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Abstract. We devise the first closed formula for the number of rounds of a blockcipher
with secret components so that these components can be revealed using multiset,
algebraic-degree, or division-integral properties, which in this case are equivalent.
Using the new result, we attack 7 (out of 9) rounds of Kuznyechik, the recent Russian
blockcipher standard, thus halving its security margin.
With the same technique we attack 6 (out of 8) rounds of Khazad, the legacy 64-bit
blockcipher. Finally, we show how to cryptanalyze and find a decomposition of generic
SPN construction for which the inner-components are secret. All the attacks are the
best to date.
Keywords: Generic SPN · Algebraic attack · Multi-set · Integral · Division property ·
Kuznyechik · Khazad

1 Introduction
1.1 Multiset, integrals, division, and algebraic degree
Multiset attacks originated in the late 1990s with application to byte-oriented block-
ciphers [BS01] and are also known as Square [DKR97], integral [KW02], and satura-
tion [Luc01] attacks. For years, they remained the most efficient method to attack
AES [FKL+00, DF13], Camellia, and other popular designs. However, finding a multiset
property has been heuristic, and the number of rounds that can or can not be attacked
remained an open question.

The connection of the multiset attacks to the algebraic degree of the blockcipher as a
function of plaintext and key became apparent in the recent works by Boura, Canteaut, et
al. [BCC11, BC13]. It was demonstrated that the algebraic degree is incomplete for about
the same number of rounds as the multiset attacks can penetrate. This suggests similarity,
if not equivalence, of the algebraic and the integral property. However, the recent division
property attack by Todo can break more rounds than the algebraic method [Tod15], which
may suggest that the division method is superior. The division property is tedious to find
by hand, so Todo devised a search algorithm supposed to run on a PC.

Our contribution is a single closed formula that calculates the number of rounds that
can be attacked using either division or algebraic method. We plug ciphers Kuznyechik
and Khazad into it, as well as the secret SPN constructions, and derive the best attacks to
date.
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Consider an 𝑛-bit SPN with, in total, 𝑟 S-Box layers consisting in the parallel application
of 𝑚-bit bijective S-Boxes. A naive approach shows that such a structure has degree about
(𝑚− 1)𝑟 and thus that about log𝑚−1(𝑛) rounds are needed to achieve full degree. However,
we found that this quantity should be multiplied by 2: in fact, about 2 log𝑚−1(𝑛) rounds
are necessary! For instance, if 𝑛 > 2(𝑚− 1)𝑞, then the 2𝑞-round structure has degree at
most 𝑛− 2. A more generic statement is given by Theorem 1 which links the base (𝑚− 1)
expansion of the block size 𝑛 and the number of SPN rounds needed to reach full degree.

1.2 Kuznyechik and Khazad
Khazad [BR00] is a 64-bit blockcipher with 128-bit key, a NESSIE finalist, designed by
Barreto and Rijmen in 2000. It is notable for the linear layer that achieves full diffusion
over one round. The best attack on Khazad in the single-key setting dates back to 2003
and breaks 5 out of 8 rounds [Mul03]. For the sake of completeness, we mention an attack
against 5 rounds in the weak-key setting [Bir03] and related-key attacks against 7 and 8
rounds [BN10].

Kuznyechik is a more recent design and is a new Russian standard blockcipher [Fed15],
which replaces the old [Dol10] and broken [Iso13] GOST 28147-89, now called “Magma”.
It is a 9-round 128-bit block, 256-bit key cipher. In contrast to its counterpart, the hash
function Streebog [Fed12], Kuznyechik has not been officially submitted for the third-party
cryptanalysis. Neither design rationale nor security analysis accompanies the specification.
The rationale elements we are aware of include the claim that the S-box was selected
almost randomly [SB15], and the linear layer is an iterative MDS construction based
on [CGMN99]. Very recently, a non-trivial decomposition of the Kuznyechik S-box (which
it shares with Streebog) was found, which in absence of design rationale puts the security
of the cipher into question. This situation somewhat resembles that with DES S-boxes,
which had additional unexplained structure due to hidden design criteria. Given the recent
efforts to make Kuznyechik an IETF standard [Dol16], it seems urgent to analyze it from
the cryptanalytic point of view.

Our unified division-algebraic formula implies the existence of a 4-round property
for Kuznyechik and a 3-round property for Khazad, which can be turned into 7-round
and 6-round attacks, respectively, using the partial sum technique [FKL+00]. The only
third-party cryptanalysis of Kuznyechik breaks 5 rounds, so we halve the security margin
at once.

We compare these attacks with the state of the art in Table 1.

Table 1: The best attacks against Khazad and Kuznyechik.
Target Rounds Data Comp. Time Comp. Mem. Comp. Ref.

Kuznyechik
5 2113 2140.3 2153.3 [AY15]
6 2120 2146.5 2132 Section 3.3
7 2128 2155 2140 Section 3.2

Khazad
4 29 280 28 [BR00]
5 264 291 211 [Mul03]
6 264 290 268 Section 4

1.3 Secret SPN: SASA...S
A block cipher with secret nonlinear layers 𝑆 and secret affine transformations 𝐴 is a
fundamental concept in both symmetric and asymmetric cryptography, as it determines an
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essential lower bound for the security of traditional SPN ciphers with public components
and only key being secret. In addition, a small secret-component cipher can be used
to build an S-box with hidden representation [BP15], for the purpose of backdoor or
efficient hardware implementation [BPU16]. Finally, the secret-component cipher is a
crucial security element of white-box cryptography [CEJvO02], where groups of internal
transformations are masked with secret operations and then are exposed as lookup tables.
It was demonstrated in [BBK14] that the multiple attempts to construct a white-box AES
implementation boil down to the SASA cipher – a four-layer scheme with two secret S-box
layers (S) and two secret affine layers (A). The AES diffusion properties make it impossible
to obfuscate more than 1.5 rounds of AES and add more secret layers to SASA.

One of the first structural attacks against a bijective SPN targets SASAS with practical
complexity [BS01]. This attack recovers S-boxes and affine layers up to affine equivalence
(as equivalent layers produce identical ciphers). Independently, Minaud et al. [MDFK15]
and Dinur et al. [DDKL15] found decomposition attacks for black- and white-box versions
of ASASA both for large and small block sizes. These results suggest the insecurity of
generic 5-layer SPN with secret layers but give little insight on the security of longer
variants, nor do they expose the requirements on the S-box width and the state size. Todo
analyzed several concrete SPNs in [Tod15], but did not provide any closed formula for the
scheme parameters that can be broken.

We provide sufficient conditions on 𝑛 as a function of 𝑚 and 𝑞 such that the secret
components in schemes AS...AS and SA..AS with 𝑞 layers can be found faster than 2𝑛.
We note that since the entire S-boxes are unknown, the exhaustive search would take far
more computations than 2𝑛.

1.4 Paper structure
Section 2 presents our main theorem bounding the number of SPN rounds having degree
strictly less than maximal. Sections 3, 4 and 5 present our attacks against Kuzneychik,
Khazad and generic structures respectively. Finally, we revisit the division property and
expose its multiple links to algebraic attacks in Section 6.

2 Degree bounds on generic SPN
2.1 Basic Proposition
We use the following notation:

𝐴(𝑆𝐴)𝑞 = 𝐴𝑆𝐴𝑆𝐴 . . . 𝑆𝐴⏟  ⏞  
2𝑞 layers

.

Consider the 𝐴(𝑆𝐴)𝑞 scheme with secret bijective S-boxes of size 𝑚 and degree 𝑚 − 1
and secret affine transformations over F2. The S-Boxes and the linear layers used may be
different.

It is well known that the algebraic degree of an 𝑛-bit permutation 𝑃 is at most 𝑛− 1.
If it does not reach this maximum, this provides a distinguisher. If the degree is 𝑑 then
the sum of 𝑃 (𝑥) for all 𝑥 in a cube of dimension 𝑑+ 1 is equal to 0, which is unlikely for a
random permutation if 𝑑 < 𝑛− 1.

Our results are based on the following theorem by Boura et al., which we apply
recursively to derive the degree bounds.

Proposition 1 ([BCC11]). Let 𝐺 be an arbitrary function on F𝑛
2 . Let 𝐹 be a bijection on

F𝑛
2 corresponding to the concatenation of 𝑚-bit bijective Sboxes of degree 𝑚− 1. Then

deg(𝐺 ∘ 𝐹 ) ≤ 𝑛−
⌈︂
𝑛− deg(𝐺)
𝑚− 1

⌉︂
.



