Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

Léo Perrin¹, Aleksei Udovenko¹

¹SnT, University of Luxembourg https://www.cryptolux.org

March 6, 2017 Fast Software Encryption 2017

S-Box Design

S-Box Design

S-Box Design

S-Box Reverse-Engineering

Results on Kuznyechik/Streebog

Results on Kuznyechik/Streebog

Talk Outline

Outline

- 2 Reminder About π
- 3 A Detour Through Belarus
- 4 New Decompositions of π
- 5 Conclusion

Introduction 0000	Reminder About π	A Detour Through Belarus	New Decompositions of π 000000	Conclusion O
Plan				

2 Reminder About π

- Previous Decomposition of π
- How Was It Found?
- 3 A Detour Through Belarus
- 4 New Decompositions of π

troduction Rer

Reminder About π

A Detour Through Belarus

New Decompositions of π 000000

Conclusion O

A First Decomposition of π

- From Eurocrypt'16
- α, ω : linear 8-bit permutations
- **v**₀, v_1 , σ : 4-bit permutations
- ϕ : 4-bit function ($\phi(x) \neq 0$)
- I multiplicative inverse in \mathbb{F}_{16}
- \odot multiplication in \mathbb{F}_{16}

Decomposition Procedure Overview

1 Identify patterns in LAT;

Introduction Reminder About π A Detour Through Belarus New Decompositions of π Conclusion 000000 O

Decomposition Procedure Overview

1 Identify patterns in LAT;

Deduce linear layers μ, η such that
 π is decomposed as in right picture;

 Introduction
 Reminder About π A Detour Through Belarus
 New Decompositions of π Conclusio

 0000
 000000
 000000
 000000
 000000
 0

 How was it found?
 0
 0
 0
 0
 0

Decomposition Procedure Overview

- **1** Identify patterns in LAT;
- Deduce linear layers μ, η such that
 π is decomposed as in right picture;
- 3 Decompose *U*, *T*;

How was it found?

Decomposition Procedure Overview

- **1** Identify patterns in LAT;
- Deduce linear layers μ, η such that π is decomposed as in right picture;
- 3 Decompose *U*, *T*;
- 4 Put it all together.

Reminder About π

A Detour Through Belarus

New Decompositions of π

Conclusion O

Pollock to the Rescue

Léo Perrin, Aleksei Udovenko

Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

Reminder About π

A Detour Through Belarus

New Decompositions of π

Conclusion O

Pollock to the Rescue

Reminder About π

A Detour Through Belarus

New Decompositions of π 000000

Conclusion O

What the Lines Mean

Variance of the absolute value of the coefficients in each column of the LAT of π .

Reminder About π A Detour Through Belarus

New Decompositions of π

Plan

- 3 A Detour Through Belarus Quick Overview of BelT
 - Patterns in the LAT of H
 - The Actual Structure of H

Reminder About π 0000

A Detour Through Belarus

New Decompositions of π 000000

Conclusion O

Round Function of BelT

The 32-bit function G_r .

The round function of BelT.

9 / 22

Introduction 0000	Reminder About π	A Detour Through Belarus ○●○○○○○	New Decompositions of π 000000	Conclusion O
-	<i></i>			

Properties of *H*

DDT

max(DDT) = 8
 max(LAT) = 26
 $P[random] \le 2^{-122}$

Algebraic degree 7 (all coordinates)

LAT

Reminder About π 0000

A Detour Through Belarus

New Decompositions of π 000000

Conclusion O

Structure of H(1/3)

Is *H* structured?

Léo Perrin, Aleksei Udovenko Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog 11/22

Reminder About π 0000

A Detour Through Belarus

New Decompositions of π 000000

Conclusion O

Structure of H(1/3)

Is *H* structured?

Yes!

Reminder About π

A Detour Through Belarus

New Decompositions of π 000000

Conclusion O

LAT Row Variance

LAT of H.

Introduction 0000	Reminder About π 0000	A Detour Through Belarus	New Decompositions of π 000000	Conclusion O
	1.0			

The Actual Structure

The BelT S-Box Construction (translated)

The look-up tables of the S-Box coordinate functions were chosen as different segments of length 255 of different linear recurrences defined by the irreducible polynomial $p(\lambda)$:

$$p(\lambda) = \lambda^8 + \lambda^6 + \lambda^5 + \lambda^2 + 1.$$

Additionally, a zero element was inserted in a fixed position of each segment.

