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Abstract. Statistical attacks form an important class of attacks against block ciphers.
By analyzing the distribution of the statistics involved in the attack, cryptanalysts
aim at providing a good estimate of the data complexity of the attack. Recently
multiple papers have drawn attention to how to improve the accuracy of the estimated
success probability of linear key-recovery attacks. In particular, the effect of the
key on the distribution of the sample correlation and capacity has been investigated
and new statistical models developed. The major problem that remains open is
how to obtain accurate estimates of the mean and variance of the correlation and
capacity. In this paper, we start by presenting a solution for a linear approximation
which has a linear hull comprising a number of strong linear characteristics. Then we
generalize this approach to multiple and multidimensional linear cryptanalysis and
derive estimates of the variance of the test statistic. Our simplest estimate can be
computed given the number of the strong linear approximations involved in the offline
analysis and the resulting estimate of the capacity. The results tested experimentally
on SMALLPRESENT-[4] show the accuracy of the estimated variance is significantly
improved. As an application we give more realistic estimates of the success probability
of the multidimensional linear attack of Cho on 26 rounds of PRESENT.
Keywords: block cipher · linear cryptanalysis · key-recovery attack · multidimensional
linear attack · multiple linear attack · key-dependency · correlation · capacity · known
plaintext · distinct known plaintext · statistical model.

1 Introduction
1.1 Background and Previous Work
Statistical cryptanalysis of block ciphers have traditionally used sampling models under
the hypothesis of statistical equivalence of keys. On the other hand, many modern ciphers
have been shown not to obey this hypothesis, which causes doubts about the validity of the
cryptanalytic results. In order to compute accurate cryptanalysis estimates the statistical
models must be improved, and, in addition to the data, also the key must be integrated in
the statistical model of the cipher.

Such development has taken place also for linear cryptanalysis and its extensions.
Previously, most statistical models used in linear attacks determine and exploit distributions
of the observed correlation with a fixed key and taking only the data as random variable.
Then it is assumed that for all cipher keys, the distributions for wrong key candidates are
identical, and similarly, that the distributions obtained with the correct key are identical.
This practice may be due to the fact that for most ciphers, it is feasible to compute the
expected value of a linear correlation, but estimating the variance is difficult. Previously,
in [DR06,DR07] the authors provide experiments to show that also significant variances
occur, and stress that the importance of the variance and of the expected linear potential
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(ELP ) of the linear correlation. In particular, they present an estimate of the variance of
the correlation in the wrong-key case. In [BT13], this influence of the wrong-key variance
for the classical linear attack was taken into consideration and a better estimate of the data
complexity of a linear attack was obtained and demonstrated in experiments. In [HVLN15],
the distribution of the capacity for the right encryption key was established and was used
to determine weak-key quantiles, that is, lower bounds of capacity that are satisfied by a
given proportion, say one half, or 30% of the keys. Such approach was previously taken
in [Lea11,CW16] in the case of single linear hull.

In [BN15a] a complete treatment on the statistical distributions of linear attack test
statistics, that is, the empirical correlations and capacities, was presented by considering
both the data and the key as random variables. In this work, the different sampling
models in linear cryptanalysis, that is, the known plaintext (KP) and the distinct known
plaintext (DKP) models in linear cryptanalysis were studied for general multiple and
multidimensional linear cryptanalysis. The first version of this work, completing [BN15b],
was posted in September 2015. While it provided complete statistical models that were
shown to comply well with practical examples if real parameter values were used, this
version failed to provide accurate methods for computing estimates of the expected value
and variance of capacity. Even worse, using the capacity estimate provided by Cho, this
model was giving some too groundless doubts about the validity of the multidimensional
linear attack of [Cho10] on 26 rounds of PRESENT.

The reason for this failure was that the capacity of the linear approximations is
underestimated in the offline analysis, since only the most dominant characteristics and
approximations can be taken into account. In a comment on this problem, Bogdanov
pointed out that also many weaker linear characteristics contribute to the total correlation
at least as much as random noise [Bog16]. While the model of [BN15a] correctly estimates
the expected capacity of ` linear approximations for random n-bit cipher to be equal to
`2−n, it fails to consider the corresponding random behavior due to the weak characteristics
of the linear approximations. Since the estimated capacity for the right key [Cho10] given
in the first version of [BN15a] is then smaller than the one for the wrong keys, the attack on
26 rounds seems to fail. In reality, if the impact of the weak linear characteristics is taken
into account, even if not more than random noise for all involved linear approximations,
the capacity estimate will never be less than the capacity of random linear approximations.

It is interesting to note that the insufficiency of the single-bit characteristics in
PRESENT for providing accurate values of the correlations of linear approximations
was previously observed in [AÅBL12] particularly as the number of rounds is increasing.
It was concluded that then also characteristics with two- or three-bit masks must be
taken into account. An alternative approach taken in this paper is to model the effect
of higher-weight characteristics as a linear approximation of a random cipher. This ap-
proach is computationally much lighter, and seems to work well for the purposes of linear
cryptanalysis.

The methodology for estimating the variance of capacity used in [BN15a] was the
same as in [HVLN15]. In the experiments done on SMALLPRESENT it was shown to
give an underestimate of the variance, particularly in the case of multidimensional linear
cryptanalysis. In the first version of [BN15a] this problem was identified and discussed.
The method is based on the assumption that the correlations of all linear approximations
involved in the attack are independent and have equal ELP . Since this is quite unrealistic
in the multidimensional case, an improved method was briefly sketched. The idea was
to separate between the sets of linear approximations used in the offline analysis and in
the actual online attack. The main advantage of this approach is that no independence
assumption needs to be imposed on the linear approximations used in the multidimensional
cryptanalysis. Only a (usually small) subset of linear approximations used in offline
analysis, such as a linearly independent set of so-called base approximations, must be
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assumed to be statistically independent. This solution is not included in the published
version [BN16] of the work [BN15a]. The full description of this method is now part of
Section 3 and comparison is provided in Subsection 4.3.

Relation to previous work by Vejre et al. The key-variance of the capacity was first
considered in [BLNW12] in the case of attacks with zero correlation. The starting point of
the work of Vejre et al. [Bog16,Vej16,BTV16] was to incorporate the variance of correlations
to the capacity value and variance estimates and to apply the signal/noise approach, as
was also done already in [BT13] for single linear cryptanalysis. The introduction of the
noise-based capacity value and variance estimates provided by this paper are due to Vejre
et al. They can be considered essentially as a special case of [Vej16] with zero covariances
and considering an equal number of approximations in the offline and online analysis.

1.2 Contributions of this Paper
The main goal of this paper is to solve the issues discovered in the treatment of the first
version of [BN15a] and left open in [BN16]. Although there are generic approaches how
to estimate a correlation of a linear approximation for a given block cipher, the details
depend crucially on the structure of the cipher. The same is true even more when the
goal is to estimate the expected value or the variance of the capacity. In this paper we
present solutions to an iterated key-alternating block cipher. The proofs are given under
the assumption of a long-key cipher, that is, a cipher with independent round keys. The
results are tested in experiments also for other key-schedules.

To carry out this analysis we need some basic properties of correlations of linear
approximations and their distributions. Therefore, we start by presenting a statistical
model of the linear key-recovery attack in the case of one linear approximation that
has a number of dominant characteristics. When the linear approximation has many
dominant trails as described in [BT13], it is often the case that the correlation of the linear
approximation is close to zero. In this paper we present, to the best of our knowledge,
the first estimate of the data complexity of a simple linear attack when the expected
value of the correlation of the linear approximation equals zero. The classical case of
a single dominant characteristic was presented in [BN16]. In that case the probability
distribution of the right-key correlation is modeled as a union of two normal distributions
that are symmetric with respect to zero. As the number of dominant characteristics
increases the number of normal distributions increases and their union can be modeled
using a single normal distribution with mean close, or equal to zero. By integrating the
key as a random variable in both the wrong key and right key case and modeling the
effect of weak characteristics as random noise, we accomplish the work done in [BT13]
and give the success probability of the key-recovery attack using the hypothesis testing
distinguisher. The results are provable for long-key iterated block ciphers. To test our
model we have done experiments on 20 rounds of SIMON32/64 and compared it with the
previous models [Sel08,BT13].

This case also demonstrates the crucial role of ELP in linear cryptanalysis as stated
in [DR06]. Even if the expected correlation is equal to zero, that is, the same as in the
random case, distinguishing from random is still possible depending on the ELP (variance)
of the correlation. This fact underlines the importance of getting the variance estimates
accurately.

We then proceed by presenting an improved capacity estimate of an iterated block
cipher in multiple or multidimensional linear cryptanalysis by replacing the effect of missing
characteristics by independent noise. We show that the quantity computed in [Cho10]
using the matrix method is not a valid capacity estimate in the key-dependent model. By
adding the noise factor, the expected capacity for the right key is always larger than the
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one for the wrong keys. The validity of the multidimensional linear attack on 26 rounds of
PRESENT hence depends on the variance of the capacity.