Alex Biryukov, Dmitry Khovratovich and Léo Perrin 229

S
P
N
 D
eg
re
e

0

20

40

60

80

100

120

Number of rounds

0 2 4 6 8

2

Figure 1: Evolution of the maximum algebraic degree of a SPN with 128-bit blocks and
4-bit S-Boxes as bounded by Proposition 1.

This proposition captures the influence of the fact that an S-Box layer consists of the
parallel application of several smaller functions. Note in particular that if 𝑚 = 𝑛, which
corresponds to the case where one S-Box is applied to the full state, this bound does
not give new information: it merely states that deg(𝐺 ∘ 𝐹 ) ≤ 𝑛 − 1, which is obviously
the case since it is a permutation. When the S-Box layers consists in several smaller
S-Boxes however, it implies a degree discrepancy as illustrated in Figure 1 which shows
the evolution of the maximum degree of a SPN with 𝑚 = 4 and 𝑛 = 128: starting from
𝑟 = 4, the degree increase is much slower. It reaches the maximum of 127 only after 8
rounds, meaning that a simple integral distinguisher exists for up to 7 rounds.

The maximum number of rounds for which there exists such a distinguisher is obviously
related to the block and the S-Box size. Is there a general pattern for how many rounds
are necessary? And which distinguisher is the best: a simple one based on exploiting an
algebraic degree of at most 𝑛− 2 or one which exploits a degree bounded by 𝑛− (𝑚+ 1)
and adds another S-Box layer for free?

To answer these questions, we derive a theorem bounding the degree of a SPN depending
on its number of rounds, its block size 𝑛 and the S-Box size 𝑚. Then, we derive simple
corollaries linking the expansion in base 𝑚− 1 of 𝑛 with the number of rounds for which
integral distinguishers of each type exists.

It is assumed that all S-Boxes have maximum algebraic degree 𝑑 = 𝑚− 1 but they may
be distinct (so do the linear layers). We use 𝑥ℓ...𝑥0

𝑑 to denote the base 𝑑 expansion of 𝑥,
where ℓ = ⌊log𝑑(𝑥)⌋:

𝑥 = 𝑥ℓ...𝑥1𝑥0
𝑑, where 𝑥 =

ℓ∑︁
𝑖=0

𝑥𝑖𝑑
𝑖.

2.2 A Bound on the Algebraic Degree of a SPN
The following theorem allows us to study the evolution of the algebraic degree of a SPN
based on Proposition 1.
Theorem 1. For all ℓ ≤ ⌊log𝑑(𝑛)⌋, it holds that:

deg
(︀
𝐴(𝑆𝐴)ℓ+𝑟

)︀
≤ 𝑛−

(︂
𝜓𝑟 +

⌊︁ 𝑛
𝑑𝑟

⌋︁
− 𝑑ℓ

𝑑𝑟

)︂
,

where

𝜓𝑖 =
{︃

0 if 𝑛𝑖−1 = 𝑛𝑖−2 = ... = 𝑛0 = 0,
1 otherwise.
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Furthermore, if ℓ = ⌊log𝑑(𝑛)⌋ and 𝑛ℓ...𝑛1𝑛0 is the base 𝑑 expansion of 𝑛, we have

⌊︁ 𝑛
𝑑𝑟

⌋︁
=

ℓ∑︁
𝑖=𝑟

𝑛𝑖𝑑
𝑖−𝑟 and ,

so that in this case, if we need deg
(︀
𝐴(𝑆𝐴)ℓ+𝑟

)︀
≤ 𝑛− 𝑘, then it is sufficient that

𝜓𝑟 +
⌊︁ 𝑛
𝑑𝑟

⌋︁
− 𝑑ℓ

𝑑𝑟
≥ 𝑘 or, equivalently, (𝑛ℓ − 1)𝑑ℓ−𝑟 +

ℓ−1∑︁
𝑖=𝑟

𝑛𝑖𝑑
𝑖−𝑟 ≥ 𝑘 − 𝜓𝑟.

The proof of this theorem is given in Section A.1. The best bounds are derived for
ℓ = ⌊log𝑑(𝑛)⌋ but the theorem holds for any ℓ ≤ ⌊log𝑑(𝑛)⌋.

Note that unless 𝑛 is a power of 𝑑 we have that 𝜓𝑟 is equal to 1 at least for 𝑟 ≥ ℓ− 1.
Furthermore, it is likely to be equal to 1 even for lower values of 𝑟. The algebraic degree of
𝑟+ ℓ SPN rounds is bounded by 𝑛+ 𝑑ℓ−𝑟 − ⌊𝑛/𝑑𝑟⌋. This observation has some interesting
corollaries.

Corollary 1. Let ℓ = ⌊log𝑑(𝑛)⌋, 𝑛 = 𝑛ℓ...𝑛0
𝑑 be the block size and 𝑚 = 𝑑+ 1 be the size

of the S-Boxes. Assume that there exists 𝑖 < ℓ− 2 such that 𝑛𝑖 ̸= 0. Then the maximum
number of rounds for which the degree is at most 𝑛− 2 is equal to⎧⎪⎨⎪⎩

2ℓ if 𝑛ℓ > 1,
2ℓ− 1 if 𝑛ℓ = 1, 𝑛ℓ−1 ≥ 1,
2ℓ− 2 if 𝑛ℓ = 1, 𝑛ℓ−1 = 0, 𝑛ℓ−2 ≥ 1.

The same results can be expressed using intervals rather than the expansion in base 𝑑 of 𝑛.
The maximum number 𝑟𝑠 of rounds for which deg(𝐴(𝑆𝐴)𝑟𝑠−1) ≤ 𝑛− 2 is equal to⎧⎪⎨⎪⎩

2ℓ if 2𝑑ℓ < 𝑛 < 𝑑ℓ+1,

2ℓ− 1 if 𝑑ℓ + 𝑑ℓ−1 < 𝑛 ≤ 2𝑑ℓ,

2ℓ− 2 if 𝑑ℓ + 𝑑ℓ−2 < 𝑛 ≤ 𝑑ℓ + 𝑑ℓ−1.

Proof. Using the assumptions of the corollary along with Theorem 1, we deduce that the
degree is at most 𝑛 − 2 if ⌊𝑛/𝑑𝑟⌋ − 𝑑ℓ−𝑟 ≥ 1, which can also be written

∑︀ℓ−1
𝑖=𝑟 𝑛𝑖𝑑

𝑖−𝑟 +
(𝑛ℓ − 1)𝑑ℓ−𝑟 ≥ 1.

If 𝑟 = ℓ, then we need that 𝑛ℓ − 1 ≥ 1, which implies the first case.
If 𝑛ℓ = 1 then the inequality becomes

∑︀ℓ−1
𝑖=𝑟 𝑛𝑖𝑑

𝑖−𝑟 ≥ 1. For 𝑟 = ℓ− 1, it is equivalent
to 𝑛ℓ−1 ≥ 1. For 𝑟 = ℓ− 2 and 𝑛ℓ−1 = 0, it is equivalent to 𝑛ℓ−2 ≥ 1.

These results are easily turned into intervals. For example, 𝑛ℓ > 1 and 𝜓ℓ = 1 if and
only if 𝑛 > 2𝑑ℓ. Furthermore, if 𝑛 = 𝑑ℓ then 𝑟𝑠 = 2ℓ− 1 as in this case 𝜓ℓ = 0. The other
intervals are deduced identically.

We deduce from Corollary 1 that a good rule of thumb to estimate the number of SPN
rounds necessary to achieve full degree is to use 2 × ⌊log𝑚−1(𝑛)⌋ rounds. Interestingly,
this result is very similar to what is stated in Theorem 1 of [PU16]. Indeed, in this paper,
the existence of integral distinguishers for about 2 log𝑑(𝑛) rounds of Feistel Network are
derived, where 𝑑 is the degree of the Feistel function.

