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Abstract. Real-world applications of authenticated encryption often require the
encryption to be computable online, e.g. to compute the ith block of ciphertext
after having processed the first i blocks of plaintext. A significant line of research
was dedicated to identifying security notions for online authenticated encryption
schemes, that capture various security goals related to real-life scenarios. Fouque,
Joux, Martinet and Valette proposed definitions of privacy and integrity against
adversaries that can query their oracles in a blockwise-adaptive manner, to model
memory-constrained applications. A decade later, Fleischmann, Forler and Lucks
proposed the notion of online nonce misuse-resistant authenticated encryption (OAE)
to capture the security of online authenticated encryption under nonce-reuse.
In this work we investigate the relation between these notions. We first recast the
blockwise notions of Fouque et al. to make them compatible with online authenti-
cated encryption schemes that support headers. We then show that OAE and the
conjunction of the blockwise notions are “almost” equivalent. We identify the missing
property on the side of blockwise notions, and formalize it under the name PR-TAG.
With PR-TAG being just an auxiliary definition, the equivalence we finally show
suggests that OAE and the blockwise model for online authenticated encryption
capture essentially the same notion of security.
Keywords: Symmetric-key Cryptography · Authenticated Encryption · Online En-
cryption · Security Notions

1 Introduction
Authenticated encryption (AE) is a symmetric-key cryptographic primitive that provides
confidentiality (privacy1) and integrity (together with authenticity) protection of processed
data. After its initial recognition and formalization [BN00, BR00, KY01], AE became a
popular research target. In particular, a significant amount of effort has been invested in
the research of security goals for AE, resulting in a number of security notions, e.g. the
nonce-based AE with associated data (AEAD) [Rog02], notions capturing security against
blockwise attacks [FJMV03, FJP04], the nonce misuse-resistant AE (MRAE) [RS06],
online nonce misuse-resistant AE (OAE) [FFL12], robust AE (RAE) [HKR15], online AE
(OAE2) [HRRV15], or security notions for streaming channels [FGMP15]. These notions
capture security of AE in the context of diverse usage scenarios and adversarial powers.
The recent CAESAR competition [Ber] has been both an evidence of the popularity of AE
and a catalyst for new research activity.

Online Computable AE. A majority of existing AE schemes internally parse the plaintext
into smaller, fixed-size blocks during encryption, and likewise produce the ciphertext as

1In this paper, we use the word privacy interchangeably with confidentiality.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2016-09-01, Accepted: 2016-11-01, Published: 2017-02-03

https://doi.org/10.13154/tosc.v2016.i2.125-144
mailto:guillaume.endignoux@epfl.ch,damian.vizar@epfl.ch
http://creativecommons.org/licenses/by/4.0/


126 Linking OAE and Blockwise Attack Models

a sequence of such blocks. In many of these schemes (including GCM [MV04] and many
of the CAESAR candidates, e.g. [ABL+, IMG+, BDP+, KR]), the encryption algorithm
additionally computes the ciphertext blocks in an online manner, i.e. the ith block of
ciphertext can be computed and written immediately after the first i blocks of plaintext
were processed. We call AE schemes with this property online AE schemes.

The onlineness of encryption is necessary in constrained applications, where it is of
importance to compute the ciphertext blocks with constant latency (e.g. streaming), or
where a constant memory implementation is required. Online encryption algorithms are
also frequent in AE schemes targeted at high performance.

Blockwise-Adaptive Attack Models. While onlineness is useful as a practical feature,
it can impact security. Joux, Martinet and Valette observed that if an application, such
as a smart card, outputs a ciphertext block each time it is fed a plaintext block, then
a potential attacker gets more power: it can adaptively construct its queries block-by-
block [JMV02]. They introduced the blockwise-adaptive adversaries and exhibited efficient
blockwise-adaptive attacks on real-world schemes which were originally proven secure in
models that consider the plaintexts/ciphertexts to be atomic.

A year later, Fouque, Joux, Martinet and Valette (FJMV) proposed security notions for
privacy (dubbed IND-BCPA and IND-BCCA) and integrity (dubbed B-INT-CTXT) of
randomized AE schemes against blockwise-adaptive adversaries [FJMV03]. Their privacy
notions were defined using the left-or-right style of indistinguishability for symmetric key
encryption [BDJR97]. Later on, Fouque, Joux and Poupard extended the framework of
blockwise security notions for privacy to model the type of adversarial access, distinguishing
between the cases where the adversary can query an infinite stream of blocks in a single
message, where it can encrypt several messages sequentially, and where it can encrypt
several messages concurrently [FJP04]. In the same year, Boldyreva and Taesombut
proposed a relaxed version of the original IND-BCCA notion [BT04]. In 2007, Bard
proposed a new framework for studying security of online encryption schemes against
blockwise-adaptive attacks [Bar07]. However, this framework treated privacy of encryption-
only schemes, but not integrity.

Online Authenticated Encryption. The notion of AEAD is perhaps the most popular
design target for AE. The popularity stems from its simplicity: it allows one to construct
simple, efficient, online AE schemes with deterministic encryption algorithms, such that
they only require a unique initialization vector (a.k.a. a nonce) to be used with every
encryption to be secure. Even though this simple requirement appears to be rather
achievable, Rogaway and Shrimpton pointed out that if violated, it will lead to a complete
break of numerous existing AEAD schemes. They proposed the MRAE notion to mitigate
the impact of nonce repetition [RS06]. An MRAE scheme will only reveal unavoidable
information if nonces get repeated: the complete repetition of all inputs. However, an
inherent property of any MRAE scheme is that it cannot be online, as every ciphertext bit
must depend on every bit of plaintext.

Fleischmann, Forler and Lucks (FFL) sought to overcome this functional limitation
by proposing a security notion for schemes that are online, yet still retain some (lower)
level of resistance in case of nonce-misuse [FFL12]. Their OAE notion combines the
usual definition for integrity of ciphertexts with an extended version of the notion of
online ciphers [BBKN12]. Another particularity of OAE is that it conflates nonce and
associated data (previously separate inputs of encryption and decryption algorithms) into a
single input called “header”. The notion was quickly targeted by several designs [AFF+15,
ABL+13]. FFL assert that the security guarantees of OAE under nonce misuse offer
meaningful protection, and that these guarantees are the best possible in the given setting.
Both these claims have been disputed, and especially the former has been a subject
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of controversy [HRRV15, AFL+], leaving a question mark over the usefulness of online
encryption in presence of nonce misuse.

Deflating the Notion-Space. In this paper, we investigate the relations between the
blockwise-adaptive notions for online AE by FJMV and the notion of OAE by FFL. Our
motivation is twofold; first, the controversial results about nonce misuse-resistance of any
online AE invite to investigate other security properties captured by OAE, and second,
we believe that it is of importance to reduce the redundancy among the numerous security
notions for online AE, by determining the relations between these notions.