The open problem from [BN16] of how to properly estimate the variance of capacity
is then resumed. As outlined in that preliminary work, the sets of linear approximations
used in offline and online analysis typically differ, in particular, when the multidimensional
linear attack is concerned. We derive the formula of the estimated variance under the
assumption that, over the key, the correlations of the strong linear approximations used
in the offline analysis are independent and normally distributed with mean equal to zero.
In addition to being conceptually easy to handle in theory, this basic model captures the
behavior of the PRESENT cipher quite accurately. It is also computationally feasible in
practice. The simplest variance estimate can be computed given the number of the strong
linear approximations involved in the offline analysis and the capacity estimate.

Using the new formula of the capacity estimate and of its variance we show that Cho’s
attack on 26 rounds of PRESENT is still valid and give realistic estimates of its success
probability.

The theoretical results are backed up by several experiments. The main new results of
this paper are summarized in Theorem 2 where a new estimate of the success probability
and data complexity for a linear key-recovery attack is provided, and in Theorem 4 and
Theorem 5, where improved estimates of the capacity deviate are provided. In addition, we
present an extended comparison with the previous related work. The different experimental
results illustrate the improvements in the correlation and capacity deviate estimates. The
most visual experimental results are provided in Figure 4 and Figure 5.

Outline. The outline of this paper is as follows. In Section 2 we introduce the necessary
notation, determine the data-complexity of a linear attack using several strong linear
characteristics and explain how to use noise to estimate the mean and the variance of the
correlation in this case. In Section 3 we focus on the multiple and multidimensional linear
cryptanalysis. Based on experiments, we show that the new estimate of the key-variance of
the capacity is more accurate than the previous ones. In Section 4 we use the new estimate
to derive more accurate data complexity estimate for multiple and multidimensional linear
cryptanalysis. The theory developed in this paper is backed by experiments in Section 5.
Section 6 concludes this paper.

2 Linear Attacks
2.1 Key-Alternating Cipher and Key-Recovery Attack
An iterated key-alternating block cipher with block size of n bits processes plaintext
x ∈ {0, 1}n and expanded key K ′ = (k0, . . . , kr′) by iterating a round function g to obtain
ciphertext y. For simplicity of notation, we restrict to the case where ki ∈ {0, 1}n as
depicted in Figure 1. In some parts of this paper, the proofs are derived for a cipher
with independent round keys. We refer to such cipher as a long-key key-alternating
cipher [DR07].

-
k0
⊕ -

k1
⊕

k2
⊕ - -

kr′−1
⊕ -

kr′
⊕x yg g g g

Figure 1: Key-alternating block cipher of r′ rounds with round function g and expanded
encryption key (k0, k1, . . . , kr′)

A statistical attack can be performed when one has detected a statistical property that
can be observed from some quantity computed from the cipher data. Let us denote by E′K
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this part of the cipher. The cipher EK is then written as EK(x) = (HK ◦ E′K ◦GK)(x)
where GK and HK represent respectively the first and last rounds, and E′K corresponds
to r < r′ iterations of the round function g.

In the classical linear cryptanalysis, the property in consideration is a biased linear
combination of input and output bits over E′K . Given a vector u in the input space and
a vector v in the output space of E′K , the Boolean function u · x ⊕ v · E′K(x) is called
the linear approximation over E′K with input mask u and output mask v. Its strength is
measured by its correlation. In general, we call the quantity

cor(u · x+ v · f(x)) =

2−n
[
# {x ∈ {0, 1}n|u · x+ v · f(x) = 0} −# {x ∈ Fn2 |u · x+ v · f(x) = 1}

]
.

the correlation of the linear approximation u · x+ v · f(x) of a vectorial Boolean function
f of n variables. For brevity, we use the following notation

c(u, v)(K) = cor(u · x+ v · E′K(x)).

In the offline analysis of the cipher, the attacker selects a linear approximation (u, v). In
the classical linear cryptanalysis by Matsui [Mat93] the linear approximation is selected
such that c(u, v)(K) is large in absolute value, for all K. This is possible if the linear
approximation has a single dominant characteristics. In the general case, it is required
that the ELP is large, where ELP = ExpK

(
c(u, v)(K)2), see Subsection 2.3.

In the online analysis, we want to extract a part of the encryption key K. Let us
denote this part of K by K0. For this purpose, the attacker has chosen u and v in such a
way that there exist some truncation G̃K0 and H̃−1

K0
of the outer round mappings GK and

H−1
K , respectively, such that they depend only on K0 and that

u · G̃K0(x) = u ·GK(x) and v · H̃−1
K0

(y) = v · (E′K ◦GK)(x),

for all plaintexts x and ciphertexts y = EK(x).
We denote by D the sample of N plaintexts and by κ the candidate key used in the

attack and define the statistic ĉ(D,K, κ) as follows

ĉ(D,K, κ) = 1
N

[
#
{
x ∈ D|u · G̃κ(x) + v · H̃−1

κ (y) = 0
}

(1)

− #
{
x ∈ D|u · G̃κ(x) + v · H̃−1

κ (y) = 1
}]

.

Further, let us make the following notation

ĉ(D,K, κ) =
{
ĉW (D,K, κ), if κ 6= K0,
ĉR(D,K), if κ = K0.

(2)

Then for the right key, the outer round computations are cancelled and the statistic can
be expressed as follows

ĉR(D,K) = 1
N

[
# {x ∈ D|u · x+ v · E′K(x) = 0} −# {x ∈ D|u · x+ v · E′K(x) = 1}

]
.

2.2 Distribution of Correlation of Long-Key Cipher
In general, the correlation over the r-round part E′K of a key-alternating block cipher EK
depicted in Figure 1 can be written as

c(u, v)(K) = cor(u · x+ v · E′K(x)) =
∑
τ

τ0=u, τr=v

(−1)τ ·K
r∏
i=1

cor(τi−1 · z + τi · g(z)), (3)
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where the sum is taken over all r-tuples τ = (τ0, τ1, . . . , τr), where τ0 = u and τr = v.
Such a sequence τ is called a linear characteristic of the linear approximation (u, v) and
the quantity

r∏
i=1

cor(τi−1 · z + τi · g(z))

is called the correlation of the characteristic τ . A linear approximation is said to have a
single dominant characteristic if there is a characteristic t = (t0, t1, . . . , tr) such that the
absolute value of its correlation is large and∣∣∣ r∏

i=1
cor(ti−1 · z + ti · g(z))

∣∣∣ ≈ |c(u, v)(K)|,

for all K, and all other characteristics τ 6= t have equally small or zero correlations.
Originally Matsui [Mat93] describes linear attacks for linear approximations with single
dominant characteristic. This case was revisited and the key variable integrated in the
model in [BN15a,BN16].

Nowadays, many ciphers are designed in such a way that all linear approximations
comprise several dominant characteristics. As the number of dominant characteristics grows
the correlation as expressed in Equation 3 will take several different values, depending of
the encryption key, with non-negligible absolute value. As the number of rounds increases
it becomes unfeasible since the number of equally dominant characteristics increases. It was
shown in [RN13] that it is possible to distinguish between different values of correlations
up to seven rounds of PRESENT. In particular, it means that for an increasing number of
encryption keys the correlation will be equal, or close, to zero. Still, linear cryptanalysis
may be possible.

The goal of this section is to give a statistical model of linear cryptanalysis using such
a linear approximations. We follow the theory developed in [DR07,BT13]. The proofs are
presented for a long-key cipher. We start by stating the following general property.

Lemma 1. Suppose that (u, v) is a linear approximation of a long-key block cipher. Then

ExpK( c(u, v)(K)) = 0 and VarK( c(u, v)(K)) = ELP.

Many authors have performed extensive experiments to study the shape of the distri-
bution of the correlation of a linear approximation [DR07,AÅBL12,BT13,RN13]. Most
researchers agree that in practical cryptanalysis of most contemporary ciphers it is quite
realistic to assume that the shape of the distribution is normal. We also make that
assumption throughout this work.

2.3 Data Complexity of the Attack
Although the correlation has an expected value close to or equal to zero, that is, equal
to the expected value of a random correlation, it can still be distinguished from random
thanks to its larger variance. In this section, we recall the hypothesis testing approach for
key recovery by distinguishing distributions, and then apply it to determine the success
probability of a key-recovery attack using a linear approximation with several dominant
characteristics.

The aim of the classical key-recovery attack is to distinguish a part of the encryption
key, which we call the right key, from wrong key candidates as explained in Subsection 2.1.
To estimate the data complexity of the attack it is then necessary to know the distribution
of the involved random variables. In the classical linear context, the variables ĉW (D,K, κ)
and ĉR(D,K), as defined by Equation 2 for the wrong and right keys, are assumed to



168 Improved Parameter Estimates for Correlation and Capacity Deviates

be normal deviates. Under this assumption, a new expression of the parameters of these
normal distributions when both the deviation from the data and the key are taken into
consideration was derived in [BN15a,BN16]. The estimates were obtained simultaneously
for attacks in the known plaintext (KP) and distinct known plaintext (DKP) model. To
state the result of [BN16] we introduce a constant B defined as follows

B =
{ 1, for KP,

2n −N
2n − 1 , for DKP. (4)

Let us denote by c the expected value of c(u, v)(K) taken over K. Then by Theorem 5
of [BN16] it is known that ĉR(D,K) has the following mean and variance

ExpD,K(ĉR(D,K)) = c and VarD,K(ĉR(D,K)) = B

N
+ ELP − c2.