Corollary 1 tells us a bound on the number of rounds for which the maximum algebraic
degree can not be reached. It is also worth looking at round bounds for smaller degrees.
Let us look for the maximum number of rounds 𝑟𝑠 such that deg(𝐴(𝑆𝐴)𝑟𝑠−1) ≤ 𝑛−(𝑚+1).
It is then possible to attack (𝑆𝐴)𝑟𝑠 by fixing 𝑑+ 1 = 𝑚 bits corresponding to an S-Box
input.
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Corollary 2. Let ℓ = ⌊log𝑑(𝑛)⌋, 𝑛 = 𝑛ℓ...𝑛0
𝑑 be the block size and 𝑚 = 𝑑+ 1 be the size

of the S-Boxes. Assume that there exists 𝑖 < ℓ− 3 such that 𝑛𝑖 ̸= 0. Then the maximum
number 𝑟𝑠 of rounds for which deg(𝐴(𝑆𝐴)𝑟𝑠−1) ≤ 𝑛− (𝑚+ 1) is equal to⎧⎪⎨⎪⎩

2ℓ if 𝑛ℓ > 2 or 𝑛ℓ = 2, 𝑛ℓ−1 ≥ 1,
2ℓ− 1 if 𝑛ℓ = 2, 𝑛ℓ−1 = 0 or 𝑛ℓ = 1, 𝑛ℓ−1 ≥ 2 or 𝑛ℓ−1 = 1, 𝑛ℓ−2 ≥ 1
2ℓ− 2 if 𝑛ℓ = 1, 𝑛ℓ−1 = 0, 𝑛ℓ−2 ≥ 1.

The same results can be expressed using intervals rather than the expansion in base 𝑑 of 𝑛.
The maximum number 𝑟𝑠 of rounds for which deg(𝐴(𝑆𝐴)𝑟𝑠−1) ≤ 𝑛− (𝑚+ 1) is equal to⎧⎪⎨⎪⎩

2ℓ if 2𝑑ℓ + 𝑑ℓ−1 < 𝑛 < 𝑑ℓ+1,

2ℓ− 1 if 𝑑ℓ + 𝑑ℓ−1 + 𝑑ℓ−2 < 𝑛 ≤ 2𝑑ℓ + 𝑑ℓ−1

2ℓ− 2 if 𝑑ℓ + 𝑑ℓ−2 < 𝑛 ≤ 𝑑ℓ + 𝑑ℓ−1 + 𝑑ℓ−2.

Proof. We want ⌊𝑛/𝑑𝑟⌋ − 𝑑ℓ−𝑟 > 𝑑, which is equivalent to

ℓ∑︁
𝑖=𝑟

𝑛𝑖𝑑
𝑖−𝑟 ≥ 𝑑+ 𝑑ℓ−𝑟 + 1.

∙ It is impossible to have 𝑟 = ℓ. Indeed, in this case, we would have 𝑛ℓ > 𝑑+ 1 which
is impossible (𝑛𝑖 < 𝑑, for all 𝑖).

∙ In order to have 𝑟 = ℓ− 1, it is necessary and sufficient to have 𝑑𝑛ℓ + 𝑛ℓ−1 > 2𝑑. It
is the case if and only if 𝑛ℓ ≥ 3 or 𝑛ℓ = 2 and 𝑛ℓ−1 > 0.

∙ If it is not the case, then we may have 𝑟 = ℓ − 2. In order for this to happen, we
need 𝑑2𝑛ℓ + 𝑑𝑛ℓ−1 + 𝑛ℓ−2 > 𝑑+ 𝑑2. It is the case if 𝑛ℓ = 2. Otherwise, as 𝑛ℓ = 1,
we need either 𝑛ℓ−1 ≥ 2 or both 𝑛ℓ−1 = 1 and 𝑛ℓ−2 > 0.

This concludes the proof for the base 𝑑 expansions. Intervals are deduced from those in
the same fashion as for Corollary 2.

In most cases, approach relying on fixing the input of a whole S-Box to leverage a
distinguisher on 𝑞 − 1 rounds to attack 𝑞 rounds leads to the best attacks. Indeed, it is
usually true that 𝑟𝑠 = 𝑟𝑖, meaning that both distinguishers cover an equal number of
rounds. Since the data complexity of the second approach is lower, as the whole input of
an S-Box is fixed instead of just 1 bit, it is a better attack.

However, there are cases where the simpler distinguisher based on a degree bound of
𝑛− 2 covers one more round. Using Corollary 1 and Corollary 2, we can see that the case
𝑛ℓ = 2, 𝑛ℓ−1 = 0 yields such a case. Indeed, for such values, 𝑟𝑖 = 2ℓ which means that
2ℓ rounds have algebraic degree at most 𝑛 − 2, but 𝑟𝑠 = 2ℓ − 1 = 𝑟𝑖 − 1. This actually
occurs with 𝑑 = 7 and 𝑛 = 104 = 2067. For these values, the progression of the bound
on the degree as deduced from Proposition 1 is 1 → 7 → 49 → 96 → 102 → 103. Since
96 = 108 − 8, it is impossible to extend a 4-round distinguisher using the fixed-S-Box
method. And yet, since 102 < 103, a simple distinguisher on 5-round exists. Similarly, for
𝑑 = 3 and 𝑛 = 512 = 2002223, we have that 𝑟𝑠 = 9, and 𝑟𝑖 = 10. Indeed, the last steps of
the progression of the algebraic degree are 502 → 508 → 510 → 511 and 508 is too high to
allow a fixed-S-Box integral distinguisher.

We applied these corollaries to several S-Box size/block size combinations and obtained
the results in Table 2. The maximum number of rounds such that deg(𝐴(𝑆𝐴)𝑟) ≤ 𝑛− 2
obtained with Corollary 1 is denoted 𝑟𝑖. The actual value of deg(𝐴(𝑆𝐴)𝑟𝑖) is also given: it
can be computed either directly from Theorem 1 or by recursively applying the formula
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Table 2: Theorem 1 and its Corollaries 1 and 2 for some 𝑚,𝑛.
S-box size 𝑚 Block size 𝑛 (𝑛ℓ, 𝑛ℓ−1, 𝑛ℓ−2) 𝑟𝑖 deg(𝐴(𝑆𝐴)𝑟𝑖) 𝑟𝑠 𝑐min

4

16 (1, 2, 1) 3 13 3 12
24 (2, 2, 0) 4 22 4 20
32 (1, 0, 1) 4 29 4 24
48 (1, 2, 1) 5 45 5 44
64 (2, 1, 0) 6 62 6 60
128 (1, 1, 2) 7 126 7 124
512 (2, 0, 0) 10 510 9 504

8

64 (1, 2, 1) 3 61 3 56
104 (2, 0, 6) 4 102 3 56
128 (2, 4, 2) 4 126 4 120
256 (5, 1, 4) 4 251 4 232
512 (1, 3, 3) 5 508 5 488

from Proposition 1. We also computed the number 𝑟𝑠 of rounds having a degree at most
equal to 𝑛 − (𝑚 + 1) using Corollary 2. We then compute deg(𝐴(𝑆𝐴)𝑟𝑠) and deduce
the minimum dimension of a cube 𝑐min summing to zero over 𝑆𝐴(𝑆𝐴)𝑟𝑠 by rounding
deg(𝐴(𝑆𝐴)𝑟𝑠−1) up to its closest multiple of 𝑚.

3 Cryptanalysis of 7-round Kuznyechik
Kuznyechik1, also known as GOST 34.12-2015, is a new 128-bit blockcipher developed in
Russia and recently adopted as a Russian official standard [Fed15]. It is described in an
informational IETF RFC [Dol16]. The hash function Streebog [Fed12], designed by the
same team, has already been standardized by the IETF [DD13].

Kuznyechik is an SPN cipher with 9 rounds. Its linear layer is an 16 × 16 MDS matrix,
and the S-box, borrowed from the earlier Streebog, is 8-bit. The design principles of
Kuznyechik are barely known: we only know, as it is specified in the standard, that
the matrix is a power of some specific matrix corresponding to the 16-block LFSR. The
S-box design rationale is not known: the designers claimed (regarding Streebog) that
it was selected randomly, whereas the recent reverse-engineering attack demonstrated a
decomposition of it into a sort of 2-round Feistel Network using finite field multiplications
instead of xors [BPU16].

The third-party cryptanalysis of Kuznyechik is limited to the already mentioned reverse-
engineering attack and the 5-round meet-in-the-middle attack [AY15]. In this section we
outline the first 6- and 7-round attacks on Kuznyechik.

3.1 Description of Kuznyechik and Notations
Kuznyechik is a 9-round 128-bit blockcipher with 256-bit key, where the 128-bit plaintext
𝑃 is first XORed with the whitening round key 𝐾0. Then the 128-bit state undergoes 9
identical rounds with round function denoted by 𝒳 ℒ𝒮:

∙ first, 𝒮 applies the 8-bit S-box bytewise;
1Literally, “grasshopper” in English.
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∙ then ℒ is a linear transformation over F16
28 based on a 16 × 16 MDS matrix 𝑀 over

F28 ,

∙ finally, 𝒳 is the XOR with the round key.