However, a direct comparison of the notions of FFL and FJMV is not possible. The
notions by FJMV are defined for randomized AE schemes with no support for headers,
while the OAE notion works with deterministic AE schemes that do support headers. We
therefore recast the notions of FJMV into the setting of deterministic online AE schemes
and define what we believe to be their most natural extension. We then compare these
restated blockwise notions (dubbed B-INT-CTXT and D-LORS-BCPA in this paper)
with OAE. We first show a rather intuitive result: that OAE implies both B-INT-CTXT
and D-LORS-BCPA. We then show, by means of a counterexample, that the conjunction
of the latter two notions does not imply OAE. We identify the property used for the
counterexample as a minor problem related to the privacy of authentication tags, and
formalize the missing property in an auxiliary notion dubbed PR-TAG. We finally show
the equivalence between OAE and the conjunction of B-INT-CTXT, D-LORS-BCPA
and PR-TAG.

Related Work. Fouque, Joux and Poupard (FJP) show that in case of deterministic
online ciphers (as defined in [BBKN12]), the blockwise-adaptive security notion and the
conventional security notion are equivalent by a quadratic reduction [FJP04]. Our result
resembles theirs in the complexity of the reduction, and the two results are closely related.
However, their analysis deals only with (privacy of) plain online ciphers, while our work
establishes relations between notions for authenticated encryption. In addition, FJP
analyze the relation between standard and blockwise-adaptive versions of the same notion,
while our analysis links two notions of different nature (left-or-right vs indistinguishability
from a random primitive).

Our Contribution. The main result of our paper is the equivalence between OAE and the
adapted version of the blockwise-adaptive AE notions of FJMV, extended with PR-TAG.
Considering that PR-TAG captures a property of the authentication tag which is not
related to adversarial blockwise adaptability, this equivalence points out that the security
guarantees captured by the notion of OAE are essentially equivalent with those captured
by the notion of FJMV.

Organization of the Paper. In Section 2, we give a few preliminary notations and results.
In Section 3 we give the definition of OAE and the adapted definitions of B-INT-CTXT
and D-LORS-BCPA. In Section 4 we establish the relations between the notions.

2 Preliminaries
We define the notations and recall some concepts that are referred to in the paper.
Throughout the paper, we denote by {0, 1}∗ the set of finite strings, including the empty
string ε. For some positive integer n, we denote by Bn = {0, 1}n the set of n-bit blocks and
by B∗n ⊂ {0, 1}∗ the set of finite strings whose length is a multiple of n. We often call such
n the block length. Strings from B∗n naturally split into blocks: givenM ∈ B∗n, we denote by
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Figure 1: Tree representation of an online permutation and computation of C = πT (M).

M [i] ∈ Bn the ith block of M (starting at index 1), and we let M [i...j] = M [i]‖ . . . ‖M [j],
where ‖ is the concatenation operator. We let ⊥ denote a distinguished symbol that
signifies “undefined”.

2.1 Online permutations
We define the following functions on B∗n: the block count BlCount : B∗n → N as
BlCount(M) = p for all M ∈ Bpn, the longest common prefix between two strings
LCPn : B∗n×B∗n → B∗n defined by LCPn(M1,M2) = M whereM1 = M ||M ′1,M2 = M ||M ′2
and M ′1 and M ′2 have no common prefix (i.e. M ′1 = ε or M ′2 = ε or M ′1[1] 6= M ′2[1]), and
the length of the longest common prefix LLCPn : B∗n ×B∗n → N = BlCount ◦ LCPn.

Online permutations have been extensively studied in [BBKN12], we recall some
relevant properties here. We denote by Perm[n] the set of permutations of Bn. We
denote by OPerm[n] the set of online, length-preserving permutations of B∗n, i.e. for all
π ∈ OPerm[n] we have that (online) for allM1,M2 ∈ B∗n, the first LLCPn(M1,M2) blocks
of π(M1) and π(M2) are identical, (length-preserving), for allM ∈ B∗n, BlCount(π(M)) =
BlCount(M). We note that OPerm[n] is stable by the composition operation ◦ and
that LLCPn is stable by composition with an online permutation, i.e. ∀π ∈ OPerm[n],
∀M1,M2 ∈ B∗n, LLCPn(π(M1), π(M2)) = LLCPn(M1,M2).

Canonical tree representation. We denote by Tree[n] the set of infinite 2n-ary trees,
such that every tree T ∈ Tree[n] verifies the following properties: each node N of T is
labeled with a permutation T [N ] ∈ Perm[n], and the 2n (outgoing) edges starting from a
node N are each labeled with a distinct x ∈ Bn.

We recall that there is a bijection T 7→ πT between Tree[n] and OPerm[n]. Given a
tree T ∈ Tree[n], its image πT can be obtained by traversing the tree. More precisely, for
any M ∈ B∗n we evaluate C = πT (M) as follows. We first set i = 1 and the root of T as
the current node N1, and then for each input block M [i] we use the permutation T [Ni] of
the current node to compute C[i] = T [Ni](M [i]) and follow the edge labeled with M [i] to
move to the next node Ni+1 (Figure 1).

Given a permutation π ∈ OPerm[n] and a message M ∈ B∗n with l = BlCount(M),
we denote by π[M ] ∈ Perm[n] the permutation defined by π[M ] : B 7→ π(M ||B)[l+ 1]. In
other words, if T is the labeled tree associated to π, then π[M ] is the label of the node
reached by following the edges M [1], ...,M [l] starting from the root of T . For example, on
Figure 1, we identify π[ε] = T [N1], π[M [1]] = T [N2] and π[M [1..2]] = T [N3].

We note that while OPerm[n] is an infinite set, it can be sampled “uniformly” thanks to
the canonical tree representation and lazy sampling. To sample a random π ∈ OPerm[n],
we start with an unlabeled tree, and as we walk through the tree according to the incoming
queries, we lazily sample the labeling permutations that are needed. With the example of
Figure 1, computing πT (M [1..2]) requires to sample T [N1] and T [N2].
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2.2 Online authenticated encryption schemes
Given a tag-length parameter τ , we let T = Bτ and call it the tag space. We will denote by
H a non-empty set called the header space. As a practical example, H can be {0, 1}∗ or Bh
for some h. We let C = B∗n × T and call it the ciphertext space, i.e. a ciphertext logically
consists of a ciphertext core – that comprises encrypted blocks – and a tag. Hence we
decompose ciphertexts with the canonical projections Core : C → B∗n and Tag : C → T .

An online authenticated encryption scheme is a triplet Π = (K, E ,D), where K is a
a finite key space, E : K × H × B∗n → C is a deterministic encryption algorithm, and
D : K ×H× C → B∗n ∪ {⊥} is a deterministic decryption algorithm. T is the tag space of
Π, H is its header space and n is its block size. We require that Π is correct, i.e. for all
K ∈ K, H ∈ H and M ∈ B∗n, we have D(K,H, E(K,H,M)) = M . We further require that
the encryption is online, i.e. for all K ∈ K and H ∈ H, Core ◦ E(K,H, ·) ∈ OPerm[n],
or informally that the i-th block of the ciphertext core only depends on the first i blocks
of the plaintext.

