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Abstract. We introduce subspace trail cryptanalysis, a generalization of invariant
subspace cryptanalysis. With this more generic treatment of subspaces we do no
longer rely on specific choices of round constants or subkeys, and the resulting method
is as such a potentially more powerful attack vector. Interestingly, subspace trail
cryptanalysis in fact includes techniques based on impossible or truncated differentials
and integrals as special cases.
Choosing AES-128 as the perhaps most studied cipher, we describe distinguishers
up to 5-round AES with a single unknown key. We report (and practically verify)
competitive key-recovery attacks with very low data-complexity on 2, 3 and 4 rounds
of AES. Additionally, we consider AES with a secret S-Box and we present a (generic)
technique that allows to directly recover the secret key without finding any information
about the secret S-Box. This approach allows to use e.g. truncated differential,
impossible differential and integral attacks to find the secret key. Moreover, this
technique works also for other AES-like constructions, if some very common conditions
on the S-Box and on the MixColumns matrix (or its inverse) hold. As a consequence,
such attacks allow to better highlight the security impact of linear mappings inside
an AES-like block cipher.
Finally, we show that our impossible differential attack on 5 rounds of AES with
secret S-Box can be turned into a distinguisher for AES in the same setting as the
one recently proposed by Sun, Liu, Guo, Qu and Rijmen at CRYPTO 2016.
Keywords: AES · Invariant Subspace · Subspace Trail · Secret-Key Distinguisher ·
Key-Recovery Attack · Truncated Differential · Impossible Differential · Integral ·
Secret S-Box

1 Introduction
If a cryptographic primitive succumbs to a particular non-random behavior, it might be
possible to distinguish it from what one would expect from sufficiently generic behavior.
Invariant subspace cryptanalysis is a cryptanalytic technique that is powerful for certain
block ciphers. If there exists an invariant subspace for the round function and for the key
schedule, then this technique can be used to mount fast distinguishers and key recovery.
This technique was introduced in [LAAZ11] at CRYPTO 2011 for the cryptanalysis of
PRINTcipher. Its efficiency has also been demonstrated on the CAESAR candidate
iSCREAM, on the LS-design Robin and on the lightweight cipher Zorro in [LMR15], and

The extended version of this paper can be found in [GRR16].
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on the block cipher Midori64 [GJN+15]. However, if such symmetries do not exist or are
not found, invariant subspace cryptanalysis is not applicable. This leads to the natural
question: Can subspace properties still be used, even if no special symmetries or constants
allow for invariant subspaces? This paper will answer this question in the affirmative.

1.1 High-Level Overview of Subspace-Trail Technique
Our main contribution is the analysis of subspaces in SPNs (Substitution-Permutation
Networks) constructions with a technique that can be seen as a generalization of invariant
subspace attacks [LAAZ11, LMR15]. While invariant subspace cryptanalysis relies on itera-
tive subspace structures, our analysis is concerned with trails of different subspaces1. To use
an analogy, if invariant subspaces would correspond to iterative differential characteristics,
then our method would be “subspace-counterpart” of differential characteristics.

In particular, we study the propagation of subspaces trough various building blocks
like S-Boxes and linear layers. In that sense it has similarities with SASAS cryptanalysis
[BS10], but also with Evertse’s linear structures [Eve87], while another way to generalize
invariant subspaces - called “nonlinear invariant attack” - has recently been introduced in
[TLS16].

In this paper we investigate the behavior of subspaces in keyed permutations. At a
high level, we fix subspaces of the plaintext that maintain predictable properties after
repeated applications of a key-dependent round function. First we identify what we call
subspace trails which is essentially a coset of a plaintext subspace that encrypts to proper
subspaces of the state space over several rounds. The trails are formed by the affine hulls
of the intermediate ciphertexts. Subspace trails typically consist of subspaces that increase
in dimension for each round, meaning that if the plaintext subspace has low dimension in
comparison to the block length, the subsequent subspaces dimension increases for each
round. For byte-based ciphers (like AES), a quick and dirty test for subspaces is to compute
the affine hulls of a n-round encryption (for a certain n ≥ 1) of all values for each byte and
then identify these subspaces. For bit-based ciphers, it is more important to determine
what was coined a nucleon in [LMR15], that is candidate plaintext subspaces that seem to
fit symmetries in the round function. Trails of affine hulls of the intermediate ciphertexts
that grow slowly in dimension for each round, typically reflect slow diffusion in the round
function. This is often the case for ciphers that iterate simple round functions many times.
In this paper we will focus on what we call constant dimensional subspace trails, which
are trails of cosets that preserve dimension over several rounds. We show how to connect
two or more trails and form longer trails that preserve predictable structure. In particular,
when we connect two trails we typically seek to describe an output coset of a first trail in
terms of cosets of the input coset for the second trail.

To make the presentation more concrete, we focus on AES-128. The Rijndael block
cipher [DR02] has been designed by Daemen and Rijmen in 1997 and accepted as the AES
(Advanced Encryption Standard) since 2000 by NIST. Nowadays, it is probably the most
used block cipher.

1.2 Contributions
There are four types of contributions in this paper. Firstly the definition and description
of the subspace trails technique. As first examples, we describe it’s application to
secret-key distinguishers for up to 4 rounds of AES. In more details, the approach to the
generalization of invariant subspace cryptanalysis to subspace trails is outlined in Sect. 2.
In Sect. 3 we give technical preliminaries with respect to AES-like permutations, and in
Sect. 3.3 we state central theorems related to subspace trails and their intersections. When

1Note that since we don’t look for subspaces trails that are restricted to be invariant, the algorithm
provided in [LMR15] is not suitable for finding subspace trails.
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concretely applying it to AES, we describe in Sect. 4 distinguishers of round-reduced
AES with a single unknown key up to 4 rounds. They correspond to known truncated
differential, impossible differential, and integral distinguishers. From this it will become
clear that these properties can be seen as special cases of subspace trails.

Secondly, in App. D of [GRR16] we describe new low data-complexity key-recovery
attacks on AES up to 4 rounds, based on a combination of a truncated differential property
(i.e. a relation among pairs of texts) and of properties of individual texts, which follows
naturally from the proposed subspace trail approach.The relationship between these attacks
and truncated differential cryptanalysis is discussed in App. D.3 of [GRR16].

Thirdly, in Sect. 5 and 7 we describe a new and generic technique that can be
used to attack AES with a secret S-Box. Even if we do not improve the current best
results in this model by Tiesen et al. [TKKL15], our technique allows (for the first time) to
discover the secret key directly, without necessarily finding any equivalent representation
or any other information about the S-Box. We show how not only integral attacks, but also
truncated differential attacks and impossible differential attacks can exploit this technique.
This technique can also be used to attack other AES-like block ciphers, if some very
common conditions on the S-Box and on the MixColumns matrix (or its inverse) are
guaranteed.

Finally, starting from the impossible differential attack on 5 rounds of AES with a
secret S-Box, in Sect. 8 we describe a new 5-round secret-key distinguisher for AES
in the same setting as the one presented in [SLG+16]. A critically discussion of that
particular distinguisher setting is proposed in Sect. 8.2.

Before starting with these detailed sections, we survey our concrete results: the
distinguishers in the unknown (secret)-key model, and the key-recovery attacks in the
cases of known and secret S-Box, and in both cases we compare them with earlier work.

1.3 Secret-Key Distinguishers for AES
The aim of a distinguishing attack is to find some properties of a cipher that random
permutations don’t have such that it is possible to distinguish a cipher from random
permutations. In the usual security model, the adversary is given a black box (oracle)
access to an instance of the encryption function associated with a random secret key and
its inverse. The goal is to find the key or more generally to efficiently distinguish the
encryption function from a random permutation.

In Table 1 we summarize the secret-key distinguishers for 1 up to 5 rounds. Such
results often serve as a basis for key recovery attacks in the most relevant single-key setting.
The subspace trail cryptanalysis includes as special cases of differential cryptanalysis
techniques (like truncated or impossible differentials) and integral cryptanalysis, hence the
complexities for distinguishers up to 4 rounds is the same.

The first distinguisher for five rounds of AES-128 has been proposed recently in
CRYPTO 2016 [SLG+16]. However, this distinguisher requires the whole input-output
space to work, or less than the full codebooks if some knowledge of subkey bytes is assumed.
In the same setting of this distinguisher, in Sect. 8 we propose our secret key distinguisher
for five rounds of AES, which requires (much) less than the whole input-output space
without any knowledge about subkeys. Since we derive this distinguisher in a natural
way from the impossible differential attack on five rounds of AES with a secret S-Box, we
introduce it in Sect. 1.6 together with the mentioned attack, and we focus for the moment
only on the distinguishers up to four rounds.

Relation to other Distinguishers. The 1-, 2- and 3-round distinguishers presented
in Sect. 4.1 and 4.3 exploit the same well-known structural properties that also truncated
differentials exhibit. Using a different notation (namely the AES “Super S-Box”), 2-round
subspace trails were already discovered and investigated in [DR06a] and [DR06b], with
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Table 1: AES secret-key distinguishers, working independent of key schedule. Data
complexity is measured in minimum number of chosen plaintexts CP or/and chosen
ciphertexts CC which are needed to distinguish the AES permutation from a random
permutation with probability higher than 95%. The case in which the final MixColumns
operation is omitted is denoted by “r.5 rounds”, that is r full rounds and the final round.

Rounds Data CP CC Property Reference
1 - 1.5 - 2 2 × × Truncated Differential [DR06a] - Sect. 4.1
2.5 - 3 20 ' 24.3 × × Truncated Differential [BK07] - Sect. 4.3
2.5 - 3 28 × × Integral [DKR97] - Sect. 4.3
3.5 - 4 216.25 × × Impossible Differential [BK01] - Sect. 4.4
3.5 - 4 232 × × Integral [DKR97] - Sect. 4.4
4.5 - 5 298.2 × Impossible Differential Sect. 8

5 2128 × Integral [SLG+16]

the objective to understand how the components of the AES interact. In these papers,
authors study the probability of differentials and characteristics over 2 rounds of AES,
giving bound on the maximum differential probability.

In [DKR97], Daemen et al. proposed a new method that can break more rounds of
SQUARE than differential and linear cryptanalysis, which is named the SQUARE attack
consequently. In [KW02], Knudsen and Wagner proposed the integral cryptanalysis as a
generalized case of such attacks. The first key-recovery attacks on round-reduced AES
were obtained by exploiting a 3-round integral distinguisher to attack up to 6 rounds. A re-
interpretation of this integral distinguisher (also commonly labeled as square distinguisher)
using the subspace trail notation is proposed in Sect. 4.4.

Knudsen [Knu98] and Biham et al. [BBS99] independently proposed the impossible-
differential cryptanalysis. This distinguisher exploits differential with probability zero, and
it is re-proposed using the subspace trail notation in Sect. 4.4.

The subspace trail approach is mostly providing an alternative description of known
properties under the umbrella of a single framework. However, there are other recent
techniques that this approach does not seem to include. Recently integral distinguishers
have been generalized by Todo [Tod15b] and in there also applied to AES-like primitives.
Distinguishers for AES itself were not improved, but clear progress e.g. with MISTY
cryptanalysis was demonstrated [Tod15a]. Todo’s generalization can take S-Box properties
into account, on the other hand the property exploited is still a type of zero-sum. Thus it
complements our approach which is independent of the S-Box, but exploits properties more
subtle than zero-sums. Subspace trails do not seem to capture other types of distinguisher.
Among them are Polytopic distinguishers [Tie16], DS-type distinguishers [DS08a], or
non-linear invariants [TLS16].

