∆x

(4)
1 [0]⊕∆x

(4)
6 [7]⊕∆x

(4)
6 [19]⊕∆x

(4)
11 [12]⊕∆x

(4)
12 [0] 0.4011

∆x
(0)
13 = 216, ∆x

(0)
14 = 220 ∆x

(4)
0 [0]⊕∆x

(4)
5 [7]⊕∆x

(4)
5 [19]⊕∆x

(4)
10 [12]⊕∆x

(4)
15 [0] 0.4004

∆x
(0)
13 = 223, ∆x

(0)
14 = 220 ∆x

(4)
0 [0]⊕∆x

(4)
5 [7]⊕∆x

(4)
5 [19]⊕∆x

(4)
10 [12]⊕∆x

(4)
15 [0] 0.3988

∆x
(0)
14 = 223, ∆x

(0)
15 = 220 ∆x

(4)
1 [0]⊕∆x

(4)
6 [7]⊕∆x

(4)
6 [19]⊕∆x

(4)
11 [12]⊕∆x

(4)
12 [0] 0.3988

order respectively. This gives
(128

2
)
and

(128
3
)
differences to search over, but we search over

only 8 possible output bit combinations as in the case of the first order differential.

B A few tables

Table 8: Best triple bit differentials for 4 rounds of Salsa
ID OD Bias

∆x(0)
8 = 220 ∆x(4)

12 [0]⊕∆x(4)
13 [0]⊕∆x(4)

14 [13] −0.9999
∆x(0)

7 = 220 ∆x(4)
11 [0]⊕∆x(4)

8 [0]⊕∆x(4)
9 [13] −0.9999

∆x(0)
7 = 221 ∆x(4)

11 [0]⊕∆x(4)
8 [0]⊕∆x(4)

9 [13] 0.9998
∆x(0)

8 = 221 ∆x(4)
12 [0]⊕∆x(4)

13 [0]⊕∆x(4)
14 [13] 0.9998

∆x(0)
8 = 222 ∆x(4)

12 [0]⊕∆x(4)
13 [0]⊕∆x(4)

14 [13] 0.9997
∆x(0)

7 = 222 ∆x(4)
11 [0]⊕∆x(4)

8 [0]⊕∆x(4)
9 [13] 0.9997

∆x(0)
8 = 213 ∆x(4)

12 [0]⊕∆x(4)
13 [0]⊕∆x(4)

14 [13] −0.9996
∆x(0)

7 = 213 ∆x(4)
11 [0]⊕∆x(4)

8 [0]⊕∆x(4)
9 [13] −0.9996

Table 9: Best multi-bit differentials for 3 rounds of ChaCha
ID OD Bias

∆x(0)
12 = 210 ∆x(3)

0 [0]⊕∆x(3)
4 [7]⊕∆x(3)

4 [19]⊕∆x(3)
8 [12]⊕∆x(4)

12 [0] 1.0000
∆x(0)

12 = 211 ∆x(3)
0 [0]⊕∆x(3)

4 [7]⊕∆x(3)
4 [19]⊕∆x(3)

8 [12]⊕∆x(4)
12 [0] 1.0000

∆x(0)
12 = 212 ∆x(3)

0 [0]⊕∆x(3)
4 [7]⊕∆x(3)

4 [19]⊕∆x(3)
8 [12]⊕∆x(4)

12 [0] 1.0000
∆x(0)

12 = 213 ∆x(3)
0 [0]⊕∆x(3)

4 [7]⊕∆x(3)
4 [19]⊕∆x(3)

8 [12]⊕∆x(4)
12 [0] 1.0000

∆x(0)
12 = 214 ∆x(3)

0 [0]⊕∆x(3)
4 [7]⊕∆x(3)

4 [19]⊕∆x(3)
8 [12]⊕∆x(4)

12 [0] 1.0000
∆x(0)

12 = 215 ∆x(3)
0 [0]⊕∆x(3)

4 [7]⊕∆x(3)
4 [19]⊕∆x(3)

8 [12]⊕∆x(4)
12 [0] 1.0000

∆x(0)
12 = 28 ∆x(3)

0 [0]⊕∆x(3)
4 [7]⊕∆x(3)

4 [19]⊕∆x(3)
8 [12]⊕∆x(4)

12 [0] −1.0000
∆x(0)

12 = 29 ∆x(3)
0 [0]⊕∆x(3)

4 [7]⊕∆x(3)
4 [19]⊕∆x(3)

8 [12]⊕∆x(4)
12 [0] 1.0000

C Proof of some results
C.1 Proof of Lemma 5
We revisit the definition of the carry bit C[i] of the modular addition s = x+ y.
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Table 10: Best multi-bit differentials for 4.5 rounds of ChaCha
ID OD Bias

∆x(0)
13 = 213 ∆x(4.5)

0 [0]⊕∆x(4.5)
0 [8]⊕∆x(4.5)