2.3 Security Definitions
We formalize security with help of code-based games proposed by [BR04]. A game GΠ for
a scheme Π consists of an Initialize procedure, procedures that model oracle queries and
a Finalize procedure. All these procedures are defined in terms of the scheme Π.

When we say that an adversary A plays the game GΠ, we mean the sequential execution
of: first the Initialize procedure, then the algorithm of the adversary using the oracle
procedures defined by GΠ, and last the Finalize procedure using as input the final output
of the adversary. The result returned by the Finalize procedure is called the output of
this execution. For some games, we do not specify the Finalize procedure: in that case it
is the trivial procedure that forwards the output of the adversary. For an adversary A ,
we denote by Pr[A GΠ ⇒ x] the probability that when A plays the game G instantiated
with the scheme Π, the output of the Finalize procedure is x.

Two games G and G′ are said to be identical until bad if they both contain a statement
bad← true; such that their code is identical until this statement is executed. We recall
the fundamental lemma of game playing.

Lemma 1 (Fundamental lemma of game playing [BR04]). Let G and G′ be two games
identical until bad. Then for any adversary A and any output x:

Pr[A GΠ ⇒ x]− Pr[A G′Π ⇒ x] ≤ Pr[A GΠ sets bad]

Randomized algorithms We denote by x $← S the sampling of an element x from a set
S with uniform distribution. We note that we assume the use of lazy sampling when the
set S is “large” (e.g. Perm[n]) or infinite endowed with a natural definition of uniform
distribution (e.g. OPerm[n]), and for statements of the form for a ∈ A do xa

$← S when
A is a “large” set. All such samplings in a single algorithm are always independent.

Resource-parametrized adversarial advantage For each security property Prop, we
define the advantage of an adversary A in attacking Prop of a scheme Π. This is a
real number that we denote by AdvProp

Π (A ). To capture the security of a scheme Π
for the notion Prop, we define the maximum advantage that can be achieved by any
adversary A that is only limited in its resources. These resources are always: t, the time
complexity of A ; q, the number of multi-block messages queried by A ; b, the total number
of blocks queried by A ; µ, the maximum number of blocks in a message queried by A .
An adversary that uses at most these resources is called a (t, q, b, µ)-adversary . We denote
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Game OAE-REALΠ

proc Initialize
K

$← K
proc Enc(H,M)

return E(K,H,M)
proc Dec(H,C)

return D(K,H,C)

Game OAE-IDEALΠ

proc Initialize
for H ∈ H do πH

$← OPerm[n]
for (H,M) ∈ H ×B∗n do TH,M

$← T
proc Enc(H,M)

return (πH(M), TH,M )
proc Dec(H,C)

return ⊥

Figure 2: Games OAE-REALΠ (left) and OAE-IDEALΠ (right) used to define OAE.

by AdvProp
Π (t, q, b, µ) the maximum of AdvProp

Π (A ) over (t, q, b, µ)-adversaries A . We
further say that a scheme Π is (t, q, b, µ; ε)-secure for Prop if AdvProp

Π (t, q, b, µ) ≤ ε.

3 Existing security notions and their variants
In this section, we present the existing security notions investigated in this paper, namely
the recent notion of misuse-resistant online authenticated encryption [FFL12], and several
notions of blockwise privacy and integrity, that were proposed a decade earlier [FJMV03,
FJP04]. We adapt the latter definitions to the syntax of online authenticated encryption
schemes as proposed in [FFL12].

3.1 Misuse-resistant online authenticated encryption
The notion of (nonce) misuse-resistant online authenticated encryption was given by
Fleischmann et al. [FFL12]. Hoang et al. pointed out that the original definition was
incomplete and reformulated it [HRRV15]. We retain the latter version of the notion.
Roughly speaking, a scheme Π = (K, E ,D) is OAE secure if the outputs of E resemble core
ciphertexts computed by a random online permutation sampled independently for each
header, followed by random tags sampled independently for each header-message pair, and
if it is simultaneously hard to guess inputs to D that decrypt correctly. This is formalized
in Definition 1.

Definition 1 (OAE [FFL12]). Consider the games OAE-REAL and OAE-IDEAL
defined in Figure 2. For an online authenticated encryption scheme Π = (K, E ,D), and an
adversary A that never queries the Dec oracle with a result of a previous Enc query, we
define the OAE advantage of A against Π as:

AdvOAE
Π (A ) = Pr[A OAE-REALΠ ⇒ 1]− Pr[A OAE-IDEALΠ ⇒ 1].

3.2 Blockwise integrity of ciphertexts
FJMV proposed a notion of integrity in the context of a blockwise chosen plaintext
attack [FJMV03]. Compared to the classical integrity of ciphertexts notion [BN00, KY01],
the adversary is given a blockwise encryption oracle along with a standard decryption
oracle, and wins if it can produce an existential forgery.

In its original form, the notion of FJMV is defined for randomized schemes that do not
support headers. We therefore recast the integrity notion of FJMV to make it compatible
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Game B-INT-CTXTΠ

proc Initialize
win← 0
K

$← K
X ← ∅
H̃ ← ⊥
M̃ ← ε
j ← 0

proc Enc(H,P ) .P ∈ Bn
if H̃ = ⊥ then H̃ ← H
M̃ ← M̃ ||P
C ← Core(E(K, H̃, M̃))
j ← j + 1
return C[j]

proc GetTag(H)
if H̃ = ⊥ then H̃ ← H
C ← E(K, H̃, M̃)
X ← X ∪ {(H̃, C)}
H̃ ← ⊥
M̃ ← ε
j ← 0
return Tag(C)

proc Dec(H,C)
M ← D(K,H,C)
if (H,C) ∈ X then M ← ⊥
if M 6= ⊥ then win← 1
return M

proc Finalize()
return win

Figure 3: Game B-INT-CTXTΠ used to define blockwise integrity of ciphertexts.

with deterministic online AE schemes that take a header along with the message to encrypt
(or decrypt). We give in Definition 2 what we believe to be the natural extension of the
original notion of FJMV.

Definition 2 (B-INT-CTXT). Consider the game B-INT-CTXT defined in Figure 3.
For an encryption scheme Π = (K, E ,D), we define the B-INT-CTXT advantage of an
adversary A against Π as:

AdvB-INT-CTXT
Π (A ) = Pr[A B-INT-CTXTΠ ⇒ 1].

The Enc and the GetTag queries together form a complete blockwise encryption
oracle. The current adversarial plaintext is encrypted and accumulated block-by-block
in the variable M̃ through Enc queries, while a GetTag query returns the tag for the
current (possibly empty) plaintext. The first if-statement in a Dec query makes sure that
the adversarial forgery attempt is valid.