1.4 Low Data-Complexity Key-Recovery Attacks on AES
Since practical attacks on block ciphers became extremely rare in the last two decades,
the approaches of the cryptanalysis community have been concentrating on attacking
reduced-round variants of block ciphers and/or to allow the adversary more degrees of
freedom in its control. In the first approach, the usual goal of the adversary is to maximize
the number of rounds that can be broken, using less data than the entire codebook and less
time than exhaustive key search. Attacks following such an approach are of importance,
since they ensure that the block ciphers are strong enough and because they help to
establish the security margins offered by the cipher. However, aiming for the highest
number of rounds often leads cryptanalyst to attacks very close to brute force ones, or
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requiring completely impractical amounts of chosen/known inputs up to the full codebook.
Practical attacks, especially those focusing on low data complexity, rightfully gained more
attention recently, and this is also the focus of the key-recovery part in this paper.

State of the Art. AES with its wide-trail strategy was designed to withstand
differential and linear cryptanalysis [DR02], so pure versions of these techniques have
limited applications in attacks. Hence, it is widely believed that no regular differential
attack can be mounted on more than 5 rounds of AES (see [PSC+02] for details). For
achieving the highest number of rounds, the most effective single-key recovery methods are
impossible differential cryptanalysis (which yielded the first attack on the 7-round AES-128
[ZWF07] with non-marginal data complexity) and integral attacks [DKR97]. Another
attack that initially has obtained less attention than the previous ones is the Meet-in-the-
Middle attack [DS08b], which has potential if enhanced by other techniques/attacks, as
the differential attack [DKS10, DFJ13, DF13] or as the bicliques technique [BKR11].

In works like [BDD+12] authors consider Low-Data Complexity attacks on reduced-
rounds of AES, that is they apply attacks assuming the attacker has limited resources,
e.g. few plaintext/ciphertext pairs, which is often much more relevant in practice than
attacks only aiming at the highest number of rounds. The results of this work have then
been improved in [BDF11]. In that paper, authors set up tools which try to find attacks
automatically by searching some classes of Guess-and-Determine and Meet-in-the-Middle
attacks. These tools take as input a system of equations that describes the cryptographic
primitive and some constraints on the plaintext and ciphertext variables. Then, they first
run a search for an “ad hoc” solver for the equations to solve, build it, and then run it to
obtain the actual solutions.

Another work in the low-data complexity scenario is the Polytopic Cryptanalysis
presented in [Tie16], which is a generalization of differential cryptanalysis. In particular,
the impossible polytopic cryptanalysis variant (that is, polytopic cryptanalysis that makes
use of differentials with probability zero) was shown to allow competitive low-data attacks
on round-reduced AES.

Our Key-Recovery Results

In this paper, we present key-recovery truncated differential attacks on reduced-round
variants of AES-128 based on subspace trail cryptanalysis. A comparison of all known and
relevant attacks on AES and our attacks presented in this paper is given in Table 2. To
better understand this table, we highlight some aspects. Without going into the details
here, AES is a key-iterated block cipher that consists of the repeated application of a
round transformation on the state (called intermediate result). Each round transformation
is a sequence of four steps. All the rounds are equal, except for the last one which is a
slightly different. One of the steps that compose each round (the MixColumns operation)
is omitted in the last round. The effect of the omission of the last round MixColumns has
been studied in detail e.g. in [DK10], and often doesn’t affect the security of AES.

On the other hand, MitM-style attacks can sometimes work better when all rounds are
the same. Since the attacks presented in [BDD+12] and found by the tool described in
[BDF11] mainly exploit the MitM technique, they are sometimes affected by the presence
of the final MixColumns, that is the data and the computational complexities are not
equal if the final MixColumns is omitted2. In contrast, note that our attack (based on the
truncated differential technique) is independent of the presence of the last MixColumns.

As the data complexity and number of rounds attacked is not always directly comparable,
we re-ran the tool from [BDF11] in our settings. As a result, we are able to provide the

2As an example, the attack on 3 rounds with 2 chosen plaintexts has lower computational complexity
and memory requirements when the final MixColumns is not omitted (216 encryption and 28 of memory)
rather than omitted (224 encryption and 216 memory).
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Table 2: Comparison of low-data attacks on round-reduced AES. Data complexity is
measured in number of required known/chosen plaintexts (KP/CP). Time complexity
is measured in round-reduced AES encryption equivalents (E) and in memory accesses
(M). Memory complexity is measured in plaintexts (16 bytes). The case in which the
MixColumns operation is omitted in the last round is denoted by “r.5 rounds”, that is r
full rounds and the final round. New attacks are in bold.

Attack Rounds Data Computation (E) Memory Reference
G&D-MitM 2.5 2 KP 280 280 [BDF11]
D-MitM 3 2 CP 232 21 [BDD+12]

TrD 2.5 - 3 2 CP 232 M +231.55 E ≈ 231.6 28 [GRR16] - App. D
G&D-MitM 2.5 2 CP 224 216 [BDF11]
G&D-MitM 3 2 CP 216 28 [BDF11]

TrD 2.5 - 3 3 CP 211.2 1 [GRR16] - App. D
G&D-MitM 3 3 CP 28 28 [BDF11]

TrD 2.5 - 3 3 CP 210 M +25.1 E ≈ 25.7 212 [GRR16] - App. D
D-MitM 4 2 CP 2104 1 [BDD+12]

TrD (EE) 3.5 - 4 2 CP 296 1 [GRR16] - App. D.4
G&D-MitM 4 2 CP 288 28 [BDF11]
G&D-MitM 4 2 CP 280 280 [BDF11]
G&D-MitM 3.5 2 CP 272 272 [BDF11]
TrD (EE) 3.5 - 4 3 CP 274.7 1 [GRR16] - App. D.4
G&D-MitM 4 3 CP 272 28 [BDF11]
TrD (EE) 3.5 - 4 3 CP 276 M +264 E ≈ 269.7 212 [GRR16] - App. D.4
G&D-MitM 4 4 CP 232 224 [BDF11]
D-MitM 4 5 CP 264 268 [BDD+12]
I-Pol 3.5 - 4 8 CP 238 215 [Tie16]

D-MitM 4 10 CP 240 243 [BDD+12]
TrD (EB) 3.5 - 4 24 CP 240.6 M +233.9 E ≈ 235.1 217 [GRR16] - App. D.5

I 3.5 - 4 29 CP 214 small [DKR97]

G&D: Guess & Det., D: Diff., MitM: Meet-in-the-Middle, TrD: Truncated Differential, I:
Integral, I-Pol: Imp. polytopic, EE: Extension at End, EB: Extension at Beginning.

computational cost of the best attack found by the tool for the case of 3.5 rounds (that is,
4 rounds of AES without the final MixColumns operation) using 2 chosen plaintexts.

Our attack on 3 rounds as described in App. D of [GRR16] is based on the property
that a coset of a particular subspace D of the plaintexts space is always mapped into a
coset of another particular subspaceM after two rounds. Exploiting the particular shape
of the subspaceM and given two ciphertexts (which plaintexts belong to the same coset
of D), the right key is one of those such that these two ciphertexts belong to the same
coset ofM one round before. We show how to extend this approach in order to attack 4
rounds in App. D.4 of [GRR16] by extend our attack at the end, while in App. D.5 of
[GRR16] we show how to extend it at the beginning.

1.5 Attack on AES with a Single Secret S-Box
The subspace trail framework also allows to consider attacks on AES with a single secret
S-Box, i.e. the case in which the AES S-Box is replaced by a secret 8-bit one while keeping
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everything else unchanged. If the choice of the S-Box is made uniformly at random from
all 8-bits S-Boxes, the size of the secret information increases from 128-256 bits (i.e. the
key size in AES) to 1812-1940. Thus, this could be a good attempt to strengthen the
cipher or all to reduce the number of rounds. Note that AES was designed in order to
achieve good resistance against differential and linear cryptanalysis, and this includes the
choice of the S-Box. However, a randomly chosen S-Box is very highly resistant against
these attacks as well.

In [TKKL15], authors are able to attack up to 6-round of AES with identical and secret
S-Box using techniques from integral cryptanalysis. Authors demonstrate that despite
the increased size of the secret information in the cipher, they are able to recover both
the secret key and the S-Box for the 4-round, 5-round and 6-round versions of AES-128.
More precisely, authors are able to find the whitening key up to 256 variants, that is
(k0, k0 ⊕ k1, ..., k0 ⊕ k15) (where ki is the i-th byte of the whitening key) for unknown k0.
We emphasize that to obtain this result, authors must determine the secret S-Box (up
to an additive constant before and after the S-Box, i.e. S-Box(x) ∼ a⊕S-Box(b⊕ x)) in
order to find the key. In other words, using their technique it is not possible to find the
key independent of the S-Box. To the best of our knowledge, this is the only work in the
literature regarding attacks on AES with a secret S-Box.

However, several other results in literature consider (other) encryption schemes with
secret part. PRESENT with a secret S-Box has for example been considered in [BKLT11,
LJQ14]. One of the first work in this context has been presented by Biryukov and Shamir
[BS01], who applied integral cryptanalysis to a generalized SPN structure denoted SASAS,
which consists of three substitution layers separated by two affine layers. In their paper,
the attacker is assumed not to have any knowledge about the linear layer or the S-boxes
which are all allowed to be chosen independently at random. The SASAS attack recovers
an equivalent representation of this SPN and thus allows decryption of any ciphertext.
The attack allows to break the equivalent of three rounds of AES. A follow up work is
[BBK14], where authors considered the ASASA scheme in order to design public key or
white-box constructions using symmetric cipher components.

In all the previous works, an attacker must work both on the secret S-Box and on the
secret key, that is she has to first find information on the secret S-Box in order to discover
the secret key. Thus, a natural questions arise: Is it also possible to directly find the secret
key without having to discover any information about the secret S-Box? In this paper, we
show that it’s possible if some (very common) assumptions are guaranteed. Using the
subspace-trail framework, we present a generic technique to discover directly (i.e. without
working on the S-Box) the secret key of AES up to some variants, and we show how it is
exploited by a truncated differential attack in Sect. 6 (in particular, we consider 3 rounds
of AES in App. F.1 of [GRR16] and 4 rounds in App. G of [GRR16]), by an impossible
differential attack in Sect. 7 and by an integral attack in App. F.3 of [GRR16].

The assumptions required are that the S-Boxes are identical, that each row of the
MixColumns matrix has two identical elements and that each row has these two identical
element in different positions. An example is the MixColumns matrix of AES, or any
cyclic matrix with two identical elements.

A comparison between this technique and the one presented in [TKKL15] is shown in
Table 3. Even if the assumptions are the same (i.e. the assumption of secret and identical
S-Box), our goals are different from the one of [TKKL15]. Similar to [TKKL15], using
our attack it is only possible to find the whitening key up to (256)4 = 232 variants, if no
information about the S-Box are discovered and used. Anyway, these 232 variants can be
reduced up to 256, working also on the secret S-Box and using a strategy similar to the
one of [TKKL15], as shown in detail in App. F.2.1 of [GRR16].

Finally, we recall the advice given in [SLG+16] “when design an AES-like cipher, it is
better to choose those MDS matrices MMC such that both MMC and M−1

MC do not have



Lorenzo Grassi , Christian Rechberger and Sondre Rønjom 199

Table 3: Comparison of attacks on round-reduced AES with secret S-Box. Data complexity
is measured in number of required chosen plaintexts/ciphertexts (CP/CC). Time complexity
is measured in round-reduced AES encryption equivalents (E), in memory accesses (M) or
XOR operations (XOR). Memory complexity is measured in plaintexts (16 bytes). The
case in which the final MixColumns operation is omitted is denoted by “r.5 rounds”, that
is r full rounds and the final round. New attacks are in bold. The symbol ? denotes an
attack that can not work independently of the S-Box and the key.