The round keys are produced as follows:

1. The initial key 𝐾 = (𝐾0||𝐾1) is a concatenation of the first two round keys 𝐾0 and
𝐾1.

2. The 256-bit state (𝐾0||𝐾1) undergoes a 8-round Feistel network with the 128-bit
round function being 𝒳 ℒ𝒮 where round keys are round constants from 1 to 8. The
output of the network is the concatenation (𝐾2||𝐾3) of the next two round keys.

3. In the same way and increasing the constants, we produce (𝐾4||𝐾5) out of (𝐾2||𝐾3),
then (𝐾6||𝐾7) from the former, and finally (𝐾8||𝐾9) from (𝐾6||𝐾7).

Let us denote the bytes of the internal state 𝑋 and the key 𝐾 as 𝑋[0], 𝑋[1], . . . , 𝑋[15]
and 𝐾[0],𝐾[1], . . ..

3.2 Attack on 7-round Kuznyechik

By applying Corollary 1 with 𝑚 = 8, 𝑑 = 7 and 𝑛 = 128 = 2427, we obtain that the
algebraic degree of the 4-round subcipher ℰ𝐾 as a function of the plaintext is at most 126.
Let 𝑉 be a linear space of states of dimension 127. Then we obtain⨁︁

𝑣∈𝑉

ℰ𝐾(𝑣) = 0. (1)

Now we demonstrate how to use this 4-round property in the 7-round attack. The attack
proceeds as follows.

1. Guess the key byte 𝐾0[0].

2. Let 𝒫 be a structure of 2127 plaintexts, where the first byte takes 27 values {𝑆−1(0)⊕
𝐾0[0], 𝑆−1(1) ⊕𝐾0[0], . . . , 𝑆−1(127) ⊕𝐾0[0]}, and the other bytes take all possible
values.

3. Ask for encryption of 𝒫 under the unknown 𝐾, get ciphertexts 𝒞.

4. Decrypt 𝒞 by two rounds (let us denote the decryption function for the last 2 rounds
by 𝒟2), guessing the round keys, and check if⨁︁

𝑐∈𝒞
𝒟2(𝑐) = 0.

5. Test all remaining key candidates on four (plaintext, ciphertext) pairs, pick the right
one.

The attack works since 𝒫 becomes an affine space of dimension 127 after the first S-box
layer and remains so after the linear transformation and the key addition. After the next
4 rounds it becomes a multiset that XORs to 0 thanks to Equation (1). We then test this
property on the decrypted ciphertexts and keep only the key candidates that satisfy it.
We note that the attack is deterministic and always gives the correct answer.
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Complexity and optimization. Since 𝒟2 involves two round keys 𝐾6 and 𝐾7 and thus
256 bits of key material, a naive implementation of this attack would give a complexity far
higher than the exhaustive search. To cope with that, we apply the tricks well known from
the integral cryptanalysis of AES, although the case of AES is easier due to incomplete
diffusion at the linear layer.

Let us denote the output of the fifth round by 𝑋5 so that we analyze the 2127 states
{𝑋𝑖

5, 𝑖 < 2127}. First, we test the balanced property on separate bytes. For the first byte
we have to compute the sum⨁︁

𝑐∈𝒞
𝑆−1(𝑀−0(𝒮−1(ℒ−1(𝑐⊕𝐾7)) ⊕𝐾6)), (2)

where 𝑀−𝑖, 𝑖 < 16, is the 𝑖-th row of matrix 𝑀−1, which determines the value of byte 0
after the application of ℒ−1.

Then we use the partial sum technique from [FKL+00], which reduces the complexity
greatly. We consider equivalent round keys 𝐾 ′

𝑖 = ℒ−1(𝐾𝑖) and equivalent ciphertexts
𝑐′𝑖 = ℒ−1(𝑐𝑖). Then Equation (2) is rewritten as⨁︁

𝑐′∈𝒞′

𝑆−1(𝑞0𝒮−1(𝑐′[0] ⊕𝐾 ′
7[0]) ⊕ 𝑞1𝒮−1(𝑐′[1] ⊕𝐾 ′

7[1]) ⊕ . . .

. . .⊕ 𝑞15𝒮−1(𝑐′[15] ⊕𝐾 ′
7[15])) ⊕𝐾 ′

6[0]), (3)

where 𝑞𝑗 are coefficients of 𝑀−1.
Note that only 17 key bytes are involved in Equation (3). The crucial property of

the partial sum technique is that it allows guessing them sequentially and reuse the
intermediate calculations in a dynamic programming fashion. Concretely, we proceed as
follows:

1. We prepare table 𝑇1 of 2136 bit counters, initialized with 0, that correspond to all
the possible tuples (𝐾 ′

7[0],𝐾 ′
7[1], 𝑥1, 𝑐

′[2], 𝑐′[3], . . . , 𝑐′[15]), where 𝑥1 is a byte value.

2. For each pair of key bytes 𝐾 ′
7[0],𝐾 ′

7[1] and each ciphertext 𝑐′ we calculate 𝑥1 =
𝑞0𝒮−1(𝑐′[0]⊕𝐾 ′

7[0])⊕𝑞1𝒮−1(𝑐′[1]⊕𝐾 ′
7[1]) and change the parity of the corresponding

counter.

3. We prepare another table 𝑇2 of 2136 counters for tuples (𝐾 ′
7[0],𝐾 ′

7[1],𝐾 ′
7[2], 𝑥2, 𝑐

′[3],
𝑐′[4], . . . , 𝑐′[15]).

4. For every 𝐾 ′
7[2] and every entry in 𝑇1 we compute 𝑥2 = 𝑥1 ⊕ 𝑞2𝒮−1(𝑐′[2] ⊕ 𝐾 ′

7[2])
and update the corresponding parity counter in 𝑇2.

5. We proceed up to table 𝑇15, which contains the counters for tuples (𝐾 ′
7[0],𝐾 ′

7[1], . . . ,
𝐾 ′

7[15], 𝑥15).

6. For every 𝐾 ′
6[0] and every entry from 𝑇15 we compute 𝑥15 ⊕𝐾 ′

6[0] and the parities
of occurences of all values entering 𝑆−1. Then we check if the balanced property is
satisfied and keep all tuples (𝐾 ′

7[0], 𝐾 ′
7[1], . . . ,𝐾 ′

7[15],𝐾 ′
6[0]) for which it does.

7. We repeat all the steps above for the other 15 S-boxes and derive the whole round
keys 𝐾 ′

6,𝐾
′
7, from which we recover a candidate 𝐾 and test it.

Since the balanced property for a single byte is a 2−8 filter, we expect that for every 𝐾 ′
7

on average one 𝐾 ′
6 will be suggested and thus 2128 key candidates 𝐾 will be generated, of

which 2120 will remain after filtering on 𝐾0[0]. We need the complexity of 2122 encryptions
to test them.
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The complexity of the partial sum step is calculated as follows. At the first step
we make 2 S-box inversions for each of 216 guesses and 2127 ciphertexts, or 2144 S-box
inversions in total. At each other step we make 2144 inversions. Thus to check the property
on a single byte we need 2148 S-box inversions, and for all bytes we need 2152 inversions.
Since each 7-round cipher call uses 26.5 S-boxes, the testing-filtering phase is equivalent to
2146.5 blockcipher calls. To get the full attack complexity, we have to accomodate for the
guess of 𝐾0[0], which raises the complexity to 2154.5 time and about 2140 bytes of memory.
We also need the entire codebook, though if we have partial key knowledge (any byte of
𝐾0), we could live with 2127 chosen plaintexts.

3.3 6-round attack
For the 6-round attack we exploit the fact that the 3-round subcipher has degree at most
116. Thus we encrypt 2120 plaintexts, which take all possible values in the first 15 bytes.

The second phase of the attack is the same as in the 7-round version, only the table 𝑇1
takes less time to produce. The time complexity becomes 2146.5 and the data complexity
is 2120.

4 Cryptanalysis of reduced Khazad
4.1 Description of Khazad
Khazad is a 64-bit blockcipher with using a 128-bit key designed by Rijmen and Barreto
in 2000 [BR00]. It was later selected as a finalist of the NESSIE project.

Khazad is an 8-round SPN network where S-boxes are 8-bit permutations of degree 7
and the linear layer is given by a 8 × 8 matrix over F2. The plaintext is initially XORed
with the whitening key 𝐾0, and then undergoes 8 identical rounds, each consisting of

∙ The S-box layer 𝒮 of 8 S-boxes 𝑆.