13/22

¹http://eprint.iacr.org/2004/024

Introduction 0000	Reminder About π 0000	A Detour Through Belarus	New Decompositions of π 000000	Conclusion O
	1.0			

The Actual Structure

The BelT S-Box Construction (translated)

The look-up tables of the S-Box coordinate functions were chosen as different segments of length 255 of different linear recurrences defined by the irreducible polynomial $p(\lambda)$:

$$p(\lambda) = \lambda^8 + \lambda^6 + \lambda^5 + \lambda^2 + 1.$$

Additionally, a zero element was inserted in a fixed position of each segment.

Equivalent Pseudo-Exponential Representation

$$S := [w^i, i < z] + [0] + [w^i, z \le i]$$

Exponential (case z = 0) studied in [AA04]¹

¹http://eprint.iacr.org/2004/024

Léo Perrin, Aleksei Udovenko

Reminder About π 0000

A Detour Through Belarus

New Decompositions of π 000000

Conclusion O

Properties of (Pseudo-)Exponentials

Exponential $(z = 0) \neq$ Pseudo-Exponential $(z \neq 0)$

on Reminder About π 0000 A Detour Through Belarus

New Decompositions of π 000000

Conclusion O

Properties of (Pseudo-)Exponentials

Exponential $(z = 0) \neq$ Pseudo-Exponential $(z \neq 0)$

- "Exponential" definition inconsistent in literature...
- z = 0? z = 255?

n Reminder About π A 0000 0

A Detour Through Belarus

New Decompositions of π 000000

Conclusion O

Properties of (Pseudo-)Exponentials

Exponential $(z = 0) \neq$ Pseudo-Exponential $(z \neq 0)$

- "Exponential" definition inconsistent in literature...
- z = 0? z = 255?
- For exponentials, for all $a \in \mathbb{F}_2^n, r \in \mathbb{N}$:

$$\left\{ \text{LAT}[a,b], \forall b \right\} = \left\{ \text{LAT}[(a \ll r),b], \forall b \right\}$$

Reminder About π A E

A Detour Through Belarus

New Decompositions of π 000000

Conclusion O

Properties of (Pseudo-)Exponentials

Exponential $(z = 0) \neq$ Pseudo-Exponential $(z \neq 0)$

"Exponential" definition inconsistent in literature...

$$z = 0? z = 255?$$

For exponentials, for all $a \in \mathbb{F}_2^n$, $r \in \mathbb{N}$:

$$\left\{ \text{LAT}[a,b], \forall b \right\} = \left\{ \text{LAT}[(a \lll r), b], \forall b \right\}$$

For pseudo-exponentials, for all ℓ , for $r < \log_2(z)$:

$$\left\{ \text{LAT}[a,b], \forall b \right\} = \left\{ \text{LAT}[(a \ll r),b], \forall b \right\}$$

Reminder About π	A Detour Thre
0000	000000

Paper in Управление защитой информации [Information Security Management] discloses design criteria:

- good nonlinearity,
- $\Pr[H(x \boxplus a) \oplus H(x) = b]$ and $\Pr[H(x \oplus a) \boxplus H(x) = b]$ are low
- no quadratic equations relating inputs/outputs

Reminder About π	A Detour T
0000	000000

Paper in Управление защитой информации [Information Security Management] discloses design criteria:

- good nonlinearity,
- $\Pr[H(x \boxplus a) \oplus H(x) = b]$ and $\Pr[H(x \oplus a) \boxplus H(x) = b]$ are low
- no quadratic equations relating inputs/outputs

Fair enough...

Reminder About π A Detour Through Belarus0000000000

New Decompositions of π 000000

Conclusion O

Paper in Управление защитой информации [Information Security Management] discloses design criteria:

- good nonlinearity,
- $\Pr[H(x \boxplus a) \oplus H(x) = b]$ and $\Pr[H(x \oplus a) \boxplus H(x) = b]$ are low
- no quadratic equations relating inputs/outputs

Fair enough...

... but then what of π ?

Introduction
0000

Reminder About π 0000

A Detour Through Belarus

New Decompositions of π

Conclusion O

Plan

Introduction

2 Reminder About π

3 A Detour Through Belarus

- 4 New Decompositions of π
 - Hints of an Exponential
 - New Decompositions
 - Analysis of the New Decompositions

Reminder About π 0000

A Detour Through Belarus

New Decompositions of π

Conclusion O

Exponential-Like Pattern

Observation

•
$$x \oplus 2^j = x \boxplus 2^j$$
 if $x_j = 0$ and $x \oplus 2^j = x \boxplus 2^j$ if $x_j = 1$

$$\bullet \ w^{x \boxplus 1} = w \odot w^x$$

=

Reminder About π 0000

A Detour Through Belarus

New Decompositions of π

Conclusion O

Exponential-Like Pattern

Observation

•
$$x \oplus 2^j = x \boxplus 2^j$$
 if $x_j = 0$ and $x \oplus 2^j = x \boxplus 2^j$ if $x_j = 1$

$$w^{x \boxplus 1} = w \odot w^x$$

$$\implies \Pr[w^{x \oplus 1}/w^x = w] = 1/2 \text{ and } \Pr[w^{x \oplus 1}/w^x = w^{-1}] = 1/2$$