Attack Rounds Data Computation Memory Reference
SASAS 2.5 216 CP 221 E 216 [BS01]
TrD 2.5 - 3 213.6 CP 213.2 XOR small Sect. 6
I 2.5 - 3 219.6 CP 219.6 XOR small [GRR16] - App. F.3

TrD 3.5 - 4 230 CP 236 M ≈ 229.7 E 230 Sect. 6
I? 3.5 - 4 216 CC 217.7 E 216 [TKKL15]
I? 3.5 - 4 216 CP 228.7 E 216 [TKKL15] (see Sect. 3.5)

ImD 4.5 - 5 2102 CP 2107 M ≈ 2100.4 E 28 Sect. 7
I? 4.5 - 5 240 CC 238.7 E 240 [TKKL15]
I? 4.5 - 5 240 CP 254.7 E 240 [TKKL15] (see Sect. 3.5)
I 5 2128 CC 2129.6 XOR small [SLG+16] - Sect. 8.1

TrD: Truncated Differential, I: Integral, ImD: Impossible Differential.

identical elements in the same columns”, which allows to protect the cipher against our
attacks presented in this paper and in [SLG+16].

1.6 The 5-round Secret Key Distinguisher for AES-128
In [SLG+16], authors presented the first 5-round secret key distinguisher for AES-128,
based on the balanced property.

This distinguisher is constructed in two steps. At first step, authors assume that
some of the subkey bits are known. Using this knowledge, they show how to choose the
ciphertexts such that the balanced property holds on 5 rounds of AES. This distinguisher
requires 2120 texts if the difference of two bytes (i.e. 8 bits) of the subkey is known, or 296

texts if the differences of four pairs of bytes (i.e. 32 bits) are known. In the second step,
authors assume that no secret key material is known. The idea is basically to repeat the
first step of the distinguisher for each possible values of the subkey bits used to choose the
ciphertexts. For the AES case, when this guess is correct (i.e. when these guessed bits are
equal to that of the secret key) the balanced property holds for 5 rounds, which surely
occurs in an exhaustive search.

Note that this distinguisher requires all the input-output space to work, that is the
data complexity is 2128 texts when no subkey byte is known3. Moreover, the distinguisher
presented in [SLG+16] doesn’t exploit the details of the S-Box (which can be considered
secret), that is the ciphertexts are chosen independently of the definition of the S-Box,
but it requires some assumptions on the MixColumns matrix (which are the same ones we
described for the key recovery attacks on AES with secret S-Box).

As we show in Sect. 8, our impossible differential attack on 5 rounds of AES with a
secret S-Box can be turned into a distinguisher in the same setting of the one proposed by
[SLG+16]. In our case, we consider an impossible differential trail instead of the balance
property. As in the CRYPTO paper, the idea is to check the existence of a key for which
the impossible differential trail is satisfied. Note that with respect to a key recovery attack,

3This was also confirmed with Bing Sun via personal communication.
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both our distinguisher and the one presented in the CRYPTO paper have the advantage that
it is not necessary to find the entire key to distinguish the two cases, since a limited number
of bytes (e.g. the XOR difference of two bytes) is sufficient. Moreover, as in [SLG+16],
our distinguisher is independent by the details of the S-Box operation, but requires the
same assumption on the MixColumn matrix MMC (i.e. at least one column must have
two identical elements). A critical discussion of these distinguishers is provided in Sect.
8.2, arguing that in some sense the quest for the first 5-round distinguisher is still open
despite the recent results.

As maybe the most interesting aspect, this distinguisher provides a counter-example
to the conjectures made in [SLG+16], besides the fact that it doesn’t need the entire
input-output space but only 298.2 chosen plaintexts. Indeed, the distinguisher presented
in [SLG+16] is constructed in the chosen-ciphertext mode, and only in the case in which
MixColumns in the last round is not omitted. For this reason, authors claim that “since
the 5-round distinguisher for AES can only be constructed in the chosen-ciphertexts mode,
the security margin for the round-reduced AES under the chosen-plaintext attack may
be different from that under the chosen-ciphertext attack”. However, our distinguisher
is constructed in the chosen-plaintexts setting, and it works independent of the last
MixColumns operation. Hence it seems there is no clear evidence that chosen-ciphertext
security is less than chosen-plaintext security in AES.

In Sect. 8.1 we show that also the distinguisher of [SLG+16] can be turned into a
key recovery attack, while in Sect. 8.2 we critically discuss the model in which these
distinguishers work.

1.7 Practical Verification
All results in the paper have been verified using a C/C++ implementation:

Secret-Key Distinguishers. We practically verified the secret-key distinguishers for up to
5 rounds, and we have found that the practical results are consistent with our theory.
The source codes of the secret-key distinguishers can be found in [git16c].

Low-Data Complexity Key-Recovery Attacks on AES. We practically verified the low-
data complexity attacks on 1, 2, 3 and 4 rounds. For the 3 rounds attack, one or two
pairs of plaintexts (that is two or three different plaintexts) are sufficient to discover
the key of the final round, as predicted. Since the attack on 4 rounds described in
App. D.4 of [GRR16] has a very high computational cost, we have tested it in a
different way, which is explained in detail with the presentation of the attack. The
source codes of the low-data complexity attacks can be found in [git16b].

Key-Recovery Attacks on AES with a Secret S-Box. We practically verified the trun-
cated differential attacks on AES with a secret S-Box on 3 and 4 rounds, and the
integral attack on AES with a secret S-Box on 3 rounds. The experimental results
are in according to our theory. In particular, considerations about the practical
computational costs of these attacks (in comparison with the theoretical ones) are
reported in Sect. 6. The source codes of the key-recovery attacks on AES with a
single secret S-Box can be found in [git16a].

2 Subspace Trails
In this section, we recall the invariant subspace cryptanalysis of [LAAZ11, LMR15]
(depicted in Fig. 1), and then we introduce the concept of subspace trails (Fig. 2).
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Invariant subspace cryptanalysis can be a powerful cryptanalytic tool. Let F denote a
round function in an iterative key-alternating block cipher EK(·):

EK(m) = kn ⊕ F (... k2 ⊕ F (k1 ⊕ F (k0 ⊕m)))),

where the round keys k0, ..., kn are derived from the master key K using some key schedule
f : (k0, ..., kn) = f(K). Assume there exists a coset4 V ⊕ a such that F (V ⊕ a) = V ⊕ a′.
Then if the round key K resides in V ⊕ (a⊕ a′), it follows that F (V ⊕ a)⊕K = V ⊕ a
and we get an iterative invariant subspace.

F

V ⊕ a V ⊕ a′

K ∈ V ⊕ (a⊕ a′)

V ⊕ a

Figure 1: Invariant subspaces.

A slightly more powerful property can occur if for each a, there exists unique b such that
FK(V ⊕ a) := F (V ⊕ a)⊕K = V ⊕ b meaning that the subspace property is invariant, but
not the initial coset. That is, for each initial coset V ⊕ a, its image under the application
of FK is another coset of V , in general different from the initial one. Equivalently, the
initial coset V ⊕ a is mapped into another coset V ⊕ b, where b depends on a and on the
round key. In this paper, we generalize this concept and search for trails of subspaces. In
the simplest case we look for pairs of subspaces V1 and V2 such that

F (V1 ⊕ a)⊕K = V2 ⊕ b

holds for any constant a, that is for each a there exists unique b for which the previous
equivalence is satisfied.

F

V1 ⊕ a V2 ⊕ a′

K

V2 ⊕ b

Figure 2: Trail of subspaces.

A subspace trail of length r is then simply a set of r + 1 subspaces (V1, V2, . . . , Vr+1)
that satisfy

F (Vi ⊕ ai)⊕K ⊆ Vi+1 ⊕ ai+1.

When the relation holds with equality, the trail is called a constant-dimensional subspace
trail. In this case, if F tK denotes the application of t rounds with fixed keys, it follows that

F tK(V1 ⊕ a1) = Vt+1 ⊕ at+1.

Definition 1. Let (V1, V2, ..., Vr+1) denote a set of r + 1 subspaces with dim(Vi) ≤
dim(Vi+1). If for each i = 1, ..., r and for each ai ∈ V ⊥i , there exist (unique) ai+1 ∈ V ⊥i+1
such that

FK(Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1,

then (V1, V2, ..., Vr+1) is subspace trail of length r for the function FK . If all the previous
relations hold with equality, the trail is called a constant-dimensional subspace trail.

4We recall the definition of coset, often used in the paper. Let W a vector space and V a subspace of
W . If a is an element of W , a coset V ⊕ a of V in W is a subset of the form V ⊕ a = {v ⊕ a | ∀v ∈ V }.
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Note that ai+1 depends on ai and on the secret round key, but to simplify notation we
use ai+1 instead of ai+1(ai, k). With subspace structures at hand, we might ask questions
about the probability that ciphertexts or sums of ciphertexts reside in certain subspaces,
given that the plaintexts obey certain subspace structure (e.g. their sum is also in a fixed
subspace). If the sum is over two texts this approaches resembles (truncated) differential
cryptanalysis, if the sum is over more it can resemble integral cryptanalysis.

For AES-type block ciphers, we are typically not able to construct very long trails. In
this case we can connect trails together and depending on the intersection properties of
the endpoints of the trails, get predictable subspace properties for longer trails. However,
in general these are not necessarily simple constant dimensional trails. In the following we
describe subspace trail cryptanalysis and later-on distinguishers based on it. For sake of
concreteness and better exposition, we focus on the case of AES. We’d like to emphasize
that the properties described here extend almost immediately to any AES-like cipher with
little modifications.

3 Preliminaries
3.1 Description of AES
The Advanced Encryption Standard [DR02] is a Substitution-Permutation network that
supports key size of 128, 192 and 256 bits. The 128-bit plaintext initializes the internal state
as a 4× 4 matrix of bytes as values in the finite fields F256, defined using the irreducible
polynomial x8 + x4 + x3 + x+ 1. Depending on the version of AES, Nr round are applied
to the state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14 for AES-256. An
AES round applies four operations to the state matrix:

• SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times in
parallel on each byte of the state (it provides the non-linearity in the cipher);

• ShiftRows (SR) - cyclic shift of each row (i-th row is shifted by i bytes to the left);

• MixColumns (MC) - multiplication of each column by a constant 4× 4 invertible
matrix over the field GF (28) (it and ShiftRows provide diffusion in the cipher5);

• AddRoundKey (ARK) - XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In the first
round an additional AddRoundKey operation (using a whitening key) is applied, and in
the last round the MixColumns operation is omitted.

As we consider only AES with 128-bit key, we shall describe only its key schedule
algorithm. The key schedule of AES-128 takes the user key and transforms it into 11
subkeys of 128 bits each. The subkey array is denoted by W [0, ..., 43], where each word of
W [·] consists of 32 bits and where the first 4 words of W [·] are loaded with the user secret
key. The remaining words of W [·] are updated according to the following rule:

• if i ≡ 0 mod 4, then W [i] = W [i− 4]⊕RotByte(S-Box(W [i− 1]))⊕RCON [i/4],

• otherwise, W [i] = W [i− 1]⊕W [i− 4],

where i = 4, ..., 43, RotByte rotates the word by 8 bits to the left and RCON [·] is an array
of predetermined constant.

The Notation Used in the Paper. Let x denote a plaintext, a ciphertext, an
intermediate state or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte in the row i

5ShiftRows makes sure column values are spread and MixColumns makes sure each column is mixed.
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and in the column j. We denote by kr the key of the r-th round, where k0 is the secret key.
If only the key of the final round is used, then we denote it by k to simplify the notation.
Finally, we denote by R one round of AES6, while we denote i rounds of AES by R(i). If
the MixColumns operation is omitted in the last round, then we denote it by Rf . As last
thing, in the paper we often use the term “partial collision” (or, more simply, collision)
when two texts belong to the same coset of a given subspace X.

3.2 Subspaces through One Round of AES
For a vector space V and a function F on F4×4

28 , let F (V ) = {F (v) | v ∈ V } (as usual). For
a subset I ⊆ {1, 2, . . . , n} and a subset of vector spaces {G1, G2, . . . , Gn}, we define GI as
GI :=

⊕
i∈I Gi.