1 [0]⊕∆x(4.5)
5 [12]⊕∆x(4.5)

11 [0]
0.0282

⊕ ∆x(4.5)
9 [0]⊕∆x(4.5)

15 [0]⊕∆x(4.5)
12 [16]⊕∆x(4.5)

12 [24]

∆x(0)
14 = 213 ∆x(4.5)

1 [0]⊕∆x(4.5)
1 [8]⊕∆x(4.5)

2 [0]⊕∆x(4.5)
6 [12]⊕∆x(4.5)

8 [0]
0.0278

⊕ ∆x(4.5)
10 [0]⊕∆x(4.5)

12 [0]⊕∆x(4.5)
13 [16]⊕∆x(4.5)

13 [24]

∆x(0)
15 = 213 ∆x(4.5)

2 [0]⊕∆x(4.5)
2 [8]⊕∆x(4.5)

3 [0]⊕∆x(4.5)
7 [12]⊕∆x(4.5)

9 [0]
0.0277

⊕ ∆x(4.5)
11 [0]⊕∆x(4.5)

13 [0]⊕∆x(4.5)
14 [16]⊕∆x(4.5)

14 [24]

∆x(0)
12 = 213 ∆x(4.5)

3 [0]⊕∆x(4.5)
3 [8]⊕∆x(4.5)

0 [0]⊕∆x(4.5)
4 [12]⊕∆x(4.5)

10 [0]
0.0266

⊕ ∆x(4.5)
8 [0]⊕∆x(4.5)

14 [0]⊕∆x(4.5)
15 [16]⊕∆x(4.5)

15 [24]

∆x(0)
12 = 225 ∆x(4.5)

3 [0]⊕∆x(4.5)
3 [8]⊕∆x(4.5)

0 [0]⊕∆x(4.5)
4 [12]⊕∆x(4.5)

10 [0] −0.0116
⊕ ∆x(4.5)

8 [0]⊕∆x(4.5)
14 [0]⊕∆x(4.5)

15 [16]⊕∆x(4.5)
15 [24]

∆x(0)
13 = 225 ∆x(4.5)

0 [0]⊕∆x(4.5)
0 [8]⊕∆x(4.5)

1 [0]⊕∆x(4.5)
5 [12]⊕∆x(4.5)

11 [0] −0.0106
⊕ ∆x(4.5)

9 [0]⊕∆x(4.5)
15 [0]⊕∆x(4.5)

12 [16]⊕∆x(4.5)
12 [24]

∆x(0)
15 = 225 ∆x(4.5)

2 [0]⊕∆x(4.5)
2 [8]⊕∆x(4.5)

3 [0]⊕∆x(4.5)
7 [12]⊕∆x(4.5)

9 [0] −0.0105
⊕ ∆x(4.5)

11 [0]⊕∆x(4.5)
13 [0]⊕∆x(4.5)

14 [16]⊕∆x(4.5)
14 [24]

∆x(0)
15 = 229 ∆x(4.5)

1 [0]⊕∆x(4.5)
1 [8]⊕∆x(4.5)

2 [0]⊕∆x(4.5)
6 [12]⊕∆x(4.5)

8 [0] −0.0104
⊕ ∆x(4.5)

10 [0]⊕∆x(4.5)
12 [0]⊕∆x(4.5)

13 [16]⊕∆x(4.5)
13 [24]

C[i+ 1] = x[i] · y[i]⊕ (x[i]⊕ y[i]) · C[i],

where C[0] = 0. s[i] is now defined as

s[i] = x[i]⊕ y[i]⊕ C[i].

Let V = x[i] · y[i]⊕ x[i]⊕ y[i]⊕ (x[i]⊕ y[i]⊕ 1) ·C[i]. Hence, from the definition of the
linear masking vector,

Γi · (x+ y) = V ⊕ x[i+ 1]⊕ y[i+ 1].

To prove the lemma, we need to determine the probability that V is 0.

Pr[V = 0] = Pr[V = 0 | C[i] = 0] · Pr[C[i] = 0] + Pr[V = 0 | C[i] = 1] · Pr[C[i] = 1]
= Pr[x[i] · y[i]⊕ x[i]⊕ y[i] = 0] · Pr[C[i] = 0] + Pr[x[i] · y[i]⊕ 1 = 0] · Pr[C[i] = 1]

= 1
4 · Pr[C[i] = 0] + 1

4 · Pr[C[i] = 1]

= 1
4 = 1

2

(
1− 1

2

)
Hence,

Γi · (x+ y) = x[i+ 1]⊕ y[i+ 1]

with probability 1
2
(
1− 1

2
)
.
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C.2 Proof of Lemma 7

We give a brief proof of one of the cases in Lemma 7. The goal is to represent a single
input active bit from round m− 1 using bits of round m where εL < 1. We start again
with the quarterround updates for Salsa.