=

Reminder About π 0000

A Detour Through Belarus

New Decompositions of π

Conclusion O

16 / 22

Exponential-Like Pattern

Observation

•
$$x \oplus 2^j = x \boxplus 2^j$$
 if $x_j = 0$ and $x \oplus 2^j = x \boxplus 2^j$ if $x_j = 1$

$$w^{x \boxplus 1} = w \odot w^x$$

$$\implies \Pr[w^{x \oplus 1}/w^{x} = w] = 1/2 \text{ and } \Pr[w^{x \oplus 1}/w^{x} = w^{-1}] = 1/2$$

In the case of π

Let C = [0x12, 0x26, 0x24, 0x30]. Then:

$$\Pr\left[\begin{cases} \pi^{-1}(x \oplus C[i]) / \pi^{-1}(x) = w^{2^{i}}, \text{ or } \\ \pi^{-1}(x \oplus C[i]) / \pi^{-1}(x) = w^{-2^{i}} \end{cases}\right] = \frac{240}{256}$$

Reminder About π 0000

A Detour Through Belarus

New Decompositions of π

Conclusion O

Obtaining a First Decomposition

1 Assume that $\pi = \tau \circ \log$ for some simple τ ;

Reminder About π 0000

A Detour Through Belarus 0000000 New Decompositions of π 00000 Conclusion O

- **1** Assume that $\pi = \tau \circ \log$ for some simple τ ;
- 2 Study $\tau = \log \circ \pi^{-1}$;

Reminder About π 0000

A Detour Through Belarus 0000000 New Decompositions of π 00000 Conclusion O

- **1** Assume that $\pi = \tau \circ \log$ for some simple τ ;
- 2 Study $\tau = \log \circ \pi^{-1}$;
- 3 Let α be such that $\alpha(2^i) = C[i]$ for i < 4;

Reminder About π 0000 A Detour Through Belarus 0000000 New Decompositions of π 00000 Conclusion O

- **1** Assume that $\pi = \tau \circ \log$ for some simple τ ;
- 2 Study $\tau = \log \circ \pi^{-1}$;
- 3 Let α be such that $\alpha(2^i) = C[i]$ for i < 4;
- **4** Use random values for $\alpha(2^i)$ for $i \ge 4$ such that α is 1-to-1;

Reminder About π 0000 A Detour Through Belarus 0000000 New Decompositions of π

Conclusion O

- **1** Assume that $\pi = \tau \circ \log$ for some simple τ ;
- 2 Study $\tau = \log \circ \pi^{-1}$;
- 3 Let α be such that $\alpha(2^i) = C[i]$ for i < 4;
- **4** Use random values for $\alpha(2^i)$ for $i \ge 4$ such that α is 1-to-1;
- **5** Find linear patterns in $\tau \circ \alpha^{-1}$;

Reminder About π 0000 A Detour Through Belarus 0000000 New Decompositions of π

Conclusion O

- **1** Assume that $\pi = \tau \circ \log$ for some simple τ ;
- 2 Study $\tau = \log \circ \pi^{-1}$;
- 3 Let α be such that $\alpha(2^i) = C[i]$ for i < 4;
- 4 Use random values for $\alpha(2^i)$ for $i \ge 4$ such that α is 1-to-1;
- **5** Find linear patterns in $\tau \circ \alpha^{-1}$;
- **6** Deduce better linear layer β such that $\tau \circ \beta^{-1}$ is even more structured

Introduction 0000	Reminder About π	A Detour Through Belarus	New Decompositions of π	Conclusion O
Structure	of π^{-1}			

Algorithm 1 Computing the inverse of π : $y = \pi^{-1}(x)$.

 $\begin{array}{l} (l||r) \leftarrow \beta(x) \\ l \leftarrow q(l) \\ \textbf{if } l = 0 \textbf{ then} \\ z \leftarrow 17 \times ((r+1) \mod 16) \\ \textbf{else} \\ z \leftarrow 17 \times l + r - 16 \\ \textbf{end if} \\ y \leftarrow \exp_{w,0}(z) \\ \textbf{return } y \end{array}$

 β : 8-bit linear permutation ; q: 4-bit S-Box $\exp_{w,0}(z) = w^{z}$, but $\exp_{w,0}(0) = 0$

ntroduction	R
0000	C

Reminder About π

A Detour Through Belarus

New Decompositions of π

Conclusion O

First Decomposition of π

ntroduction	Re
0000	00

eminder About π

A Detour Through Belarus

New Decompositions of π

Conclusion O

First Decomposition of π

A is extremely weak...

ntroduction	Ren
0000	000

eminder About π

A Detour Through Belarus

New Decompositions of π

Conclusion O

First Decomposition of π

A is extremely weak... Can we simplify it even further using a pseudo-exponential?

