The Exact Security of PMAC

Peter Gaži Krzysztof Pietrzak Michal Rybár

IST Austria

Fast Software Encryption 2017

Message Authentication Codes

● Authenticating messages over an insecure channel

• Shared symmetric key K

CBC-MAC [Bellare - Kilian - Rogaway '01]

Encrypted-CBC additionally encrypts the output

ParallelizableMAC [Black - Rogaway '02]

- **Most prominent parallel MAC**
- Some CAESAR candidates inspired by PMAC

ParallelizableMAC [Black - Rogaway '02]

- We work with random permutations
- We focus on the **key-dependent masks** $\tau_1, \tau_2, \ldots, \tau_L$

Pseudo-random Functions (PRFs)

Random Functions

PRF advantage

PRF advantage: Pr[D(**F**_K) = 1] - Pr[D(**R**) = 1]

PRF advantage

PRF advantage: Pr[D(**F**_K) = 1] - Pr[D(**R**) = 1]

• Every PRF is a good MAC

PRF advantage

PRF advantage: Pr[D(**F**_K) = 1] - Pr[D(**R**) = 1]

Every PRF is a good MAC

● Security in terms of **Q messages** of length **L blocks** of size **N-bits**

PRF security of PMAC - results **attacks** q^2 $2ⁿ$ \blacksquare PMAC tightness gap \blacksquare q 2 L **[our attack]** $2ⁿ$ q^2L^2 $2ⁿ$ **proofs**

Reduction to simplified PMAC (sPMAC)

● We can ignore the last message block, **no mask**

Reduction to sPMAC

● [Mau02]: **distinguishing** PMAC from a random function is equivalent to **non-adaptively triggering a collision** on the input to the outer permutation

sPMAC

sPMAC - collisions

 \bullet Goal: collision of tags of M and \tilde{M}

sPMAC - collisions

Collision: equality of sets of values

sPMAC - collisions

sPMAC - collisions

Collision happens here with very small probability 2^{-n+1}

sPMAC - collisions

Our interest is ...

sPMAC target

sPMAC target

• Assume q messages $M_i = (m^i_1, m^i_2, \dots, m^i_L)$

sPMAC target

• Assume q messages $M_i = (m^i_1, m^i_2, \dots, m^i_L)$

 $\max_{M_1,\ldots,M_q}\Pr_{\tau_1,\ldots,\tau_L}\left[\exists i < j\;:\;\left\{m_1^i\oplus\tau_1,\ldots,m_L^i\oplus\tau_L\right\}\right] = \left\{m_1^j\oplus\tau_1,\ldots,m_L^j\oplus\tau_L\right\}\right]$

Masks $\tau_1, \tau_2, ...$ in PMAC [BR'02]

$$
\tau_i = \gamma_i \cdot \mathbf{R}
$$

- **● R uniformly random in {0,1}ⁿ**
- $γ_1, γ_2, γ_3$, ... are canonical **Gray code**
	- \circ for any $k \leq n$, first 2^k elements form a group in

 $GF(2^n)$

sPMAC - 2 messages

Outline

- **•** Motivation
- PMAC
- Collisions and sPMAC

● Results

○ **New attack - exact upper bound on security of PMAC**

○ PMAC security bounds independent of query length L

- \bullet Pick random message blocks m, \tilde{m}
	- \circ $M = m || m || ... || m$
	- \circ $\tilde{M} = \tilde{m} \mid \tilde{m} \mid \dots \mid \tilde{m}$

• Pr[m $\oplus \tau_1 = \widetilde{m} \oplus \tau_2$] = ?

- R = $(\tilde{m} \oplus m) / (\gamma_1 \oplus \gamma_2)$
- Pr[m $\oplus \tau_1 = \tilde{m} \oplus \tau_2$]= 1/2ⁿ

Pr[∃ i: m ⊕ τ_{1} = m̃ ⊕ τ_{1} i[.] $] = L - 1 / 2ⁿ$

● Have a single pairing

- We need to match everything, not just one block
- \bullet $\gamma_1, \gamma_2, \ldots, \gamma_{L-1}, \gamma_L$ are a **group** (remember $\tau_i = \gamma_i \cdot R$)

● **Collision on the output of sPMAC for M and M̃**

- works for L-1 different values of R
	- **■** hence with probability $L-1/2^n$

Moving from 2 to q messages

$$
\max_{M_1,M_2} \Pr_{\tau_1,\ldots,\tau_L} \left[\left\{ m_1 \oplus \tau_1,\ldots,m_L \oplus \tau_L \right\} = \left\{ \widetilde{m_1} \oplus \tau_1,\ldots,\widetilde{m_L} \oplus \tau_L \right\} \right]
$$

 $\bullet \cong L/2^n$ advantage

Moving from 2 to q messages

$$
\max_{M_1,M_2} \Pr_{\tau_1,\dots,\tau_L} \left[\left\{ m_1 \oplus \tau_1,\dots,m_L \oplus \tau_L \right\} = \left\{ \widetilde{m_1} \oplus \tau_1,\dots,\widetilde{m_L} \oplus \tau_L \right\} \right]
$$

 $\bullet \cong L/2^n$ advantage

$$
\max_{M_1,\ldots,M_q}\Pr_{\tau_1,\ldots,\tau_L}\left[\exists i < j\;:\;\left\{m_1^i\oplus\tau_1,\ldots,m_L^i\oplus\tau_L\right\}=\left\{m_1^j\oplus\tau_1,\ldots,m_L^j\oplus\tau_L\right\}\right]
$$

- Random m¹,..., m^q ; M_i = mⁱ||...||mⁱ
- Use union bound

 \circ q² \cdot L / 2ⁿ advantage

But...