x
(m)
b [i+ 7] = x

(m−1)
b [i+ 7]⊕ (x(m−1)

a [i]⊕ x(m−1)
d [i]⊕ C1[i])

x(m)
c [i+ 9] = x(m−1)

c [i+ 9]⊕ (x(m−1)
b [i]⊕ x(m−1)

a [i]⊕ C2[i])

x
(m)
d [i+ 13] = x

(m−1)
d [i+ 13]⊕ (x(m)

c [i]⊕ x(m)
b [i]⊕ C3[i])

x(m)
a [i+ 18] = x(m−1)

a [i+ 18]⊕ (x(m)
d [i]⊕ x(m)

c [i]⊕ C4[i])

Here we demonstrate by the linear approximation of xb which is the most complicated
of the four cases. The other cases follow similarly. At each step we use one of the linear
approximations mentioned in Section 3.2.

x
(m−1)
b [i+ 7] = x

(m)
b [i+ 7]⊕ (x(m−1)

a [i]⊕ x(m−1)
d [i]⊕ C1[i])

= x
(m)
b [i+ 7]⊕ (x(m−1)

a [i]⊕ x(m−1)
d [i]⊕ x(m−1)

a [i− 1]) w.p. 1
2

(
1 + 1

2

)
= x

(m)
b [i+ 7]⊕ (x(m−1)

a [i]⊕ x(m−1)
a [i− 1]⊕ (x(m)

d [i]

⊕ (x(m)
c [i− 13]⊕ x(m)

b [i− 13]⊕ C3[i− 13]))) w.p. 1
2

(
1 + 1

2

)
= x

(m)
b [i+ 7]⊕ (x(m−1)

a [i]⊕ x(m−1)
a [i− 1]⊕ (x(m)

d [i]

⊕ x(m)
c [i− 13]⊕ x(m)

b [i− 13]⊕ x(m)
b [i− 13])) w.p. 1

2

(
1 + 1

22

)
= x

(m)
b [i+ 7]⊕ (x(m)

a [i]⊕ x(m)
a [i− 1]⊕ Γi−19 · (xmd + xmc )

⊕ (x(m)
d [i]⊕ x(m)

c [i− 13]⊕ x(m)
b [i− 13]⊕ x(m)

b [i− 13])) w.p. 1
2

(
1 + 1

22

)
= x

(m)
b [i+ 7]⊕ (x(m)

a [i]⊕ x(m)
a [i− 1]⊕ xmd [i− 18]⊕ xmc [i− 18]

⊕ (x(m)
d [i]⊕ x(m)

c [i− 13]⊕ x(m)
b [i− 13]⊕ x(m)

b [i− 13])) w.p. 1
2

(
1− 1

23

)

C.3 Proof of Lemma 8

Given Lemma 7 and Lemma 1, we sketch the proof for a case in Lemma 8. In the first
step we use the result of Lemma 1 to express x(4)

1 [13] in terms of bits from round 5. Then
using the results in Lemma 7, we expand each term in round 5 to get an expression in
round 6 with the corresponding probability.
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x
(4)
1 [13] = x

(5)
1 [13]⊕ x(5)

9 [0]⊕ x(5)
13 [0]

= x
(6)
1 [13]⊕ x(6)

0 [6]⊕ x(6)
0 [5]⊕ x(6)

3 [20]⊕ x(6)
2 [20]

⊕ x(6)
3 [6]⊕ x(6)

2 [25]⊕ x(6)
1 [25]⊕ x(6)

1 [24]

⊕ x(5)
9 [0]⊕ x(5)

13 [0] w.p. 1
2

(
1− 1

23

)
= x

(6)
1 [13]⊕ x(6)

0 [6]⊕ x(6)
0 [5]⊕ x(6)

3 [20]⊕ x(6)
2 [20]

⊕ x(6)
3 [6]⊕ x(6)

2 [25]⊕ x(6)
1 [25]⊕ x(6)

1 [24]

⊕ x(6)
9 [0]⊕ x(6)

8 [19]⊕ x(6)
11 [19]⊕⊕x(6)

11 [18]⊕ x(5)
13 [0] w.p. 1

2

(
1− 1

24

)
= x

(6)
1 [13]⊕ x(6)

0 [6]⊕ x(6)
0 [5]⊕ x(6)

3 [20]⊕ x(6)
2 [20]

⊕ x(6)
3 [6]⊕ x(6)

2 [25]⊕ x(6)
1 [25]⊕ x(6)

1 [24]

⊕ x(6)
9 [0]⊕ x(6)

8 [19]⊕ x(6)
11 [19]⊕⊕x(6)

11 [18]

⊕ x(6)
13 [0]⊕ x(6)

12 [23]⊕ x(6)
15 [23]⊕ x(6)

15 [22]⊕ x(6)
14 [5]⊕ x(6)

13 [5] w.p. 1
2

(
1 + 1

26

)
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