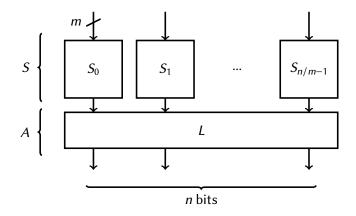
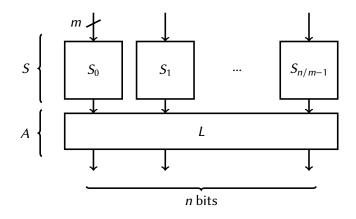
Multiset-Algebraic Cryptanalysis of Reduced Kuznyechik, Khazad, and secret SPNs

Alex Biryukov^{1,2}, Dmitry Khovratovich², Léo Perrin²


¹CSC, University of Luxembourg ²SnT, University of Luxembourg


https://www.cryptolux.org

March 6, 2017 Fast Software Encryption 2017

How many layers can we attack?

Generic Attacks Against SPNs

... but why?

Generic Attacks Against SPNs

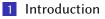
... but why?

For attacking actual block ciphers

Generic Attacks Against SPNs

... but why?

- For attacking actual block ciphers
- For attacking White-box schemes
 - ASASA
 - AES white-box implementations
 - SPNbox


Generic Attacks Against SPNs

... but why?

- For attacking actual block ciphers
- For attacking White-box schemes
 - ASASA
 - AES white-box implementations
 - SPNbox
- For decomposing S-Boxes

Talk Outline

Outline

- 2 Attacks Against 5 rounds
- 3 More Rounds!
- 4 Division Property
- 5 Conclusion

Introduction 000	Attacks Against 5 rounds	More Rounds! 000000	Division Property	Conclusion O
DI				

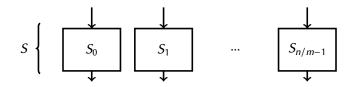
Plan

- Attacks Against 5 rounds
 Attack SASAS
 Attack ASASA
 - 3 More Rounds!
- 4 Division Property

5 Conclusion

Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000	●0000	000000		O
Core Len	nma			

Lemma

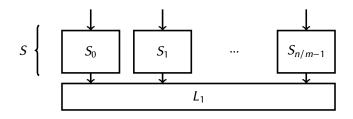

If $F : \{0, 1\}^n \to \{0, 1\}^m$ has degree *d*, then

$$\bigoplus_{x\in C}F(x)=0$$

for all *cube* $C = \{a + v, \forall v \in \mathcal{V}\}$, where \mathcal{V} is a vector space of size $\geq 2^{d+1}$.

Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000	00000	000000	00	0

Distinguisher for S-layer

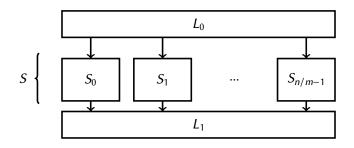

For all cube *C* of size $\geq 2^m$:

$$\bigoplus_{x\in C} S(x) = 0.$$

Biryukov, Khovratovich, Perrin Multiset-Algebraic Cryptanalysis of Reduced Kuznyechik, Khazad, and secret SPNs 5 / 17

Introduction 000	Attacks Against 5 rounds	More Rounds! 000000	Division Property	Conclusion O

Distinguisher for S-layer


For all cube *C* of size $\geq 2^m$:

$$\bigoplus_{x\in C} SA(x) = 0.$$

Biryukov, Khovratovich, Perrin Multiset-Algebraic Cryptanalysis of Reduced Kuznyechik, Khazad, and secret SPNs 5 / 17

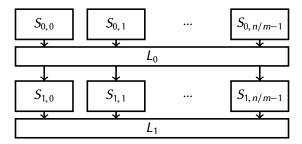
Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000	○●○○○	000000		O

Distinguisher for S-layer

For all cube *C* of size $\geq 2^m$:

$$\bigoplus_{x\in C} ASA(x) = 0.$$

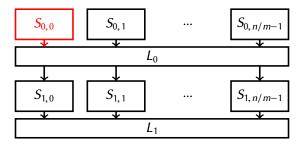
Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000	00●00	000000		O
Free S-L	aver Trick			


Observation

If \mathcal{V} consists in the input bits of some S-Boxes, then $S(\mathcal{V}) = \mathcal{V}$. Cubes based on \mathcal{V} simply change their offsets.

