The Exact Security of PMAC

Peter Gaži

Krzysztof Pietrzak

Michal Rybár

IST Austria

Fast Software Encryption 2017

Message Authentication Codes

Authenticating messages over an insecure channel

Shared symmetric key K

CBC-MAC [Bellare - Kilian - Rogaway '01]

Encrypted-CBC additionally encrypts the output

ParallelizableMAC

[Black - Rogaway '02]

- Most prominent parallel MAC
- Some CAESAR candidates inspired by PMAC

ParallelizableMAC

[Black - Rogaway '02]

- We work with random permutations
- We focus on the **key-dependent masks** $\tau_1, \tau_2, \ldots, \tau_L$

Pseudo-random Functions (PRFs)

Random Functions

PRF advantage

PRF advantage: $Pr[D(F_K) = 1] - Pr[D(R) = 1]$

PRF advantage

PRF advantage: $Pr[D(F_K) = 1] - Pr[D(R) = 1]$

Every PRF is a good MAC

PRF advantage

PRF advantage: $Pr[D(F_K) = 1] - Pr[D(R) = 1]$

- Every PRF is a good MAC
- Security in terms of Q messages of length L blocks of size N-bits

Reduction to simplified PMAC (sPMAC)

We can ignore the last message block, no mask

Reduction to sPMAC

 [Mau02]: distinguishing PMAC from a random function is equivalent to non-adaptively triggering a collision on the input to the outer permutation

sPMAC

Goal: collision of tags of M and M

Collision: equality of sets of values

Collision happens here with very small probability 2⁻ⁿ⁺¹

Our interest is ...

sPMAC target

sPMAC target

• Assume q messages $M_i = (m_1^i, m_2^i, ..., m_L^i)$

sPMAC target

Assume q messages M_i = (mⁱ₁,mⁱ₂, ..., mⁱ_L)

$$\max_{M_1,\ldots,M_q} \Pr_{\tau_1,\ldots,\tau_L} \left[\exists i < j : \left\{ m_1^i \oplus \tau_1,\ldots,m_L^i \oplus \tau_L \right\} = \left\{ m_1^j \oplus \tau_1,\ldots,m_L^j \oplus \tau_L \right\} \right]$$

Masks τ_1, τ_2, \dots in PMAC [BR'02]

$$\tau_{i} = \gamma_{i} \cdot \mathbf{R}$$

- R uniformly random in {0,1}ⁿ
- $\gamma_1, \gamma_2, \gamma_3, \dots$ are canonical **Gray code**
 - for any k ≤ n, first 2^k elements form a group in
 GF(2ⁿ)

sPMAC - 2 messages

$$\max_{M_1,M_2} \Pr_{\tau_1,\ldots,\tau_L} \left[\left\{ m_1 \oplus \tau_1,\ldots,m_L \oplus \tau_L \right\} = \left\{ \stackrel{\sim}{m_1} \oplus \tau_1,\ldots,\stackrel{\sim}{m_L} \oplus \tau_L \right\} \right]$$

Outline

- Motivation
- PMAC
- Collisions and sPMAC

- Results
 - New attack exact upper bound on security of PMAC
 - PMAC security bounds independent of query length L

Pick random message blocks m, m

- M = m || m || ... || m
- \circ $\tilde{M} = \tilde{m} || \tilde{m} || \dots || \tilde{m}$

•
$$Pr[m \oplus \tau_1 = \tilde{m} \oplus \tau_2] = ?$$

- $R = (\tilde{m} \oplus m) / (\gamma_1 \oplus \gamma_2)$
- $Pr[m \oplus \tau_1 = \tilde{m} \oplus \tau_2] = \frac{1}{2^n}$

$$Pr[\exists i: m \oplus \tau_1 = \tilde{m} \oplus \tau_i] = L-1 / 2^n$$

• Have a single pairing

- We need to match everything, not just one block
- $\gamma_1, \gamma_2, \dots, \gamma_{L-1}, \gamma_L$ are a **group** (remember $\tau_i = \gamma_i \cdot R$)

The Attack magic

The Attack

- Collision on the output of sPMAC for M and M
 - works for L-1 different values of R
 - hence with probability L-1 / 2ⁿ

M

Moving from 2 to q messages

$$\max_{M_1,M_2} \Pr_{\tau_1,\ldots,\tau_L} \left[\left\{ m_1 \oplus \tau_1,\ldots,m_L \oplus \tau_L \right\} = \left\{ \stackrel{\sim}{m_1} \oplus \tau_1,\ldots,\stackrel{\sim}{m_L} \oplus \tau_L \right\} \right]$$

• ≈ L/2ⁿ advantage

Moving from 2 to q messages

$$\max_{M_1,M_2} \Pr_{\tau_1,\dots,\tau_L} \left[\left\{ m_1 \oplus \tau_1,\dots,m_L \oplus \tau_L \right\} = \left\{ \stackrel{\sim}{m_1} \oplus \tau_1,\dots,\stackrel{\sim}{m_L} \oplus \tau_L \right\} \right]$$

≈ L/2ⁿ advantage

$$\max_{M_1,\ldots,M_q} \Pr_{\tau_1,\ldots,\tau_L} \left[\exists i < j : \left\{ m_1^i \oplus \tau_1,\ldots,m_L^i \oplus \tau_L \right\} = \left\{ m_1^j \oplus \tau_1,\ldots,m_L^j \oplus \tau_L \right\} \right]$$

- Random m¹,..., m^q; M_i = mⁱ||...||mⁱ
- Use union bound
 - o q²·L / 2ⁿ advantage

But...