In the following we define four families of subspaces essential to AES: the diagonal
spaces DI , the inverse-diagonal spaces IDI , the column spaces CI and the mixed spaces
MI . Since AES operates on 4× 4 matrices over F28 , then we work with vectors and vector
spaces over F4×4

28 (that is, all the subspaces considered in the paper are subspace over
F4×4

28 ). Moreover, we denote with E = {e0,0, ..., e3,3} the unit vectors of F4×4
28 (e.g. ei,j has

a single 1 in row i and column j).

Definition 2. (Column spaces) The column spaces Ci are defined as

Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

For instance, the column space C0 corresponds to the symbolic matrix

C0 =
{

x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣∀x1, x2, x3, x4 ∈ F28

}
.

Definition 3. (Diagonal spaces) The diagonal spaces Di are defined as

Di = SR−1(Ci) = 〈e0,i, e1,i+1, e2,i+2, e3,i+3〉

where the index i + j is computed modulo 4. For instance, the diagonal space D0
corresponds to the symbolic matrix

D0 =
{

x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
.

Definition 4. (Inverse-Diagonal spaces) The inverse-diagonal spaces IDi are defined
as

IDi = SR(Ci) = 〈e0,i, e1,i−1, e2,i−2, e3,i−3〉.

where the index i− j is computed modulo 4. For instance, ID0 = SR(C0) corresponds
to the symbolic matrix

ID0 =
{

x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0

 ∣∣∣∣∀x1, x2, x3, x4 ∈ F28

}
.

The last type of subspaces we define are called mixed subspaces.
6Sometimes we use the notation RK instead of R to highlight that the round key is K.
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Definition 5. (Mixed spaces) The i-th mixed subspace Mi is defined as

Mi = MC(IDi).

These subspaces are formed by applying ShiftRows and then MixColumns to a column
space. For instance,M0 corresponds to symbolic matrix

M0 =
{

α · x1 x4 x3 (α+ 1) · x2
x1 x4 (α+ 1) · x3 α · x2
x1 (α+ 1) · x4 α · x3 x2

(α+ 1) · x1 α · x4 x3 x2

 ∣∣∣∣∀x1, x2, x3, x4 ∈ F28

}
.

where 0x02 ≡ α and 0x03 ≡ α+ 1.

Definition 6. Given I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3, we define:

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi MI =

⊕
i∈I
Mi.

The dimension7 of any of the spaces DI , IDI , CI and MI is 4 · |I|. The essential
subspaces in AES are built from diagonal spaces Di, inverse-diagonal spaces IDi, column
spaces Cj and mixed spacesMk. There are four of each of these spaces, and direct sums
of them result in higher-dimensional diagonal, inverse-diagonal, column and mixed spaces.

It is easy to see that SubBytes maps cosets of diagonal and column spaces to cosets of
diagonal and column spaces. Since SubBytes operates on each byte individually and it is
bijective, and since the bytes of column and diagonal spaces are independent, its only effect
is to change the coset. It is also easy to see that ShiftRows maps a coset of a diagonal
space to a coset of a column space, since diagonals are mapped to columns, and it maps a
coset of a column space to a coset of an inverse-diagonal space. The effect of MixColumns
to a columns space CI ⊕ a is simply to change the coset, since applying the MixColumns
matrix to a column space Ci has no effect.

Lemma 1. Let I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3 and a ∈ D⊥I . There exists unique b ∈ C⊥I
such that

RK(DI ⊕ a) = CI ⊕ b.

Proof. As we have just seen, since SubBytes is bijective and operates on each byte
independently, it simply changes the coset DI ⊕ a to DI ⊕ a′, where a′i,j = S-Box(ai,j) for
each i, j = 0, ..., 3. ShiftRows simply moves the bytes of DI ⊕ a′ to a column space CI ⊕ b

′ ,
where b′ = SR(a′). MixColumns affects only the constant columns, thus MC(CI ⊕ b

′) =
CI ⊕MC(b′) = CI ⊕ b

′′ . Key addition then changes the coset to CI ⊕ b.

This simply states that a coset of a sum of diagonal spaces DI encrypt to a coset of a
corresponding sum of column spaces CI through one round. We recall that two different
cosets V ⊕ a and V ⊕ b (i.e. a 6= b) of the same generic subspace V are equivalent (i.e.
V ⊕ a ∼ V ⊕ b) if and only if a ⊕ b ∈ V . Thus, in the previous lemma (similarly in the
following), b is unique with respect to this equivalence relationship.

Lemma 2. Let I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3 and a ∈ C⊥I . There exists unique b ∈M⊥I
such that

RK(CI ⊕ a) =MI ⊕ b.
7Since AES is a byte-oriented encryption scheme, we consider the dimension of the subspace as the

number of active and independent bytes. This implies for example that the dimension of the subspaces is
constant through SubBytes and MixColumns operations.
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S-Box

DI ⊕ a DI ⊕ b

SR

CI ⊕ c

MC

K

CI ⊕ (d⊕K)

S-Box

CI ⊕ a CI ⊕ b

SR

IDI ⊕ c

MC

K

MI ⊕ (d⊕K)

Figure 3: The essential subspaces in the AES round.

Proof. By definition 5, the mixed spacesMI are defined as the application of the Mix-
Columns operation to inverse-diagonal space IDI . Since a ShiftRows operation maps a
column space to an inverse-diagonal space, a mixed spaceMI is equivalently defined as the
application of the linear layer in AES to column spaces CI . Since the SubBytes layer only
moves a coset CI ⊕a to a coset CI ⊕a′, it follows that for any fixed coset CI ⊕a, there exists
b ∈M⊥I such that MC ◦ SR ◦ S-Box(CI ⊕ a)⊕K =MI ⊕ b, where b = MC ◦ SR(a′)⊕K
and a′i,j = S-Box(ai,j) for each i, j = 0, ..., 3.

Similarly to before, this simply states that a coset of a sum of column spaces CI encrypts
to a coset of the corresponding sum of mixed spacesMI over one round.

3.3 Intersecting AES Subspaces
We continue with useful properties of AES subspaces. In this section we show the following:
diagonal spaces and column spaces have non-trivial intersection, column spaces and mixed
spaces have non-trivial intersection, but diagonal spaces and mixed spaces have only trivial
intersection. This will be useful for creating subspace trails covering a higher number of
rounds. For the following, let I, J ⊆ {0, 1, 2, 3} and we assume that all the indexes are
taken modulo 4. All the proofs are given in App. A of [GRR16].

Lemma 3. Di ∩ Cj = 〈ei+j,j〉 and IDi ∩ Cj = 〈ei−j,j〉.

It follows that DI ∩ CJ = 〈ej+i,j | i ∈ I, j ∈ J〉 and IDI ∩ CJ = 〈ei−j,j | i ∈ I, j ∈ J〉
(j + i and i− j are taken modulo 4), where the intersections have dimension |I| · |J |.

Lemma 4. Ci ∩Mj = 〈MC(ej+i,i)〉.

It follows that CI ∩MJ = 〈MC(ej+i,i) | i ∈ I, j ∈ J〉 (i+ j is taken modulo 4), which
has dimension |I| · |J |.

While the spaces DI and CJ , IDI and CJ , and CI andMJ intersect non-trivially, the
spaces DI andMJ and the spaces IDI andMJ intersect trivially. In particular:

Lemma 5. DI ∩MJ = IDI ∩MJ = {0} for all I and J such that |I|+ |J | ≤ 4.

4 Distinguishers for 1, 2, 3 and 4 Rounds of AES with
Secret Round-Keys

In this section we describe a series of subspace trails for AES. Additionally we also describe
how these trails can be used to formulate ways to detect non-randomness, often colloquially
referred to a distinguishers. All distinguishers in this section, ranging from two up to four
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R

DI ⊕ a CI ⊕ b

K

CI ⊕ (b⊕K)

R

MI ⊕ c

Figure 4: Subspaces over 2 rounds of AES.

rounds, are independent of the round keys and are formulated without the knowledge of
the key. From now on, we assume that any subspaces DI , CI orMI has nonzero dimension
(that is, I ⊆ {0, 1, 2, 3} is not empty). Moreover, when we intersect two subspaces DI and
MJ , where both I and J are assumed non-empty, we always assume that the sum of their
dimensions is not larger than 16. Typically, the sum of their dimensions will be exactly 16.

4.1 2-Round Subspace Trail for AES
It follows directly from Section 3.2 that plaintexts from diagonal spaces are encrypted over
two rounds to ciphertexts in mixed subspaces. Let R(2) denote two AES rounds with fixed
random round keys K = K1,K2. Let I ⊆ {1, 2, 3, 4} nonzero and fixed. By Lemma 1, a
coset DI ⊕ a of dimension 4 · |I| encrypts to a coset RK1(DI ⊕ a) = CI ⊕ a′ over one round.
By Lemma 2, there exists unique b (relative to the round keys and the constant a′) such
that RK2(CI ⊕ a′) =MI ⊕ b. By combining the two rounds, we get that for each a ∈ D⊥I ,
there exists unique b ∈M⊥I such that R(2)(DI ⊕ a) =MI ⊕ b.

Consequently, we get the following properties. If two plaintexts belong to the same
coset of a diagonal space DI , then their encryption belongs to the same coset of a mixed
spaceMI . In particular, for a two round encryption R2 with fixed keys, we have that

Pr(R(2)(u)⊕R(2)(v) ∈MI |u⊕ v ∈ DI) = 1 (1)

for nonzero set I of {0, 1, 2, 3} (i.e. |I| 6= 0). The opposite follows directly: if two plaintexts
belong to different cosets of a diagonal space DI , then their encryption belongs to different
cosets of a mixed spaceMI . In other words

Pr(R(2)(u)⊕R(2)(v) ∈MI |u⊕ v /∈ DI) = 0.

These properties are used to set up the distinguisher for two rounds. However, other
interesting properties hold when one considers two rounds of encryption. In particular,
by Lemma 5, the intersection between a mixed spaceMI space and a diagonal space DJ
space contains only zero, if |I|+ |J | is less than 4. Thus, if two plaintexts are in the same
coset ofMI , they must belong to different cosets of DJ . In other words, for DI and DJ
such that dim(DI) + dim(DJ) ≤ 16 (and |I|, |J | 6= 0)

Pr(R(2)(u)⊕R(2)(v) ∈ DJ |u⊕ v ∈ DI) = 0 (2)

where u 6= v, since R(2)(u) and R(2)(v) are both in the same coset ofMI and thus are
always in different cosets of DJ . We can get similar results for the mixed spacesMI . In
particular, if two plaintexts belong to the same coset of a mixed space MI , then their
two round encryptions belong to different cosets of any mixed space MJ . Indeed, two
(different) elements ofMI belong to different cosets of DJ (sinceMI ∩ DJ = {0}). Since
R(2)(u)⊕R(2)(v) ∈MJ if and only if u⊕ v ∈ DJ , we obtain the desired result. Thus, for
MI andMJ such that 0 < dim(MI) + dim(MJ) ≤ 16, we have that

Pr(R(2)(u)⊕R(2)(v) ∈MJ |u⊕ v ∈MI) = 0 (3)
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Data: Pair of texts c1 and c2.
Result: i such that c1 ⊕ c2 ∈Mi, −1 otherwise.
c←MC−1(c1 ⊕ c2);
for i from 0 to 3 do

if c(i+1)%4,0 = 0 AND c(i+2)%4,0 = 0 AND c(i+3)%4,0 = 0
AND ci,1 = 0 AND c(i+1)%4,1 = 0 AND c(i+2)%4,1 = 0
AND ci,2 = 0 AND c(i+1)%4,2 = 0 AND c(i+3)%4,2 = 0
AND ci,3 = 0 AND c(i+2)%4,3 = 0 AND c(i+3)%4,3 = 0 then
return i;

end
end
return −1.

