

## **Practical Key-Recovery Attack on MANTIS-5**

Christoph Dobraunig Maria Eichlseder Daniel Kales Florian Mendel **FSE 2017** 

#### Overview

| MANTIS      |               |                              |          |
|-------------|---------------|------------------------------|----------|
| Tweakable   | $\rightarrow$ | TWEAKEY tweak schedule       | [JNP14]  |
| Low latency | $\rightarrow$ | PRINCE cipher structure      | [Bor+12] |
| Bounds      | $\rightarrow$ | Midori round transformations | [Ban+15] |

[Bei+16] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich, and S. M. Sim The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS CRYPTO 2016

#### Our results

- Differential fixed points lead to clustering effects
- Find 128-bit key of MANTIS<sub>5</sub> with  $2^{30}$  CP in 1 hour (<  $2^{96}$ )

## The Tweakable Block Cipher MANTIS I

•  $4 \times 4 \times 4 = 64$ -bit message *M*, tweak *T*, keys  $k_0$  and  $k_1$ :

Lightweight round functions:

$$\mathcal{R}_{i} = \mathbb{S} \to \mathbb{P} \to \mathbb{M}$$
$$\mathcal{R}_{i}^{-1} = \mathbb{M} \to \mathbb{P}^{-1} \to \mathbb{S}$$



SubCells: involutive 4-bit S-box  $\mathcal{S}$ 



PermuteCells: faster diffusion than ShiftRows



MixColumns: involutive binary near-MDS matrix M over  $\mathbb{F}_{2^4}$ 

 $\oplus$  AddTweakey<sub>i</sub>: add constant  $C_i$ , key  $k_1$ , permuted tweak  $h^i(T)$ 

## The Tweakable Block Cipher MANTIS II

•  $\alpha$ -reflective structure (MANTIS<sub>r</sub> = 2r+2 S-box layers):



## Designers' Analysis and Security Claim Related-tweak model

- Min number of active S-boxes (MILP):
  - MANTIS<sub>5</sub>:  $\geq$  34
  - MANTIS<sub>7</sub>:  $\geq$  50
- Max prob of any differential characteristic (MDP 2<sup>-2</sup>):
  - MANTIS<sub>5</sub>:  $\leq 2^{-68}$
  - MANTIS<sub>7</sub>: ≤ 2<sup>-100</sup>
- Security claim: No attacks below...
  - MANTIS<sub>5</sub>: *D* data and  $T \le 2^{126}/D$  time, where  $D \le 2^{30}$  CP
  - MANTIS<sub>7</sub>: *D* data and  $T \le 2^{126}/D$  time

# Properties of the MANTIS Transformations

### Properties of MixColumns



Binary coefficients:  $M = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$ 

## Properties of MixColumns



- Binary coefficients:  $M = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$
- Branch number 4:  $1 \rightarrow 3, 2 \rightarrow 2, 3 \rightarrow 1$
- Satisfied with  $\delta, \delta, \delta, \delta$
- Differential fixed points



#### 4-bit, involutive



- 4-bit, involutive
- Differential fixed points:

   ■ P[a → a] = 1/4



- 4-bit, involutive
- Differential fixed points:

   ■ P[a → a] = 1/4
  - $\mathbb{P}[\{a,f\} \rightarrow \{a,f\}] = \frac{1}{2}$



- 4-bit, involutive
- Differential fixed points:

   ■ P[a → a] = 1/4
  - $\mathbb{P}[\{a,f\} \rightarrow \{a,f\}] = \frac{1}{2}$
  - $\mathbb{P}[\mathbf{a} \rightarrow \{\mathbf{a}, \mathbf{f}, \mathbf{d}, 5\}] = 1,$  $\mathbb{P}[\{\mathbf{a}, \mathbf{f}, \mathbf{d}, 5\} \rightarrow \mathbf{a}] = \frac{1}{4}$

## Properties of the Inner Rounds

Order of operations in PRINCE: Mix-then-Permute



Order of operations in MANTIS: Permute-then-Mix



Superboxes over 4 (instead of 2) S-box layers!

# A Family of Differential Characteristics

### A (Nearly) Optimal Characteristic MILP: Truncated char with 34 (or 36) active S-boxes





## A (Nearly) Optimal Characteristic MILP: Truncated char with 34 (or 36) active S-boxes





max probability

2-72

## **Relaxing (Clustering) Characteristics**





**2**<sup>-72</sup>

## **Relaxing (Clustering) Characteristics**



9/13

## **Relaxing (Clustering) Characteristics**







 $2^{-40.51}$ 

### Initial Structure for Data Limit $D \leq 2^{30}$

Efficiently generate differences  $\{a, f, d, 5\}$  (note a + 5 = f):



### Initial Structure for Data Limit $D \leq 2^{30}$

Efficiently generate differences  $\{a, f, d, 5\}$  (note a + 5 = f):



 $k \cdot (8 \cdot 4)^8 = k \cdot 2^{40}$  pairs from  $k \cdot 2 \cdot 8^8 = k \cdot 2^{25}$  CP

# Staged Key Recovery Attack

#### Key Recovery Attack



#### Query and pre-filter



a. Query  $4 \times 2^{26}$  CP to get  $4 \times 2^{41}$  **M**-pairs ( $\approx 4 \times 1$  right pair) b. Pre-filter **C**-pairs to about  $4 \times 2^{41-22} = 4 \times 2^{19}$  pairs

#### Key Recovery Attack



#### 2 Recover final key

- a. Guess 44-bit key  $k'_0 + k_1$  and test 30-bit filter
- c. Repeat  $4\times$  and intersect candidate sets ( $\approx 2^{19+14}$  keys each)

#### Key Recovery Attack



#### 3 Recover initial key

- a. Filter for right pairs ( $\approx$  4)
- b. Guess 32-bit key  $k_0 + k_1$  and test 15-bit filter

#### Key Recovery Attack



#### 4 Combine and complete

- a. Recover 14 more bits, solve 44+32+14 = 90 linear equations
- b. Brute-force remaining 38 bits

#### Key Recovery Attack



## Conclusions

#### **Practical Verification**

Estimates and validity confirmed

- Two issues, though:
  - 1 Statistical variance: Right pairs appear in clusters. Some repetitions have no right pairs, some have many... Fix: Adjust generation of pairs (increase to  $2^{30-\varepsilon}$  CP)
  - **2** Equivalent key candidates: Both  $k^*$  and  $k^*$  + a pass test

Both caused by the same invariance property of SubCells: If (x, x') follows  $\{a, f, d, 5\} \rightarrow \{a, f\}$ , then so does (x+a, x'+a)

#### Conclusion

#### Low-latency + tweakable = interesting design challenge

- Possible complications:
  - Differential fixed points
  - Lightweight tweakey schedule
  - Superbox effect in inner rounds
  - Data limit not as effective as expected (multiple differentials)
  - Security margin for key recovery

See also: QARMA, Session V, tomorrow morning

## Bibliography

 [Bor+12] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen, and T. Yalçın
 PRINCE – A Low-Latency Block Cipher for Pervasive Computing Applications ASIACRYPT 2012

- [JNP14] J. Jean, I. Nikolić, and T. Peyrin Tweaks and Keys for Block Ciphers: The TWEAKEY Framework ASIACRYPT 2014
- [Ban+15] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, and F. Regazzoni Midori: A Block Cipher for Low Energy ASIACRYPT 2015
- [Bei+16] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich, and S. M. Sim The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS CRYPTO 2016