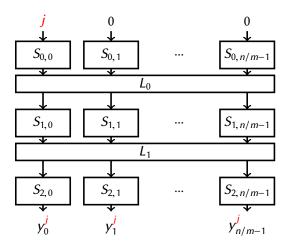
Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000	00●00	000000		O
Free S-I	aver Trick			

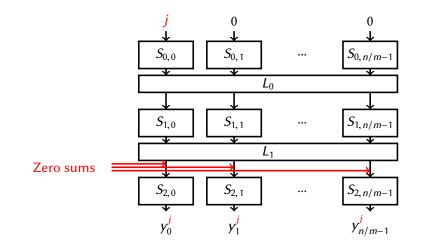
Observation


If \mathcal{V} consists in the input bits of some S-Boxes, then $S(\mathcal{V}) = \mathcal{V}$. Cubes based on \mathcal{V} simply change their offsets.

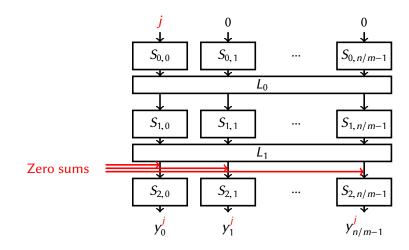
Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000	00●00	000000	00	O
Free S-I	aver Trick			

Observation

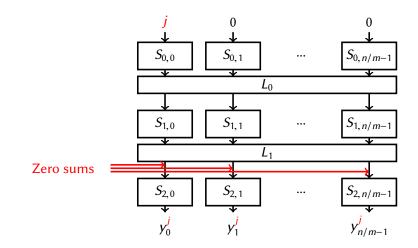

If \mathcal{V} consists in the input bits of some S-Boxes, then $S(\mathcal{V}) = \mathcal{V}$. Cubes based on \mathcal{V} simply change their offsets.


For **the** cubes C_i of size $\geq 2^m$ corresponding to the inputs of S_i ,

$$\bigoplus_{x \in C_i} SASA(x) = 0.$$


Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000	00000	000000	00	0

Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000	00000	000000	00	0



Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000	00000	000000	00	0

$$\bigoplus_{j=0}^{2^m-1} S_{2,i}(y_i^j) = 0$$
, for all *i*.

Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000	00000	000000	00	0

 $\bigoplus_{j=0}^{2^{m-1}} S_{2,i}(y_i^j) = 0$, for all *i*. Repeat for different constant then solve system [Biryukov, Shamir, 2001]

Biryukov, Khovratovich, Perrin

Attacks Against 5 rounds

More Rounds! 000000 Division Property

Conclusion O

Attack Against ASASA

Observation [Minaud et. al, 2015]

Consider S with two parallel S-Boxes S_0 , S_1 . The scalar product of...

- ... two outputs of S_0 has degree at most m 1;
- ... one output of S_0 and one of S_1 has degree at most 2(m-1)

Attacks Against 5 rounds

More Rounds! 000000 Division Property

Conclusion O

Attack Against ASASA

Observation [Minaud et. al, 2015]

Consider S with two parallel S-Boxes S_0 , S_1 . The scalar product of...

- ... two outputs of S_0 has degree at most m 1;
- ... one output of S_0 and one of S_1 has degree at most 2(m-1)

For SASAS and ASASA, algebraic degree bound is crucial!

Attacks Against 5 rounds 00000 More Rounds!

Conclusion O

Plan

3 More Rounds!

- Iterated Degree Bound
- How Many Rounds?
- Applications to Actual Block Ciphers

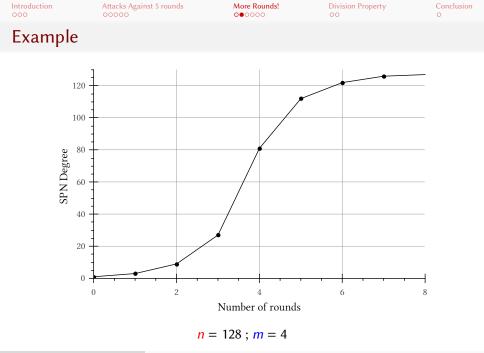
4 Division Property

5 Conclusion

Attacks Against 5 rounds 00000 More Rounds!

