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Abstract. MANTIS is a lightweight tweakable block cipher published at CRYPTO 2016.
In addition to the full 14-round version, MANTIS7, the designers also propose an
aggressive 10-round version, MANTIS5. The security claim for MANTIS5 is resistance
against “practical attacks”, defined as related-tweak attacks with data complexity
2d less than 230 chosen plaintexts (or 240 known plaintexts), and computational
complexity at most 2126−d.
We present a key-recovery attack against MANTIS5 with 228 chosen plaintexts and a
computational complexity of about 238 block cipher calls, which violates this claim.
Our attack is based on a family of differential characteristics and exploits several
properties of the lightweight round function and tweakey schedule. To verify the
validity of the attack, we also provide a practical implementation which recovers the
full key in about 1 core hour using 230 chosen plaintexts.
Keywords: Differential cryptanalysis · MANTIS · Lightweight · PRINCE-like ciphers

1 Introduction

MANTIS is a tweakable block cipher published at CRYPTO 2016 by Beierle et al. [BJK+16].
The designers’ goal is to optimize this versatile building block for low-latency implemen-
tations. To this end, they use the same α-reflective structure as PRINCE by Borghoff
et al. [BCG+12], but combine it with the round function of Midori by Banik et al. [BBI+15].
According to their analysis [BJK+16], this improves both the latency and the security
compared to the original PRINCE, since Midori’s variant of ShiftRows leads to a higher
bound on the minimum number of active S-boxes. The tweak is incorporated using an
adapted version of the TWEAKEY framework by Jean et al. [JNP14].

The full version MANTIS7 has 14 rounds, but the authors also give a reduced security
claim for the 10-round version, MANTIS5. They claim security against practical attacks,
which they define as related-tweak attacks with data complexity 2d less than 230 chosen
plaintexts (or 240 known plaintexts), and computational complexity at most 2126−d block
cipher calls, similar to the PRINCE challenge. We present a key-recovery attack against
MANTIS5 with 228 chosen plaintexts and a computational complexity of about 238 block
cipher calls, which violates this claim.

Our attack exploits the lightweight near-MDS mixing layer and certain differential
properties of the involutive S-box, both inherited from Midori. These properties make it
relatively easy to find a differential characteristic with the claimed optimal probability
in the related-tweak setting. Using the same properties, this differential characteristic
can then be expanded to a family of characteristics with a corresponding initial structure
that makes efficient use of the low data complexity limit of only 230 chosen plaintexts.
Furthermore, the choice to keep the original Midori order of linear operations (first permute,
then mix) makes the PRINCE-like middle rounds differentially less effective than the
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ordering used by PRINCE (first mix, then permute). Midori’s order preserves a Superbox
structure over 4 S-box layers in the middle rounds, instead of 2.

We verified the validity of the attack in a practical implementation. The implementation
revealed an additional differential property of the Midori S-box that complicates some steps
of the attack due to differentially equivalent keys. In particular, we found that slightly
increasing either the memory requirements or the data complexity (still respecting the
data limit) significantly increases the robustness of the attack. An adapted version of the
attack recovers the full key in about 1 core hour using about 230 chosen plaintexts.

Outline. In Section 2, we provide a brief description of the tweakable block cipher
MANTIS and some of its cryptographic properties. In Section 3, we introduce a family of
differential characteristics and a corresponding initial structure of messages for MANTIS5
that lead to a good filter after 9 rounds. In Section 4, we use this initial structure and
filter to mount a key recovery attack on MANTIS5. Finally, we discuss the results of a
practical implementation of the attack.

2 Description of MANTIS

2.1 The Tweakable Block Cipher
MANTIS is a tweakable block cipher published at CRYPTO 2016 by Beierle et al. [BJK+16].
The designers propose several variants MANTISr that differ only in the number of rounds.
All variants operate on a 64-bit message block M = M0‖M1‖ · · · ‖M15 and work with a
64-bit tweak T = T0‖T1‖ · · · ‖T15 and (64 + 64)-bit key K = (k0, k1). All 64-bit values are
mapped to 4× 4 states S of 4-bit cells Sj :

S =

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

.