Algorithm 1: Pseudo-code for distinguisher of 2 rounds of AES.

if u 6= v. We’ll use these probabilities to set up an efficient 4 rounds distinguisher.

A Concrete Distinguisher for 2 Rounds. As we have seen, if two plaintexts belong
to the same coset of DI , then they belong to the same coset of MI with probability 1
after two rounds - for each I. Consider instead two random texts. By simple computation,
the probability that there exists I such that they belong to the same cosets of MI is( 4
|I|
)
· (28)−16+4·|I| (note that there are

( 4
|I|
)
different subspacesMI). Setting |I| = 1, this

probability is equal to 2−94.
Thus, one pair of plaintexts (that is two texts) is sufficient to distinguish the random case

from the other one. Indeed, on average in the random case we expect 2−94 · 2 = 2−93 ' 0
collisions (a “collision” occurs when two elements belong to the same coset ofMI), while
this number is always equal to 1 in the other case. The cost of this distinguisher is hence
two texts. An equivalent distinguisher over 2 rounds was already introduced in [DR06b],
where authors investigated how the components of the AES interact over 2 rounds.

Finally, note that a similar distinguisher can be used for the 1 round case. Indeed,
note that if two plaintexts belong to the same coset of DI (equivalently CI), then they
belong to the same coset of CI (equivalently MI) with probability 1 for each I after 1
round. Moreover, observe that it also is possible to set up a 2 rounds distinguisher using
the impossible differential properties defined in (2) or (3).

4.2 Truncated Differential Key-Recovery Attacks for 3- and 4-round
of AES

Before to go on, we highlight that in App. D of [GRR16] we present new key-recovery
attacks for 3- and 4-round of AES that exploit the 2-round subspace trail of AES just
presented.

For 3 rounds, the idea is simply to exploit the fact that two elements in the same
coset of a diagonal space DI belong to the same coset of a mixed spaceMI after 2 rounds
- see Prob. (1). Thus, given two plaintexts p1 and p2 in the same coset of DI (that is
p1 ⊕ p2 ∈ DI) and the corresponding ciphertexts c1 and c2 after 3 rounds, the final key k
must satisfy the following relationship:

R−1
k (c1)⊕R−1

k (c2) ∈MI .

In order to find the secret key and to minimize the data and the computational costs,
these attacks exploit the shape of the mixed spaceMI , that is the facts that the columns
of a coset of a mixed spaceMI depend on different and independent variables and the
relationships that hold among the bytes of the same column of MI . The attacks on 4
rounds are obtained extending at the end or at the beginning this attack on 3 rounds.
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As highlight in App. D.3 of [GRR16], these attacks are truncated differential in nature,
and are competitive with the other low-data complexity attacks present in literature, as the
ones proposed in [BDF11] and [BDD+12]. We refer to App. D of [GRR16] for a detailed
analysis.

4.3 3-Round Subspace Trail for AES
There are several techniques that can be used to set up a 3-round distinguisher for AES, as
for example (1) truncated differential, (2) balance property and (3) impossible differential.
In this section, we only describe the truncated differential distinguisher using the subspace
trail, which we’ll be used to set up the attack on 4-round of AES with secret S-Box. The
other two distinguishers based on the balance property and on the impossible differential are
presented in details using the subspace trail in the next section. Note that the arguments
in next section used for 4 rounds of AES holds also for the 3-round case.

The most competitive distinguisher on 3-round of AES is based on truncated differential
trails, and an example of it is depicted in Fig. 5. In the following, we re-interpret it using
the subspace trail.

Figure 5: Truncated differential characteristic over 3-round AES. White box denotes a
byte with a zero difference, while black box denotes a byte with a non-zero difference.

Consider a coset of DI as starting point. After two rounds, this coset is mapped into
a coset of MI with probability 1. Indeed, as we have seen in Lemma 1, a coset of DI
is mapped into a coset of CI with probability 1 after one round, and, as we have seen
in Lemma 2, a coset of CI is mapped into a coset of MI with probability 1 after one
round. Thus, if we consider two elements that belong to the same cosets of DI , after two
rounds they belong in the same coset ofMI for sure. However, at the same time and with
a certain probability, it is possible that these two elements belong to the same coset of
CJ ∩MI ⊆ CJ for a certain J after two rounds. In particular, the following proposition
holds:

Proposition 1. For anyMI and CJ , we have that Pr(x ∈ CJ |x ∈MI) = (28)−4|I|+|I|·|J|.

The proof can be found in App. A of [GRR16]. That is, if two elements belong to the same
coset ofMI , then they belong to the same coset of CJ with probability (28)−4|I|+|I|·|J|.
More precisely, given two texts in the same coset of DI , after two rounds they belong to
the same coset ofMI ∩ CJ with probability (28)−4|I|+|I|·|J| (whereMI ∩ CJ ⊆ CJ). As
we have just seen, a coset of CJ is mapped into a coset ofMJ after one round. It follows
that if two elements belong to the same coset of DI , the probability that they belong to
the same coset ofMJ after three rounds is equal to (28)−4|I|+|I|·|J|. The case |I| = 1 and
|J | = 3 is depicted in Fig. 5.

For a more detailed explanation using subspace trail, consider the following argument.
Given a coset ofMI , it can be seen as a union of coset of CJ , that is:

MI ⊕ a =
⋃

x∈MI⊕a\CJ

CJ ⊕ x,

as depicted in Fig. 6. In particular, note that the number of x ∈MI ⊕ a \ CJ is exactly
(28)4·|I|−|I|·|J|. Given two elements in the same coset of DI , then after two rounds they



Lorenzo Grassi , Christian Rechberger and Sondre Rønjom 209

R

DI ⊕ a CI ⊕ b

R

MI ⊕ d

An ⊆ CJ ⊕ an

A1 ⊆ CJ ⊕ a1

R

Bn ⊆MJ ⊕ bn

R

B1 ⊆MJ ⊕ b1

Figure 6: 3-round distinguishers for AES (the index n is defined as n := (28)4·|I|−|I|·|J|).

belong to the same coset of MI . Since a coset of MI can be seen as the union of
(28)4·|I|−|I|·|J| cosets of CJ , the probability that these two elements belong to the same
coset of CJ after two rounds is exactly (28)−4·|I|+|I|·|J|. Also in this way, one obtains the
previous result.

Moreover, note the a similar result can be obtained in the decryption direction. That
is, if two elements belong to the same coset ofMI , then they belong to the same coset of
DJ three rounds before with probability (28)4·|I|−|I|·|J|. Finally and only for completeness,
it is possible to obtain the same result considering the intersection of CI and DJ after one
round, instead of the intersection ofMI and CJ after two rounds. All the details of this
(analogous) case are given in App. B.1 of [GRR16].

A Concrete Distinguisher for 3 Rounds. In order to set up the distinguisher,
we exploit the difference of probability to have a collision in the ciphertexts set between
the case in which two plaintexts are taken in a random way and the case in which two
plaintexts belong to the same coset of DI .

The probabilities that two elements drawn randomly from F4×4
28 (denoted by p1) and

that two plaintexts drawn from a coset of DI (denoted by p2) belong to the same coset of
MJ are respectively:

p1 =
(

4
|J |

)
· (28)−16+4|J|, p2 =

(
4
|J |

)
· (28)−4|I|+|I||J|.

It is very easy to observe that the probability to have a collision in the second case
is higher than in the random case. In particular, for |J | = 3 and |I| = 1, we obtain that
p2 = 2−6 while p1 = 2−30. Thus, the idea is to look for the minimum number of texts m
in order to guarantee at least one collision in the “subspace case” and zero in the random
case (with high probability).

To do this, we recall the birthday paradox. Given d (equally likely) values and n
variables, the probability that at least two of them have the same value is given by:

p = 1− n!
(n− d)! · nd = 1− (d)!

nd
·
(
n

d

)
' 1− e

−d(d−1)
2n , (4)

where the last one is an useful approximation.
Since if we encrypt two plaintexts from a coset of DI , each of them can only belong

to one of the 28 cosets of MJ defined as before, the probability that there is at least
one collision in a coset is equal to the probability that two elements belong to the same
cosets ofMJ , that is p = 1− e−m(m−1)/(2·28). However, this property holds if we choose
any of the four 12-dimensional spaceMJ as a target distinguisher space, each yielding
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Data: 20 texts ci (for i = 1, ..., 20).
Result: number of collisions.
n← 0;
for each pair (ci, cj) with i 6= j do

c←MC−1(ci ⊕ cj);
for k from 0 to 3 do

if ck,0 = 0 AND c(3+k)%4,1 = 0 AND c(2+k)%4,2 = 0 AND c(1+k)%4,3 = 0
then
n← n+ 1;
next pair

end
end

end
return n.

Algorithm 2: Distinguisher for 3-round of AES - Pseudo-code.

an independent experiment. Since this experiments are independent, we have that the
probability to have at least one collision in the subspace case given m texts is:

p = 1−
(

28!
(28 −m)! · (28)d

)4

' 1−
(
e
−m(m−1)

2·28
)4

= 1− e
−m(m−1)

2·26 .

Thus, if we set m = 20, the probability to have at least one collision in one of the four
differentMJ spaces (with |J | = 1) is 95.25% (14 texts are sufficient to have at least one
collision with probability greater than 75%). In order to distinguish the two sets (that is,
the random one and the “subspace” one), the verifier has to construct all the possible pairs
of texts and to count the number of collisions, for each of them. In particular, given 20
texts (that is, 190 different pairs), we expect 190 · 2−6 ' 3 collisions in the subspace case
and 190 · 2−30 = 2−22.4 ' 0 in the random case. Finally, observe that the distinguisher
works in similar way in the decryption direction, with the same complexity.

4.4 4-Round Subspace Trail for AES
As for 3-round of AES, there are several techniques that can be used to set up a 4-round
distinguisher for AES, as (1) impossible differential and (2) balance property. In the
following, we present the 4-round impossible differential distinguisher in details, while the
description of the distinguisher based on the balance property is provided in App. B.2 of
[GRR16]. In both cases, the same analysis holds also for 3-round of AES.

From now on, we assume that I and J satisfy the condition 0 < |I|+ |J | ≤ 4 (in order
to use Lemma 5). To set up the 4-round impossible differential distinguisher, we start
from the 2-round differential ones. Fix DI and DJ such that 0 < dim(DI) + dim(DJ ) ≤ 16.
We can construct a four round trail by simply combining two-round subspaces properties.
Indeed, we have seen that

Pr(R(2)(u)⊕R(2)(v) ∈MI |u⊕v ∈ DI) = 1, P r(R(2)(u)⊕R(2)(v) ∈MJ |u⊕v ∈MI) = 0

if u 6= v. Combining these two probabilities for 2-round yields a 4-round probability

Pr(R(4)(u)⊕R(4)(v) ∈MJ |u⊕ v ∈ DI) = 0 (5)

where u 6= v. This means that the adversary can pick any coset of a non-zero plaintext
space DI and a non-zero ciphertext spaceMJ , as long as 0 < dim(DI) + dim(MJ) ≤ 16,
and distinguish on the fact that the probability that two plaintexts encrypt to the same
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R

MI ⊕ c

An ⊆ DJ ⊕ an

A1 ⊆ DJ ⊕ a1

R

Bn ⊆ CJ ⊕ bn

R

B1 ⊆ CJ ⊕ b1
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Cn ⊆MJ ⊕ cn

C1 ⊆MJ ⊕ c1

Figure 7: 4-round distinguishers for AES (where the index n is defined as n := (28)4|I|

and the indexes I and J satisfy the condition 0 < |I|+ |J | ≤ 4).

coset of the ciphertext space is zero over four rounds.