∙ Linear transformation ℒ based on the involutive matrix 𝐻.

∙ XOR with the round key, an operation denoted 𝜎.

The 64-bit round keys 𝐾𝑖 are derived from the initial key 𝐾 as follows. The key 𝐾
enters the Feistel network with the blockcipher round function 𝜎 ∘ ℒ ∘ 𝒮 where the round
keys are constants. Each round a new round key is produced:

𝐾𝑖 = 𝜎 ∘ ℒ ∘ 𝒮(𝐾𝑖−2) ⊕𝐾𝑖−1, 𝐾 = 𝐾0||𝐾1.

The best attack on Khazad is the 5-round attack by Muller with 291 time and 264 time
complexity [Mul03].

4.2 Attack on the 6-round Khazad
Khazad and Kuznyechik are quite similar in structure, even though the Kuznyechik state
is twice as large. For parameters 𝑚 = 8, 𝑑 = 7 and 𝑛 = 64 = 1217, Corollary 1 implies that
the algebraic degree of 3-round Khazad is strictly less than 𝑛− 1. In fact, by recursively
applying Proposition 1, we find that it is at most equal to 64 − ⌈ 64−49

7 ⌉ = 61.
We proceed similarly to the attack on Kuznyechik:

1. Guess the key byte 𝐾0[0].

2. Prepare the 262 plaintexts that form an affine space of dimension 62 after the first
S-box layer by taking all possible values in the last 7 bytes and values from 0 to 63
in the first byte.
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3. Encrypt the plaintexts and get ciphertexts 𝐶.

4. Test the balanced property by partial decryption of the ciphertexts for the 2 rounds.

The partial decryption procedure is again the same as for Kuznyechik. We prepare a
set of tables with 272 bit counters each and guess the key bytes sequentially. The time
complexity of the attack is 290 and the data complexity is 264. Thus we attack 6 rounds of
Khazad with the same complexity as the best existing attack processes 5 rounds.

5 Attacks on secret SPNs
We proceed to the analysis of SPN ciphers with secret components, which generalizes
the integral distinguishers in [BCC11, BC13, Tod15] and dedicated attacks in [MDFK15,
DDKL15, BS01, BK15].

5.1 Decomposition attack on AS..AS
Attack 1. The (𝐴𝑆)2𝑞+1 scheme with secret bijective (possibly different) S-boxes of degree
𝑚 − 1 such that 3(𝑚 − 1)𝑞 + 1 ≤ 𝑛 and secret affine transformations over F2 can be
decomposed with data and time complexity

𝐶(𝐴𝑆)2𝑞+1 ≤ 2𝑛.

Recovery of the outer S-layer. In Theorem 1 we set 𝑙 = 𝑟 = 𝑞. By the condition of the
attack we have either 𝜓𝑞 = 1 and 𝑛

𝑑𝑞 ≥ 3, or 𝜓𝑞 = 0 and 𝑛
𝑑𝑞 ≥ 4. In both cases we have

deg(𝐴(𝑆𝐴)2𝑞) = 𝐷 ≤ 𝑛− 3.

Therefore, an affine space of dimension 𝐷 + 1 is encrypted to ciphertexts that sum to 0.
Since in this space the 𝑛 − 𝐷 − 1 variables take fixed values, it is a cube of dimension
𝐷+ 1. Now consider the encryption of this cube {𝑃1, 𝑃2, . . . , 𝑃2𝐷+1} by the longer scheme
𝐴(𝑆𝐴)2𝑞𝑆 = (𝐴𝑆)2𝑞+1 and look, w.l.o.g., at the first S-box 𝑆0 of size 𝑚. As noticed
in [BS01], we get an equation:

𝑆−1
0 (𝐶0

1 ) ⊕ 𝑆−1
0 (𝐶0

2 ) ⊕ · · · ⊕ 𝑆−1
0 (𝐶0

2𝐷+1) = 0, (4)

where 𝐶0
𝑗 are the bits of ciphertext 𝐶𝑗 = (𝐴𝑆)2𝑞+1(𝑃𝑗) outputted by 𝑆0.

We encrypt 2𝑚 such multisets (cubes) and collect 2𝑚 equations of type (4). The
resulting system is linear w.r.t. new variables 𝑦𝑗 = 𝑆−1

0 (𝑗), 𝑗 ∈ 𝑍𝑚
2 . However, it has

multiple solutions, as for any affine invertible transformation 𝐵 if 𝒮 is a solution then
𝒮(𝐵) is a solution as well. Thus our system of equations has rank at most2 2𝑚 −𝑚− 1.
Since any solution is good for us, we can fix 𝑆−1(𝐶0

𝑖 ) at (𝑚+ 1) arbitrary points, get a
full rank system, and solve it in 23𝑚 time.

Complexity. The complexity of peeling off the final S-layer is determined by the number
of encryptions, which is upper bounded by 2𝐷+𝑚+1. However, this bound can be improved
significantly. Consider an affine space 𝒜 of dimension 𝐷′ > 𝐷 + 1, where (𝑛 − 𝐷′)
variables are fixed and the other are free. Let us compute how many linearly independent
equations (4) we can obtain fron using only the plaintexts from this space.

Linearly independent equations (4) correspond to linearly independent indicator func-
tions of the plaintext sets. For example, in 3-dimensional space the 2-dimensional sets

2In practice it is usually equal to this value, as confirmed both by [BS10] and our experiments
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{(*, *, 0)}, {(*, *, 1)}, {(0, *, *)} and {(1, *, *)} are linearly dependent. However, any three
of them are linearly independent.

We can guarantee the linear independence as follows. Consider subspaces of 𝒜 of
dimension 𝐷′ − 1, which are formed by fixing any variable (out of 𝐷′) to 1. These 𝐷′

subspaces are linearly independent. Within each, we can select (𝐷′ − 1) subspaces of
dimension (𝐷′ − 2) in the same fashion. Therefore, a space of dimension (𝐷 + 3) ≤ 𝑛
contains at least 𝐷2 + 5𝐷 spaces of dimension 𝐷 + 1. For all 𝑑,𝑚, 𝑛 that we consider the
condition 𝐷2 + 5𝐷 > 2𝑚 holds as 𝐷 ≈ 𝑛 and 𝑚 ≈ log𝑞 𝑛, so the total complexity of the
first step is upper bounded by 2𝐷+3 ≤ 2𝑛.

Recovery of the A-layers. Thus we are left with the subcipher 𝐴(𝑆𝐴)2𝑞, which has
incomplete degree 𝐷 ≤ 𝑛− 3. The affine layers can then be recovered with the technique
from [MDFK15] (even though defined for incomplete-degree ASASA it works equally well
for other incomplete degree SPN). The main idea (for the technical details of the attack
we refer the reader to [MDFK15]) is that we have to encrypt 𝑛2/2 linearly independent
cubes of dimension 𝐷 + 1 and then solve a linear system over F2 with 𝑛2/2 equations.

We have already demonstrated that the full codebook contains at least (𝑛− 3)2 + 5(𝑛−
3) ≥ 𝑛2/2 linearly independent cubes of dimension 𝑛− 2, so the total complexity of the
affine-recovery step does not exceed 2𝑛. For smaller 𝐷 the complexity is around 2𝐷+3.

Attack 2. The (𝐴𝑆)2𝑞 scheme with secret bijective S-boxes of degree 𝑚 − 1 (possibly
different) such that 2(𝑚− 1)𝑞 + 1 ≤ 𝑛 and secret affine transformations over F2 can be
attacked with data and time complexity

𝐶(𝐴𝑆)2𝑞 ≤ 2𝑛−𝑚+3.

The proof for the even number of S-layers repeats the previous one with 𝑙 = 𝑞, 𝑟 = 𝑞−1,
so we omit it.

Briefly, we have a bound deg(𝐴𝑆)(2𝑞−1) ≤ 𝑛− (1 + 2(𝑚− 1) − (𝑚− 1)) = 𝑛−𝑚, which
is smaller by (𝑚− 3) than in Attack 1. This difference is deducted from the complexity
exponent in 2𝑛.