The cipher’s structure is similar to PRINCE, with r forward rounds Ri and r backward
rounds R2r+1−i = R−1

i , separated by an involutive, unkeyed middle layer S ◦M ◦ S. The
64-bit subkey k1 is used as round key for the outer forward and backward rounds, while
the other 64-bit subkey k0 and the derived k′0 = (k0 ≫ 1) + (k0 � 63) serve as whitening
keys. The tweak T is added together with k1 in every round according to the TWEAKEY
construction, with a simple cell permutation h as a tweak schedule. The construction is
illustrated in Figure 1.
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Figure 1: PRINCE-like structure of MANTISr, illustrated for MANTIS5.
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2.2 The Round Functions Ri and R−1
i

The round function Ri is very closely related to that of Midori [BBI+15]. It updates the
4× 4 state of 4-bit cells by means of the sequences of transformations

Ri = MixColumns ◦ PermuteCells ◦ AddTweakeyi ◦ AddConstanti ◦ SubCells,
R−1

i = SubCells ◦ AddConstanti ◦ AddTweakeyi ◦ PermuteCells−1 ◦MixColumns,

as illustrated in Figure 2. In the following, we briefly describe the individual operations. For
a more detailed description of the MANTIS family, we refer to the design paper [BJK+16].

Ri

S P M

Ci hi(T ) k1

R−1
i

SP−1M

Cihi(T )k1+α

Figure 2: The MANTIS round functions Ri and R−1
i .

SubCells (S). The involutive 4-bit S-box S given below is applied to each cell of the
state. For our attack, we are primarily interested in the differential behaviour of S, which
is illustrated in Figure 4a.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

AddTweakeyi (A) and AddConstanti (C). Several round-dependent values are added
to the state: The round constant Ci, the subkey k1 (for Ri) or k1 + α (for R−1

i ), and the
round tweakey hi(T ). The tweakey update function h simply permutes the order of cells
using the permutation h, specified in Figure 3a.

PermuteCells (P). The cells of the state are permuted by P, specified in Figure 3b.

0 61 52 143 15
4 05 16 27 3
8 79 1210 1311 4
12 813 914 1015 11

h

(a) The tweak update function h.

0 01 112 63 13
4 105 16 127 7
8 59 1410 311 8
12 1513 414 915 2

P

(b) The state transformation P.

Figure 3: The MANTIS permutations h and P.

MixColumns (M). Each column of the state is multiplied with the following involutive
near-MDS matrix M over GF(24), whose truncated differential behaviour per column is
illustrated in Figure 4b:

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
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Figure 4: Differential distribution tables (DDT) of the MANTIS round operations.

3 Differential Characteristic

3.1 Bounds and Security Claim
The designers of MANTIS analyze the security of the cipher against differential cryptanalysis
by modelling the differential behaviour (truncated to state cells) as a mixed-integer linear
program [BJK+16]. They analyzed the minimum number of active S-boxes for different
round numbers, both in a fixed-tweak and a related-tweak setting. The design document
provides lower bounds for full and round-reduced MANTIS.

For MANTIS5, the minimum number of active S-boxes in the related-tweak setting is
34 (for the full MANTIS7: 50), and the maximum differential probability of the S-box is
2−2. The designers conclude that “no related tweak linear or differential distinguisher
based on a characteristics is possible for MANTIS5” [BJK+16]. In particular, they claim
that MANTIS5 is secure against “practical attacks”, here defined as related-tweak attacks
with data complexity 2d at most 230 chosen plaintexts (or 240 known plaintexts), and
computational complexity at most 2126−d.

3.2 A Family of Differential Characteristics
Our attack is based on a truncated differential characteristic for the related-tweak setting
that meets this lower bound of 34 active S-boxes. The truncated characteristic is illustrated
in Figure 5. Instead of considering only a single fixed input difference and differential
characteristic, we will cluster several related differential characteristics following the same
truncated differential characteristic, thus obtaining a much better probability.

