The Exact Security of PMAC

Peter Gaži
Krzysztof Pietrzak
Michal Rybár

IST Austria

Fast Software Encryption 2017

Message Authentication Codes

- Authenticating messages over an insecure channel

- Shared symmetric key K

CBC-MAC [Bellare - Kilian - Rogaway '01]

- Encrypted-CBC additionally encrypts the output

ParallelizableMAC

- Most prominent parallel MAC
- Some CAESAR candidates inspired by PMAC

ParallelizableMAC

- We work with random permutations
- We focus on the key-dependent masks $\tau_{1}, \tau_{2}, \ldots, \tau_{\mathrm{L}}$
n-bit blocks: $\quad m_{1}$
masks:

Pseudo-random Functions (PRFs)

$F_{K}(x)$

Random Functions

PRF advantage

PRF advantage: $\operatorname{Pr}\left[D\left(F_{K}\right)=1\right]-\operatorname{Pr}[D(\mathbf{R})=1]$

PRF advantage

PRF advantage: $\operatorname{Pr}\left[D\left(F_{K}\right)=1\right]-\operatorname{Pr}[D(\mathbf{R})=1]$

- Every PRF is a good MAC

PRF advantage

PRF advantage: $\operatorname{Pr}\left[D\left(F_{K}\right)=1\right]-\operatorname{Pr}[D(\mathbf{R})=1]$

- Every PRF is a good MAC
- Security in terms of \mathbf{Q} messages of length \mathbf{L} blocks of size \mathbf{N}-bits

PRF security of PMAC - results

PRF security of PMAC - results

[PMAC w. modified masks]

Reduction to simplified PMAC (sPMAC)

- We can ignore the last message block, no mask

Reduction to sPMAC

- [Mau02]: distinguishing PMAC from a random function is equivalent to non-adaptively triggering a collision on the input to the outer permutation

sPMAC

sPMAC - collisions

- Goal: collision of tags of M and \tilde{M}

sPMAC - collisions

Collision: equality of sets of values

sPMAC - collisions

sPMAC - collisions

Collision happens here with very small probability 2^{-n+1}

sPMAC - collisions

Our interest is ...

sPMAC target

sPMAC target

- Assume q messages $M_{i}=\left(m_{1}^{i}, m_{2}{ }_{2}, \ldots, m_{L}^{i}\right)$

sPMAC target

- Assume q messages $M_{i}=\left(m_{1}^{i}, m_{2}^{i}, \ldots, m_{L}^{i}\right)$

$$
\max _{M_{1}, \ldots, M_{q} \tau_{1}, \ldots, \tau_{L}} \operatorname{Pr}\left[\exists i<j:\left\{m_{1}^{i} \oplus \tau_{1}, \ldots, m_{L}^{i} \oplus \tau_{L}\right\}=\left\{m_{1}^{j} \oplus \tau_{1}, \ldots, m_{L}^{j} \oplus \tau_{L}\right\}\right]
$$

Masks $\tau_{1}, \tau_{2}, \ldots$ in PMAC [BR'02]

$$
\tau_{\mathrm{i}}=\gamma_{\mathrm{i}} \cdot \mathrm{R}
$$

- R uniformly random in $\{0,1\}^{n}$
- $\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots$ are canonical Gray code
- for any $\mathrm{k} \leq \mathrm{n}$, first 2^{k} elements form a group in

GF($\left.2^{\mathrm{n}}\right)$

sPMAC - 2 messages

$\max _{M_{1}, M_{2} \tau_{1}, \ldots, \tau_{L}} \operatorname{Pr}_{r}\left[\left\{m_{1} \oplus \tau_{1}, \ldots, m_{L} \oplus \tau_{L}\right\}=\left\{\tilde{m}_{1} \oplus \tau_{1}, \ldots, \tilde{m}_{L} \oplus \tau_{L 2}\right\}\right]$

Outline

- Motivation
- PMAC
- Collisions and sPMAC
- Results
- New attack - exact upper bound on security of

PMAC

- PMAC security bounds independent of query length L

The Attack

- Pick random message blocks $\mathrm{m}, \tilde{\mathrm{m}}$
- $M=m\|m\| \ldots \| m$
- $\tilde{M}=\tilde{m}\|\tilde{m}\| \ldots \| \tilde{m}$

The Attack

- $\operatorname{Pr}\left[m \oplus \tau_{1}=\tilde{m} \oplus \tau_{2}\right]=$?