5.2 Decomposition attack on SAS..AS
For a scheme starting with an S-layer we obtain a different result.

Attack 3. The 𝑆(𝐴𝑆)2𝑞+1 scheme with secret bijective 𝑚-bit S-boxes of degree 𝑚 − 1
(possibly different) such that (𝑚+ 1)(𝑚− 1)𝑞 + 1 ≤ 𝑛 and secret affine transformations
over F2 (thus 4𝑞 + 3 layers in total) can be decomposed with complexity

𝐶𝑆(𝐴𝑆)2𝑞+1 ≤ 2𝑛.

Proof. We have that 𝑛 ≥ (𝑚+ 1)(𝑚− 1)𝑞 + 1 = (𝑚− 1)𝑞+1 + 2(𝑚− 1)𝑞 + 1. Thus, by
applying Corollary 2 with 𝑞 = ℓ − 1, we deduce that deg(𝐴(𝑆𝐴)2𝑞) = 𝐷 ≤ 𝑛 − 𝑚 − 1.
Therefore, it is sufficient to encrypt cubes of dimension 𝑛−𝑚. Such cubes can be produced
before the A layer by fixing the input to a single S-box and varying the others.

The rest of the attack is identical to the attack on (𝐴𝑆)𝑞. We take arbitrary 2𝑚 −𝑚−1
values 𝑉 and fix one of S-boxes to 𝑣 ∈ 𝑉 , whereas the other take all possible values. The
total data complexity is slightly less than 2𝑛 encryptions.

Remark 1. Again, we stress that the time complexity of 2𝑛 is not a natural upper bound
for this kind of attacks (even though the data complexity can not be higher). Indeed, we
recover the secret components, which are described with more than 𝑛 bits of information
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(about 𝑚2𝑚 bits for an S-box and 𝑛2 bits for the affine layer). We summarize our attacks
for small 𝑞 and some interesting 𝑚,𝑛 in Table 3 and give the equivalent key size for the
AS pair of layers (about (𝑛− 1.45𝑛/𝑚)2𝑚 + 𝑛2 bits).

Table 3: Summary of the complexity of our decomposition attacks with concrete 𝑞,𝑚, 𝑛.
S-box Block Key size ASASAS SASASAS ASASASAS SASASASAS

4 12 270 211 - - -
4 16 420 211 215 215 -
4 24 1060 211 215 215 224

6 12 728 212 - - -
6 18 1200 217 - - -
6 24 1744 221 - - -
6 36 3048 228 236 236 -
6 120 214 228 236 2106 2114

8 128 215 252 264 2118 2128

8 256 217 252 264 2230 2240

5.3 Exploiting lower-degree linear combinations
Even if the attacked primitive has maximal degree, it still can be attacked under some
circumstances. This effectively adds one more affine layer to a generic SPN structure
vulnerable to decomposition attacks described above. We present a distinguisher that
exposes a property that is unlikely to occur in a random permutation.

The key observation allowing our attack is the following.

Lemma 1. Let 𝑓 be an 𝑛-bit function and 𝑧(𝑓, 𝑛) be the number of non-zero 𝑏 in F𝑛
2 such

that deg
(︀
𝑥 ↦→ 𝑏 · 𝑓(𝑥)

)︀
≤ 𝑛− 2. Then the expected value of 𝑧(𝑓, 𝑛) is 1 − 2−𝑛 ≈ 1.

Proof. We consider the high-degree indicator matrix (hdim) of 𝑓 , as introduced in [PU16].
It is defined as a 𝑛× 𝑛 binary matrix where the coefficient at line 𝑖 and column 𝑗 is equal
to 1 if and only if the monomial

∏︀
𝑘 ̸=𝑗 𝑥𝑘 of degree 𝑛− 1 is present in the ANF of the 𝑖-th

output bit of 𝑓 .
We consider each of the coordinates independently and assume that a monomial appears

in the ANF of a coordinate of a random permutation with probability 1/2. The expected
number of solutions 𝑏 of the equation 𝑀 × 𝑏 = 0 where 𝑀 is such a matrix is given by
Theorem 3.2.4 and the preceding comments of [Kol99]: it is equal to 1 − 2−𝑛 and thus
converges to 1 as 𝑛 goes to infinity.

Such solutions correspond to linear combinations of the coordinates of 𝑓 such that
the monomials of degree 𝑛 − 1 cancel each other. In other words, such 𝑏 are such that
deg

(︀
𝑥 ↦→ 𝑏 · 𝑓(𝑥)) ≤ 𝑛− 2 and their expected number is 1 − 2−𝑛.

Consider now an 𝑛-bit permutation 𝑃 with degree 𝑛−𝑚+ 1 and a layer 𝑆 of 𝑚-bit
S-Boxes with degree 𝑚− 1. Then 𝑆 ∘ 𝑃 has degree 𝑛− 1. However, because of Lemma 1,
we can expect each of the S-Boxes to have a linear combination of its coordinates with
lower degree. Hence, we expect the existence of about 𝑛/𝑚 linearly independent linear
combinations of the coordinates of 𝑆 ∘ 𝑃 with an algebraic degree at most equal to 𝑛− 2.
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These can be detected using the following method. For all cube 𝑐𝑖 where only bit 𝑖 is
fixed to 0, compute the sum

⨁︀
𝑥∈𝑐𝑖

(𝑆 ∘ 𝑃 )(𝑥) = 𝑠𝑖. Then, build the 𝑛× 𝑛 matrix where
row 𝑖 is equal to 𝑠𝑖, i.e. the hdim of 𝑆 ∘ 𝑃 .

If a linear combination of the output bits has algebraic degree 𝑛− 2, then the corre-
sponding linear combination of the rows of this matrix is equal to the all-zero row because
each row is a sum over a space of size 2𝑛−1 which is equal to 0 for the lower-degree linear
combinations. Hence, the rank of this matrix will be close to 𝑛− 𝑛/𝑚 while the rank of
a random binary matrix is expected to be 𝑛− 1. As the number of S-Boxes in the layer
increases, the rank of this matrix decreases. Furthermore, the application of an affine
layer after 𝑆 ∘ 𝑃 does not change the presence of low-degree linear combinations, it merely
shuffles them. Thus, the same discrepancy in rank would be observed in 𝐴 ∘ 𝑆 ∘ 𝑃 .

Attack 4. A scheme 𝑃𝑆𝐴 where 𝑃 is a secret permutation with deg(𝑃 ) = 𝑛−𝑚+ 1, 𝑆
is a secret layer of 𝑚-bit S-Boxes with degree 𝑚− 1 (possibly different) and 𝐴 is a secret
affine transformation can be distinguished from a random permutation with high probability
with complexity

𝐶𝑃 𝑆𝐴 ≤ 𝑛2𝑛−1.

The High Degree Indicator Matrix (hdim) which we use here was first introduced
in [PU16]. It was used in the same paper to prove the existence of integral distinguisher
against Feistel Networks depending on the number of rounds and the algebraic degree of
the Feistel functions.

5.4 Why ASASA can not be secure
Now we note that an ASASA structure with equal-size S-boxes cannot reach a full degree.
Indeed, even if we take an ASASA instance with maximum degree, namely one with 2
S-Box layers where each consists in 2 S-Boxes of size 𝑚 = 𝑛/2, then the decomposition of
𝑛 in base 𝑑 is simply 𝑛 = 2𝑑+ 2. This implies that the algebraic degree is at most 𝑛− 2
as this puts us in the situation of Corollary 1.

Corollary 3. The 𝑛-bit ASASA scheme with equal-size S-Boxes has algebraic degree at
most 𝑛− 2.

As a result, we deduce a distinguisher on the ASASA scheme for any 𝑚 with a
complexity of 2𝑛−1: the sum over any cube of this size must be equal to 0. For comparison,
the best attack in [DDKL15, MDFK15] has complexity 23𝑛/2. However, our attack is only
a distinguisher.

5.5 Experimental verification
We have verified our attack experimentally. We considered the ASASASAS scheme with
16-bit block and four 4-bit S-boxes. The inputs to the last S-layer have degree 13, thus
they sum to zero over a cube of dimension 14.

We need 24 linearly independent equations to recover the S-box. We encrypted 215

plaintexts that start with the zero bit. Within this structure, we consider 15 substructures
{𝒮𝑖}, where 𝑖-th bit is zero in 𝒮𝑖. We got a system of 15 equations (4), which has rank
11 (in most cases). We assigned arbitrary distinct values to 5 unknowns and solved the
resulting system. As a result, we got an S-box, which is affine-equivalent to the original
one. When we take true values of these unknowns, the S-box is recovered precisely.