Division Property

٠


Conclusion O

Degree Bound of Boura et al

Theorem ([Boura et al 2011])

Let *P* be an arbitrary function on \mathbb{F}_2^n . Let *S* be an *S*-Box layer of \mathbb{F}_2^n corresponding to the parallel application of *m*-bit bijective *S*-Boxes of degree m - 1. Then

$$\deg(P \circ S) \leq n - \left[\frac{n - \deg(P)}{m - 1}\right]$$

Biryukov, Khovratovich, Perrin

Multiset-Algebraic Cryptanalysis of Reduced Kuznyechik, Khazad, and secret SPNs

10 / 17

Introduction 000	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion O

$$\boldsymbol{\ell} = \log_{m-1}(\boldsymbol{n}).$$

Introduction 000	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion O

$$\boldsymbol{\ell} = \log_{m-1}(\boldsymbol{n}).$$

Theorem (greatly simplified)

Basic Attack: if $r \leq 2\ell$ and $n/(m-1)^{\ell} > 1$ then

 $\deg\left(\left(AS\right)^{r}\right) \leq \left(n-2\right)$

Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000		○○●○○○	00	O

$$\boldsymbol{\ell} = \log_{m-1}(\boldsymbol{n}).$$

Theorem (greatly simplified)

Basic Attack: if $r \leq 2\ell$ and $n/(m-1)^{\ell} > 1$ then

 $\deg\left(\left(AS\right)^{r}\right) \leq \left(n-2\right)$

Free-S-layer Attack: if $r \leq 2\ell$ and $n/(m-1)^{\ell} > 2$ then

$$\deg\left(\left(AS\right)^{r}\right) \leq \left(n-m-1\right)$$

Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000		○○●○○○	00	O

$$\boldsymbol{\ell} = \log_{m-1}(\boldsymbol{n}).$$

Theorem (greatly simplified)

Basic Attack: if $r \leq 2\ell$ and $n/(m-1)^{\ell} > 1$ then

 $\deg\left(\left(AS\right)^{r}\right) \leq \left(n-2\right)$

Free-S-layer Attack: if $r \leq 2\ell$ and $n/(m-1)^{\ell} > 2$ then

 $\deg\left((AS)^r\right) \le (n-m-1)$

Other similar results depend on the base-(m - 1) expansion of n

 Introduction
 Attacks Against 5 rounds
 More Rounds!

 000
 00000
 000000

Division Property

Conclusion O

What We Can Attack

m	n	"Key" size	ASASAS	SASASAS	ASASASAS	SASASASAS
	12	270	2 ¹¹	-	-	-
4	16	420	2 ¹¹	2 ¹⁵	2 ¹⁵	-
	24	1060	2 ¹¹	2 ¹⁵	2 ¹⁵	2 ²⁴
	12	728	2 ¹²	-	-	-
	18	1200	2 ¹⁷	-	-	-
6	24	1744	2 ²¹	-	-	-
	36	3048	2 ²⁸	2 ³⁶	2 ³⁶	-
	120	2 ¹⁴	2 ²⁸	2 ³⁶	2 ¹⁰⁶	2 ¹¹⁴
8	128	2 ¹⁵	2 ⁵²	2 ⁶⁴	2 ¹¹⁸	2 ¹²⁸
8	256	2 ¹⁷	2 ⁵²	2 ⁶⁴	2 ²³⁰	2 ²⁴⁰

Introduction 000	Attacks Against 5 rounds 00000	More Rounds!	Division Property	Conclusion O
Kuznyeo	chik			

- Standardized in 2015 (GOST)
- 128-bit block ; 8-bit S-Box (remember π ?)
- 9 rounds, 256-bit key

Introduction 000	Attacks Against 5 rounds 00000	More Rounds!	Division Property	Conclusion O
Kuznvec	hik			

- Standardized in 2015 (GOST)
- 128-bit block ; 8-bit S-Box (remember π ?)
- 9 rounds, 256-bit key
- MDS linear layer operating on 16 bytes

Introduction 000	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion O
Kuznyech	ik			

- Standardized in 2015 (GOST)
- 128-bit block ; 8-bit S-Box (remember π ?)
- 9 rounds, 256-bit key
- MDS linear layer operating on 16 bytes

7-round Attack

We use that deg(4-r Kuzn.) \leq 126. Add 1-round at the top, 2 at the bottom.

Time =
$$2^{154.5}$$
, Memory = 2^{140} , Data = 2^{128} .