3.3 Blockwise privacy
FJMV proposed a notion of indistinguishability of ciphertetxts in the context of a blockwise
chosen plaintext attack [FJMV03]. The adversary was given more adaptive power: it was
allowed to get the encryption of each block before requesting the encryption of the next
block. The definition of FMJV uses the left-or-right style of indistinguishability, common
for early notions of privacy [BDJR97, BN00]. The definition did not, however, explicitly
state whether it allowed the adversary to query an infinite stream of blocks only, or if
starting new blockwise queries was allowed. Later, Fouque, Joux and Poupard described
several versions of the blockwise indistinguishability notion, that allowed for both infinite
streams of blocks and multiple queries, further distinguishing between sequential and
concurrent execution of multiple queries [FMP03, FJP04]. We focus on the version that
allows to make multiple queries in a sequential manner that we call LORS-BCPA (as
in [FJP04]).

Recasting LORS-BCPA As before, we attempt to recast the original definition for
randomized encryption algorithms to make it compatible with deterministic online au-
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Adversary Ar

for i ∈ {0, ..., 2} do Mi
$← Bn

. such that Mi are distinct
Ca ← LR(0H,M0,M1)
Cb ← LR(0H,M0,M2)
output Ca 6= Cb

Adversary A ′r

for i ∈ {0, ..., 6} do Mi
$← Bn

. such that Mi are distinct
Ca ← LR(0H,M0||M1,M2||M3)
Cb ← LR(0H,M0||M4,M5||M6)
output Ca[0] 6= Cb[0]

Figure 4: Header-repeating adversaries against blockwise left-or-right notions.

thenticated encryption schemes that take a header alongside a plaintext as input. This
proves to be a non-trivial task because of the left-or-right flavour of the indistinguishability.
Allowing the adversary to issue encryption queries with no restrictions would allow it
to trivially break any (not just online) deterministic AE scheme using two queries with
the same header and repeating a message only on the left side. Fixing the header turns
the underlying cipher in a permutation, so two ciphertexts are equal if and only if the
corresponding plaintexts are equal. Figure 4 shows an example of such an attacker Ar,
where 0H is an arbitrary element of the header space H.

Such attacks can be thwarted by forbidding the adversary to repeat headers in its
queries. However, imposing the non-repetition of headers seems to be an unnecessarily
limiting constraint, that prevents more than just the unavoidable trivial attacks. In case
of deterministic online AE schemes, it is the online property itself that allows trivial
attacks to be mounted. An example of a subtler attack that leverages the online property
is described in Figure 4; adversary A ′r only repeats the first block on the left side, and
leverages the online property of the scheme.

We propose to restrict the LORS-BCPA notion to a class of adversaries specified
in Definition 3 whose queries verify certain conditions that avoid trivial attacks, but
can for example repeat headers. We will call adversaries that respect these conditions
online-respecting adversaries.

Definition 3 (Online-respecting adversary). Consider an adversary A that plays the
LORS-BCPA game and queries a sequence of multi-block messages ((Hi,M0,i,M1,i))i ∈
(H×B∗n ×B∗n)∗ to the LR oracle. We say that A is online-respecting if for all pairs of
indices (i, j) such that Hi = Hj , we have LLCPn(M0,i,M0,j) = LLCPn(M1,i,M1,j).

In other words, if two left messages requested with the same header share a common
prefix of l blocks, then the associated right messages must also share a common prefix of
exactly l blocks, and conversely. The online-respecting property can be rephrased using
online permutations, as in Proposition 1.

Proposition 1. Consider an adversary A that plays the LORS-BCPA game and queries
a sequence of multi-block messages ((Hi,M0,i,M1,i))i ∈ (H×B∗n ×B∗n)∗ to the LR oracle.
Then A is online-respecting if and only if for every header H ∈ H there exists an
online-permutation σH ∈ OPerm[n] such that for every query (indexed by i) we have
M1,i = σHi

(M0,i).

Proof. If the queries respect this condition, the adversary is online-respecting because for
indices (i, j) such that Hi = Hj = H, the length of common prefixes verify the equality
LLCPn(M1,i,M1,j) = LLCPn(σH(M0,i), σH(M0,j)) = LLCPn(M0,i,M0,j).

Conversely, if the adversary is online-respecting, let’s show that suitable online-
permutations σH exist. For each header H ∈ H and each message M ∈ B∗n, we identify
constraints that the permutation σH [M ] must satisfy. Let l = BlCount(M) and SH,M be
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Game LORS-BCPAΠ

proc Initialize
K

$← K
b

$← {0, 1}
H̃ ← ⊥
M̃ ← ε
j ← 0

proc LR(H,P0, P1) .P0, P1 ∈ Bn
if H̃ = ⊥ then H̃ ← H
M̃ ← M̃ ||Pb
C ← Core(E(K, H̃, M̃))
j ← j + 1
return C[j]

proc GetTag(H)
if H̃ = ⊥ then H̃ ← H
T ← Tag(E(K, H̃, M̃))
H̃ ← ⊥
M̃ ← ε
j ← 0
return T

proc Finalize(β)
return β = b

Figure 5: Game LORS-BCPAΠ used to define blockwise privacy.

the set of queries i such that Hi = H and M is a strict prefix of M0,i. Then by the online-
respecting property, for all i, j ∈ SH,M , M0,i[l+ 1] = M0,j [l+ 1]⇔M1,i[l+ 1] = M1,j [l+ 1],
because M0,i[1..l] = M0,j [1..l] = M . This implies that there exists a bijection (i.e. a per-
mutation) σH [M ] such that for all i ∈ SH,M , M1,i[l + 1] = σH [M ](M0,i[l + 1]). With such
construction of the nodes σH [M ], the online permutations σH verifyM1,i = σHi(M0,i).

We finally define the D-LORS-BCPA (a.k.a. deterministic-LORS-BCPA) notion for
deterministic online AE schemes that considers online-respecting adversaries in Definition 4.

Definition 4 (D-LORS-BCPA). Consider the game LORS-BCPA defined in Figure 5.
For an encryption scheme Π = (K, E ,D), we define the D-LORS-BCPA advantage of an
online-respecting adversary A against Π as:

AdvD-LORS-BCPA
Π (A ) = 2 · Pr[A LORS-BCPAΠ ⇒ 1]− 1.

Intuitively, the LORS-BCPA security game preserves the left-or-right character of
the original notions by FJMV and an adversary can construct queries adaptively, block-
by-block. The D-LORS-BCPA notion then additionally requires the adversary to be
online-respecting, which is necessary to prevent trivial victories against deterministic
schemes.
Remark 1. FJMV have shown that blockwise security notions are stronger than non-
blockwise ones in the case of randomized encryption [FJP04]. However, they noted that in
the case of deterministic schemes with online-respecting adversaries, a blockwise encryption
oracle can be straightforwardly simulated using an atomic encryption oracle by keeping
a variable like M̃ in Figure 5. This reduction is, however, not tight but quadratic, as
it grows the number of adaptively queried blocks m to

∑m
i=1 = m(m+1)

2 non-adaptively
queried blocks. Hence, studying blockwise security notions is still relevant to obtain tighter
relations.