We also tried the rank based distinguisher against the ASASASASA scheme (addition
of 1 secret affine layer) with the same parameters. As the degree of ASASASA is equal to
13 and 𝑚 = 4, we expect the presence of 4 linear combinations of the output bits with
algebraic degree 14 instead of 15. We ran the matrix based method to count these linear
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combinations. We found that, the average number of low-degree linear combinations over
ten ASASASASA schemes is 4.5 while the average of this quantity is equal to 0.7 for the
same number of permutations generated with a Knuth shuffle.

6 Similarity to the division property
We use the following notations.

Kronecker’s function For the predicate 𝑃 we write

[𝑃 ] =
{︃

1, if 𝑃 is true;
0, if 𝑃 is false.

.

Polynomial Notations We denote the Hamming weight of 𝑥 by wt(𝑥). The algebraic
normal form (ANF) of function 𝑓 : F𝑛

2 → F2 is

𝑓(𝑥) =
⨁︁

𝑢∈F𝑛
2

𝑎𝑓
𝑢𝑥

𝑢,

where 𝑎𝑓
𝑢 ∈ F2 and 𝑥𝑢 is defined as

(𝑥1𝑥2 . . . 𝑥𝑛)𝑢1𝑢2...𝑢𝑛 =
∏︁

𝑖

𝑥𝑢𝑖
𝑖 =

∏︁
𝑖

(1 + (𝑥𝑖 + 1)𝑢𝑖).

The ANF coefficients 𝑎𝑢 can be found with the Moebius transform:

𝑎𝑓
𝑢 =

⨁︁
𝑥≤𝑢

𝑓(𝑥),

where 𝑎 ≤ 𝑏 if 𝑎𝑖 ≤ 𝑏𝑖 for every 𝑖.

6.1 Division property revisited
In the seminal paper [Tod15] on the security of generic Feistel and SPN schemes to integral
attacks, Todo introduced the following notion.

Definition 1. A multiset 𝒳 on F𝑛
2 has division property 𝒟𝑛

𝑘 if⨁︁
𝑥∈𝒳

𝑥𝑢 = 0. (5)

for all 𝑢 ∈ F𝑛
2 such that wt(𝑢) < 𝑘.

If we set 𝑘 bits to take all possible values, and the other to constant, we get a multiset
with division property 𝒟𝑛

𝑘 (in other words, a cube of dimension 𝑘). If the multiset sums to
0 over all 𝑛 bits, it has division property 𝒟𝑛

2 . Todo found distinguishers of the form

𝒟𝑛
𝑘 ↦→ 𝒟𝑛

2

(meaning that multisets of a certain property are mapped to multisets of another property)
for generic SPN constructions with 𝑛-bit block and 𝑚-bit S-boxes of degree 𝑚 − 1, the
number of rounds 𝑟 and cube dimension 𝑘 given in Table 4. Since these attacks outperform
the existing degree bounds so far, it seems that the division property method is more
effective than the algebraic one.
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Table 4: Todo’s best division attacks on generic SPN.
n m r k Target
64 4 6 60 Present
128 4 7 124 Serpent
128 8 4 120 AES
256 4 8 252 Minalpher
512 4 10 509 Prost-512
512 8 5 488 Whirlpool

We claim that the same results can be found using the algebraic degree bounds from
our Theorem 1 and the techniques from Section 5.2. The idea is first to demonstrate that
the algebraic degree of the (𝑟 − 1)-round primitive is at most 𝑛−𝑚− 1. Therefore, the
encryptions of any cube of dimension 𝑟 − 1 sum to 0 over 𝑟 − 1 rounds.

Then we apply the technique from Section 5.2: we let all the S-boxes but one take all
possible values, and the last one be constant. This property holds after the first round,
thus we can distinguish 𝑟 rounds using 2𝑛−𝑚 plaintexts.

Table 2 implies that this procedure applies for all cases in Table 4. For instance, we
have

2 · 33 + 32 + 1 ≤ 64,

which by Theorem 1 implies that the 5-round PRESENT has degree 59, which is exactly
what we require. For other primitives it is similar.

6.2 Algebraic view on the division property
In order to demonstrate why the division property covers as many rounds as the algebraic
distinguisher, we introduce an equivalent definition of the division property.

It might seem that checking the division property requires evaluation of the entire
multiset for every 𝑢. However, as we will see, for multisets with compact description it
becomes much easier. A reader may notice that Equation (5) ignores the order of the
elements of the multiset. Moreover, it is unimportant how many times an element occurs;
it matters only whether this number is odd or even3.

Now we define the multiset indicator boolean function, which is true if and only if the
argument 𝑦 is present in the multiset an odd number of times:

I𝑋(𝑦) =
⨁︁
𝑥∈𝒳

[𝑥 = 𝑦]

Proposition 2. Multiset 𝒳 has division property 𝒟𝑛
𝑘 if and only if its indicator function

has degree at most 𝑛− 𝑘.

Proof. Suppose that multiset 𝒳 has division property 𝒟𝑛
𝑘 . Consider the dual multiset 𝒳 :

𝑥 ∈ 𝒳 ⇔ 𝑥 ∈ 𝒳 ,

where 𝑥 denotes the negation of 𝑥. It is evident that the algebraic degree of I𝑋 and
I𝒳 are the same. Now consider the ANF

⨁︀
𝑢 𝑎

I𝒳
𝑢 𝑥𝑢 of I𝒳 and some coefficient 𝑎𝑢 with

3A similar approach was independently taken in [BC16].
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wt(𝑢) > 𝑛− 𝑘. From the Moebius transform we get

𝑎
I𝒳
𝑢 =

⨁︁
𝑦≤𝑢

I𝒳 (𝑦) =
⨁︁
𝑦≤𝑢

⨁︁
𝑥∈𝒳

[𝑥 = 𝑦] =
⨁︁
𝑥∈𝒳

⨁︁
𝑦≤𝑢

[𝑥 = 𝑦] =
⨁︁
𝑥∈𝒳

[𝑥 ≤ 𝑢] =

=
⨁︁
𝑥∈𝒳

[𝑢 ≤ 𝑥] =
⨁︁
𝑥∈𝒳

[𝑢 ≤ 𝑥] =
⨁︁
𝑥∈𝒳

[𝑢 ≤ 𝑥] =
⨁︁
𝑥∈𝒳

𝑥𝑢 = 0.

The last equation holds from the division property definition since wt(𝑢) < 𝑘. This ends
the proof.

Thus, looking at the division property of a multiset boils down to studying the algebraic
degree of the indicator function of the multiset. The decrease of 𝑘 in 𝒟𝑛

𝑘 when the multiset
undergoes the cipher gets then a natural algebraic explanation: the multiset description
becomes more sophisticated and is described by a function of increasing algebraic degree.

6.3 Evolution of the multiset degree
Suppose now that the multiset 𝒳 given by the indicator function I𝒳 undergoes an S-box
𝑆 of degree 𝑑 and becomes 𝒴 = 𝑆(𝒳 ). Then for the indicator I𝒴 and its ANF

⨁︀
𝑣 𝑎

I𝒴
𝑣 𝑦𝑣

we get the following equation on 𝑎𝑣 from the Moebius transform:

𝑎𝑣 =
⨁︁
𝑦≤𝑣

I𝒴(𝑦) =
⨁︁
𝑦≤𝑣

⨁︁
𝑥

[𝑆(𝑥) = 𝑦]I𝑋(𝑥) =
⨁︁

𝑥

[𝑆(𝑥) ≤ 𝑣]⏟  ⏞  
has degree≤𝑑(𝑛−wt(𝑣))

I𝑋 . (6)

The degree bound follows from the fact that 𝑆(𝑥) ≤ 𝑣 if and only if 𝑆(𝑥) is equal to 0 on
certain 𝑛− wt(𝑣) coordinates. For

𝑑(𝑛− wt(𝑣)) + deg(I𝑋) < 𝑛

the function [𝑆(𝑥) ≤ 𝑥]I𝑋(𝑥) has incomplete degree in 𝑥, so it sums to 0 over 𝑥 ∈ F𝑛
2 and

𝑎𝑣 = 0 for such 𝑣. Therefore

deg(I𝑌 ) ≤ 𝑛−
⌈︂
𝑛− deg(I𝑋)

𝑑

⌉︂
, (7)

which is equivalent to 𝒟𝑛
𝑘 becoming 𝒟𝑛

⌈ 𝑘
𝑑 ⌉. Now let us note that Equation (7) is the same as

in Proposition 1! Therefore, the multiset degree grows at the same speed as the algebraic
degree of the primitive.