If moreover the number of dominating characteristics is large then the distribution of
ĉR(D,K) has a normal shape.

In [BT13] (see also [BN16]) it was proved that ĉW (D,K, κ) follows a normal distribution
with mean and variance, respectively, as

µW = 0 and σ2
W = B

N
+ 2−n.

By Lemma 1 we summarize these results for a long-key cipher as follows.

Theorem 1. Given a linear approximation of a long key-cipher let us assume that its
correlation c(u, v)(K) is normally distributed. Then the empirical correlations ĉR =
ĉR(D,K) and ĉW = ĉW (D,K, κ) are normal deviates with parameters

µR = 0 and σ2
R = B

N
+ ELP,

µW = 0 and σ2
W = B

N
+ 2−n.

Note that in the DKP context, we have B
N + 2−n ≈ 1

N and the expression of this
variance estimate can be simplified accordingly.

In this case µR and µW are equal as both are equal to zero. Then the derivation
of the success probability and data complexity estimate is different than in previous
cases [Sel08,BT13,BN16] for a classical linear attack. An example distribution is plotted
in Figure 2. Even if µR = µW = 0 the difference between the variances makes it possible
to distinguish the right key from the wrong ones. On the left side, we illustrate the
statistical inference based on the observed correlation ĉ(D,K, κ). Then if it is smaller
than the threshold −Θ, or larger than Θ, the key candidate κ is likelier to be the right
key κ = K0 than a wrong key. An alternative way of doing this inference is to consider
the square correlations. In that case, the observed correlations ĉR(D,K) in the right-
key and ĉW (D,K) in the wrong-key case when squared and divided by their variances
follow a χ2 distributions with one degree of freedom. It means that ĉ2

R = ĉR(D,K)2 and
ĉ2
W = ĉW (D,K, κ)2 follow Gamma distributions and have means and variances as follows

ExpD,K
(
ĉ2
R

)
= B

N
+ ELP and VarD,K

(
ĉ2
R

)
= 2

(
B

N
+ ELP

)2
,

ExpD,(K,κ)
(
ĉ2
W

)
= B

N
+ 2−n and VarD,(K,κ)

(
ĉ2
W

)
= 2

(
B

N
+ 2−n

)2
.

The parameters of the Gamma distributions are 1/2 and 2σ2 where σ2 is equal to σ2
R or σ2

W

as given in Theorem 1 . Key candidates κ with ĉ(D,K, κ)2 > Θ2 are the likeliest candidates
for the right key. An example of this case is depicted on the right side of Figure 2.
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Using the hypothesis testing approach we obtain the following estimates of the data
complexity of a linear attack. The proof provided in Appendix A.1 is based on distinguishing
the two normal distributions on the left of Figure 2.

Theorem 2. Given the advantage a of the key-recovery attack and σR and σW as in The-
orem 1, the success probability of the attack is given as

PS = 2− 2Φ
(
σW
σR
· Φ−1(1− 2−a−1)

)
, (5)

where Φ and Φ−1 denote the cumulative distribution function and quantile of the central
normal distribution. Equivalently, the data complexity NKP or NDKP of a linear attack
using non-distinct or distinct known plaintexts can be estimated as follows:

NKP = Φ−1(1− 2−a−1)2 − Φ−1(1− PS/2)2

ELP Φ−1(1− PS/2)2 − 2−nΦ−1(1− 2−a−1)2 ,

NDKP ≈ Φ−1(1− 2−a−1)2 − Φ−1(1− PS/2)2

(ELP − 2−n)Φ−1(1− PS/2)2 .

In [CW16] a linear attack on 21 rounds of SIMON32/64 [BSS+13] has been implemented.
To check the validity of our results we have performed similar experimental attacks than
in [CW16]. The description of the experiments are provided in Appendix B.1 and confirmed
(see Table 5) that taking into consideration the key-variance for the right and the wrong
keys allows us to provide a relatively good estimate of the success probability of the attack.
In the same appendix we recall previous estimates of the success probability of a classical
linear attack.

In Appendix B.2, we also discuss the difference between the distinct plaintext and
non-distinct plaintext models, which becomes significant when the sample size is close
to the full codebook. With the DKP sampling the success probabilities are higher and
achieve the maximum with full codebook. If the KP model is used, then one must go
beyond the full codebook to achieve success probabilities comparable to the one achieved
using the DKP model and the full codebook of data.

2.4 Estimating ELP and Experiments
The experiments on SIMON32/64 presented in Appendix B.1 were based on an ELP
value computed experimentally from the cipher, which is infeasible for ciphers with larger
block size. The aim of this section is to present a method for estimating ELP in the
offline analysis for an arbitrary key-alternating block cipher. Our theoretical model is
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restricted to linear approximations of long-key block ciphers. The model will be tested in
experiments also on other types of key-schedules.

Given a correlation of a linear approximation of a key-alternating block cipher as
in Equation 3 we denote the correlation of the characteristic τ by ρτ . Then

c(u, v)(K) =
∑
τ

τ0=u, τr=v

(−1)τ ·Kρτ . (6)

If moreover the cipher is a long-key cipher, the linear hull theorem [Nyb94,DR06] holds,
which means that the ELP of the linear approximation can be expressed as follows

ELP = ExpK
(
c(u, v)(K)2) =

∑
τ

τ0=u, τr=v

ρ2
τ . (7)

Now let us assume that the cryptanalyst has found a linear approximation (u, v) such
that, in its correlation given as Equation 6, the quantities ρτ can be identified and quantified
for a significant number of characteristics τ . Let us denote by S the set of identified
characteristics for the linear approximation (u, v). Further, we denote the corresponding
part of the total correlation as

Q(u, v)(K) =
∑
τ∈S

(−1)τ ·Kρτ , (8)

and by R(K) the correlation contribution of the remaining characteristics, that is,

R(K) = c(u, v)(K)−Q(u, v)(K). (9)

We assume that the offline enumeration of the dominating linear characteristics is exhaustive
so that the remainder R(K) behaves like random noise, similarly as in the case of a single
dominant characteristic [BT13, BN16]. By [DR07], a correlation of a random linear
approximation is normally distributed with expectation zero and variance equal to 2−n.
Throughout this paper we model R(K) as the correlation of a random linear approximation.

On the other hand, it can be shown that the variance of R(K) for a long-key cipher is
equal to

∑
τ /∈S ρ

2
τ . Then we get the following theorem.

Theorem 3. Suppose that a linear approximation over a long-key cipher admits a set S of
dominating characteristics, and suppose that R(K) =

∑
τ /∈S(−1)τ ·Kρτ ∼ N (0, 2−n). Then

VarK( c(u, v)(K)) = ELP =
∑
τ∈S

ρ2
τ + 2−n.

The Sbox used in the block cipher PRESENT [BKL+07] has the particularity of having
strong linear approximations with mask of weight one. They can be traced easily over
multiple rounds of the cipher. In particular, for this cipher we can use a matrix method
to estimate the correlation of linear approximations with input and output masks of
weight one. For experimental purposes, we use a scaled version [Lea10] of this cipher
called SMALLPRESENT-[4]. One round of this 16-bit cipher is represented in Figure 6 in
Appendix C. In Table 6, Appendix C, we recall the strong correlations which are used
to estimate the correlation of a linear approximation over multiple rounds of the cipher.
The principle of the matrix method to estimate the ELP of a linear approximation is also
provided in Appendix C.

In [AÅBL12] it has been experimentally illustrated that the variance of a linear
approximation varies depending on the dependency between the round keys. For the
purposes of experiments we define three key-schedulings. When the round keys are
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independent, the length of the master key of a r-round version of the cipher is 216(r+1)

bits. We refer to this key-schedule by LONGKEY. Secondly, from a 20-bit master-key we
derive 16-bit round keys using a key-schedule called SCHEDULING given by the algorithm
described in Appendix E. Finally, from a 16-bit master key the key-schedule called SAME
consists of identical round keys. In the experiments the expected values and variances are
computed using a sample of 220 random long keys, and all 220 and all 216 master keys of
the key-schedules SCHEDULING and SAME, respectively.

The results of our experiments are given in Table 1. As explained earlier the set S
taken for experimental purpose consists of the 1-bit linear characteristics of PRESENT.
We can see that the noiseless estimate

∑
τ∈S ρ

2
τ of the ELP s of the linear approximations

used in [Cho10] is far from accurate. When taking the noise into consideration the estimate
of the variance is significantly improved particularly for the LONGKEY scheduling when
the round keys are independent.

