# Direct construction of quasi-involutory recursive-like MDS matrices from 2-cyclic codes 

Cauchois Victor ${ }^{1}$ Loidreau Pierre ${ }^{1} \quad$ Merkiche Nabil ${ }^{23}$<br>${ }^{1}$ DGA-MI / IRMAR<br>${ }^{2}$ DGA-IP<br>${ }^{3}$ Sorbonnes Université, UPMC, LIP6<br>FSE 2017 March 6, 2017

## Motivations

## Definition

MDS matrices are matrices such that any minor is non singular.

- MDS matrices are widely used in Blockciphers and Hash functions.
- Lightweight designs $\Rightarrow$ circulant or recursive matrices.
- Involutory matrices $\Rightarrow$ Both encryption and decryption with the same structure.
- No circulant involutory MDS matrix [GR14].


## Agenda

- Recursive involutory MDS matrix ?
- We propose a new direct construction of MDS matrices that are recursive-like and quasi-involutory.
- Implementations and results


## Plan

（1）Involutory recursive MDS matrices

## （2）Quasi－involutory recursive－like MDS matrices

（3）Implementations

## Recursive matrices

From $g(X)=X^{m}+\sum_{i=0}^{m-1} g_{i} X^{i} \in \mathbb{F}_{2^{n}}[X]$, we build the matrix :

$$
C_{g}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 \\
g_{0} & g_{1} & \cdots & g_{m-2} & g_{m-1}
\end{array}\right)
$$

## Definition

$M$ is a recursive matrix $\Leftrightarrow \exists g \in \mathbb{F}_{2^{n}}[X]$ monic of degree $m$ such that

$$
M=C_{g}^{m}
$$

## Companion matrices

$$
C_{g}=\left(\begin{array}{ccc}
X & \bmod & g(X) \\
X^{2} & \bmod & g(X) \\
& \vdots & \\
X^{m} & \bmod & g(X)
\end{array}\right)
$$

Successive powers of companion matrices have a similar description :

$$
C_{g}^{i}=\left(\begin{array}{lcc}
X^{i} & \bmod & g(X) \\
X^{i+1} & \bmod & g(X) \\
& \vdots & \\
X^{i+m-1} & \bmod & g(X)
\end{array}\right), \forall i \in \mathbb{N}
$$

## Redundancy matrices of cyclic codes

Let $\mathcal{C}$ be a $[2 m, m]_{2^{n}}$ cyclic code. It has a circulant generator matrix :

$$
G=\left(\begin{array}{ccccccc}
g_{0} & g_{1} & \ldots & g_{m} & 0 & \ldots & 0 \\
0 & g_{0} & g_{1} & \ldots & g_{m} & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & g_{0} & g_{1} & \ldots & g_{m}
\end{array}\right)
$$

Assume $g_{m}=1$, this code has a systematic generator matrix shaped as :

$$
\tilde{G}=\left(\begin{array}{ccccccc}
X^{m} & \bmod & g(X) & 1 & 0 & \ldots & 0 \\
X^{m+1} & \bmod & g(X) & 0 & 1 & \ddots & 0 \\
& \vdots & & \vdots & \ddots & \ddots & \vdots \\
X^{2 m-1} & \bmod & g(X) & 0 & \ldots & 0 & 1
\end{array}\right)
$$

## Involutory recursive MDS matrices ?

- A recursive matrix $C_{g}^{m}$ is an involutory matrix if

$$
C_{g}^{2 m}=I_{m}
$$

- Construct MDS cyclic codes $\Rightarrow$ BCH codes.
- No element of even order in $\mathbb{F}_{2^{n}} \Rightarrow$ No BCH code yielding involutory recursive MDS matrix.


## Plan

## (1) Involutory recursive MDS matrices

(2) Quasi-involutory recursive-like MDS matrices
(3) Implementations

## Skewing polynomial rings

Let $\theta: x \mapsto x^{[1]}$ the squaring in $\mathbb{F}_{2^{2 m}}$.

## Definition

The ring of 2-polynomials, $\mathbb{F}_{2^{2 m}}[X, \theta]$, is defined as the set $\left\{\sum_{i} a_{i} X^{i}, a_{i} \in \mathbb{F}_{2^{2 m}}\right\}$ together with :

- Addition : usual polynomial addition.
- Multiplication: $X * a=\theta(a) * X=a^{[1]} * X$.


## Skewing powers of companion matrices

Let $g\langle X\rangle=X^{m}+\sum_{i=0}^{m-1} g_{i} X^{i} \in \mathbb{F}_{2^{2 m}}[X, \theta]$.