An Optimal Differential Characteristic

To analyze the probability, we first construct a differential characteristic that matches
the claimed optimal differential probability of 2−34·2 = 2−68. Consider the differential
distribution table of SubCells, given in Figure 4a. Observe that SubCells is an involution,
so the table is symmetric. There is one input/output difference, a, such that all transitions
from or to difference a have the maximum probability of 1

4 . Furthermore, these possible
transitions include a 7→ a. Since MixColumns only has binary coefficients, all transitions
that match the branch number of 4 for MixColumns (1→ 3, 2→ 2, 3→ 1) are valid when
all active cells have a fixed difference of a.

Since all non-trivial MixColumns transitions of the truncated differential characteristic in
Figure 5 match its branch number, setting all active cells to a results in a valid differential
characteristic with the claimed optimal probability of 2−34·2 = 2−68.
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Figure 5: Family of differential characteristics for MANTIS5.

Clustering Differential Characteristics

We will now relax some of these constraints, and also consider characteristics with cell
differences other than a in selected sections of the characteristic. Interesting candidates
include all differences that can be mapped from and to a by SubCells, that is, {5, a, d, f}.

Rounds 9 and 2. First, consider Round 9. The SubCells layer at the end of Round 8 has
2 active S-boxes, at positions S6 and S10. Assume we allow all possible output differences
{5, a, d, f} for the two S-boxes, marked 5 in Figure 5. Then, the characteristic will follow
the same truncated differential, with the same probability of 2−4·2 to transition to the
all-a state at the end of Round 9, as long as both S-boxes map to the same difference. The
probability for this is 2−2, instead of the original 2−4 of the all-a differential characteristic.

A similar observation applies for the two S-boxes S3 and S12 of Round 2, marked 3

in Figure 5. However, as we want to relax also the input differences to Round 2, we will
consider only output differences {a, f}. These have the additional advantage of allowing
transitions with probability 2−2 not only to a, but each to both a and f, so this relaxation
can be used in multiple consecutive rounds. The probability for Round 2 improves from
2−8 to 2−2·2 · 2−1 · 2−2 = 2−7.
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Inner Part. Second, consider the inner part. Similar as for Round 9, we can allow all
4 output differences for the first SubCells operation of the inner part, as long as both
S-boxes map to the same difference, marked 4 in Figure 5. This seems to improve the
probability for the inner part from 2−4 · 2−4 to 2−2 · 2−4. However, note that there is no
tweakey addition between the two SubCells layers of the inner part, so the probabilities for
the S-box transitions are certainly not independent. Since there is also no PermuteCells
operation, we can simply compute the exact Superbox transition probability for the entire
second column of the state. This reveals that the probability for the inner part is in fact
2−4.

Initialization and Round 1. Like Round 2, we relax some of the differences of Round 1
to {a, f}. The estimated probability for Round 2 will remain valid for the output cells
cells of Round 1 ( 1 , 2 , a ). Again, MixColumns adds several constraints for the output
differences of the SubCells layer of Round 1.

Finally, we relax the input differences. In addition to {a, f}, we also allow {5, d} in order
to generate more message pairs, while retaining a reasonable differential probability. For
message cells S10 and S14, marked in Figure 5, we need to compensate the AddTweakey
operation of the initialization part by considering input differences ∆ such that ∆ + a ∈
{a, f, 5, d}, or equivalently, ∆ ∈ {0, 5, f, 7}. The probability for the SubCells layer of
Round 1, assuming uniformly distributed input differences, is then

2−3·2︸ ︷︷ ︸
→a
→a
→a

·
(

1
4 · 2

−3 + 3
4 · 2

−4
)

︸ ︷︷ ︸
, → 1 , 1

·
(

1
8 · 2

−5 + 7
8 · 2

−6
)

︸ ︷︷ ︸
, , → 2 , 2 , 2

≈ 2−15.51.

Consequently, the overall probability of the family of characteristics up to Round 9 (or
more precisely, up to AddTweakey of Round 10) is at least about

2−15.51−7−4−4−2−2−4−2 = 2−40.51.

Round 10. If a pair followed the family of characteristics up to Round 9, the output of
the AddTweakey operation of Round 10 will have several properties that can be used as a
filter for key recovery.

• Cells S1, S4, S11, S13, S15 have zero difference, which will also be immediately visible
in the ciphertexts (though not useful for key recovery).