Introduction 000	Attacks Against 5 rounds	More Rounds! ○○○○○●	Division Property	Conclusion O
Khazad				

- Published in 2000 (NESSIE candidate)
- 64-bit block ; 8-bit S-Box
- 8 rounds, 128-bit key

Introduction 000	Attacks Against 5 rounds	More Rounds! ○○○○○●	Division Property	Conclusion O
Khazad				

- Published in 2000 (NESSIE candidate)
- 64-bit block ; 8-bit S-Box
- 8 rounds, 128-bit key

6-round Attack

We use that deg(3-r Khaz.) \leq 62. Add 1-round at the top, 2 at the bottom.

Time =
$$2^{90}$$
, Memory = 2^{72} , Data = 2^{64} .

Introduction 000	Attacks Against 5 rounds	More Rounds! 000000	Division Property	Conclusion O
Plan				

2 Attacks Against 5 rounds

3 More Rounds!

4 Division Property

5 Conclusion

Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000		000000	••	O
Division	Property			

Definition (Division Property (simplified))

A multiset \mathcal{X} on \mathbb{F}_2^n has division property \mathcal{D}_k^n if

$$\bigoplus_{x\in\mathcal{X}}x^u=0$$

for all u in \mathbb{F}_2^n such that hw(u) < k; where $x^u = \prod_{i=0}^{n-1} x_i^{u_i}$.

Example

• A cube of size 2^k has division property \mathcal{D}_k^n

If a multiset with \mathcal{D}_k^n is mapped to one with \mathcal{D}_2^n , it sums to 0.

Introduction	0		Division Property	Conclusion
000			⊙●	O
Algebrai	c View			

$$\mathbb{I}_{\mathcal{X}}(x) = 1$$
 if and only if $x \in \mathcal{X}$

Theorem

ວ

A multiset X has division property \mathcal{D}_k^n if and only if

 $\deg(\mathbb{I}_{\chi}) \leq n-k.$

Introduction	Attacks Against 5 rounds	More Rounds!	Division Property	Conclusion
000		000000	⊙●	O
Algebrai	c View			

$$\mathbb{I}_{\mathcal{X}}(x) = 1$$
 if and only if $x \in \mathcal{X}$

Theorem

A multiset X has division property \mathcal{D}_k^n if and only if

 $\deg(\mathbb{I}_{\mathcal{X}}) \leq n-k.$

Division Property and Algebraic Degree

The increase in the division property is the increase in the algebraic degree of the indicator function!

Introduction 000	Attacks Against 5 rounds	More Rounds! 000000	Division Property	Conclusion O
Plan				

- 2 Attacks Against 5 rounds
- 3 More Rounds!
- 4 Division Property

5 Conclusion

Introduction 000	Attacks Against 5 rounds	More Rounds! 000000	Division Property	Conclusion •
Conclus	ion			

Secure ASASA-like cryptosystems:

Block	Layers	Structure	S-layer	BB mem.	WB mem.	Security
12 bits	7	SASASAS	2×(6 bits)	512 B	8 KB	64 bits
16 bits	7	SASASAS	2×(8 bits)	2 KB	132 KB	64 bits
24 bits	7	SASASAS	3×(8 bits)	3 KB	50 MB	128 bits
32 bits	7	SASASAS	4×(8 bits)	4 KB	18 GB	128 bits
64 bits	7	SASASAS	8×(8 bits)	8 KB	-	128 bits
128 bits	11	$S(AS)^5$	16×(8 bits)	24 KB	-	128 bits

Introduction 000	Attacks Against 5 rounds	More Rounds! 000000	Division Property	Conclusion •
Conclusio	on			

Secure ASASA-like cryptosystems:

Block	Layers	Structure	S-layer	BB mem.	WB mem.	Security
12 bits	7	SASASAS	2×(6 bits)	512 B	8 KB	64 bits
16 bits	7	SASASAS	2×(8 bits)	2 KB	132 KB	64 bits
24 bits	7	SASASAS	3×(8 bits)	3 KB	50 MB	128 bits
32 bits	7	SASASAS	4×(8 bits)	4 KB	18 GB	128 bits
64 bits	7	SASASAS	8×(8 bits)	8 KB	-	128 bits
128 bits	11	$S(AS)^5$	16×(8 bits)	24 KB	-	128 bits

Thank you!

Biryukov, Khovratovich, Perrin Multiset-Algebraic Cryptanalysis of Reduced Kuznyechik, Khazad, and secret SPNs 17 / 17