4 Relations between blockwise notions and OAE
In this section, we first prove that OAE security implies D-LORS-BCPA and B-INT-
CTXT security, up to a quadratic increase in resources. We then show that the converse
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Adversary B1

b
$← {0, 1}

H̃ ← ⊥
M̃ ← ε
j ← 0
Run A1
On query LR(H,P0, P1) of A1

if H̃ = ⊥ then H̃ ← H
M̃ ← M̃ ||Pb
C ← Core(Enc(H̃, M̃))
j ← j + 1
return C[j] to A1

On query GetTag(H) of A1
if H̃ = ⊥ then H̃ ← H
T ← Tag(Enc(H̃, M̃))
H̃ ← ⊥
M̃ ← ε
j ← 0
return T to A1

On Finalize(β) of A1
output β = b

Figure 6: Adversary B1 for the proof of Theorem 1.

is not true, and propose a new auxiliary notion called PR-TAG. Finally, we show that
there is an equivalence between OAE security and the conjunction of D-LORS-BCPA,
B-INT-CTXT and PR-TAG security.

4.1 Separating OAE and Blockwise Notions
OAE → D-LORS-BCPA

Theorem 1. Let Π be an online authenticated encryption scheme. Then

AdvD-LORS-BCPA
Π (t, q, b, µ) ≤ 2 ·AdvOAE

Π (t′, q′, b′, µ)

where t′ = t+ c · q′, q′ = q + b, b′ = b+ min
(
q · µ(µ+1)

2 , b(b+1)
2

)
for a positive constant c.

Proof. Let A1 be an online-respecting (t, q, b, µ)-D-LORS-BCPA adversary against scheme
Π. We construct adversary B1 as shown on Figure 6. The number of messages queried by
B1 is at most q′, because at most b messages are queried via LR, and at most q messages
are queried via GetTag. The time complexity of B1 is t′ = t+ c · q′ because a constant
time is spent for each query of B1. The number of blocks queried by B1 is at most b′
because at most b blocks are queried via GetTag and for each message query, at most∑µ
i=1 i blocks are queried via LR, and in total at most

∑b
i=1 i blocks are queried via LR.

The maximum number of blocks in a single query remains unchanged. We then have the
following relations between the advantages of A1 and B1.

AdvOAE
Π (B1) = Pr[B1

OAE-REALΠ ⇒ 1]− Pr[B1
OAE-IDEALΠ ⇒ 1]

= Pr[B1
OAE-REALΠ ⇒ 1]− 1

2

= Pr[A1
LORS-BCPAΠ ⇒ 1]− 1

2

= 1
2AdvD-LORS-BCPA

Π (A1)

The first equality comes from the fact that if B1 interacts with the OAE-IDEAL game,
the distribution of the replies of A1’s LR oracle is independent from b. Indeed, A1 is
online-respecting so by Proposition 1, the left and right queries are identical up to online-
permutations σH , and by Lemma 5, the distribution of the replies is independent from
b.
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Adversary B2

found← 0
X ← ∅
H̃ ← ⊥
M̃ ← ε
j ← 0
Run A2
On query Enc(H,P ) of A2

if H̃ = ⊥ then H̃ ← H
M̃ ← M̃ ||P
C ← Core(Enc(H̃, M̃))
j ← j + 1
return C[j] to A2

On query GetTag(H) of A2
if H̃ = ⊥ then H̃ ← H
C ← Enc(H̃, M̃)
X ← X ∪ {(H̃, C)}
H̃ ← ⊥
M̃ ← ε
j ← 0
return Tag(C) to A2

On query Dec(H,C) of A2
M ← Dec(H,C)
if (H,C) ∈ X then M ← ⊥
if M 6= ⊥ then found← 1
return M to A2

On Finalize() of A2
output found

Figure 7: Adversary B2 for the proof of Theorem 2.

The second equality comes from the construction of adversary B1, that perfectly
simulates the LORS-BCPA game when the underlying oracle is the OAE-REAL game.

OAE → B-INT-CTXT

Theorem 2. Let Π be an online authenticated encryption scheme. Then

AdvB-INT-CTXT
Π (t, q, b, µ) ≤ AdvOAE

Π (t′, q′, b′, µ)

where t′ = t+ c · q′, q′ = q + b, b′ = b+ min
(
q · µ(µ+1)

2 , b(b+1)
2

)
for a positive constant c.

Proof. Let A2 be a (t, q, b, µ)-B-INT-CTXT adversary against scheme Π. We construct
adversary B2 as shown on Figure 7. The number of messages queried by B2 is at most
q′, because at most b messages are queried via Enc, and at most q messages are queried
via GetTag and Dec. The time complexity of B2 is t′ = t + c · q′ because a constant
time is spent for each query of B2. The number of blocks queried by B2 is at most b′
because at most b blocks are queried via GetTag and Dec and for each message query, at
most

∑µ
i=1 i blocks are queried via Enc, and in total at most

∑b
i=1 i blocks are queried

via Enc. The maximum number of blocks in a single query remains unchanged. We then
have the following relations between the advantages of A2 and B2.

AdvOAE
Π (B2) = Pr[B2

OAE-REALΠ ⇒ 1]− Pr[B2
OAE-IDEALΠ ⇒ 1]

= Pr[A2
B-INT-CTXTΠ ⇒ 1]− 0

= AdvB-INT-CTXT
Π (A2)

In the case of the OAE-IDEAL game, the adversary B2 always outputs 0. In the case of
the OAE-REAL game, adversary B2 outputs 1 if and only if adversary A2 forges a valid
ciphertext-tag pair.

D-LORS-BCPA + B-INT-CTXT 6→ OAE

Proposition 2. If there exists an online authenticated encryption scheme Π which is
D-LORS-BCPA and B-INT-CTXT secure, then there exists a scheme Π′ which is
D-LORS-BCPA and B-INT-CTXT secure but not OAE secure.
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Algorithm E ′(K,H,M)

C ← E(K,H,M)
T ′ ← Tag(C)||1
return (Core(C), T ′)

Algorithm D′(K,H,C)

T ||b← Tag(C)
if b 6= 1 then return ⊥
C ′ ← (Core(C), T )
return D(K,H,C ′)

Adversary A3

M
$← Bn

T ||β ← Tag(Enc(H,M))
output β

Figure 8: Definitions of Π′ (left and middle) and adversary A3 (right) for the proof of
Proposition 2.

Proof. Let Π = (K, E ,D) be a D-LORS-BCPA and B-INT-CTXT secure scheme, with
tag-length τ . We will construct a scheme Π′ = (K, E ′,D′) with tag-length τ + 1 that is
D-LORS-BCPA and B-INT-CTXT secure, but not OAE secure.