• Cell S14 (marked a ) has difference a (2-bit filter).

• Cells S0, S5, S10 (marked 8 ) will have the same difference (8-bit filter), as will cells
S2, S7, S8 (marked 9 ) after compensating for the tweak difference (8-bit filter).

• Cells S6 and S12 (marked 6 , 7 ) will have differences {a, f, 5, d}, and additionally,
due to the properties of MixColumns, cells S3 and S9 (marked =) will have the same
difference, which is the sum of the differences of S6, S12 (12-bit filter).

Overall, the family of characteristics provides a 30-bit filter with probability 2−40.51.

3.3 Initial Structure
We now want to generate enough message pairs to expect at least one valid pair, while
staying well below the data complexity limit of 230 chosen plaintexts. Obviously, the
characteristic’s probability is not good enough for a straightforward solution with 229

suitable pairs. However, we can use the set {a, f, d, 5} of valid differences for each cell to
our advantage.
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Figure 6: Initial structure with 8 · 4 pairs from 2 · 8 queries per cell.

We repeat the following for two random base plaintext-tweak pairs. For each of the two
plaintext-tweak pairs, we query two sets of derived plaintext-tweak pairs: one for the base
tweak, and one for the modified tweak with a difference of a in two cells, as specified by the
truncated differential characteristic in Figure 5. The first set for the base tweak contains
the following 88 modified messages. Each of the 8 active cells ( , ) varies over 8 values:
the base plaintext plus differences {0, a, f, 5, d, 8, 7, 2}. The second set for the modified
tweak contains the same 88 messages. In total, the number of chosen plaintext-tweak pairs
we query is

2 · 2 · 88 = 226.

Thus, we could repeat this up to 24 = 16 times and still stay below the data complexity
limit.

To see how many suitable pairs we can generate from these queries, note that for each
value of a cell in the first set, there are exactly 4 (out of 8) values for this cell in the second
set that give a valid difference {a, f, d, 5} ( ) or {0, 5, 7, f} ( ), as illustrated in Figure 6.
Here, we exploited that a + 5 = f, where all these three values are suitable for our family
of characteristics. Thus, the number of pairs we get is

2 · 88 · 48 = 241,

and the expected number of valid pairs is at least

241 · 2−40.51 = 20.49 ≈ 1.40 .

By repeating this up to 24 times, we can increase the expected number of valid pairs up to
24.49 ≈ 22.47. We evaluated the initial structure practically for 1024 random keys, and
found that the average number of valid pairs is significantly higher than the estimated
22.47, around 26.28 ≈ 78.

4 Key Recovery
We can now use the family of characteristics and initial structure from Section 3 to recover
the two 64-bit secret keys k0 and k1. In the following, we will use 4 repetitions r = 1, . . . , 4
of the initial structure. Thus, we need to query 4 · 226 = 228 chosen plaintexts with
chosen tweaks in order to generate the 4 · 241 = 243 plaintext pairs. This is well below the
complexity limit of 230 chosen plaintexts for MANTIS5.

4.1 Pre-Filtering Ciphertexts for Wrong Pairs
Before starting with the key guessing, we can filter for pairs which definitely do not follow
the family of characteristics given in Figure 5. The necessary conditions for valid ciphertext
pairs are that 5 cells (S1, S4, S11, S13, S15) have a zero difference (marked ), while the
difference in cell S14 is in {a, f, d, 5} after removing the last tweak addition (marked ).
The reason for the restriction of the differences in cell S14 lies in the tweak addition in
this cell before the last S-box application.
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If we assume that plaintext pairs which do not follow our family of characteristics
produce a randomly distributed difference pattern for corresponding ciphertext pairs, these
conditions are fulfilled with a probability of 2−22. Hence, we reduce the set of 241 pairs
per repetition r from the initial structure to a set Ir of about 241−22 = 219 pairs. Each set
Ir is still expected to contain 20.49 > 1 valid pairs that follow the family of characteristics
of Figure 5.