Table 1: Variance of the correlation of the linear trail with u = v = 0x0020
r ∑

τ∈S ρ
2
τ

∑
τ∈S ρ

2
τ + 2−n VarK(c(u, v)(K)) VarK(c(u, v)(K)) VarK(c(u, v)(K))

LONGKEY SCHEDULING SAME

3 2−10.42 2−10.39 2−10.30 2−9.98 2−10.83

4 2−12.83 2−12.68 2−12.35 2−12.15 2−11.90

5 2−15.42 2−14.68 2−14.16 2−14.11 2−14.01

6 2−18 2−15.68 2−15.36 2−15.36 2−15.04

3 Multiple and Multidimensional Linear Attacks
3.1 Preliminaries
The goal of this section is to extend the statistical model of key-recovery attack to
generalizations of linear attacks of iterated block ciphers. As depicted in Figure 2 the
Gamma distributions related to the squared correlation have different means in the
right and wrong key case for certain linear approximations. The idea of using multiple
linear approximations simultaneously is to amplify this effect by combining such Gamma
distributed variables. When applying these attacks in practice, sufficiently accurate
estimates of the parameters of the involved distributions is needed. The accuracy of the
parameter estimates depends on the amount and quality of information obtained from the
cipher.

To collect information of the correlations of all the linear approximations over E′K used
in the attack the notion of capacity was introduced in [BCQ04] and generalized in [HCN09].
Given a set of linear approximations with input and output mask pairs (uj , vj), j = 1, . . . , `,
where (uj , vj) 6= 0, their capacity is defined as the sum of the squared correlations:

C(K) =
∑̀
j=1

c(uj , vj)(K)2.

The expected value of the capacity is denoted by C. Then

C = ExpK(C(K)) =
∑̀
j=1

ExpK(c(uj , vj)(K)2),

that is, the sum of the ELP values of the involved linear approximations. Estimating the
capacity is essential for providing estimates of the strength of the attack. Given estimates
of the ELP values we obtain by summing them up an estimate of the capacity. There
exist also algorithms that compute the capacity estimate directly.
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Figure 3: Estimating the capacity of a multidimensional linear approximation.

3.2 A Setting of Estimating Capacity for Iterated Ciphers
It is quite common in multidimensional linear cryptanalysis that the linear approximations
used in the attack are different from those in the offline analysis when estimating the
capacity. In Figure 3 we present an example where the linear approximations (u, v) ∈ U×V
over r rounds of the cipher are used in the online attack while the estimation of the capacity
C can be done using the linear approximations (α, β) that span over r − 2 rounds only.
The idea is to exploit the fact that a probability distribution is preserved under a bijective
mapping. In the example situation depicted in Figure 3, the probability distribution of
three 4-bit data values (z1, z2, z3) observed outside the Sboxes is identical to the probability
distribution of the data values (S1(z1), S−1

2 (z2), S−1
3 (z3)) looked from the inside of the

cipher before the Sboxes.
Let us assume that the cipher is an SPN cipher and denote by S the Sbox layer. Then

the round function g of the iterated block cipher is affinely equivalent to S. It suffices
to show that the expected capacity value of the multidimensional linear approximation
over r rounds determined by (u, v) ∈ U × V is equal to the capacity determined by linear
approximations (α, β) ∈ S(U)× S−1(V ) over r − 2 rounds.

In addition to reducing the number of nonlinear rounds, this approach is advantageous
if the linear approximations (α, β) are easier to analyze. For example, it may be the case
that only a subset of them have large ELP and their independence can be justified. For
example, the key bits that control the encryption function are different for different (α, β)
in this subset.

We denote the expected linear potential of a linear approximation (a, b) by ELP (a, b).
By Equation 7 we then have

ELP (u, v) =
∑
τ

ρ2
τ =

∑
τ1,τr−1

cor(u · z + τ1 · g(z))2ELP (τ1, τr−1)cor(τr−1 · z + v · g(z))2.

Since S is the only nonlinear function of the round function g, it follows that for each τ1
there is a unique α, a linear mask after the first Sbox layer, and also for each τr−1 there is
a unique β, a linear mask before the last Sbox layer, such that∑

τ1,τr−1

cor(u · z + τ1 · g(z))2ELP (τ1, τr−1)cor(τr−1 · z + v · g(z))2

=
∑
α,β

cor(u · z + α · S(z))2ELP (α, β)cor(β · z + v · S(z))2.
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Due to the properties of the Sbox layer, it holds for all u ∈ U and v ∈ V that

cor(u · z + α · S(z)) = 0, if α /∈ S(U), and cor(β · z + v · S(z)) = 0, if β /∈ S−1(V ).

Then we obtain

C =
∑

(u,v)∈U×V
(u,v)6=0

ELP (u, v) =
∑

(u,v)∈U×V

ELP (u, v)− 1

=
∑

(u,v)∈U×V

∑
α

∑
β

cor(u · z + α · S(z))2ELP (α, β)cor(β · z + v · S(z))2 − 1

=
∑

α∈S(U)

∑
β∈S−1(V )

ELP (α, β)
∑
u∈U

cor(u · z + α · S(z))2
∑
v∈V

cor(β · z + v · S(z))2 − 1

=
∑

α∈S(U)

∑
β∈S−1(V )

ELP (α, β)− 1 =
∑

(α,β)∈S(U)×S−1(V )
(α,β)6=0

ELP (α, β),

where the first equality on the last line follows from Parseval’s theorem. Hence we have
shown that the capacity determined by the linear approximations (u, v) ∈ U × V can be
computed using the linear approximations (α, β) ∈ S(U)× S−1(V ).

3.3 Estimating Expected Value of Capacity
Next we show how to derive a capacity value estimate by restricting to a subset of all
linear approximations involved in the computation of the capacity and using sufficiently
many enumerated strong characteristics for each linear approximation. Let us denote by
ELPj the expected linear potential of c(uj , vj)(K). By Equation 7 we have

ELPj = ExpK
(
c(uj , vj)(K)2) ,

for j = 1, . . . , `, and for the capacity,

C = ExpK(C(K)) =
∑̀
j=1

ExpK(c(uj , vj)(K)2) =
∑̀
j=1

ELPj

holds. Then we focus on a subset of M linear approximations, which we number from
1 to M . Under the assumption of a long-key cipher, one can select, for each dominant
linear approximation (uj , vj), j = 1, . . . ,M , an enumerated part Q(uj , vj)(K) as defined
by Equation 8 and use them to compute a capacity estimate

C∗ = ExpK

 M∑
j=1

Q(uj , vj)(K)2

 =
M∑
j=1

∑
τ∈Sj

ρ2
τ , (10)

where we denote by Sj the set of significant characteristics for (uj , vj). For a practical
example, how to compute such an estimate as a product of squared correlation matrices
see Appendix C or [Cho10]. In this manner, one gets a lower bound of the average value
of the capacity over the keys. For all involved linear approximations the effect of missing
characteristics is modeled as the correlation of a linear approximation of a random cipher
as presented in Subsection 2.4. Consequently, we get the following capacity estimate.

C =
∑̀
j=1

ELP j =
M∑
j=1

∑
τ∈Sj

ρ2
τ + 2−n

+
∑̀

j=M+1
2−n = C∗ + `2−n. (11)
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3.4 Estimating Capacity Variance When ELP Estimates Are Known
Similarly as in the previous subsection we assume that a subset of linear approximations
has been identified to have large (squared) correlations and express the capacity as

C(K) =
∑̀
j=1

c(uj , vj)(K)2 =
M∑
j=1

c(uj , vj)(K)2 +
∑̀

j=M+1
c(uj , vj)(K)2.

In the second sum we collected squared correlations of linear approximations which are
assumed to behave as random. Then it remains to assume that the correlations of M
linear approximations with significant ELP are independent to have a set of ` independent
and normally distributed random variables c(uj , vj)(K) such that the means are equal to
zero and

VarK(c(uj , vj)(K)) =
{

ELPj , for j = 1, 2, . . . ,M, and
2−n, for j = M + 1, 2, . . . , `,

by Lemma 1 assuming that the cipher is a long-key cipher. It follows that the squares
of the correlations divided by the variance of the correlation are independent random
variables and follow a χ2 distribution with one degree of freedom. From the parameters of
the χ2 distribution we obtain that

VarK(c(uj , vj)(K)2) =
{

2ELP 2
j , for j = 1, 2, . . . ,M, and

21−2n, for j = M + 1, 2, . . . , `.

By independency, the variance of the capacity is now obtained as a sum of all these
variances and we can state the following result.

Theorem 4. For a long-key key-alternating cipher, given a set of ` linear approximations
where M have ELP estimates, we assume that their correlations are independent random
variables with normal distribution with variance as given by Theorem 3. Moreover, it
is assumed that the remaining ` −M linear approximations behave like random linear
approximations. Then the variance VarK (C(K)) is given by

VarK (C(K)) =
M∑
j=1

2ELP 2
j + (`−M)21−2n = 2

M∑
j=1

∑
τ∈Sj

ρ2
τ

2

+ C∗22−n + `21−2n, (12)

where C∗ is as defined by Equation 10.