The idea is to append a constant bit to the tag, so that it is easily distinguish-
able from a random string (Figure 8). Clearly, appending this constant bit does not
change the D-LORS-BCPA nor B-INT-CTXT advantages. However, adversary A3
(Figure 8) can obtain a constant advantage over OAE by making a single query. The
OAE advantage of adversary A3 is equal to 1

2 since β is always equal to 1 in the OAE-
REAL game, and is uniformly distributed in the OAE-IDEAL game, so AdvOAE

Π′ (A3) =
Pr[A3

OAE-REALΠ′ ⇒ 1]− Pr[A3
OAE-IDEALΠ′ ⇒ 1] = 1− 1

2 = 1
2 .

4.2 Towards an equivalence result
As shown in Proposition 2, D-LORS-BCPA security and B-INT-CTXT security combined
are not sufficient to provide OAE security. As suggested by the proof of Proposition 2,
this comes from the fact that the tag does not have to be uniformly distributed to provide
D-LORS-BCPA and B-INT-CTXT. We define a new auxiliary notion called PR-TAG
that captures the pseudo-randomness of the tag in a chosen plaintext attack, and we show
an equivalence result with OAE.

Pseudo-random tag We introduce the PR-TAG (pseudo-random tag) notion a.k.a.
indistinguishability from a random tag. More precisely, an adversary wins the PR-TAG
game if it can distinguish real ciphertexts from pairs composed of the real core ciphertext
and a random tag. This is captured in Definition 5.

Definition 5 (PR-TAG). Consider the games PR-TAG-REAL and PR-TAG-IDEAL
defined in Figure 9. For an online authenticated encryption scheme Π = (K, E ,D), we
define the PR-TAG advantage of an adversary A against Π as:

AdvPR-TAG
Π (A ) = Pr[A PR-TAG-REALΠ ⇒ 1]− Pr[A PR-TAG-IDEALΠ ⇒ 1]

OAE → PR-TAG We first prove that OAE security implies PR-TAG security, up to
twice the advantage.

Theorem 3. Let Π be an online authenticated encryption scheme. Then

AdvPR-TAG
Π (t, q, b, µ) ≤ 2 ·AdvOAE

Π (t′, q, b, µ)

where t′ = t+ c · q for a positive constant c.



Guillaume Endignoux and Damian Vizár 137

Game PR-TAG-REALΠ

proc Initialize
K

$← K
proc Enc(H,M)

return E(K,H,M)

Game PR-TAG-IDEALΠ

proc Initialize
K

$← K
for (H,M) ∈ H ×B∗n do TH,M

$← T
proc Enc(H,M)

C ← Core(E(K,H,M))
return (C, TH,M )

Figure 9: Games PR-TAG-REALΠ (left) and PR-TAG-IDEALΠ (right) used to define
PR-TAG.

Adversary B4

for (H,M) ∈ H ×B∗n do TH,M
$← T

Run A4

On query Enc(H,M) of A4
C ← Core(Enc(H,M))
return (C, TH,M ) to A4

On Finalize(β) of A4
output 1− β

Figure 10: Adversary B4 for the proof of Theorem 3.

Proof. Let A4 be a (t, q, b, µ)-PR-TAG adversary against a scheme Π. We note that
since all the oracles available to PR-TAG adversaries are contained in the OAE-REAL
and OAE-IDEAL games, we can also view A4 as an OAE adversary. We insert the
OAE-IDEAL game in the expression of the PR-TAG advantage of A4 and we will bound
each half of this new expression:

AdvPR-TAG
Π (A4) = Pr[A4

PR-TAG-REALΠ ⇒ 1]− Pr[A4
PR-TAG-IDEALΠ ⇒ 1]

= Pr[A4
PR-TAG-REALΠ ⇒ 1]− Pr[A4

OAE-IDEALΠ ⇒ 1]

+ Pr[A4
OAE-IDEALΠ ⇒ 1]− Pr[A4

PR-TAG-IDEALΠ ⇒ 1].

First, we note that by construction, the game OAE-REAL perfectly simulates the game
PR-TAG-REAL for adversaries that only use the Enc oracle, such as adversary A4,
which means that Pr[A4

PR-TAG-REALΠ ⇒ 1] = Pr[A4
OAE-REALΠ ⇒ 1] and we obtain

Pr[A4
PR-TAG-REALΠ ⇒ 1]− Pr[A4

OAE-IDEALΠ ⇒ 1] ≤ AdvOAE
Π (t′, q, b, µ).

Second, given the PR-TAG adversary A4, we construct the OAE adversary B4 as shown
on Figure 10. The time complexity of B4 is t′ = t+ c · q because a constant time is spent
for each query of A4. The number of message queries and the number of block queries
remain unchanged.

By construction, adversary B4 perfectly simulates game PR-TAG-IDEAL when the
underlying game is OAE-REAL. Note that the output bit of adversary A4 is flipped by
adversary B4, i.e. Pr[A4

PR-TAG-IDEALΠ ⇒ 1] = 1− Pr[B4
OAE-REALΠ ⇒ 1].

When the underlying game is OAE-IDEAL, adversary B4 gives answers to A4 that
are identically distributed to the OAE-IDEAL game, because B4 redundantly replaces a
random tag that was independent from the random core by another independent random
tag, and thus Pr[A4

OAE-IDEALΠ ⇒ 1] = 1− Pr[B4
OAE-IDEALΠ ⇒ 1]. It follows that

Pr[A4
OAE-IDEALΠ ⇒ 1]− Pr[A4

PR-TAG-IDEALΠ ⇒ 1] ≤ AdvOAE
Π (t′, q, b, µ).
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Games G0 and G1

proc Initialize
K

$← K
X ← ∅

proc Enc(H,M)
C ← E(K,H,M)
X ← X ∪ {(H,C)}
return C

proc Dec(H,C)
M ← D(K,H,C)
if (H,C) ∈ X then M ← ⊥
if M 6= ⊥ then bad← true; M ← ⊥
return M

Game G2

proc Initialize
K

$← K
proc Enc(H,M)

return E(K,H,M)
proc Dec(H,C)

return ⊥

Figure 11: Games G0, G1 (left) and G2 (right) for the reduction of B-INT-CTXT. The
boxed statement is present in game G1 only.

D-LORS-BCPA + B-INT-CTXT + PR-TAG → OAE

Theorem 4. Let Π = (K, E ,D) be an online authenticated encryption scheme. Then

AdvOAE
Π (t, q, b, µ) ≤ AdvB-INT-CTXT

Π (tc, qc, bc, µc) + AdvPR-TAG
Π (tt, qt, bt, µt)

+ AdvD-LORS-BCPA
Π (tp, qp, bp, µp)

where tc = t + cc · (q + b), qc = q, bc = b, µc = µ; tt = t + ct · q, qt = q, bt = b, µt = µ;
tp = t+ cp · (q + b), qp = q, bp = b, µp = µ for positive constants cc, ct, cp.