Complexity and Optimizations. A naive implementation of generating and pre-filtering
pairs costs 4 · 241 state xor operations. However, instead of enumerating all valid pairs and
then filtering for matches on 5 cells, it is much more efficient to reverse the process and
only generate the relevant pairs as follows. Store each plaintext-tweak-ciphertext of Set 1
in a data structure of 220 partitions, partitioned according to the value of the 5 pre-filter
cells S1, S4, S11, S13, S15. The expected size of each partition is about 25. Then, for each
plaintext-tweak-ciphertext of Set 2, iterate only over the 25 candidates in the correct
partition, and check whether the input difference is valid and the difference of output cell
S14 is valid. The set Ir of remaining filtered pairs is the same, but the computational
complexity is reduced to less than 230 state xor operations.

4.2 Recovery of 44-bit k′0 + k1

The first step of the attack is the partial recovery of 44 bits of the final whitening key k′0 +k1.
We want to check our key guesses against the differential pattern we get before the last
application of MixColumns in Round 10 for our filtered ciphertext pairs. The probability
that a 44-bit key guess leads to this pattern before the application of MixColumns is 2−30:

• Column 1: Here, only cell S12 has a difference at the input of MixColumns, while
the others have none. The requirements that lead to this pattern are that a key guess
on the ciphertext cells S0, S5, S10 ( 8 ) leads to an equal difference after an S-box
application, which happens with a probability of 2−8 per ciphertext pair and key
guess.

• Column 2: This column is inactive. The only condition we have to fulfill here is
that the difference introduced in cell S14 ( ) of the ciphertext is canceled by the
tweak addition that happens before the S-box application of the last round (right
after the last application of PermuteCells). Since our filtering ensures that only
ciphertext pairs with differences {a, f, d, 5} in cell S14 ( ) after the last SubCells are
considered, this happens with a probability of 2−2.

• Column 3: For this column, cells S2 ( 6 ) and S6 ( 7 ) must have a difference
{a, f, d, 5}, while cells S10, S14 have zero difference ( ). The necessary conditions for
this to happen are that a key guess on cells S3, S6, S9, S12 of the ciphertext pair leads
to an input difference {a, f, d, 5} on cells S6, S12 ( 6 , 7 ) before the last SubCells (2−2

per cell), and that the differences in S3, S9 (=) each equal the difference between S6
and S12 (2−4 per cell). The overall probability for this is 2−12 per ciphertext pair
and key guess.

• Column 4: For this column, the same reasoning as for column 1 applies, now for
ciphertext and key cells S2, S7, S8 ( 9 ) after compensating for the last tweak addition.
Again, the probability is 2−8.

If we now decrypt one ciphertext pair i ∈ Ir backwards for one SubCells layer under
211·4 = 244 key guesses, 244−30 = 214 key guesses remain which satisfy all these conditions
for this ciphertext pair i. We expect the correct key guess to satisfy the conditions for
at least one of the ciphertext pairs i ∈ Ir, which follows the family of characteristics in
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Figure 5. Thus, we repeat the procedure for all 219 pairs and consider the union of all
resulting potential key candidates. We expect at most 214 · 219 = 233 candidates for the
right key guess, which effectively reduces our keyspace by 2−11. So, repeating the attack a
total of 4 times with fresh initial structures is sufficient to recover the correct value of 44
bits of k′0 + k1.

Complexity and Optimizations. To get the possible key candidates per ciphertext pair,
we need 2 · (216 · 4 + 2 · 212 · 3 + 24) ≈ 219.13 S-box look-ups, which corresponds roughly to
211.54 MANTIS5 encryptions (based on the total number of 16 · 12 S-boxes in MANTIS5).
In total, we have to generate key candidates for 4 · 219 pairs, corresponding to a total of
about 232.54 MANTIS5 encryptions.

In a straightforward implementation, we get 4 lists, each containing 233 key candidates,
which dominates our memory requirements. We need to find matches between the 4
lists, which adds a computational complexity of roughly 233 operations, depending on the
implementation.