Parallel to our work, Vejre has developed a method for computing the capacity variance
in the case of dependent correlations by taking into consideration the covariances of the
correlations [Vej16]. In the case where M = `, our estimate given in Equation 12 is a
special case of Vejre’s method, and is obtained from it by setting the covariances and the
expected values of the correlations equal to zero as shown in Subsubsection 4.3.3.

3.5 Estimating Capacity Variance When Only Capacity Estimate Is
Known

Given only an estimate of the capacity C, further assumptions are needed to obtain an
estimate of the capacity variance. The simplest approach is to assume that all ELPj ,
j = 1, . . . ,M , are equal, in which case we can state the following result.

Theorem 5. In the context of Theorem 4, let us suppose that all the ELP estimates are
equal for all j = 1, . . . ,M . Given the capacity value C the capacity variance is given by

VarK (C(K)) = 2
M
C2 − `−M

M
C22−n + `−M

M
`21−2n = 2

M
C2
∗ + C∗22−n + `21−2n.
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Proof. If all the ELPj estimates are equal, then

ELPj = 1
M

(C − (`−M)2−n) and
∑
τ∈Sj

ρ2
τ = 1

M
C∗, for all j = 1, . . . ,M.

We get the claimed result by substituting these expressions to Equation 12.

In this paper we show results of experiments where the capacity estimate is given and
the variance estimate is obtained by Theorem 5.

3.6 Experiments
The different steps of our experiments on SMALLPRESENT-[4] are described below. We
selected a multidimensional linear space of size ` = 28 − 1, involving bits 8, 9, 10, 11 at the
input and bits 4, 5, 6, 7 after r rounds as described in blue in Figure 7 given in Appendix D.
For this multidimensional linear space, we can estimate the capacity of the multidimensional
linear approximation using the matrix method over r − 2 rounds. In Subsection 3.2 we
explained how to estimate the capacity for such multidimensional linear space. Note
that the technique is similar to the one used in [Cho10] to estimate the capacity of the
multidimensional linear space involved in the attack on 26 rounds of PRESENT. For this
reduced cipher we have M = 9.

The value of C∗ =
∑M
j=1

∑
τ∈Sj

ρ2
τ is given in Table 2 as well as the estimate of the

capacity using Equation 11. In the same table, we provide the expected value of the
capacity for the three different key-schedules introduced in Subsection 2.4.

Table 2: The expected value of the capacity

r C∗ C
ExpK(C(K)) ExpK(C(K)) ExpK(C(K)) ExpK(C(K))− C∗

LONGKEY SCHEDULING SAME LONGKEY

5 2−7.41 2−6.68 2−6.600 2−6.596 2−6.598 2−7.82

6 2−10.02 2−7.68 2−7.42 2−7.404 2−7.401 2−7.68

7 2−12.61 2−7.94 2−7.95 2−7.940 2−7.950 2−8.01

In the last column of Table 2 we compare the difference between the expected value
of the capacity and C∗ computed in the offline analysis, and demonstrate that the noise
is close to `2−n = 2−8 in the setting of the presented experiments. The noise-based
modeling of estimated capacity has also been experimentally verified in [Vej16], Fig. 5.1,
see also [BTV16], Fig. 3.

Next, we compare in Table 3 the estimates 2
`C

2
∗ and 2

`C
2, which correspond to the

estimates derived in [BN16], and the estimate provided in Theorem 5 with the experimental
variances for the different key-schedules defined in Subsection 2.4.

Table 3: Comparison of between different theoretical and experimental capacity variances

r 2
`C

2
∗

2
`C

2
2
MC2

∗ + 22−nC∗ + 21−2n` VarK (C(K)) VarK (C(K)) VarK (C(K))
Theorem 5 LONGKEY SCHEDULING SAME

5 2−21.82 2−20.36 2−16.91 2−17.39 2−17.83 2−16.96

6 2−27.04 2−22.37 2−21.31 2−20.94 2−20.71 2−20.85

7 2−32.21 2−22.89 2−22.82 2−22.51 2−22.40 2−22.34

These experimental results illustrate that for a long-key key-alternating cipher the
variance estimate provided in Theorem 5 is much closer to the experimental one. The
implication of this result to the success of the attack is provided in the next section.
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Note that while we observe a difference in the capacity variance depending of the used
key-schedule, this difference becomes marginal as the number of rounds increases and the
theory developed in this paper for a long-key cipher is also applicable on ciphers with
different key-schedules.

In previous publications [Cho10,Lea11], the experiments were performed on a reduced
number of rounds of the 64-bit PRESENT. The influence of the noise was then not detected
since C∗ was too large in comparison to the noise `2−n. Experiments on a scaled (here
16-bit) version of the cipher may be helpful for detecting the influence of the weak linear
characteristics and approximations.

4 Impact on Multidimensional Linear Attacks
4.1 Statistic for Right Key
In practice when an attack is performed only part of the data is considered. In the
multiple/multidimensional linear context the statistic T (D,K, κ) is computed during the
online part of the attack

T = T (D,K, κ) = N
∑̀
j=1

ĉj(D,K, κ)2, (13)

where ĉj(D,K, κ) is the empirical correlation of the j-th linear approximation as defined
by Equation 1 in the classical linear context.

In multidimensional linear key-recovery attacks, the online test statistic is computed
over all non-zero linear approximations in space U × V , in which case, instead of the
individual empirical correlations, cryptanalyst may compute the test statistic over the
observed data (G̃κ(x), H̃−1

κ (y)) with G̃κ(x) ∈ U and H̃−1
κ (y) ∈ V , also as follows

T = T (D,K, κ) =
∑̀
η=0

(V [η]−N2−s)2

N2−s , (14)

where V [η] corresponds to the number of times the value η ∈ U×V occurs for the observed
data (G̃κ(x), H̃−1

κ (y)) in the sample D. In the offline analysis, only a subset of all linear
approximations are taken into consideration when the capacity estimate is computed over
the linear space U × V or an equivalent space as explained in Subsection 3.2.

To perform an attack, the statistical model for both the wrong and right keys have to
be considered. Let us make the following notations

TR(D,K) = T (D,K, κ), for κ = K0,

TW (D,K, κ) = T (D,K, κ), for κ 6= K0.

Theorem 6. The statistic TR(D,K) computed either as in Equation 14 (only in multidi-
mensional linear attack) or as in Equation 13 has the following mean and variance

µR = ExpD,K (TR(D,K)) = B`+N · ExpK(C(K)) and (15)
σ2
R = VarD,K (TR(D,K)) = 2B2`+ 4BN · ExpK(C(K)) +N2 ·VarK(C(K)),

where B is as defined in Equation 4 for a KP or DKP attack.

Proof. From [HCN09] for the KP model and from [BN15b] for the DKP we have that for
a fixed key a constant multiple of TR(D,K) follows a non-central χ2 distribution. The
parameters are the following

ExpD (TR(D,K)) = B`+NC(K) and VarD (TR(D,K)) = 2B2`+ 4BNC(K).
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From the following formulas

ExpD,K (TR(D,K)) = ExpK (ExpD(TR(D,K))) ,
VarD,K (TR(D,K)) = ExpK (VarD(TR(D,K))) + VarK (ExpD(TR(D,K))) ,

we derive the result.

Using the results from Subsection 2.2 and the estimate given in Theorem 5, we obtain
the following estimates of the expected value and variance of the statistic TR(D,K).

Corollary 1. Given B defined by Equation 4 let us suppose that C = ExpK(C(K)) is
equal to C∗ + `2−n =

∑M
j=1

∑
τ∈Sj

ρ2
τ + `2−n as given in Equation 11. Assuming the

estimate of the capacity variance given in Theorem 5, we have

ExpD,K(TR(D,K)) = B`+NC, and

VarD,K(TR(D,K)) = 2B2`+ 4BNC +N2( 2
M
C2
∗ + 22−nC∗ + ` · 21−2n).

Or equivalently in the KP setting (B = 1)

VarD,K(TR(D,K)) = 2`(1 + N2

22n + 2N
2n ) + 4NC∗(1 + NC∗

2M + N

2n ),

and in the DKP setting

VarD,K(TR(D,K)) ≈ 2`+ 4NC∗(1 + NC∗
2M ).

4.2 Statistic for Wrong Key
Let us denote by CW the expected capacity in the wrong key case. Then

CW =
∑
j

ExpD,(K,κ)
(
ĉj(D,K, κ)2) , κ 6= K0.

In [HCN09,Cho10] the value CW = 0 was used. Now that we take the noise introduced by
the key variable into account, we take this estimate to be equal to CW = 2−n` as in [BN16].
Then the behavior of the test statistic for the wrong key can be stated as follows.

Theorem 7. [BN16] Assuming that ` > 50 and a normal approximation of the χ2

distribution, the statistic TW (D,K, κ) for κ 6= K0 follows a normal distribution with mean
µW and variance σ2

W defined as follows

µW = B`+N2−n` and σ2
W = 2

`

(
B`+N2−n`

)2
,

where B is given as in Equation 4.