We conclude that the evolution of the division property is the same process as the
algebraic degree growth. It is even possible to present an equivalent of Theorem 1 for the
division property, but we leave it as a simple exercise to the reader.

7 Conclusion
We have identified a simple closed formula bounding the number of rounds necessary for a
𝐴(𝑆𝐴)𝑞 structure to achieve full degree. We also used it to identify round-reduced version
of some block ciphers with incomplete degrees, namely for Kuznyechik (the last Russian
standard block cipher), the legacy cipher Khazad and generic such constructions. This
lead us to presenting the best attacks against those primitives by attacking 7 out of 9
rounds of Kuznyechik and 6 out of 8 rounds of Khazad.

We also rephrased our findings within the framework of Todo’s division property and
showed that the two methods lead to similar results.
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A New SA...S challenges
In order to stimulate further cryptanalysis and research on the security of generic SPN
structures, we present a set of parameters for the SA...S schemes, which we deem secure
in the light of previous results [MDFK15, DDKL15, GPT15] and new analysis presented
in this paper. They are given in Table 5. Notice 24 and 32-bit instances which are
memory-hard.

Table 5: Secure secret-SPN variants. “BB mem.” and “WB mem.” correspond to the
memory needed to implement such structures in the Black-Box and White-Box settings
respectively.

Block Layers Structure 𝑆-layer BB mem. WB mem. Security
12 bits 7 𝑆𝐴𝑆𝐴𝑆𝐴𝑆 2×(6 bits) 512 B 8 KB 64 bits
16 bits 7 𝑆𝐴𝑆𝐴𝑆𝐴𝑆 2×(8 bits) 2 KB 132 KB 64 bits
24 bits 7 𝑆𝐴𝑆𝐴𝑆𝐴𝑆 3×(8 bits) 3 KB 50 MB 128 bits
32 bits 7 𝑆𝐴𝑆𝐴𝑆𝐴𝑆 4×(8 bits) 4 KB 18 GB 128 bits
64 bits 7 𝑆𝐴𝑆𝐴𝑆𝐴𝑆 8×(8 bits) 8 KB – 128 bits
128 bits 11 𝑆(𝐴𝑆)5 16×(8 bits) 24 KB – 128 bits

A.1 Proof of Theorem 1
We bound the algebraic degree of 𝑟 SPN rounds using 𝜃𝑟:

deg(𝐴(𝑆𝐴)𝑟) ≤ 𝜃𝑟.

Obviously, 𝜃0 = 1 holds as (𝑆𝐴)0 is the identity. For larger values, 𝜃𝑟 is bounded in three
different ways: the natural bounds 𝑑𝑟 and 𝑛− 1, and the one from Proposition 1:

𝜃𝑟 ≤ 𝑛−
⌈︂
𝑛− 𝜃𝑟−1

𝑑

⌉︂
.

As long as the first bound prevails, the expression of 𝜃𝑟 is very simple: 𝜃𝑟 = 𝑑𝑟.
We now consider a larger number of rounds. Let ℓ be such that ℓ ≤ log𝑑(𝑛). It holds

that
𝜃ℓ+1 ≤ 𝑛−

⌈︂
𝑛− 𝑑ℓ

𝑑

⌉︂
,

which, using the base 𝑑 expansion of 𝑛, is equal to

𝜃ℓ+1 ≤ 𝑛−
⌈︂∑︀∞

𝑖=0 𝑛𝑖𝑑
𝑖 − 𝑑ℓ

𝑑

⌉︂
.

Because all coefficients in the numerator except 𝑛0 can be divided by 𝑑, this quantity is
equal to:

𝜃ℓ+1 ≤ 𝑛−

(︃ ∞∑︁
𝑖=1

𝑛𝑖𝑑
𝑖−1 − 𝑑ℓ−1 +

⌈︁𝑛0

𝑑

⌉︁)︃
.

Finally, we note that
∑︀∞

𝑖=1 𝑛𝑖𝑑
𝑖−1 = ⌊𝑛/𝑑⌋ and conclude that

𝜃ℓ+1 ≤ 𝑛−
(︁⌊︁𝑛
𝑑

⌋︁
− 𝑑ℓ−1 +

⌈︁𝑛0

𝑑

⌉︁)︁
.
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In fact, we can generalize this equality using a simple induction for 𝑟 ≤ ℓ. To simplify its
writing, we define 𝜓𝑖 as follows:

𝜓1 = ⌈𝑛0/𝑑⌉ , 𝜓𝑖+1 =
⌈︂
𝑛𝑖 + 𝜓𝑖

𝑑

⌉︂
.

Our induction hypothesis is then

𝜃ℓ+𝑟 ≤ 𝑛−
(︁⌊︁ 𝑛
𝑑𝑟

⌋︁
− 𝑑ℓ−𝑟 + 𝜓𝑟

)︁
, (8)

and we have established that it holds for 𝑟 = 1. Suppose now that it holds for some 𝑟.
Using Proposition 1, we deduce that

𝜃ℓ+𝑟+1 ≤ 𝑛−

⌈︃
𝑛−

(︀
𝑛− ⌊𝑛/𝑑𝑟⌋ + 𝑑ℓ−𝑟 − 𝜓𝑟

)︀
𝑑

⌉︃
,

which implies

𝜃ℓ+𝑟+1 ≤ 𝑛−
⌈︂∑︀∞

𝑖=𝑟 𝑛𝑖𝑑
𝑖−𝑟 − 𝑑ℓ−𝑟 + 𝜓𝑟

𝑑

⌉︂
.

Using again that all 𝑑𝑖−𝑟 for 𝑖 ≥ 𝑟 are divisible by 𝑑 except for 𝑑0, we can rewrite this
inequality as

𝜃ℓ+𝑟+1 ≤ 𝑛−

(︃ ∞∑︁
𝑖=𝑟

𝑛𝑖𝑑
𝑖−𝑟−1 − 𝑑ℓ−𝑟−1 +

⌈︂
𝑛𝑟 + 𝜓𝑟

𝑑

⌉︂)︃
.

We simplify this expression using that
∑︀∞

𝑖=𝑟 𝑛𝑖𝑑
𝑖−𝑟−1 = ⌊𝑛/𝑑𝑟+1⌋ and the definition of

𝜓𝑟+1 and obtain
𝜃ℓ+𝑟+1 ≤ 𝑛−

(︁⌊︁ 𝑛

𝑑𝑟+1

⌋︁
− 𝑑ℓ−𝑟−1 + 𝜓𝑟+1

)︁
.

Let us simplify this expression. First, the quantity ⌊𝑛/𝑑𝑟⌋ − 𝑑ℓ−𝑟 can be written using the
base 𝑑 expansion of 𝑛:

⌊𝑛/𝑑𝑟⌋ − 𝑑ℓ−𝑟 ≤
∑︁

𝑖≥𝑟, 𝑖 ̸=ℓ

𝑛𝑖𝑑
𝑖−𝑟 + (𝑛𝑟 − 1)𝑑ℓ−𝑟.

Furthermore, all 𝑛𝑖 for 𝑖 > ℓ are equal to 0. Using this, the inequality becomes:

⌊𝑛/𝑑𝑟⌋ − 𝑑ℓ−𝑟 ≤
ℓ−1∑︁
𝑖=𝑟

𝑛𝑖𝑑
𝑖−𝑟 + (𝑛𝑟 − 1)𝑑ℓ−𝑟.

Second, we can easily compute 𝜓𝑖 using the base 𝑑 expansion of 𝑛. We again proceed
inductively using the following hypothesis:

𝜓𝑖 =
{︃

0 if 𝑛𝑖−1 = 𝑛𝑖−2 = ... = 𝑛0 = 0,
1 otherwise.

The equality obviously holds for 𝑖 = 0 as ⌈𝑛0/𝑑⌉ = 0 if and only if 𝑛0 = 0, otherwise
it is equal to 1 because 𝑛𝑗 < 𝑑 for all 𝑗. Assuming the equality holds for 𝑖, let us now
compute 𝜓𝑖+1. By definition,

𝜓𝑖+1 =
⌈︂
𝑛𝑖 + 𝜓𝑖

𝑑

⌉︂
,

which, given that 𝑛𝑖 < 𝑑 and 𝜓𝑖 ≤ 1, is at most equal to 1. Thus, 𝜓𝑖+1 = 1 if and only if
either 𝜓𝑖 or 𝑛𝑖 is strictly greater than 0. This concludes the induction.

We deduce Theorem 1.
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