A Concrete Distinguisher for 4 Rounds. The idea is pick parameters that
maximize probability in the random case. The best minimal data complexity is found if
we choose |J | = 3. This implies that |I| = 1, since we have the condition that |I|+ |J | ≤ 4.
In this case, the probability that two random elements belong to the same coset ofMJ

for a certain J with |J | = 3 is 2−30 (as we have already seen). Instead, the probability
that two elements, that belong to the same coset of DI , belong to the same coset ofMJ

after four rounds is 0.
Exactly as before, the idea is to look for the minimum number of texts m in order

to guarantee at least one collision in the random case with high probability. Since there
are four 12-dimensional space MJ and using the birthday paradox, the probability to
have at least one collision in the random case given m texts is well approximated by
p = 1 − e−m(m−1)/(2·230). Thus, m ' 216.25 texts are sufficient to set up a 4-round
distinguisher (in this case, the probability to have a collision in the random case is
approximately 95% - note that 215.75 texts are sufficient to have at least one collision with
probability of 75%). Indeed, given 216.25 texts (that is about 231.5 pairs), the number of
collision in the random case is on average 231.5 · 2−30 = 21.5 ≈ 3, while the number of
collision in the other case is 231.5 · 0 = 0. That is, 216.25 chosen plaintexts are sufficient for
this distinguisher.

Note that this distinguisher exploits the Impossible Differential property presented
in [BK01]. Thus, it is not a surprise that the computational complexity of these two
distinguishers is the same. Only for completeness, note that it is possible to set up a
0-probability distinguishers also for the 3-round case:

Pr(R(3)(x)⊕R(3)(y) ∈MI |x⊕ y ∈ CJ) = Pr(R(3)(x)⊕R(3)(y) ∈ CI |x⊕ y ∈ DJ) = 0

where 0 < |I| + |J | ≤ 4. Since in the random case, the probability that two elements
belong to the same coset of CI orMI is upper bounded by 2−30 for each I and J , one
needs at least 215.75 chosen plaintexts to set up this distinguisher. That is, in the case
of 3-round AES, the 0-probability distinguisher is worse than the one described in the
previous section8.

Moreover, note that this 4-round distinguisher (as also the 3-round one) works also
in the decryption direction. In this case, using the same argument as before, if we two
texts belong to the same coset ofMI , then they belong to two different cosets of DJ four
rounds before for |I|+ |J | ≤ 4.

8Only for completeness, a similar result can also be obtained for the 2-round case, exploiting the
probability Pr(R(2)(x)⊕R(2)(y) ∈ CI |x⊕ y ∈ CJ ) = 0 where 0 < |I|+ |J | ≤ 4.
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Data: 216.25 texts ci (for i = 1, ..., 216.25).
Result: 1 if there is at least one collision, 0 otherwise.
for each pair (ci, cj) with i 6= j do

c←MC−1(ci ⊕ cj);
for k from 0 to 3 do

if ck,0 = 0 AND c(3+k)%4,1 = 0 AND c(2+k)%4,2 = 0 AND c(1+k)%4,3 = 0
then
return 1;

end
end

end
return 0.

Algorithm 3: Pseudocode for Distinguisher for 4-round AES.

Finally, starting from this 4-round impossible subspace trail, it is possible to re-define
the impossible differential attack in a very natural way. We highlight this relationship in
App. C of [GRR16], giving all the details.

5 Key-recovery Attacks on AES with a Secret S-Box
From now on, we focus on AES with a single secret S-Box, and we show how to exploit
subspace trails in order to set up key-recovery attacks. More precisely, assume to consider
AES with secret and identical (bijective) S-Box. Here we present a generic strategy related
to the presented subspace trail that can be used to recover directly the secret key (that
is, without finding any information or equivalent representation of the secret S-Box). In
particular, in the following we show how truncated differential, impossible differential, and
square attacks can exploit this strategy to attack 3- up to 5-round of AES.

The main idea of our attack on AES with a secret S-Box is the following. As we have
seen, a coset of Di is mapped into a coset of Ci after one round. Using some particular
(but very common) properties of the MixColumns matrix, it is possible to choose a subset
of a coset of Di which depends on the secret key, such that it is mapped after one round
into a subset of a coset of DJ ∩ Ci ⊆ DJ with probability 1. That is, consider a subset of a
coset of Di which depends on the guessed values of some bytes of the secret key. If these
guessed values are wrong, then after one round this subset of Di is mapped into a subset of
a coset of Ci. Instead, if these guessed values are correct, then after one round this subset
of Di is mapped into a subset of a coset of DJ with probability 1. Note that also when the
guessed values are wrong it is possible that the initial subset is mapped into a subset of a
coset of DJ after one round, but this happens with probability strictly less than 1. Using
this property together with other considerations, the attacker can identify the right key.

This attack exploits some particular (but very common) properties of the MixColumns
matrix MMC . However, before to list these properties of MMC used for the attack, we
define the concepts of (two) consecutive-row bytes and of (two) consecutive-diagonal bytes.

Definition 7. Let t ∈ F4×4
28 a text. Given two different bytes ti,j and tl,k (where the

indexes are taken modulo 4):

• if they lie in the same row, they are “consecutive-row bytes” if i = l, and if j + 1 = k
for j < k ≤ 3 or k + 1 = j otherwise;

• if they lie in the same diagonal, they are “consecutive-diagonal bytes” if i+ 1 = l for
i < l ≤ 3 or l+ 1 = i otherwise, and if j + 1 = k for j < k ≤ 3 or k+ 1 = j otherwise.
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Examples of two consecutive-row bytes are (t0,0, t0,1) or (t0,0, t0,3), while examples of
two consecutive-diagonal bytes are (t0,0, t1,1) or (t0,0, t3,3). Using this definition, the two
properties of the MixColumns matrix MMC that we are going to use are:

• each row of MMC has two identical consecutive-row bytes;

• each row of MMC has these two identical consecutive-row bytes in different positions,
that is two different rows can not have the two identical consecutive-row bytes in the
same columns.

Note that a cyclic matrix9 with two identical elements for each row satisfies these conditions.
Moreover, these conditions can be a little generalized, since for example it is not necessary
that the two identical byte are consecutive.

Using this properties of MMC , our attack is based on the following proposition.

Proposition 2. Let p1 and p2 two texts such that p1
i,j = p2

i,j for each (i, j) 6= {(0, 0), (1, 1)}
and p1

0,0⊕p1
1,1 = p2

0,0⊕p2
1,1. If p1

0,0⊕p1
1,1 = p2

0,0⊕p2
1,1 = k0,0⊕k1,1 (where k is the secret key

of the first round), then after one round they belong to the same coset of C0∩D0,1,3 ⊆ D0,1,3,
that is R(p1)⊕R(p2) ∈ C0 ∩ D0,1,3 ⊆ D0,1,3.

Proof. First of all, note that these two texts p1 and p2 belong in the same coset of
D0 ∩ C0,1 ⊆ D0 (by definition of D0). As we have already seen, if two elements belong to
the same coset of D0, then after one round they belong to the same coset of C0. Thus, it is
sufficient to prove that R(p1)⊕R(p2) ∈ D0,1,3.

Since R(p1)⊕R(p2) ∈ C0, in order to prove that R(p1)⊕R(p2) ∈ D0,1,3 it is sufficient
to prove that R(p1)2,0 ⊕R(p2)2,0 = 0. By simple computation:

R(p1)2,0 = S-Box(p1
0,0 ⊕ k0

0,0)⊕ S-Box(p1
1,1 ⊕ k0

1,1)⊕
⊕ α · S-Box(p1

2,2 ⊕ k2,2)⊕ (α+ 1) · S-Box(p1
3,3 ⊕ k3,3).

First of all observe that S-Box(p1
0,0⊕k0

0,0)⊕ S-Box(p1
1,1⊕k0

1,1) = 0. Indeed, since p1
0,0⊕p1

1,1 =
k0,0 ⊕ k1,1 by definition, then p1

0,0 ⊕ k0
0,0 = p1

1,1 ⊕ k0
1,1, that is S-Box(p1

0,0 ⊕ k0
0,0) = S-

Box(p1
1,1 ⊕ k0

1,1), or equivalently S-Box(p1
0,0 ⊕ k0

0,0)⊕ S-Box(p1
1,1 ⊕ k0

1,1) = 0. Thus:

R(p1)2,0 = α · S-Box(p1
2,2 ⊕ k2,2)⊕ (α+ 1) · S-Box(p1

3,3 ⊕ k3,3)

and in a similar way:

R(p2)2,0 = α · S-Box(p2
2,2 ⊕ k2,2)⊕ (α+ 1) · S-Box(p2

3,3 ⊕ k3,3).

Since p1
2,2 = p2

2,2 and p1
3,3 = p2

3,3 by definition, it follows that R(p1)2,0 = R(p2)2,0, and so
the thesis.

Note that no information on the S-Box is used, and, as shown in the following, this
fact allows to discover directly the secret key. This proposition can be easily generalized
for each possible combination of consecutive-diagonal bytes.

9A circulant or cyclic matrix is a matrix where each row vector is rotated one element to the right
relative to the preceding row vector, that is:

circ(c0, c1, ..., cn−1) =


c0 c1 . . . cn−1
cn−1 c0 . . . cn−2
...

...
. . .

...
c1 c2 . . . c0

.
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Figure 8: Strategy of the attacks on AES with a secret S-Box. Starting with a subset of
a coset of Di which depends on the guessed values of the secret key, it is mapped after
one round into a subset of a coset of DJ if the guessed values is correct - case (1), or into
a subset of a coset of Ci if the guessed values is wrong - case (2). As a consequence, the
subspace trails up to the 5-th round are different for the two cases, and this allows to set
up various key-recovery attacks.

Proposition 3. Let p1 and p2 two texts such that

p1
i,j = p2

i,j ∀(i, j) 6= {(n,m), (k, l)}

and
p1
k,l ⊕ p1

n,m = p2
k,l ⊕ p2

n,m,

where pk,l and pn,m are two consecutive-diagonal bytes. If p1
k,l ⊕ p1

n,m = p2
k,l ⊕ p2

n,m =
kk,l ⊕ kn,m (where k is the secret key of the first round), then after one round they belong
to the same coset of Cl−k ∩ D{0,1,2,3}\r ⊆ D{0,1,2,3}\r (the indexes are taken modulo 4),
where r is defined as the row of the MixColumn matrix MMC such that MCr,n = MCr,k.
Equivalently, R(p1)⊕R(p2) ∈ Ck−l ∩ D{0,1,2,3}\r.

Note that l − k ≡4 m− n since they are two consecutive-diagonal bytes. We refer to Fig.
9 for an example of application of this Proposition.

The idea is to exploit this property in order to set up attacks on AES. Indeed, consider
a subset of a coset of Di related to the guess secret key as plaintexts. If the guess value is
correct - case (1) of Fig. 8 (that is, if the difference of two consecutive-diagonal bytes of
the plaintexts is equal to the difference of the same bytes of the secret key), then this set
is mapped into a subset of a coset of Ci ∩ DJ ⊆ DJ for a certain J with |J | = 3. If the
guess value is wrong - case (2) of Fig. 8, then this set is mapped into a subset of a coset of
Ci. Using the subspace trails of Sect. 4, this implies for example that:

• after 3 rounds, the previous subset of Di is mapped into a subset of a coset ofMJ

with probability 1 in case (1), while this happens only with probability 2−8 - i.e.
strictly less than 1 - in case (2);

• after 4 rounds, the probability that two texts in the previous subset of Di are mapped
into the same coset ofMJ is higher in case (1) - approximately 2−22 - than in case
(2) - approximately 2−30;

• after 5 rounds, the probability that two texts in the previous subset of Di are mapped
into the same coset ofMj is equal to zero in case (1), while is strictly different from
zero in case (2) - approximately 2−94.

These different subspace trails allow to recover information about the secret key. In
particular, in the following we show how to exploits it to set up a truncated differential
attack on 3- and 4- rounds, an impossible differential attack on 5-round and a square
attack on 3-round of AES with a secret S-Box.