4.3 Previous Models for Right Key
4.3.1 The model of [HCN09,Cho10]

In [Cho10] a multidimensional linear attack on 26 rounds of the block cipher PRESENT is
presented. The success probability estimate was based on the statistical model developed
in [HCN09]. In this model it was assumed that the statistic TW for the wrong keys follows
a normal distribution with mean ` and variance 2`. For the purpose of clarity, we denote
these previous estimates by µ̃W = ` and σ̃2

W = 2`. Recently, in [BN15a], new estimates of
µW and σW have been provided. These estimates are recalled in Theorem 7 and are based
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on the estimate CW = `2−n. For the right key, in [HCN09], the mean µ̃R and the variance
of σ̃2

R were estimated to

µ̃R = `+NC∗, and σ̃2
R = 2(`+ 2NC∗).

In [Cho10] the capacity was computed using the matrix method as described in Sub-
section 2.4 and Subsection 3.6. In particular C was estimated to be close to C∗ =∑M
j=1

∑
τ∈Sj

ρ2
τ meaning that the mean and the variance of TR were estimated to

µ̃R = `+NC∗, and σ̃2
R = 2(`+ 2NC∗).

In this paper we showed the difference between C∗ and C which is particularly important
when C is close to 2−n` (see example in Table 2) and provide a new estimate of the expected
value µR of TR. The difference between the means in the right-key and wrong-key case is
always positive and the same as estimated in [Cho10], meaning that µ̃R− µ̃W = µR−µW =
NC∗. The success probability (see Equation 17) of the attack is then not influenced by
these new mean estimates obtained for the wrong keys in [BN15a] and for the right keys
in Subsection 4.1. Using the result of [BN16] for a fixed success probability using the new
variance estimate we obtain a better estimate of the data complexity of the attack.

4.3.2 The model of [BN15a,BN16]

Assuming, as it is possible for SIMON32/64 a good estimate of the ELP of each linear
approximation, in [BN16] the following result is derived

Theorem 8. [BN16] Assuming that all linear approximations have equal ELP and given
C =

∑`
j=1 ExpK(c(uj , vj)(K)2) and C0 =

∑`
j=1 ExpK(c(uj , vj)(K))2, we have

ExpD,K(TR(D,K)) = B`+NC, and VarD,K(TR(D,K)) = 2
`

((B`+NC)2 − (NC0)2)

The form of the distribution of TR can be determined in two cases:

1. ` > 50, in which case normal approximation can be used, or

2. C0 = 0, in which case TR follows a Gamma distribution with variance

2
`

((B`+NC)2) = 2B2`+ 4BNC +N2(2
`
C2
∗ + 22−nC∗ + ` · 21−n) (16)

The variance estimates provided in Corollary 1 and in Equation 16 are similar. The
difference is only in the multiplier of C2

∗ . The previous estimate from Equation 16 has
multiplier 2N2

` and it was experimentally observed in [BN15a] to give an underestimate
for the variance of TR(D,K). In the formula given in Corollary 1 this multiplier is equal
to 2N2

M where M ≤ ` corresponds to the number of dominant linear approximations. The
experimental comparison between these estimates is given in Subsection 5.1.

4.3.3 The model of [Vej16,BTV16]

In this section we recall the result of [Vej16, BTV16], in the particular case where we
assume that covariances of the linear approximations are equal to 0.

Theorem 9. Corollary 2 of [Vej16]. Given ` linear approximations (uj , vj), let us denote
by C(`)

∗ =
∑`
j=1

∑
τ∈Sj

ρ2
τ and C = C

(`)
∗ + `2−n. Assuming that the correlations of these
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linear approximations are statistically independent, we have

ExpD,K(TR(D,K)) = B`+N(C(`)
∗ + `2−n) = B`+NC

VarD,K(TR(D,K)) = 2B2`+ 4BNC + 2N2(2−n+1C
(`)
∗ + ` · 2−2n)

+ 2N2
∑̀
j=1

[(
ExpK(Q(uj , vj)(K)2)

)2
−
(

ExpK(Q(uj , vj)(K))
)4]

.

In the special case, when ExpK(Q(uj , vj)(K)) = 0 as in Section 2, we obtain

VarD,K(TR(D,K)) = 2B2`+ 4BNC +N2
(

2
∑̀
j=1

∑
τ∈Sj

ρ2
τ

2

+ 22−nC
(`)
∗ + `21−2n

)
.

The last expression is equal to the one we obtain by combining Equation 12 and
Equation 15 and by setting M = `.

5 Experiments

5.1 Experiments on SMALLPRESENT-[4]
In Figure 4 and Figure 5 the distribution of TR(D,K) is experimentally computed, for the
long key version of SMALLPRESENT-[4]. The experiments are performed over 5 rounds
of the cipher with the multidimensional linear space as in Subsection 3.6. We use the
normal distribution to estimate the distribution of TR(D,K). The theoretical expected
value and variance are taken from Corollary 1. In these graphics we observe that the
new variance estimate is more accurate than the one given in [BN16]. The theoretical
results have been computed with the estimate of the expected capacity C = C∗ + `2−n.
In Figure 5, the experiments are performed using known plaintexts and a comparison
with the model of [HCN09] is also provided. Similar experiments over 6 and 7 rounds are
presented in Appendix F.
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Figure 4: Comparison between the experimental distribution of T (D,K) and normal
distributions with mean B`+NC and different variances recalled in this paper. Left with
N = 214. Right with N = 215. Experiments in the DKP setting.

The distribution of TR(D, K). At the contrary of [BN16], the study of the statistic
TR(D,K) presented in this paper does not directly give us the distribution of TR(D,K).
As recalled in Theorem 8, in [BN16], it is shown that the distribution of TR(D,K) can be
approached by a normal distribution if the number of linear approximations is large.
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Figure 5: Comparison between the experimental distribution of T (D,K) and normal
distributions with mean B`+NC and different variances recalled in this paper. Left with
N = 214. Right with N = 215. Experiments in the KP setting.

The use of the normal distribution to approximate the distribution of TR(D,K) is
also confirmed by our experiments. Therefore, to analyze the success of the attack using
classical tools, we make the following assumption.

Assumption 1. For ` > 50, the statistic TR(D,K) as defined in Subsection 4.1 follows a
normal distribution with mean µR and variance σ2

R as given in Corollary 1.

An estimate of success probability. In practice, we know that it is hard to get a
correct estimate of the mean and standard deviates of the variables in a statistical
attack. In Figure 4 and Figure 5, it is illustrated that the theoretical and experimental
variances slightly differ from the experimental ones. In our experiments on 5 rounds of
SMALLPRESENT-[4] the variance estimate of TR(D,K) is larger than the one obtained in
practice. When the distributions are normal and µR > µW , we use the following estimate
of the success probability

PS = 1− α = Φ

(
µR − µW − σWΦ−1(1− 2−a)

σR

)
, (17)

where a is called the advantage of the attack and corresponds to the number of gained
bits during the attack. For details, see Appendix A.2.

From Equation 17 we can conclude that if the estimate of the mean is smaller than
one obtained in practice and if the variance estimate of TR(D,K) is larger than the one
obtained in practice and the experimental and theoretical means and variances for the
wrong keys are equal, then we obtain an underestimate of the success probability or
equivalently an overestimate of the data complexity. The experimental results illustrate
that this was not the case with the previous estimates derived in [HCN09,HVLN15,BN16].

5.2 The Multidimensional Linear Attack on PRESENT
From Theorem 7 and Corollary 1 and under Assumption 1, we can estimate the success
probability of a multiple/multidimensional linear attack using Equation 17. In particular in
this section we apply our result to the multidimensional linear attack on PRESENT [Cho10].

In [Cho10] the attack takes advantage of 9 multidimensional linear space involving
in total ` = 9 · (28 − 1) linear approximations. For this n = 64-bit block cipher we then
obtain CW = 2−52.83 (see Subsection 4.2).

In Table 4 we compare the previous estimate of the success probability using the setting
of [Cho10] with the one of this paper. The success probability estimate obtained in [Cho10]
does not take into consideration the variance of the capacity for the right and wrong keys.

The new success probability estimate has been computed for an advantage of 8-bits.
While in [Cho10] the attack is performed in the KP model, we illustrate that we can
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Table 4: Multidimensional linear attacks on PRESENT. Computation of the success
probability for an advantage a of 8 bits.
attacked C∗

C N
Success Probability

rounds (over r − 2 rounds) [Cho10] This paper This paper
DKP KP

24 2−50.16 (22 rounds) 2−49.95 258.5 97% 87% 86%
25 2−52.77 (23 rounds) 2−51.80 261 94% 84% 74%
26 2−55.38 (24 rounds) 2−52.60 263.8 98% 90% 51%

also assume distinct plaintexts. It is important to notice that the attack on 26 rounds of
PRESENT as presented in [Cho10] is not threatened by the more accurate statistical model
derived in this paper. For instance with a data complexity of 263.5 distinct plaintexts and
an advantage of 8-bit, the attack will succeed in 81% of the cases. In [BTV16] a multiple
linear attack on 27 rounds of PRESENT is presented, the attack used a multiple linear
distinguisher over 23 rounds derived from 189 linear approximations.