Note that it is not actually necessary to guess all 44 bit of the subkey at once per
ciphertext pair i ∈ Ir. Instead, we can split up the key guesses column-wise into a 12-bit
subkey for column 1 (with a set of valid subkey candidates of expected size |C(r,i)

0,5,10| = 24),
a 4-bit subkey for column 2 (|C(r,i)

14 | = 22), a 16-bit subkey for column 3 (|C(r,i)
3,6,9,12| = 24),

and a 12-bit subkey for column 4 (|C(r,i)
2,7,8| = 24). The expected set of 214 full key candidates

per pair i is then the product set of these sub-candidates. We refer to this structured set
of key candidates from repetition r and pair i ∈ Ir as a bundle B(r,i), where

B(r,i) = C(r,i)
0,5,10 × C

(r,i)
14 × C(r,i)

3,6,9,12 × C
(r,i)
2,7,8.

Storing all bundles requires only about 4 · 219 · 10.25 < 225 MANTIS states. To find the
correct value of all 44 bits, we now need to compute

4⋂
r=1

⋃
i∈Ir

|Ir|≈219

C(r,i)
0,5,10 × C

(r,i)
14 × C(r,i)

3,6,9,12 × C
(r,i)
2,7,8.

The computational complexity of matching the bundles of key candidates is similar to
before if the list of bundles per repetition is indexed efficiently per subkey candidate. Then,
the bundles can be intersected subkey by subkey, starting with the most restrictive subkey,
C(r,i)

3,6,9,12.

4.3 Recovery of 32-bit k0 + k1

With the help of the recovered 44 bits of k′0 + k1, we can filter our plaintext pairs i ∈ Ir

so that only the valid plaintext pairs following the family of characteristics in Figure 5
remain. The probability that the right key identifies a wrong pair as correct one is 2−30.
Therefore, it is likely that only correct pairs (approximately 4) remain after filtering 4 · 219

pairs. We now use those 4 valid pairs to recover 32 bits of the initial whitening key k0 + k1.
We guess the key bits for all plaintext cells with differences, S0, S5, S6, S7, S8, S10, S12, S14.
Then we can compute forward through the SubCells layer of Round 1, and check if the
resulting difference pattern matches the family of characteristics. As shown in Figure 5, a
wrong key matches the pattern with a probability of 2−15.51. So, the probability that a
wrong key matches for all 4 correct pairs is 2−62.04. Therefore, we expect that only the
correct subkey out of the 232 possible candidates remains.

Complexity. We make a 32-bit key guess for each of 4 pairs, leading to a total of
2 · 4 · 8 · 232 = 238 S-box look-ups. This corresponds to about 230.42 MANTIS5 encryptions.
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4.4 Recovery of k0 and k1

Up to this point, we have recovered 32 bits of information about k0 + k1 and 44 bits of
information about k′0 + k1 = (k0 ≫ 1) + (k0 � 63) + k1. This gives us a system of 76
linearly independent linear equations for k0 and k1. To recover the full key, we have to
guess 52 remaining bits and identify the right key using trial encryptions.

Instead of guessing all 52 bits, we can also use the SubCells layers of Rounds 2 and 3
(or 9 and 8) to first recover more bits of k1, based on the previously recovered information.
Similar to recovering k0 + k1, we can apply a guess-and-determine approach to only the 4
valid pairs, for example:

(1) Recover S0+S5+S10 of k1: We target cell S12 at the beginning of Round 2 (transition
2 → 3 in Figure 5). From our previously recovered key bits, we know the values of
cells S0, S5, S10 at the beginning of Round 1 ( 2 ). Our target cell is the sum of these
known values, plus an unknown cell S0 + S5 + S10 of k1. Checking the correct S-box
transition for all 4 valid pairs is expected to eliminate all but the correct cell value
(otherwise, we can additionally check the transition 8 ← 5 in Round 9). This adds 1
linearly independent equation to the system.

(2) Recover S6 +S12 of k1: We target cells S2, S6 at the beginning of Round 2 (transitions
1 → a ). Each of the two is the sum of the same two unknown, constant values (cell
S3 and cell S9 after AddTweakey of Round 1), a known, variable value, and a cell of
k1 (S6 or S12, respectively). By checking the S-box transitions and then eliminating
the two unknown constants, we recover the cell sum S6 + S12 of k1. This adds 1
linearly independent equation to the system.