- [BR'02] omit $\gamma^n_{0} = 0^n$
	- Ω $\gamma_1, \gamma_2, \ldots, \gamma_{L-1}, \gamma_L$ NOT a group in GF(2ⁿ)
	- attack breaks

But...

- [BR'02] omit $\gamma^n_{0} = 0^n$
	- Ω $\gamma_1, \gamma_2, \ldots, \gamma_{L-1}, \gamma_L$ NOT a group in GF(2ⁿ)
	- attack breaks

- \bullet $\gamma_1, \gamma_2, \ldots, \gamma_{L-1}, \gamma_L$ contains a **coset** of size L/2
	- sufficient for attack

But...

- [BR'02] omit $\gamma^n_{0} = 0^n$
	- Ω $\gamma_1, \gamma_2, \ldots, \gamma_{L-1}, \gamma_L$ NOT a group in GF(2ⁿ)
	- attack breaks

- \bullet $\gamma_1, \gamma_2, \ldots, \gamma_{L-1}, \gamma_L$ contains a **coset** of size L/2
	- sufficient for attack (losing factor 2 in advantage)

• Assume we do not remove γ^n_{α} 0

- Assume we do not remove γ^n_{α} 0
	- \circ For (L-1) / 2 values of R, we have this picture

- **Modify messages**
	- \circ change first L/2 blocks to 0^n

- **Modify messages**
	- \circ change first L/2 blocks to 0^n
- \bullet For (L-1) / 2 values of R, we have this picture

Outline

- **•** Motivation
- PMAC
- Collisions and sPMAC

- Results
	- New attack exact upper bound on security of PMAC
	- **○ PMAC security bounds independent of query length L**

Exploring different mask options

• Recall masks $\tau_1, \tau_2, \ldots, \tau_{L-1}, \tau_L$

 \circ $\tau_i = \gamma_i \cdot R$

 \circ until now γ_i was a Gray code

■ 1-wise independent distribution

- We look at at $\tau_1, \tau_2, \ldots, \tau_{L-1}, \tau_L$ that are:
	- randomly distributed
	- 4-wise independent
	- 2-wise independent

● Masks of [BR'02] are 1-wise independent

 \circ $\tau_i = \gamma_i \cdot R$

● Masks of [BR'02] are 1-wise independent

$$
\circ \quad \tau_{i} = \gamma_{i} \cdot R
$$

● Make it 2-wise independent

$$
\circ \quad \tau_i = \gamma_i \cdot R \oplus \tilde{R}
$$

● Masks of [BR'02] are 1-wise independent

$$
\circ \quad \tau_i = \gamma_i \cdot R
$$

$$
\bullet \quad m_x \oplus \tau_x = m_y \oplus \tau_y
$$

● Make it 2-wise independent

$$
\circ \quad \tau_i = \gamma_i \cdot R \oplus \tilde{R}
$$

$$
\blacksquare \quad m_x \oplus \tau_x \oplus \tilde{R} = m_y \oplus \tau_y \oplus \tilde{R}
$$

● 2-wise independent distribution **does improve security**

• Let $\tau_1, \tau_2, \ldots, \tau_{L-1}, \tau_L$ be uniform and independent

- Let $\tau_1, \tau_2, \ldots, \tau_{L-1}, \tau_L$ be uniform and independent
- Assume all values of τ_{I} are chosen, but τ_{L}

- Assume that all available values are paired-up with probability
	- 1 ("for free")

● For an output collision, there must be 2 values {A,B} left

unpaired (otherwise, a collision will happen with probability 0)

The probability that the value τ , will be sampled such that a

pairing does happen **is at most 2/2ⁿ** , hence **q 2 / 2ⁿ bound**

- Argument is in a way similar to random masks
	- look at 2 pairings, 4 masked values
	- \circ same bound 4 / 2ⁿ
	- \circ BUT condition $L \leq 2^{n/2}$
- Full proof in the paper

Summary

- Security of PMAC using Gray codes is $\Theta(q^2 \cdot L / 2^n)$
- Open question: Exact security of PMAC1

Summary

- Security of PMAC using Gray codes is $\Theta(q^2 \cdot L / 2^n)$
- Open question: Exact security of PMAC1

- Using any 4-wise independent masks gives security $\Theta(q^2 / 2^n)$
- There is 2-wise distribution of mask with q² L/2ⁿ security
- Open question: is 3-wise independence enough for q²/2ⁿ security?

Summary

- Security of PMAC using Gray codes is $\Theta(q^2 \cdot L / 2^n)$
- **Open question: Exact security of PMAC1**

- Using any 4-wise independent masks gives security Θ $(q^2 / 2^n)$
- There is 2-wise distribution of mask with q² L/2ⁿ security
- Open question: is 3-wise independence enough for q²/2ⁿ security?

Thank you!