Léo Perrin, Aleksei Udovenko

19 / 22

Introduction 0000	Reminder About π 0000	A Detour Through Belarus	New Decompositions of π	Conclusion O

	0	1	2	3	4	5	6	7	8	9	а	b	с	d	e	f
T_0	0	1	2	3	4	5	6	7	8	9	а	b	с	d	e	f
T_1	0	1	2	3	4	5	6	7	8	9	а	b	с	d	e	f
T_2	0	1	2	3	4	5	6	7	8	9	а	b	с	d	f	e
T_3	0	1	2	3	4	5	6	7	8	9	а	b	с	f	d	e
T_4	0	1	2	3	4	5	6	7	8	9	а	b	f	с	d	e
T_5	0	1	2	3	4	5	6	7	8	9	а	f	b	с	d	e
T_6	0	1	2	3	4	5	6	7	8	9	f	а	b	с	d	e
T_7	0	1	2	3	4	5	6	7	8	f	9	а	b	с	d	e
T_8	0	1	2	3	4	5	6	7	f	8	9	а	b	с	d	e
T 9	0	1	2	3	4	5	6	f	7	8	9	а	b	с	d	e
Ta	0	1	2	3	4	5	f	6	7	8	9	а	b	с	d	e
T_b	0	1	2	3	4	f	5	6	7	8	9	а	b	с	d	e
T_c	0	1	2	3	f	4	5	6	7	8	9	а	b	с	d	e
T_d	0	1	2	f	3	4	5	6	7	8	9	а	b	с	d	e
T_e	0	1	f	2	3	4	5	6	7	8	9	а	b	с	d	e
T_f	0	f	1	2	3	4	5	6	7	8	9	а	b	с	d	e

Introduction 0000	Reminder About π 0000	A Detour Through Belarus	New Decompositions of π	Conclusion O
What no	w?			

One 4-bit S-Box instead of 5

Introduction 0000	Reminder About π	A Detour Through Belarus	New Decompositions of π	Conclusion O
What no	w?			

- One 4-bit S-Box instead of 5
- One linear layer instead of 2

Introduction 0000	Reminder About π 0000	A Detour Through Belarus	New Decompositions of π	Conclusion O
What no	w?			

- One 4-bit S-Box instead of 5
- One linear layer instead of 2
- Two parameters needed to describe main component (field representation + position of 0)

Introduction 0000	Reminder About π 0000	A Detour Through Belarus	New Decompositions of π	Conclusion O
N/1 /	2			

What now?

The structure inside π is stronger than expected

- One 4-bit S-Box instead of 5
- One linear layer instead of 2
- Two parameters needed to describe main component (field representation + position of 0)
- ... But doesn't make a lot of sense.

Introduction 0000	Reminder About π	A Detour Through Belarus	New Decompositions of π	Conclusion O
What no	w?			

- One 4-bit S-Box instead of 5
- One linear layer instead of 2
- Two parameters needed to describe main component (field representation + position of 0)
- ... But doesn't make a lot of sense.

Still, $\pi^{-1} \circ \log_{w, 16}$ is **differentially 128-uniform**!

Introduction 0000	Reminder About π	A Detour Through Belarus	New Decompositions of π	Conclusion O
What no	w?			

- One 4-bit S-Box instead of 5
- One linear layer instead of 2
- Two parameters needed to describe main component (field representation + position of 0)
- ... But doesn't make a lot of sense.

Still, $\pi^{-1} \circ \log_{w, 16}$ is **differentially 128-uniform!**

For random 8-bit permutation, Pr[max(DDT)] = 128 ≈ 2⁻³⁴⁶
 ⇒ π is related to an exponential.

Introduction 0000	Reminder About π 0000	A Detour Through Belarus	New Decompositions of π 000000	Conclusion O

Plan

Introduction

- 2 Reminder About π
- 3 A Detour Through Belarus
- 4 New Decompositions of π

Reminder About π 0000

A Detour Through Belarus

New Decompositions of π 000000

Reminder About π

A Detour Through Belarus

New Decompositions of π 000000

Reminder About π

A Detour Through Belarus

New Decompositions of π 000000

Reminder About π 0000

A Detour Through Belarus

New Decompositions of π 000000

Conclusion

Conclusion

Thank you!

Léo Perrin, Aleksei Udovenko Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog 22/22