(3) Recover S2 + S7 + S8 of k1: We target cell S3 at the end of Round 9 (transition
9 ← 5 ). Similar to (1), the transition depends on a sum of k1 cells, S2 + S7 + S8.
From (1), we can derive the exact target difference in 5 , so the transition probability
is at most 2−2, and we expect only the one correct cell value to remain. This adds 4
linearly independent equations to the system.

(4) Guess 1 bit: If we guess only 1 bit of k0 now (e.g., in cell S12), this will fully determine
the values of cells S2, S5, S6, S7, S8, S12 of k0 and k1.

(5) Recover S3 of k1: We target cells S6 and S10 at the beginning of Round 3 (transitions
3 → a ). Due to the previous MixColumns operation, the internal difference between
cells S6 and S10 is equal to the internal difference between cells S3 and S12 after the
previous AddTweakey operation, which is known except for the addition of key cell
S3 of k1. On the other hand, since we require that both target cells belong to the
same set of 4 possible values for a valid transition, this cuts down the possible values
for S3 of k1 to less than half. After repeating for all 4 valid pairs and, if necessary,
similarly for the transition 5 ← a in Round 8, we expect only the correct candidate
to remain. This adds 4 linearly independent equations to the system.

(6) Recover S9 of k1: We target cells S2 and S6 at the end of Round 9 (transitions
6 → a and 7 → a ). The transition depends on the values of cells S3, S6, S9, S12
before AddTweakey of Round 10, which are all known by now except for the addition
of key cell S9 of k1. Determining S9 adds another 4 linearly independent equations
to the system.

Complexity. The guess-and-determine approach recovers 14 of the missing bits of the
original 64-bit keys k0 and k1. This reduces the remaining bits that need to be guessed to
38. To complete the key, we have to compute 238 trial encryptions, which dominates our
attack complexity.
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4.5 Practical Verification

We implemented the key recovery attack in C/C++ in order to verify the probability
estimates and attack complexity. A first straightforward implementation revealed some
additional structural properties of MANTIS that negatively affect the success probability
of the attack. For this reason, we adapted some aspects of the attack in order to obtain a
good success probability in practice.

The first issue is that while the estimated number of about 1 to 10 valid pairs per
repetition appears to be a reasonable estimate on average, the variance is relatively high.
We observed several repetitions with no valid pairs, while other repetitions produced a
dozen or more pairs. This is a problem for the 44-bit key recovery of Subsection 4.2,
which relies on finding at least 1 valid pair per repetition. There are several options to
compensate for this. If memory requirements and higher runtime are not an issue, we
can simply expand all bundles of key candidates and count the number of occurrences
of each candidate, which will reveal the correct candidate with very high probability. A
more practical alternative is to change the initial structures per repetition to contain
more structures for different plaintexts, but with fewer queries per structure, in order to
decrease the variance. For example, if we use 26 base plaintexts per repetition, but vary
only 7 instead of 8 cells, the resulting expected number of pairs per repetition remains the
same at 26 · 87 · 47 = 241, but the data complexity increases slightly to 2 · 26 · 87 = 228, or
4 · 228 = 230 in total for all repetitions.

The second issue is that during the 32-bit key recovery of Subsection 4.3, we always
find at least 28 possible key candidates instead of just 1, and 2 key candidates for the
44-bit subkey. Both this and the previous issue are caused by the same structural property
of the MANTIS S-box. We filter our keys by checking whether the valid pairs follow the
correct differential S-box transitions in Round 1, that is, {a, f, d, 5} 7→ {a, f} for each cell.
However, it turns out that whenever a pair of cells (x, x′) follows one of these transitions,
then so does (x+ a, x′ + a). This means that for each cell k of the correct subkey, there is
an equivalent value k + a which also satisfies all the constraints of Round 1, leading to a
total of at least 28 candidates. This would also increase the complexity of Subsection 4.4
accordingly. Instead of the expensive brute-force approach of Subsection 4.4, we encoded
the recovery of the remaining key information as a Boolean satisfiability (SAT) problem.