The Attack

- $R=(\tilde{m} \oplus m) /\left(\boldsymbol{\gamma}_{1} \oplus \boldsymbol{\gamma}_{2}\right)$
- $\operatorname{Pr}\left[m \oplus \tau_{1}=\tilde{m} \oplus \tau_{2}\right]=1 / 2^{n}$

The Attack
$\operatorname{Pr}\left[\exists \mathrm{i}: \mathrm{m} \oplus \tau_{1}=\tilde{\mathrm{m}} \oplus \tau_{\mathrm{i}}\right]=\mathrm{L}-1 / 2^{\mathrm{n}}$

The Attack

- Have a single pairing

The Attack

- We need to match everything, not just one block
- $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{L-1}, \gamma_{L}$ are a group (remember $\tau_{\mathrm{i}}=\boldsymbol{\gamma}_{\mathrm{i}} \cdot \mathrm{R}$)

The Attack magic

The Attack

- Collision on the output of sPMAC for M and \tilde{M}
- works for L-1 different values of R
- hence with probability $\mathrm{L}-1 / 2^{n}$

M

Moving from 2 to q messages

$$
\max _{M_{1}, M_{2} \tau_{1}, \ldots, \tau_{L}} \operatorname{Pr}_{L}\left[\left\{m_{1} \oplus \tau_{1}, \ldots, m_{L} \oplus \tau_{L}\right\}=\left\{\tilde{m}_{1} \oplus \tau_{1}, \ldots, \tilde{m}_{L} \oplus \tau_{L}\right\}\right]
$$

- $\approx \mathrm{L} / 2^{\mathrm{n}}$ advantage

Moving from 2 to q messages

$$
\max _{M_{1}, M_{2}} \operatorname{Pr}_{\tau_{1}, \ldots, \tau_{L}}\left[\left\{m_{1} \oplus \tau_{1}, \ldots, m_{L} \oplus \tau_{L}\right\}=\left\{\tilde{m}_{1} \oplus \tau_{1}, \ldots, \tilde{m}_{L} \oplus \tau_{L}\right\}\right]
$$

- $\approx \mathrm{L} / 2^{\mathrm{n}}$ advantage
$\max _{M_{1}, \ldots, M_{q} \tau_{1}, \ldots, \tau_{L}} \operatorname{Pr}_{I}\left[\exists i<j:\left\{m_{1}^{i} \oplus \tau_{1}, \ldots, m_{L}^{i} \oplus \tau_{L}\right\}=\left\{m_{1}^{j} \oplus \tau_{1}, \ldots, m_{L}^{j} \oplus \tau_{L}\right\}\right]$
- Random $\mathrm{m}^{1}, \ldots, \mathrm{~m}^{\mathrm{q}} ; \mathrm{M}_{\mathrm{i}}=\mathrm{m}^{i}\|\ldots\| \mathrm{m}^{i}$
- Use union bound
- $q^{2} \cdot L / 2^{n}$ advantage

But...

- [BR'02] omit $\boldsymbol{\gamma}^{\mathrm{n}}=0^{\mathrm{n}}$
- $\boldsymbol{\gamma}_{1}, \gamma_{2}, \ldots, \gamma_{L-1}, \gamma_{L}$ NOT a group in $\operatorname{GF}\left(\mathbf{2}^{n}\right)$
- attack breaks

But...

- [BR'02] omit $\boldsymbol{\gamma}^{\mathrm{n}}=0^{\mathrm{n}}$
- $\boldsymbol{\gamma}_{1}, \gamma_{2}, \ldots, \gamma_{L-1}, \gamma_{L}$ NOT a group in $\operatorname{GF}\left(\mathbf{2}^{\mathbf{n}}\right)$
- attack breaks
- $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{L-1}, \gamma_{L}$ contains a coset of size $\mathrm{L} / 2$
- sufficient for attack

But...

- [BR'02] omit $\boldsymbol{\gamma}^{\mathrm{n}}=0^{\mathrm{n}}$
- $\boldsymbol{\gamma}_{1}, \gamma_{2}, \ldots, \gamma_{L-1}, \gamma_{L}$ NOT a group in $\operatorname{GF}\left(\mathbf{2}^{\mathbf{n}}\right)$
- attack breaks
- $\boldsymbol{\gamma}_{1}, \gamma_{2}, \ldots, \gamma_{L-1}, \gamma_{L}$ contains a coset of size $\mathrm{L} / 2$
- sufficient for attack (losing factor 2 in advantage)

Why is a coset sufficient?

- Assume we do not remove $\gamma^{n}{ }_{0}$

Why is a coset sufficient?

- Assume we do not remove $\gamma^{n}{ }_{0}$
- For (L-1) / 2 values of R, we have this picture

Why is a coset sufficient?

- Modify messages
- change first L/2 blocks to 0^{n}

Why is a coset sufficient?