- [BR'02] omit $\gamma_0^n = 0^n$
 - $\circ \quad \gamma_1, \gamma_2, \ \dots \ , \gamma_{L\text{--}1}, \gamma_L \ \ \text{NOT a group in GF(2^n)}$
 - attack breaks

But...

- [BR'02] omit $\gamma_0^n = 0^n$
 - $\circ \quad \gamma_1, \gamma_2, \, \ldots \, , \gamma_{L-1}, \, \gamma_L \ \, \text{NOT a group in GF(2^n)}$
 - attack breaks

- $\gamma_1, \gamma_2, \dots, \gamma_{L-1}, \gamma_L$ contains a **coset** of size L/2
 - sufficient for attack

But...

- [BR'02] omit $\gamma_0^n = 0^n$
 - $\circ \quad \gamma_1, \gamma_2, \ \dots \ , \gamma_{L-1}, \gamma_L \ \ \text{NOT a group in GF(2^n)}$
 - attack breaks

- $\gamma_1, \gamma_2, \dots, \gamma_{L-1}, \gamma_L$ contains a **coset** of size L/2
 - sufficient for attack (losing factor 2 in advantage)

• Assume we do not remove γ_0^n

- Assume we do not remove γ_0^n
 - o For (L-1) / 2 values of R, we have this picture

- Modify messages
 - change first L/2 blocks to 0ⁿ

- Modify messages
 - change first L/2 blocks to 0ⁿ
- For (L-1) / 2 values of R, we have this picture

Outline

- Motivation
- PMAC
- Collisions and sPMAC

- Results
 - New attack exact upper bound on security of PMAC
 - PMAC security bounds independent of query length L

Exploring different mask options

- Recall masks $\tau_1, \tau_2, \dots, \tau_{L-1}, \tau_L$
 - $\circ \quad \tau_{i} = \gamma_{i} \cdot R$
 - \circ until now γ_i was a Gray code
 - 1-wise independent distribution
- We look at at $\tau_1, \tau_2, \ldots, \tau_{L-1}, \tau_L$ that are:
 - randomly distributed
 - 4-wise independent
 - o 2-wise independent

• Masks of [BR'02] are 1-wise independent

$$\circ \quad \tau_{i} = \gamma_{i} \cdot R$$

Masks of [BR'02] are 1-wise independent

$$\circ \quad \tau_{i} = \gamma_{i} \cdot R$$

Make it 2-wise independent

$$\circ \quad \tau_{i} = \gamma_{i} \cdot R \oplus \tilde{R}$$

Masks of [BR'02] are 1-wise independent

$$\circ \quad \tau_{i} = \gamma_{i} \cdot \mathsf{R}$$

$$\blacksquare$$
 $m_x \oplus \tau_x = m_y \oplus \tau_y$

Make it 2-wise independent

$$\circ \quad \tau_{i} = \gamma_{i} \cdot R \oplus \tilde{R}$$

2-wise independent distribution does improve security

• Let $\tau_1, \tau_2, \ldots, \tau_{L-1}, \tau_L$ be uniform and independent

- Let $\tau_1, \tau_2, \ldots, \tau_{L-1}, \tau_L$ be uniform and independent
- Assume all values of $\tau_{\rm i}$ are chosen, but $\tau_{\rm L}$

Assume that all available values are paired-up with probability

1 ("for free")

 For an output collision, there must be 2 values {A,B} left unpaired (otherwise, a collision will happen with probability 0)

• The probability that the value τ_{\perp} will be sampled such that a pairing does happen is at most $2/2^n$, hence $q^2/2^n$ bound

- Argument is in a way similar to random masks
 - look at 2 pairings, 4 masked values
 - same bound 4 / 2ⁿ
 - BUT condition $L \le 2^{n/2}$
- Full proof in the paper

Summary

- Security of PMAC using Gray codes is Θ(q²·L / 2ⁿ)
- Open question: Exact security of PMAC1

Summary

- Security of PMAC using Gray codes is Θ(q²·L / 2ⁿ)
- Open question: Exact security of PMAC1

- Using any 4-wise independent masks gives security
 Θ(q² / 2ⁿ)
- There is 2-wise distribution of mask with q²·L/2ⁿ security
- Open question: is 3-wise independence enough for q²/2ⁿ security?

Summary

- Security of PMAC using Gray codes is Θ(q²·L / 2ⁿ)
- Open question: Exact security of PMAC1

- Using any 4-wise independent masks gives security Θ
 (q² / 2ⁿ)
- There is 2-wise distribution of mask with q²·L/2ⁿ security
- Open question: is 3-wise independence enough for q²/2ⁿ security?

Thank you!