6 Conclusion
In this paper, we derive a method for estimating the variance of the correlation of a linear
approximation that comprises a number of strong characteristics. Our method does not
require any heavier computation that is needed to compute an estimate of the ELP for
the linear approximation. We also showed how to use this estimate to derive the success
probability of the online linear attack. This method is then extended to multiple and
multidimensional linear cryptanalysis to provide an improved estimate of the expected
value and the variance of the capacity. The results of this paper are compared with previous
results in the simple, multiple and multidimensional linear contexts and are heavily backed
up by experiments. Finally from the new developed theory we provide a new estimate of
the success of a multiple and multidimensional linear attack. Simultaneously to our work,
Vejre et al developed an extension to [BN15a] using which the variance of the capacity
can be estimated also in the case when the linear approximations involved in the offline
analysis have statistically dependent correlations.

When using multiple linear approximations, the question about their independence is
often an issue. In the course of this work, one of the main lessons learnt has been that the
correlations of linear approximations occur in two completely different types of random
variables:

1. the empirical correlations computed for a fixed key are random variables as function
of the random data sample, and

2. the correlations of linear approximations are random variables as function of the
random key.

It follows that in this model, which integrates both the data and the key as random variables,
we have two unrelated concepts of independence of linear approximations. Moreover, the
two types of random variables are also separated by their different usage: the type (1)
random variables are used in online analysis while the type (2) variables occur only in
offline analysis when estimating parameters of the distributions of type (1) variables. In
particular, it means that assuming independence of type (2) variables does not imply
independence, or any other restriction, for type (1) variables. The main advantage of the
multidimensional linear cryptanalysis method that it does not need any assumption about
the statistical independence of the empirical correlations of the linear approximations.
This advantage is not lost if the independence of the correlations over the key is assumed
in the offline analysis for the purposes of parameter estimation as done in this paper.
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A Success Probability
A.1 Proof of Theorem 2
In this section we prove Theorem 2 given in Section 2 and restated below

Theorem 2. Given the advantage a of the key-recovery attack and σR and σW as in The-
orem 1, the success probability of the attack is given as

PS = 2− 2Φ
(
σW
σR
· Φ−1(1− 2−a−1)

)
, (5)

where Φ and Φ−1 denote the cumulative distribution function and quantile of the central
normal distribution. Equivalently, the data complexity NKP or NDKP of a linear attack
using non-distinct or distinct known plaintexts can be estimated as follows:

NKP = Φ−1(1− 2−a−1)2 − Φ−1(1− PS/2)2

ELP Φ−1(1− PS/2)2 − 2−nΦ−1(1− 2−a−1)2 ,

NDKP ≈ Φ−1(1− 2−a−1)2 − Φ−1(1− PS/2)2

(ELP − 2−n)Φ−1(1− PS/2)2 .

Proof. For the purpose of this proof we denote by CDFR and CDFW the cumulative
distribution functions of the normal distributions N (0, σ2

R) and N (0, σ2
W ) with σ2

R =
B

N
+ELP and σ2

W = B

N
+ 2−n as in Section 2. The probability density functions of these

distributions are illustrated in Figure 2.
Given an acceptance threshold Θ, the non detection error probability 1−PS corresponds

to the case where −Θ < ĉR < Θ (see Figure 2). Meaning that 1 − PS = CDFR(Θ) −
CDFR(−Θ). Similarly the false alarm error probability 2−a corresponds to the case where
ĉW ≤ −Θ or ĉW ≥ Θ. We obtain that 1− PS = 2Φ(Θ/σR)− 1 and 2−a = 2Φ(−Θ/σW ),
where Φ is the cumulative distribution function of the central normal distribution.

For correctly selected parameters we can find Θ such that

Θ = σRΦ
−1(1− PS/2) = σWΦ

−1(1− 2−a−1). (18)

The success probability is then

PS = 2− 2Φ
(
σW
σR
· Φ−1(1− 2−a−1)

)
.

To estimate the data complexity we first consider the KP case and take B = 1.
From Equation 18 we obtain the equality
1
N

(
Φ−2(1− PS/2)− Φ−2(1− 2−a−1)

)
= 2−nΦ−2(1− 2−a−1)− ELP · Φ−2(1− PS/2)

and consequently

NKP = Φ−1(1− 2−a−1)2 − Φ−1(1− PS/2)2

ELPΦ−1(1− PS/2)2 − 2−nΦ−1(1− 2−a−1)2 .

Now to consider the DKP case, we assume that B ≈ 1−N/2n and set

(1/N − 2−n + ELP ) · Φ−1(1− PS/2)2 − 1
N
· Φ−1(1− 2−a−1)2 ≈ 0

from where

NDKP ≈ Φ−1(1− 2−a−1)2 − Φ−1(1− PS/2)2

(ELP − 2−n)Φ−1(1− PS/2)2 .
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A.2 The Case With Different Means
Assuming that the statistic modeling the behavior of the scoring value for the wrong and the
right keys follow normal distributions, we can use classical statistical methods [Sel08,BW12]
to determine the success of the attack. The general idea is the following. Given two
statistics TR and TW following normal distributions with respective parameters (µR, σ2

R)
and (µW , σ2

W ) and assume w.l.o.g. that µW < µR. Given the error probabilities, β and
α = 1− PS , let us denote by ϕβ and ϕα the quantiles of the standard normal distribution
corresponding to the probabilities 1 − β and 1 − α. It means that Φ(ϕβ) = 1 − β and
Φ(ϕα) = 1− α, where we have denoted by Φ the cumulative distribution function of the
standard normal distribution. If it holds

µW + σWϕβ ≤ µR − σRϕα, (19)

we can select a threshold Θ such that

µW + σWϕβ ≤ Θ ≤ µR − σRϕα,

Observing a value T < Θ the cryptanalyst decides that T is drawn from the distribution
of TW . Then the probability that this decision is wrong is equal to

Pr(TR < Θ) = Pr(TR − µR
σR

<
Θ− µR
σR

)

≤ Pr(TR − µR
σR

< −ϕα) = Pr(ζ < −ϕα) = 1− Pr(ζ < ϕα) = α,

where we have denoted by ζ a random variable following a standard normal distribution.
Similarly, we can verify that with this threshold value the probability that an observed
value T > Θ is drawn from distribution of TW is equal to β. In particular, if equality holds
in Equation 19, we obtain the following success probability PS

PS = 1− α = Φ

(
µR − µW − σWΦ−1(1− β)

σR

)
.

Usually as the parameters of the normal distributions N (µW , σW ) and N (µR, σR) depend
on data, the data complexity of the attack is derived from this formula. The false alarm
error probability β corresponds to the ratio of wrong keys which are accepted as potential
key candidate. In [Sel08] and in recent research publications this one is expressed as
β = 2−a where a is called the advantage of the attack and corresponds to the number of
gained bits during the attack.

B Experiments on SIMON
B.1 Experimental Results
For experimental purpose, we use the implementation of [CW16] to attack 20 rounds of
SIMON32/64. For this attack we take advantage of a distinguisher on 13 rounds with
ELP estimated experimentally to ELP = 2−28.19. The result of our experiments for 231.5

and 232 distinct plaintexts as well as for 233 and 235 non-distinct plaintexts are provided
in Table 5. In the following we describe the different quantities given in this table.

• The first column of Table 5 indicates the sampling method.
• The second one corresponds to the data complexity N .
• We computed the success probability P (exp)

S of 1000 attacks for an advantage of 8
and of 3 bits and compared it to different theoretical success probabilities.
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Table 5: Results of our experimental linear attacks on 20 rounds SIMON32/64. The
different notations are defined in Appendix B.1. Values in brackets have been computed
assuming that NDKP = NKP since the corresponding models do not make distinction
between DKP and KP sampling, that is, the estimates of the success probability are
derived using binomial distributions.
Experiments N a P

(exp)
S P(our)

S P
(bt)
S P

(selcuk)
S P

(min)
S P

(max)
S

DKP 231.5 8 32.2% 36.6% (26.7%) (60.4%) (23.5%) (35.6%)
DKP 232 8 38.4% 44.1% (36.8%) (80.5%) (24.9%) (38.9%)
KP 233 8 30.6% 35.3% 61.7% 99.2% 26.1% 42.7%
KP 235 8 35.5% 41.4% 97.3% 100% 26.4% 43.7%
DKP 231.5 3 58.4% 63% (87.4%) (94.7%) (25.9%) (42.0%)
DKP 232 3 64.1% 68.1% (94.2%) (98.6%) (26.2%) (42.9%)
KP 233 3 60.5% 62.2% 99.5% 100% 26.4% 43.7%
KP 235 3 59.6% 66.3% 100% 100% 26.4% 43.7%

• P (our)
S corresponds to the estimate given in Equation 5 of this paper.

• P (selcuk)
S corresponds to the estimate given in [Sel08] and recalled below:

P
(selcuk)
S = Φ

(√
N · ELP − Φ−1(1− 2−a−1)

)
. (20)

This estimate does not take into consideration the key deviation and does not assume
distinct plaintexts.