- Modify messages
- change first L/2 blocks to 0^{n}
- For (L-1) / 2 values of R, we have this picture

Outline

- Motivation
- PMAC
- Collisions and sPMAC
- Results
- New attack - exact upper bound on security of PMAC
- PMAC security bounds independent of query
length L

Exploring different mask options

- Recall masks $\tau_{1}, \tau_{2}, \ldots, \tau_{\mathrm{L}-1}, \tau_{\mathrm{L}}$
- $\tau_{\mathrm{i}}=\gamma_{\mathrm{i}} \cdot \mathrm{R}$
- until now γ_{i} was a Gray code
- 1-wise independent distribution
- We look at at $\tau_{1}, \tau_{2}, \ldots, \tau_{\mathrm{L}-1}, \tau_{\mathrm{L}}$ that are:
- randomly distributed
- 4-wise independent
- 2-wise independent

2-wise independent masks

- Masks of [BR'02] are 1-wise independent

$$
\circ \tau_{i}=\gamma_{i} \cdot \mathrm{R}
$$

2-wise independent masks

- Masks of [BR'02] are 1-wise independent

$$
\circ \tau_{\mathrm{i}}=\gamma_{\mathrm{i}} \cdot \mathrm{R}
$$

- Make it 2-wise independent

$$
\circ \tau_{\mathrm{i}}=\gamma_{\mathrm{i}} \cdot \mathrm{R} \oplus \tilde{R}
$$

2-wise independent masks

- Masks of [BR'02] are 1-wise independent

$$
\begin{aligned}
& \circ \tau_{\mathrm{i}}=\gamma_{\mathrm{i}} \cdot \mathrm{R} \\
& \quad \text { - } \mathrm{m}_{\mathrm{x}} \oplus \tau_{\mathrm{x}}=\mathrm{m}_{\mathrm{y}} \oplus \tau_{\mathrm{y}}
\end{aligned}
$$

- Make it 2-wise independent

$$
\begin{array}{ll}
\circ & \tau_{\mathrm{i}}=\boldsymbol{\gamma}_{\mathrm{i}} \cdot \mathrm{R} \oplus \tilde{\mathrm{R}} \\
& \text { ■ } \mathrm{m}_{\mathrm{x}} \oplus \tau_{\mathrm{x}} \oplus \tilde{\mathrm{R}}=\mathrm{m}_{\mathrm{y}} \oplus \tau_{\mathrm{y}} \oplus \tilde{\mathrm{R}}
\end{array}
$$

- 2-wise independent distribution does improve security

Randomly distributed masks

- Let $\tau_{1}, \tau_{2}, \ldots, \tau_{\mathrm{L}-1}, \tau_{\mathrm{L}}$ be uniform and independent

Randomly distributed masks

- Let $\tau_{1}, \tau_{2}, \ldots, \tau_{\mathrm{L}-1}, \tau_{\mathrm{L}}$ be uniform and independent
- Assume all values of τ_{i} are chosen, but τ_{L}

Randomly distributed masks

- Assume that all available values are paired-up with probability

1 ("for free")

Randomly distributed masks

- For an output collision, there must be 2 values $\{A, B\}$ left unpaired (otherwise, a collision will happen with probability 0)

Randomly distributed masks

- The probability that the value τ_{L} will be sampled such that a pairing does happen is at most $2 / 2^{n}$, hence $q^{2} / 2^{n}$ bound

4-wise independent masks

- Argument is in a way similar to random masks
- look at 2 pairings, 4 masked values
- same bound $4 / 2^{n}$
- BUT condition $L \leq 2^{n / 2}$
- Full proof in the paper

Summary

- Security of PMAC using Gray codes is $\Theta\left(q^{2} \cdot L / 2^{n}\right)$
- Open question: Exact security of PMAC1

Summary

- Security of PMAC using Gray codes is $\Theta\left(q^{2} \cdot \mathrm{~L} / 2^{n}\right)$
- Open question: Exact security of PMAC1
- Using any 4-wise independent masks gives security $\Theta\left(q^{2} / 2^{n}\right)$
- There is 2 -wise distribution of mask with $q^{2} \cdot L / 2^{n}$ security
- Open question: is 3 -wise independence enough for $\mathrm{q}^{2} / 2^{\mathrm{n}}$ security?

Summary

- Security of PMAC using Gray codes is $\Theta\left(q^{2} \cdot \mathrm{~L} / 2^{n}\right)$
- Open question: Exact security of PMAC1
- Using any 4-wise independent masks gives security Θ $\left(q^{2} / 2^{n}\right)$
- There is 2 -wise distribution of mask with $q^{2} \cdot L / 2^{n}$ security
- Open question: is 3 -wise independence enough for $q^{2} / 2^{\mathrm{n}}$ security?

> Thank you!