The final adapted attack successfully recovered the full key for several tested random
challenges. A sample test run takes about 16 minutes to query 230 plaintexts and generate
the pre-filtered list of about 4× 221 pairs (Subsection 4.1). Creating the bundles of key
guesses takes 22 minutes and produces about 4× 214.6 bundles in total, corresponding to
about 232 key candidates per repetition if fully enumerated (Subsection 4.2). Intersecting
these lists takes 18 minutes and produces more key candidates than expected, about 27.
However, counting the frequency of each of these candidates across repetitions clearly
identifies the correct 44-bit final whitening subkey (except for 1 bit, due to differentially
equivalent keys as discussed above, which can be filtered by the SAT solver). In the sample
test run, this correct key identified 14 valid pairs, slightly less than the observed average of
roughly 25 pairs. The high number of valid pairs means that it is relatively unlikely that one
repetition contains no valid pairs, and that these cases could also usually be easily fixed by
reshuffling the random plaintexts between repetitions. We also observed no false positives
among the valid pairs, except for several cases with differences {d, 5} in S0, S5, S6, S10, S12
after the SubCells layer of Round 1 ( 1 , 2 ). We included these cases in the family of target
characteristics. For the initial whitening subkey recovery (Subsection 4.3), as discussed
above, the recovered information is only about 32− 9 bits due to differentially equivalent
subkeys, and takes about 3 minutes. Finally, the SAT solver takes another 1.5 minutes to
successfully recover the rest of the key (Subsection 4.4). Overall, the full correct key is
recovered in about 1 hour on a single core, and the process is trivially parallelizable.
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5 Discussion and Conclusion

We recover the full 128-bit key for MANTIS5 with a complexity of 238 encryptions, memory
requirements of 225 MANTIS states, and a data complexity of 228 chosen plaintexts with
chosen tweaks. A practical implementation recovered the correct key in an hour based on
230 chosen plaintexts. This violates the security claim for MANTIS5.

We did not analyze the full-round MANTIS7 proposal. Many of the observations
and methods for MANTIS5 also apply to MANTIS7: It is relatively easy to find a very
similar optimal differential characteristic with probability 2−100 (compared to 2−68 for
MANTIS5), and to apply the same observations for clustering characteristics. However, a
straightforward adaptation of the full key recovery attack is made more difficult by several
factors. For example, it is hard to find characteristics for MANTIS7 which on the one hand
have a sufficiently low number of active S-boxes, and on the other hand have enough active
cells at the input and output to be useful for key recovery. Also, due to the small state
size, the probability must be relatively high to avoid false positives among the valid pairs.

Our attack takes advantage of several lightweight building blocks of MANTIS, mostly
inherited from the Midori block cipher. This includes the involutive S-box with its high-
probability differential fixed points a and f, the lightweight near-MDS matrix with its
binary coefficients, and the lightweight tweakey schedule. Throughout the analysis, the
symmetries of the PRINCE-like design facilitate the repeated exploitation of these properties.
Another major issue is the interaction of the Midori round function with PRINCE-like
inner rounds, which leads to a Superbox structure over 4 S-box layers in the inner rounds.
Considering all these properties, the security margin of MANTIS may be too optimistic.

Acknowledgements
We thank the MANTIS designers for providing useful comments.

The research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation programme (grant agreement
644052 HECTOR) and from the Austrian Science Fund (project P26494-N15).

References

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors,
ASIACRYPT 2015, volume 9453 of LNCS, pages 411–436. Springer, 2015.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE – A low-latency block cipher for pervasive computing applications.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 208–225. Springer, 2012.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, volume 9815 of LNCS,
pages 123–153. Springer, 2016.



260 Practical Key-Recovery Attack on MANTIS5

[JNP14] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 2014, volume 8874 of LNCS, pages 274–288. Springer,
2014.


	Introduction
	Description of MANTIS
	The Tweakable Block Cipher
	The Round Functions 

	Differential Characteristic
	Bounds and Security Claim
	A Family of Differential Characteristics
	Initial Structure

	Key Recovery
	Pre-Filtering Ciphertexts for Wrong Pairs
	Recovery of 44-bit k0' + k1
	Recovery of 32-bit k0+k1
	Recovery of k0 and k1
	Practical Verification

	Discussion and Conclusion