Finally, observe that a similar strategy can be used to set up attacks on AES-like block
ciphers, with identical (secret) S-Box and with a MixColumns matrix that satisfies the
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Figure 9: 3-rounds Truncated Differential Attack on AES with a single secret S-Box. The
choice of the plaintexts (i.e. p0,0⊕ p1,1 = k0,0⊕ k1,1) guarantees that after one round there
are only three bytes with non-zero difference instead of four, that is the plaintexts belong
to the same coset of C0 ∩ D0,1,3. White box denotes denotes a byte with a zero-difference,
while a black box denotes a byte with non-zero difference.

previous requirement. Moreover, we stress that, with respect to other attacks present
in literature in the same setting (i.e. AES with a secret S-Box), for the first time we
show that it is possible to discover the secret key directly, that is without discovering any
information (e.g. an equivalent class) about the secret S-Box.

6 Truncated Differential Attacks on 3 and 4 Rounds of
AES with a Secret S-Box

In this section, we briefly show how to exploit the previous strategy to set up truncated
differential attacks on 3- and 4-round of AES with a secret S-Box. We limit here to give
the idea of these attacks, and we refer to App. F of [GRR16] and App. G of [GRR16] for
all the details together with the presentation of the square attack on AES with a secret
S-Box (see App. F.3 of [GRR16]).

Truncated Diff. Attack on 3 rounds of AES with Secret S-Box The attack on
3-rounds - illustrated in Fig. 9 - works as follows. Consider a pair of plaintexts p1 and p2

with the condition p1
i,j = p2

i,j for each (i, j) 6= {(0, 0), (1, 1)} and p1
0,0 ⊕ p1

1,1 = p2
0,0 ⊕ p2

1,1.
As we have seen, if p1

0,0⊕p1
1,1 = p2

0,0⊕p2
1,1 = k0,0⊕k1,1, then p1 and p2 belong to the same

coset of D0,1,3 after one round with probability 1. Consequently, after three rounds they
belong to the same coset ofM0,1,3 with probability 1 (or of ID0,1,3 if the final MixColumns
is omitted), since a coset of D0,1,3 is mapped into a coset of M0,1,3 with probability 1.
Instead, if p1

0,0⊕ p1
1,1 = p2

0,0⊕ p2
1,1 6= k0,0⊕ k1,1, then p1 and p2 belong to the same coset of

D0,1,3 after one round only with probability 2−8 (that is, only if R(p1)2,0 ⊕R(p2)2,0 = 0).
Thus, after three rounds they belong to the same coset ofM0,1,3 only with probability
2−8. Our attack exploits these different probabilities in order to find k0,0 ⊕ k1,1. More
details are given in App. F.1 of [GRR16].

Truncated Diff. Attack on 4 rounds of AES with Secret S-Box. The truncated
differential attack on 4 rounds of AES works in a similar way, and it exploits the subspace
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trail described in Sect. 4.3. In particular, if two texts belong to the same coset of DJ for
|J | = 3 fixed, then after three rounds they belong to the same coset of MI for |I| = 3
with probability 4 · 2−24 = 2−22 in the AES case and with probability 4 · 2−32 = 2−30 in
the random case. Exploiting these different probabilities and the fact that a coset of a
subset of Di (which depends on the guessed values of the key) is mapped into a subset of
a coset of D0,1,3 only for the correct guessed values of the key, it is possible to discover the
whitening key of 4-rounds of AES with a secret S-Box up to 232 variants. More details are
given in App. G of [GRR16].

7 Impossible Differential Attack on 5-round of AES with
a single Secret S-Box

Using the strategy presented in the previous section, it is possible to set up an impossible
differential attack on 5 rounds of AES with a secret S-Box. As before, the goal is to find
the secret key without needing to discover any information about the S-Box.

Starting from this attack, we show how to turn it into a secret key distinguisher for AES,
and we compare it in details with the distinguisher presented in [SLG+16] at CRYPTO
2016. As we have already said, also the key recovery attack can be used as distinguisher.
However, we show that in order to distinguish a random permutation from an AES one, it
is not necessary to find the entire key.

7.1 Key-Recovery Attack using Impossible Differential - General Idea
For the following, we define the set of plaintexts-ciphertexts Vδ with |Vδ| = 28:

Vδ ={(pi, ci) for i = 0, ..., 28 − 1 | pi0,0 ⊕ pi1,1 = δ ∀i and

and pik,l = pjk,l ∀(k, l) 6= {(0, 0), (1, 1)} and i 6= j},
(6)

i.e. plaintexts with 14 constants bytes and with the difference on the other two bytes fixed.
Consider two different pairs (p1, c1) and (p2, c2) that belong to the same Vδ. By

Prop. 3, we know that if δ = k0,0 ⊕ k1,1, then p1 and p2 belong to the same coset of
D0,1,3 ∩ C0 ⊆ D0,1,3 after one round (that is, R(p1) ⊕ R(p2) ∈ D0,1,3 ∩ C0 ⊆ D0,1,3) with
probability 1. If δ 6= k0,0 ⊕ k1,1, they belong to the same coset of C0 after one round with
probability 1, and to the same coset of D0,1,3 ∩ C0 ⊆ D0,1,3 with probability 2−8 (or to the
same coset of DJ for |J | = 3 after one round with probability 4 · 2−8 = 2−6).

Consider first the case δ = k0,0 ⊕ k1,1. Since R(p1) ⊕ R(p2) ∈ D0,1,3 for each pair of
plaintexts p1 and p2 in Vδ, then R(4) ◦R(p1)⊕R(4) ◦R(p2) = R(5)(p1)⊕R(5)(p2) /∈MJ

for |I|+ |J | ≤ 4 with probability 1 due to the 4-round impossible differential distinguisher
of Sect. 4.4. That is, for each (p1, c1) 6= (p2, c2)

Pr(R(5)(p1)⊕R(5)(p2) ∈MJ | (p1, c1), (p2, c2) ∈ Vδ) = 0,

for each J with |J | = 1 and where δ := k0,0 ⊕ k1,1 is known. As usual, a similar result
holds also in the case in which the final MixColumns operation is omitted (in this case,
MJ is replaced by IDJ).

Instead, if δ 6= k0,0 ⊕ k1,1, note that it’s possible that two elements of Vδ belong to
the same coset ofMJ for |J | = 1 after 5-round. In particular, the probability that two
elements p and q in Vδ belong to the same coset ofMJ after 5-round for a certain J with
|J | = 1 is approximately10 4 · 2−96 = 2−94.

10The exact probability for a wrong δ 6= k0,0⊕ k1,1 is given by Pr(R(5)(p1)⊕R(5)(p2) ∈MJ | p1⊕ p2 ∈
Vδ) = 2−6 · 0 + (1 − 2−6) · 4 · 2−96 = 2−94 − 2−100 ' 2−94, which is derived considering the two cases
R(p1)⊕R(p2) ∈ DJ and R(p1)⊕R(p2) /∈ DJ for |J | = 3.
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Figure 10: 5-Round Secret Key Distinguisher for AES with a single secret S-Box with data
complexity 298.2 based on the Impossible Subspace Trail on 4-Round (from Sect. 4.4). The
choice of the plaintexts (i.e. p0,0⊕ p1,1 = k0,0⊕ k1,1) guarantees that after one round there
are only three bytes with non-zero difference instead of four, that is the plaintexts belong
to the same coset of C0 ∩ D0,1,3. The probability the two ciphertexts belong to the same
coset ofMk for |k| = 1 is zero. White box denotes denotes a byte with a zero-difference,
while a black box denotes a byte with non-zero difference.

The idea is to exploit these different probabilities in order to find the key. In particular,
a key candidate δ can be declared wrong if there is at least one collision, i.e. two different
pairs of texts (p1, c1) and (p2, c2) such that p1 ⊕ p2 ∈ Vδ and c1 ⊕ c2 ∈ MJ for |J | = 1.
Thus, in the following we look for the minimum number of texts necessary to have at least
one collision for each δ 6= k0,0 ⊕ k1,1 with high probability.

Before to proceed, note that a similar impossible differential attack can be set up for
4-round AES with secret S-Box, exploiting the fact that two elements in the same coset of
DJ can not belong to the same coset of CI after three rounds for |I|+ |J | ≤ 4.

7.2 Data Complexity and Computational Cost
The attack is constructed in two steps. First we focus on a single difference among two
bytes of the secret key, and then we show how to find the entire key. In this section, we
limit to report the results for the data and the computational complexity of the attack,
and we refer to App. H.1 of [GRR16] for a complete discussion.



218 Subspace Trail Cryptanalysis and its Applications to AES

Data: 298.5 collections (290.2 one for each possible value of δ, or equivalently 282.2

different sets Vδ as defined in (6).
Result: k0,0 ⊕ k1,1.
for ∆ from 0 to 28 − 1 do

flag ← 0;
divide the 290.2 ciphertexts in the corresponding 282.2 different sets Vδ;
for each one of the 282.2 different sets V∆ do

let (pi, ci) for i = 0, ..., 28 − 1 the 28 (plaintexts, ciphertexts) of a single set
Vδ;

re-order this set of elements as described in App. ??;
for i from 0 to 28 − 2 do

if ci ⊕ ci+1 ∈Mk for |k| = 1 then // e.g. see Algorithm 1
flag ← 1;
next collection (i.e. next δ);

end
end
if flag = 0 then

identify δ as candidates of k0,0 ⊕ k1,1;
end

end
end
return Candidates of k0,0 ⊕ k1,1.

Algorithm 4: Attack for 5-round of AES using Impossible Differential - Pseudo Code.
The same attack can be use to find the remaining part of the key.

Data Complexity. First of all, we consider the case in which the goal is to find only
one byte of the secret key (i.e. the difference of two fixed bytes of the key). As we have
seen, given two texts in the same set Vδ defined as in Prop. 6, after 5 rounds they can not
belong to the same coset ofMJ for |J | = 1 if δ = k0,0 ⊕ k1,1. Instead, if δ 6= k0,0 ⊕ k1,1
then they belong to the same coset of MJ for |J | = 1 with probability 2−94. Thus, in
order to find the difference of these two bytes of the key, one needs at least one collision
in the same coset ofMJ for |J | = 1 for each one of the 28 − 1 ' 28 δ 6= k0,0 ⊕ k1,1. As
shown in details in App. H.1 of [GRR16], to find this byte with probability higher than
95%, for each possible δ one needs approximately 282.2 different sets Vδ, for a total cost of
298.2 plaintextexts/ciphertexts.

In order to find the entire key (up to 232 variants), the idea is simply to repeat the
previous attack 12 times (i.e. three times for each possible diagonal). As shown in details
in App. H.1 of [GRR16], to find this byte with probability higher than 95%, for each
possible δ one needs approximately 282.4 different sets Vδ (not 282.2 as before - see App. H.1
of [GRR16] for details), for a total cost of approximately, 2102 plaintextexts/ciphertexts,
which is lower than the entire input-output space.

Computational Complexity. Using a re-ordering algorithm, the computational cost
of the attack to find one byte of the key is well approximated by 2103.2 table-look ups, or
296.56 five rounds AES encryption, while the cost to find the entire key is approximately
2107 table-look ups, or 2100.35 five rounds AES encryption.

8 The 5-Round Secret Key Distinguisher for AES
Next we show how to turn the previous key recovery attack into a distinguisher for AES,
in the same setting of the distinguisher presented in [SLG+16]. The idea is simply to
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consider only the first part of the attack, i.e. it is sufficient to recover one byte of the key
as k0,0 ⊕ k1,1.