• As observed in [CW16], because of the key deviation of the correlation, the success
probability of Selçuk (Equation 20) is very optimistic. As for SIMON32/64 it is
possible to estimate the portion of keys with a given capacity, the authors of [CW16]
suggested to use this knowledge to provide lower P (min)

S and upper P (max)
S bounds

of the success probability. For a complete description we refer to [CW16]. These
bounds seems to be accurate for an advantage of 8 bits but not for an advantage
of 3 bits. The difference could be explained by the fact that they do not take into
consideration the key deviation for the wrong keys.

• To complete the comparison we added the estimate of the success probability P (bt)
S

of the attack given in [BT13] taking into consideration the key deviation only for the
wrong keys.

P
(bt)
S = Φ

(
√
N · ELP −

√
1 + N

2nΦ
−1(1− 2−a−1)

)
.

Note that this estimate which does not take into consideration the key-deviation of
the right key remain far from accurate.

These results validate the estimate of the data complexity and success probability of a
linear attack given in Theorem 2

B.2 Distinct Known Plaintexts or Known Plaintexts
The surprising fact about the experiments of [CW16] is the experimental use of distinct
plaintexts while the theoretical expression of the success probability is extracted from
the binomial distribution. Thanks to the recently developed theory we know that this
theoretical expression should correspond to the non-distinct plaintext case. The same
observation could be done about the experimental linear attacks on the DES performed
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in [Mat94,Jun04] however the data complexity was far enough from the full codebook for
being observed in practice.

The following lemma provides the relation between distinct and non-distinct plaintexts.

Lemma 2. Given a set of 2n elements and taking randomly N elements in this set we
expect to have N 6= different elements with

N 6= = 2n
(
1− (1− 2−n)N

)
.

As a consequence in the cryptographic context for a data complexity N and a block cipher
of size n bits the number of distincts elements is

N 6= ≈ 2n[1− exp(−N2−n)].

For instance when N = 235 and 2n = 232 we have N 6= ≈ 231.99 ≈ 232 and as illustrated
in Table 5 the success probabilities are of similar order of magnitude. In practice the
maximal success probability could be reached using the full codebook in the distinct
plaintext context. This observation is valid for all statistical attacks.

C The Matrix Method to Estimate the ELP of a Linear
Characteristic

One round of SMALLPRESENT-[4] is represented in Figure 6.

S3 S2 S1 S0

Figure 6: 1 round of SMALLPRESENT-[4]

In [Cho10] the matrix method has been used to estimate the ELP of linear approxima-
tions. In this section, we describe how this method is implemented and provide related
matrices for SMALLPRESENT-[4]. The matrix method is particularly efficient for this
cipher with strong 1-bit linear characteristics which propagate easily thought the different
rounds. This property is derived from the correlation of the 1-bit linear approximations of
the Sbox of PRESENT. The correlation values of these 1-bit masks are resumed in Table 6.

Table 6: Correlation c(u, v) of the Sbox of PRESENT when u and v are 1-bit linear masks.
u/v 0x1 0x2 0x4 0x8
0x1 0 0 0 0
0x2 0 2−2 −2−2 2−2

0x4 0 −2−2 2−2 −2−2

0x8 0 2−2 0 −2−2

As the permutation of PRESENT is a bit permutation, these strong 1-bit linear approx-
imations can be traced thought the cipher. The matrixM provided below corresponds to
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the square correlations of all 1-bit linear characteristics over one round, non-linear and
linear layer, of SMALLPRESENT-[4] (see Figure 6). For instance in column 6 row 6 we
can read that the square correlation of the linear approximation (0x20, 0x20) is 2−4.

M =



0 0 0 0 2−4 0 0 0 2−4 0 0 0 2−4 0 0 0
0 0 0 0 2−4 0 0 0 2−4 0 0 0 2−4 0 0 0
0 0 0 0 2−4 0 0 0 2−4 0 0 0 2−4 0 0 0
0 0 0 0 2−4 0 0 0 0 0 0 0 2−4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2−4 0 0 0 2−4 0 0 0 2−4 0 0
0 0 0 0 0 2−4 0 0 0 2−4 0 0 0 2−4 0 0
0 0 0 0 0 2−4 0 0 0 0 0 0 0 2−4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2−4 0 0 0 2−4 0 0 0 2−4 0
0 0 0 0 0 0 2−4 0 0 0 2−4 0 0 0 2−4 0
0 0 0 0 0 0 2−4 0 0 0 0 0 0 0 2−4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2−4 0 0 0 2−4 0 0 0 2−4

0 0 0 0 0 0 0 2−4 0 0 0 2−4 0 0 0 2−4

0 0 0 0 0 0 0 2−4 0 0 0 0 0 0 0 2−4


Observing that for the PRESENT’s Sbox S, cS(u, v) = 0 if v = 0x2, 0x4, 0x8 and u = 0x1
or if u = 0x2, 0x4, 0x8 and v = 0x1, some lines and columns ofM can be removed in the
computation. For SMALLPRESENT-[4],M can be reduced to a 9× 9 matrix (values in
black). For the 64-bit PRESENT the 64× 64 matrix can be reduced to a 21× 21 matrix.

To obtain the value of ExpK(Q(u, v)(K)2) =
∑
τ∈S ρ

2
τ of a 1-bit linear approximation

where the set S corresponds to the strong 1-bit linear approximations, we just multiply
the matrix M by itself. Below M4 is the result for 4 rounds of SMALLPRESENT-[4].
On this matrix we can read that the ELP of the linear approximation (0x20, 0x20) over 4
rounds is 2−12.83. This quantity has been taken into consideration for the experiments
of Subsection 2.4. If the last permutation is omitted, a linear permutation ofM4 should
be performed.

M4 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2−12.83 2−13.42 2−12.83 0 2−13.42 2−14.00 2−13.42 0 2−12.83 2−13.42 2−12.83

0 0 0 0 0 2−12.83 2−13.42 2−12.83 0 2−13.42 2−14.00 2−13.42 0 2−12.83 2−13.42 2−12.83

0 0 0 0 0 2−13.42 2−14.42 2−13.42 0 2−14.00 2−15.00 2−14.00 0 2−13.42 2−14.42 2−13.42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2−12.83 2−13.42 2−12.83 0 2−13.42 2−14.00 2−13.42 0 2−12.83 2−13.42 2−12.83

0 0 0 0 0 2−12.83 2−13.42 2−12.83 0 2−13.42 2−14.00 2−13.42 0 2−12.83 2−13.42 2−12.83

0 0 0 0 0 2−13.42 2−14.42 2−13.42 0 2−14.00 2−15.00 2−14.00 0 2−13.42 2−14.42 2−13.42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2−13.42 2−14.00 2−13.42 0 2−14.42 2−15.00 2−14.42 0 2−13.42 2−14.00 2−13.42

0 0 0 0 0 2−13.42 2−14.00 2−13.42 0 2−14.42 2−15.00 2−14.42 0 2−13.42 2−14.00 2−13.42

0 0 0 0 0 2−14.00 2−15.00 2−14.00 0 2−15.00 2−16.00 2−15.00 0 2−14.00 2−15.00 2−14.00



D The Multidimensional Linear Space Used in our Exper-
iments

The multidimensional linear space used in our experiments is represented in Figure 7.
The multidimensional linear space is defined by the set of linear approximations {(u, v) 6=
(0, 0)|u = (0 ∗ 00) and v = (00 ∗ 0)}, where each symbol represents a nibble. This
multidimensional linear space involving ` = 255 linear approximations activate S2 at the
input and S1 at the output.

E The 20-bit Key-Schedule
Let K be the 20-bit master key. The rounds keys are derived from the following rules:

• Left rotate K by 5 bits
• Apply the PRESENT Sbox to the 4 most significant bits of K
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Figure 7: SMALLPRESENT and the one bit linear trails used for estimating the capacity

• Add a round counter to the least significant bits of K

• The round key corresponds to the 16 least significant bits of K

F Experiments over 6 and 7 Rounds

Experiments similar to the ones of Subsection 5.1 over 6 and 7 rounds of SMALLPRESENT-
[4] are provided in Figure 8. These experiments have been performed in the DKP setting
using 215 plaintexts. On the left graphic, the slight underestimate of the capacity value
(see Table 2) can be observed by the slight shift between the theoretical and experimental
curves. This result could be explained by the use of the 1-bit linear trails to estimate the
capacity of the linear approximation even if as resumed in Table 2 the difference between
both expected values remain small. However we observe that the new variance estimate is
better than the previous estimate.

In the right graphic we illustrate that when the capacity of the multidimensional linear
approximation is close to the uniform one the capacity and its variance are correctly
estimated. In this graphic previous and new estimates are similar.
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Figure 8: Comparison between the experimental distribution of TR(D,K) and normal
distributions with different variances. Both figures are for 215 plaintexts. Left: over 6
rounds. Right: over 7 rounds.

In these different experiments, we illustrate that when the expected capacity is correctly
estimated then the new estimate of the variance provided in Corollary 1 is relatively
accurate.
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