Proof. Let A be a (t, q, b, µ)-OAE adversary against scheme Π. We define games Gi for
i ∈ {0, ..., 4} on Figure 11, Figure 13 and Figure 14. We have, by Lemma 2, Lemma 3 and
Lemma 4 proven below that:

Pr[A OAE-REALΠ ⇒ 1]− Pr[A G2Π ⇒ 1] ≤ AdvB-INT-CTXT
Π (tc, qc, bc, µc),

Pr[A G2Π ⇒ 1]− Pr[A G3Π ⇒ 1] ≤ AdvPR-TAG
Π (tt, qt, bt, µt),

Pr[A G3Π ⇒ 1]− Pr[A OAE-IDEALΠ ⇒ 1] ≤ AdvD-LORS-BCPA
Π (tp, qp, bp, µp),

which gives us AdvOAE
Π (A ) ≤ AdvB-INT-CTXT

Π (tc, qc, bc, µc) + AdvPR-TAG
Π (tt, qt, bt, µt) +

AdvD-LORS-BCPA
Π (tp, qp, bp, µp).

Lemma 2. Let A be a (t, q, b, µ)-OAE adversary. Let G0, G1 and G2 be the games
defined in Figure 11. We have

Pr[A OAE-REALΠ ⇒ 1]− Pr[A G2Π ⇒ 1] ≤ AdvB-INT-CTXT
Π (t′, q, b, µ)

where t′ = t+ cc · (q + b).

Proof. Let Ac be the adversary defined from A on Figure 12. The time complexity of Ac

is t′ = t+ cc · (q + b) because a constant time is spent for each block queried by A to call
Enc, as well as for each query of A to call GetTag and Dec. The number of message
queries and the number of block queries remain unchanged.
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Adversary Ac

Run A
On query Enc(H,M) of A

l← BlCount(M)
M [1]||...||M [l]←M
for j ∈ {1, ..., l} do

C[j]← Enc(H,M [j])
T ← GetTag(H)
return (C, T ) to A

On query Dec(H,C) of A
return Dec(H,C) to A

On Finalize(β) of A
output ∅

Figure 12: Adversary Ac for the proof of Lemma 2.

Game G3

proc Initialize
K

$← K
for (H,M) ∈ H ×B∗n do TH,M

$← T
proc Enc(H,M)

C ← Core(E(K,H,M))
return (C, TH,M )

proc Dec(H,C)
return ⊥

Adversary At

Run A
On query Enc(H,M) of A

return Enc(H,M) to A
On query Dec(H,C) of A

return ⊥ to A
On Finalize(β) of A

output β

Figure 13: Game G3 (left) and adversary At (right) for the proof of Lemma 3.

By definition, we recall that A never queries to the Dec oracle the result of a previous
Enc query. We then have:

Pr[A OAE-REALΠ ⇒ 1] = Pr[A G0Π ⇒ 1]
= Pr[A G1Π ⇒ 1] + (Pr[A G0Π ⇒ 1]− Pr[A G1Π ⇒ 1])
≤ Pr[A G1Π ⇒ 1] + Pr[A G0Π sets bad]

where the last inequality comes from Lemma 1. Then, we note that Pr[AG1Π ⇒ 1] =
Pr[AG2Π ⇒ 1] because theDec oracle ofG1 always returns⊥. We have Pr[AG0Π sets bad] ≤
AdvB-INT-CTXT

Π (Ac) because game G0 sets bad whenever a ciphertext forgery is found
by adversary A , and consequently by adversary Ac. These inequalities prove that
Pr[AOAE-REALΠ ⇒ 1]− Pr[AG2Π ⇒ 1] ≤ AdvB-INT-CTXT

Π (t′, q, b, µ).

Lemma 3. Let A be a (t, q, b, µ)-OAE adversary. Let G3 be the game defined in Figure 13.
We have:

Pr[A G2Π ⇒ 1]− Pr[A G3Π ⇒ 1] ≤ AdvPR-TAG
Π (t′, q, b, µ)

where t′ = t+ ct · q.

Proof. Let At be the adversary defined from A on Figure 13. The time complexity of At

is t′ = t + ct · q because a constant time is spent for each query of A . The number of
messages queried by At is at most q, the number of blocks queried by At is at most b and
the maximum number of blocks in a query of At is at most µ.

We have the following perfect simulations of the PR-TAG games: Pr[AG2Π ⇒ 1] =
Pr[AtPR-TAG-REALΠ ⇒ 1] and Pr[AG3Π ⇒ 1] = Pr[AtPR-TAG-IDEALΠ ⇒ 1]. From this, and
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Game G4

proc Initialize
K

$← K
for H ∈ H do σH

$← OPerm[n]
for (H,M) ∈ H ×B∗n do TH,M

$← T
proc Enc(H,M)

C ← Core(E(K,H, σH(M)))
return (C, TH,M )

proc Dec(H,C)
return ⊥

Adversary Ap

for H ∈ H do σH
$← OPerm[n]

for (H,M) ∈ H ×B∗n do TH,M
$← T

Run A
On query Enc(H,M) of A

l← BlCount(M)
M [1]||...||M [l]←M
R[1]||...||R[l]← σH(M)
for j ∈ {1, ..., l} do

C[j]← LR(H,R[j],M [j])
T ← GetTag(H)
return (C, TH,M ) to A

On query Dec(H,C) of A
return ⊥ to A

On Finalize(β) of A
output β

Figure 14: Game G4 (left) and adversary Ap (right) for the proof of Lemma 4.

from Definition 5 it follows that Pr[AG2Π ⇒ 1] − Pr[AG3Π ⇒ 1] ≤ AdvPR-TAG
Π (At) ≤

AdvPR-TAG
Π (t′, q, b, µ).

Lemma 4. Let A be a (t, q, b, µ)-OAE adversary. We have:

Pr[A G3Π ⇒ 1]− Pr[A OAE-IDEALΠ ⇒ 1] ≤ AdvD-LORS-BCPA
Π (t′, q, b, µ)

where t′ = t+ cp · (q + b).

Proof. Let Ap be the adversary defined from A on Figure 14. The time complexity of
Ap is t′ = t + cp · (q + b) because a constant time is spent for each block queried by A
to call LR, as well as for each query of A to call GetTag or upon Dec. The number of
messages queried by Ap is at most q, the number of blocks queried by Ap is at most b and
the maximum number of blocks in a query of Ap is at most µ.