Consider the previous key recovery attack, and let the set Vδ defined as before. For
each one of the 28 possible values of δ, the idea is to consider 282.2 different sets Vδ, for
a total of 298.2 chosen plaintexts. As we have just seen, for the AES permutation, there
exists one δ (which is equal to k0,0 ⊕ k1,1) for which there are no collisions. That is, for
the AES permutation and for δ = k0,0 ⊕ k1,1, no pairs (p1, c1) and (p2, c2) can satisfy
p1 ⊕ p2 ∈ Vδ and c1 ⊕ c2 ∈MJ for |J | = 1. Instead, for the random permutation and with
probability 95%, for each δ there is at least one pair with the previous property. Thus, it
is possible to distinguish the random permutation from an AES one.

To summarize, suppose to have 28 collections (one for each δ), each one with 282.2

different sets Vδ, where each of this set contains 28 texts, for a total of 298.2 texts. In the
random case and with probability 95%, we expect that in each one of these 28 collections
there is at least one collision. Note that the average number of collisions for each collection
(i.e. for each δ) is about 2−94 · 297.2 = 23.2 ' 9. For the AES permutation, we expect that
there exists one δ for which there is no collision with probability 1 in the corresponding
collection of sets. For all the other collections, we expect to have at least one collision with
probability 95%. We highlight that given the 298.2 texts defined as before, it is always
possible to divide them in 28 collections (one for each δ), and that each collection can
be divided in a very simple way in 282.2 different sets Vδ (simply using the definition of
Vδ). Finally, using the argument of our impossible differential key recovery attack, the
computational cost of this distinguisher (i.e. the cost to check if there exists at least one
pair of ciphertexts that belong to the same coset ofMJ for a certain J with |J | = 1 for
all possible values of δ) is 2103.2 table look-ups, using the ordering algorithm.

8.1 Comparison with 5-Round Distinguisher proposed by Sun, Liu,
Guo, Qu and Rijmen, and Possible Generalizations

In [SLG+16], authors presented a similar secret key distinguisher to the one just presented,
using the balance property instead of our impossible differential trail.

In order to construct the secret key distinguisher presented in [SLG+16], authors
simply consider all the input-output space, and divide it in the 28 subsets Ṽ∆ defined as
Ṽ∆ = {(p, c) | c0,0⊕c1,3 = ∆} for each possible ∆ ∈ F28 , and without any other assumptions
on the other bytes. Note that |Ṽ∆| = 2120. Then, using the link between zero-correlation
linear hulls and the integral/balance property, they are able to prove that for an AES
permutation and for ∆ = k0,0 ⊕ k1,3 the sum of the plaintexts of the corresponding set Ṽ∆
is equal to zero, that is the balance property holds11. Instead, for a random permutation,
the probability that there exists one ∆ with the previous property is only 2−120. This
distinguisher works only in the decryption direction (i.e. using chosen ciphertexts) and
only if the final MixColumns operation is not omitted. Moreover, there is no evidence that
this distinguisher can work with less than the entire input-output space12. We refer to
[SLG+16] for more details. To summarize, this distinguisher requires the full codebook
(i.e. 2128 texts), and the verification cost is well approximated by 2128 XOR operations.

For comparison, our distinguisher requires only 298.2 different (plaintexts, ciphertexts),
works in the encryption direction (i.e. using chosen plaintexts) independently by the
presence of the final MixColumns operation. Thus, as we said in the introduction, this

11In [SLG+16], authors presented also a similar distinguisher always based on balance property. In
this case, the idea is to divide the entire input-output space in 232 subsets W̃∆ defined as W̃∆ =
{(p, c) | c0,0 ⊕ c1,3 = δ0, c0,1 ⊕ c3,2 = δ1, c1,2 ⊕ c2,1 = δ2, c2,0 ⊕ c3,3 = δ3}, where ∆ = (δ0, . . . , δ3). Also
in this case, for an AES permutation there exists one ∆ for which the balance property holds among the
plaintexts, while for a random permutation this happens only with probability 2−96

12It may be possibile to use the recently proposed statistical integral distinguisher [WCC+16] to modify
the distinguisher presented in [SLG+16] into a statistical integral one, with the goal to reduce the data
complexity at the cost of success probability.
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provides a counter-example to the claims made in [SLG+16]. That is, as we have already
discussed in details in the introduction, this distinguisher provides a counter-example to the
conjecture made by these authors that the security margin for round-reduced AES under
the chosen plaintext attack is different from that under the chosen-ciphertexts attack.

Only for completeness, we prove that if our distinguisher uses all the input-output
space, the probability of success is 1−2−225.5 . If all the texts are used, then for each δ there
are 2112 different sets Vδ. Thus, it is possible to construct approximately 215 · 2112 = 2127

different pairs. The probability that for a (wrong) δ no one of these pairs satisfy the required
property is approximately 1−(1−2−94)2127 ' 1−e−233 ' 1−2−233.5

. Thus, the probability
of success is approximately (1−2−233.5)28 ' 1−2−225.5 if all the input-output space is used,
which is much higher than for the integral distinguisher (which is approximately 1− 2−120).
We stress that our distinguisher works even using a less data complexity that the entire
input-output space, and that 2110.5 different (plaintexts, ciphertexts) (or equivalently 294.5

different sets Vδ for each δ) are sufficient to have approximately the same probability of
success of [SLG+16].

Finally, in [SLG+16] authors exploit the link between zero-correlation linear hulls and
the integral property to set up our distinguisher, while our distinguisher presented in this
paper exploits the impossible differential trails. For completeness, we recall that Impossible
Differential, Integral and Zero-Linear Correlation are not independent, as shown in details
in [SLR+15]. In particular, the presence of a zero correlation linear hull distinguisher (very
likely) implies the existence of an Impossible Differential distinguisher and of an Integral
one.

Turn the CRYPTO Distinguisher into a Key-Recovery Attack. As we have
turned our key recovery attack into a distinguisher, it is also possible to turn the distin-
guisher of [SLG+16] into an attack, as also the authors observed in their paper. The idea
is to repeat the distinguisher three times (using the version presented in Corollary 5 of
[SLG+16] and reported in the footnote, it is possible to recover four bytes of the key),
in order to recover the secret key up to 232 variants. Note that also in this case as for
our attacks, it is not possible to eliminate more variants of the key without using any
information about the secret S-Box. This attack requires the entire input-output space,
and it has a cost of 3 · 2128 = 2129.6 XOR operations.

Final Observations. Finally, it is very easy to generalize our distinguisher and the
one proposed in [SLG+16] to any AES-like block cipher with the following properties: (1)
the encryption scheme adopts identical S-Boxes and (2) at least one row of the MixColumns
matrix MMC (or its inverse) contains (at least) two identical elements. If one of these two
assumptions is missing, the above distinguishers don’t work. As a consequence, note that
the distinguisher described in this section can not work in the decryption mode (that is,
with chosen ciphertexts instead of chosen plaintexts), since no one of the columns of the
inverse MixColumns M−1

MC has two equal elements. Actually, the first requirement can
be relaxed. Indeed, it is sufficient that only the two S-Boxes that are in the positions in
which the MixColumns matrix has identical elements are equal.

Note that these assumptions are similar but not equal to the ones required for a key
recovery attacks. Indeed, for our key recovery attacks on an AES-like block cipher with
secret S-Box, all the S-Boxes must be identical and each row of the MixColumns matrix
MMC must contain (at least) two identical elements in different positions.

We emphasize that these assumptions are quite common for the construction of AES-like
ciphers (or more in general, for SPNs ciphers). Indeed, symmetric encryption schemes are
usually a trade-off between the security and computational efficiency. Thus, to enhance the
performance of an encryption scheme (especially for lightweight cryptography), designers
usually use identical S-Box and a diffusion layer which maximize the number of 1’s (or
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elements with relatively low hamming weights).

8.2 Critical Discussion of the Distinguisher Model and Open Problems
In this section, we have shown how to interpret the 5-round secret S-Box attack from the
section before as a distinguisher for 5-round AES which corresponds to the model used in
[SLG+16], with our main point being to give a counter-example to the conjecture motivated
by the results therein. By doing that we also significantly improved the complexity of such
a distinguisher.

Since any key recovery attack can be used as a distinguisher, the natural question that
arises is if such a distinguisher is actually meaningful. Both ours and the distinguisher
from [SLG+16] have two properties that set them apart from “any” key recovery-attack:

1. for both distinguishers it is sufficient to find only part of the key (e.g. one byte) to
distinguish an AES permutation with a secret S-Box from a random one. In other
words, it is not necessary finding the entire secret key but only part of it;

2. both distinguishers don’t need any information/details about the S-Box (i.e. they
don’t find or/and exploit any information/details of the secret S-Box) in order to
find part of the key.

In order to better highlight this sub-class of attacks/distinguishers, we denote them by
“weak” secret-key distinguishers. In contrast, we refer to (pure) secret-key distinguisher
when a property which is independently of the secret key is exploited, and to key-recovery
attack when (at least) one of the two previous properties is not satisfied.

We emphasize that all the secret-key distinguishers currently present in literature -
and presented in this paper in Sect. 4 - exploit a property which is independent of the
key and of the details of the S-Box. In particular, it is not necessary to know the details
of the S-Box to check the integral property or verify is two texts belong or not to the
same coset of a mixed spaceMI (that is, the property exploited by the truncated and
the impossible differential distinguishers). This second property is in common with the
“weak” secret-key distinguishers just defined. On the opposite, a key-recovery attack (e.g.
an integral attack, a truncated differential one, ...) usually exploits such details to find the
key. As an example, we highlight that also the attacks presented in [TKKL15] on AES
with a single secret S-Box don’t satisfy the second requirement (i.e. it exploits the details
of the S-Box to find the secret key). Indeed, even if the S-Box is secret, such attacks
necessarily need to find/know the details of the S-Box (up to an equivalent class) before
to discover the secret key, or in other words they can not discover the secret key without
exploiting the details of the secret S-Box. Thus, such attacks can not be considered as
“weak” secret-key distinguishers with respect to categorization just defined, but falls in the
generic category of the key-recovery attacks.

Even if there are key-recovery attacks on up to 7 rounds for AES-128 [MDRM10] with
known S-Box, and up to 6 rounds for AES-128 with a secret S-Box [TKKL15], it seems for
example not possible to find a distinguisher with properties (1) and (2) for even 6 rounds.
We leave this as an open problem for future investigation.

9 Conclusion
We have generalized invariant subspace cryptanalysis to subspace trails and have seen
that it includes truncated differential-, impossible differential- and integral attacks. For
concrete applications we focused on AES-128, and this led to a method that can use all the
aforementioned techniques to recovery the secret key for up to 5 rounds without needing
to know the S-Box apart from assuming it being a permutation. When the S-Box is known
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we described new truncated-differential attacks with very low data complexity that are
competitive with the best known attacks. It is conceivable that such attacks are also found
without the subspace trail approach (truncated differential + ad-hoc optimizations of the
key-recovery method that go beyond looking at the differences only), but the combination
of properties of individual texts and sums of text follows more naturally from the subspace
trail approach.

As one of the major results, we have proposed a new strategy to attack SPNs cipher
with a single secret S-Box, if some very generic assumptions on the MixColumns matrix
are satisfied. In particular, we showed how several techniques like truncated differential,
impossible differential and integral attack can exploit it to recover directly (i.e. without
discovering anything of the secret S-Box) the secret key for 1- up to 5- rounds of AES

We also used this approach to give a counter-example to the conjecture of Sun et al.
[SLG+16] related to 5-round distiguishers. By doing that we also significantly improved
the complexity of a distinguisher in their model, arguing however that the quest for a
real 5-round distinguisher (that is, a 5-round secret key distinguisher for an AES permu-
tation which is not derived from a key recovery attack but exploits a property which is
independent of the secret key) is still open. Future work includes trying to exploit the
subspace properties in other ways to get more efficient or longer distinguishers, perhaps
by considering also S-Box properties, to use this approach to devise more key-recovery
attacks and to apply the approach to other schemes.
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