By Proposition 1, Ap is online-respecting. Let G4 be the game defined on Figure 14.
If we denote by b the bit chosen by the LORS-BCPA game played by Ap, we have the
following perfect simulations. If b = 1, then the LR oracle always encrypts the message
M provided to the Enc oracle by adversary A , so game G3 is simulated. If b = 0, then
the LR oracle always encrypts σH(M) for the header H and the message M provided
to the Enc oracle by adversary A , so game G4 is simulated and we get Pr[AG3Π ⇒ 1] =
Pr[ApLORS-BCPAΠ ⇒ 1|b = 1] and Pr[AG4Π ⇒ 1] = Pr[ApLORS-BCPAΠ ⇒ 0|b = 0]. Since
Pr[b = 0] = Pr[b = 1] = 1

2 , we have:

Pr[Ap
LORS-BCPAΠ ⇒ 1] = Pr[Ap

LORS-BCPAΠ ⇒ 1|b = 1] · 1
2

+ Pr[Ap
LORS-BCPAΠ ⇒ 1|b = 0] · 1

2
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from which we can conclude that:

AdvD-LORS-BCPA
Π (Ap) = 2 · Pr[Ap

LORS-BCPAΠ ⇒ 1]− 1

= Pr[Ap
LORS-BCPAΠ ⇒ 1|b = 1]

+ Pr[Ap
LORS-BCPAΠ ⇒ 1|b = 0]− 1

= Pr[Ap
LORS-BCPAΠ ⇒ 1|b = 1]− Pr[Ap

LORS-BCPAΠ ⇒ 0|b = 0]

= Pr[AG3Π ⇒ 1]− Pr[AG4Π ⇒ 1]

Recall that for a fixed K ∈ K and H ∈ H, the core encryption algorithm is an online
permutation, i.e. ρK,H := Core(E(K,H, ·)) ∈ OPerm[n] (see Subsection 2.2). In game
G4, we sample a random σH ∈ OPerm[n] and compute C = ρK,H ◦ σH(M), whereas in
game OAE-IDEAL we sample a random πH ∈ OPerm[n] and compute C = πH(M).
By Lemma 5 of Appendix A, these two games produce identical distributions and have
equivalent complexity, which shows that Pr[AG4Π ⇒ 1] = Pr[AOAE-IDEALΠ ⇒ 1]. It follows
that
Pr[AG3Π ⇒ 1]− Pr[AOAE-IDEALΠ ⇒ 1] = AdvD-LORS-BCPA

Π (Ap) ≤ AdvD-LORS-BCPA
Π (t′, q, b, µ).

4.3 On the minimality of PR-TAG

In the proof of Lemma 4, we did not make full use of the GetTag oracle. Indeed, adversary
Ap only queries this oracle to start a new sequential query, but discards the value of the
tag. For this reason, a weaker privacy notion than D-LORS-BCPA, one that completely
ignores the authentication tag, would be sufficient to prove the equivalence with OAE:
we can replace the GetTag oracle in the LORS-BCPA game of Figure 5 by a Reset
oracle that starts a new query but does not output the tag. Such a weakening of privacy of
core ciphertexts is possible, because privacy of tags is already captured by the PR-TAG
notion. This raises a question: can the PR-TAG notion be weakened without breaking
the equivalence result, or is it only possible to weaken the privacy of the ciphertext core,
but PR-TAG cannot be unchanged? Determining the overlap of the PR-TAG property
with both B-INT-CTXT and D-LORS-BCPA remains an interesting open question.

This also highlights an interesting observation: to show equivalence with OAE, we
need to capture the randomness of the authentication tag with an indistinguishable-from-
random type of notion, whereas a left-or-right type of notion is sufficient for the core
ciphertext. This stems from the fact that, by definition, the core of an online AE scheme
has to be an online permutation for a fixed key and header (otherwise encryption or
decryption cannot be computed in an online manner). This, together with the result shown
in Appendix A, facilitates the equivalence between games OAE-REAL and G4 used in
the proof of Lemma 4.

5 Conclusion

We have shown that, if projected to the setting of deterministic online AE schemes with
headers, the blockwise-adaptive security notions of FJMV are equivalent to the notion of
OAE in the essentials. We have identified the PR-TAG property, as a missing component
that is necessary for the equivalence to be properly proven, and we have observed that
this property is not related to the blockwise-adaptiveness of the adversary. We leave the
establishment of the exact relations of PR-TAG to the remaining blockwise notions as an
open question.
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A Composition of a random online permutation and a
fixed online permutation

Lemma 5. Let ρ be a random permutation sampled from OPerm[n] with any distribution.
Let σ be a random permutation independent from ρ and uniformly distributed in OPerm[n]
in the sense of Subsection 2.1. Then the composition π := ρ ◦ σ is uniformly distributed in
OPerm[n]. Besides, the algorithmic complexity to evaluate lazily ρ ◦ σ is the same as a
lazy evaluation of the equivalent random permutation π uniformly distributed in OPerm[n],
up to a constant factor.

Proof. Let’s consider the tree representations of these online permutations as described in
Subsection 2.1. Let T be the tree associated to the online permutation ρ ◦ σ. Each node
of T is labeled with a permutation (ρ ◦ σ)[M ], where M ∈ B∗n is the input message that
leads to this node when one traverses T from the root.

Given M ∈ B∗n, let N := σ(M) and P := ρ ◦ σ(M). For all M ′ ∈ Bn, let N ′, P ′ ∈ Bn
be defined by N ||N ′ := σ(M ||M ′) and P ||P ′ := ρ ◦ σ(M ||M ′) = ρ(N ||N ′). Then we have
by definition:

N ′ = σ[M ](M ′)
P ′ = ρ[N ](N ′)

P ′ = (ρ ◦ σ)[M ](M ′)

This implies that:

(ρ ◦ σ)[M ] = ρ[N ] ◦ σ[M ] = ρ[σ(M)] ◦ σ[M ]

Consequently, we first have that for all M in B∗n, (ρ ◦ σ)[M ] is uniformly distributed in
Perm[n]. Indeed, σ[M ] is uniformly distributed in Perm[n] and independent from σ(M),
and ρ is independent from σ, so ρ[σ(M)] ◦ σ[M ] is uniformly distributed in Perm[n].

Second, the family ((ρ ◦ σ)[M ])M∈B∗n is a family of independent random permutations.
Indeed, each node of ρ ◦ σ is labeled with a distinct message M , and for each message M
the permutations ρ[σ(M)] and σ[M ] are only used to compute (ρ ◦ σ)[M ] – i.e. they are
not used to compute any other (ρ ◦ σ)[M ′] for M ′ 6= M . Since the family (σ[M ])M∈B∗n is a
family of independent random permutations, the composed family (ρ[σ(M)] ◦ σ[M ])M∈B∗n
is also a family of independent random permutations.

Last, if we let π = ρ ◦ σ, the evaluation of π by lazy sampling of π and the evaluation
of ρ ◦ σ by lazy sampling of ρ and σ have the same complexity, up to a constant factor.
Indeed, for any message M ∈ B∗n, if we let l := BlCount(M), to evaluate π(M) we need
to sample the permutations π[ε], ..., π[M [1...l − 1]] ∈ Perm[n]. To evaluate (ρ ◦ σ)(M),
we need to know the permutations (ρ ◦ σ)[ε], ..., (ρ ◦ σ)[M [1...l − 1]], and for this we need
to sample exactly σ[ε], ..., σ[M [1...l − 1]], as well as ρ[σ(ε)], ..., ρ[σ(M [1...l − 1])]. In other
words, to evaluate ρ ◦ σ on a sequence of messages, we need to explore in the tree of σ
the same paths that we explore in the tree of π to evaluate π on those messages, and we
need to explore in the tree of ρ the permutation by σ of these paths. This ensures that
the complexity of a lazy sampling is the same in both cases, up to a constant factor.
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