## Theorem

$$
C_{g}^{[i-1]} C_{g}^{[i-2]} \ldots C_{g}^{[1]} C_{g}=\left(\begin{array}{ccc}
X^{i} & \bmod _{*} & g\langle X\rangle \\
X^{i+1} & \bmod _{*} & g\langle X\rangle \\
& \vdots & \\
X^{i+m-1} & \bmod _{*} & g\langle X\rangle
\end{array}\right)
$$

## Definition

$M$ is a recursive-like matrix $\Leftrightarrow \exists g \in \mathbb{F}_{2^{2 m}}[X, \theta]$ monic of degree $m$ such that

$$
M=C_{g}^{[m-1]} C_{g}^{[m-2]} \ldots C_{g}^{[1]} C_{g}
$$

## Redundancy matrices of 2-cyclic codes

Let $\mathcal{C}$ be a $[2 m, m]_{2^{2 m}} 2$-cyclic code. It has a circulant generator matrix :

$$
G=\left(\begin{array}{ccccccc}
g_{0} & g_{1} & \ldots & g_{m} & 0 & \ldots & 0 \\
0 & g_{0}^{[1]} & g_{1}^{[1]} & \ldots & g_{m}^{[1]} & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & g_{0}^{[m-1]} & g_{1}^{[m-1]} & \ldots & g_{m}^{[m-1]}
\end{array}\right)
$$

Assume $g_{m}=1$, this code has a systematic generator matrix shaped as :

$$
\tilde{G}=\left(\begin{array}{ccccccc}
X^{m} & \bmod _{*} & g\langle X\rangle & 1 & 0 & \ldots & 0 \\
X^{m+1} & \bmod _{*} & g\langle X\rangle & 0 & 1 & \ddots & 0 \\
& \vdots & & \vdots & \ddots & \ddots & \vdots \\
X^{2 m-1} & \bmod _{*} & g\langle X\rangle & 0 & \ldots & 0 & 1
\end{array}\right)
$$

## Quasi-involutory Recursive-like MDS matrices

A recursive-like matrix is a quasi-involutory matrix if

$$
\begin{gathered}
C_{g}^{[2 m-1]} C_{g}^{[2 m-2]} \ldots C_{g}^{[1]} C_{g}=I_{m} \\
\left(C_{g}^{[m-1]} C_{g}^{[m-2]} \ldots C_{g}^{[1]} C_{g}\right)^{[m]}\left(C_{g}^{[m-1]} C_{g}^{[m-2]} \ldots C_{g}^{[1]} C_{g}\right)=I_{m}
\end{gathered}
$$

$g$ yields a quasi-involutory recursive-like matrix if

$$
X^{2 m}-1 \bmod { }_{*} g\langle X\rangle=0
$$

There exist $[2 m, m]_{2^{2 m}} 2$-cyclic MDS matrix whose a redundancy matrix of a systematic generator matrix is quasi-involutory.

## 2-cyclic Gabidulin codes

Let $\lambda$ be a normal element in $\mathbb{F}_{2^{2 m}}$. The following matrix is the parity-check matrix of a Maximum Rank Distance (thus MDS) 2-cyclic code, $\mathcal{C}$ :

$$
H_{\lambda}=\left(\begin{array}{cccc}
\lambda^{[0]} & \lambda^{[1]} & \ldots & \lambda^{[2 m-1]} \\
\lambda^{[1]} & \lambda^{[2]} & \ldots & \lambda^{[0]} \\
\vdots & \ddots & \ddots & \vdots \\
\lambda^{[m-1]} & \lambda^{[m]} & \ldots & \lambda^{[m-2]}
\end{array}\right)
$$

All roots of $g$ unique monic polynomial generating $\mathcal{C}$ are roots of $X^{2 m}-1 \Rightarrow X^{2 m}-1 \bmod { }_{*} g\langle X\rangle=0$.

Thus $g$ yields a quasi-involutory recursive-like matrix.

## Direct Construction

(1) Choose a normal element $\lambda \in \mathbb{F}_{2^{2 m}}$.
(2) Define

$$
H_{\lambda, 1}=\left(\begin{array}{ccc}
\lambda^{[0]} & \ldots & \lambda^{[m-1]} \\
\vdots & \ddots & \vdots \\
\lambda^{[m-1]} & \ldots & \lambda^{[2 m-2]}
\end{array}\right) \text { and } H_{\lambda, 2}=\left(\begin{array}{ccc}
\lambda^{[m]} & \ldots & \lambda^{[2 m-1]} \\
\vdots & \ddots & \vdots \\
\lambda^{[2 m-1]} & \ldots & \lambda^{[m-2]}
\end{array}\right)
$$

(0) Compute $H_{\lambda}=\left(H_{\lambda, 1} \mid H_{\lambda, 2}\right)$
( ( Compute $M=H_{\lambda, 2} H_{\lambda, 1}^{-1}$. The inverse matrix is $N=M^{[m]}$.

- Compute $C_{g}$ from the first line of $M$.
$M$ is then a quasi-involutory recursive-like MDS matrix, recursively generated by $C_{g}$.


## An example with small parameters $m=4$

Let $\beta$ be a a root of the irreducible polynomial $x^{8}+x^{4}+x^{3}+x^{2}+1$ ( $0 \times 11 \mathrm{c}$ ). $\beta$ is a generator of the multiplication group of $\mathbb{F}_{2^{8}}$.

- We chose to consider the normal element $\lambda=\beta^{21}$.
- We compute $H_{\beta^{21}}$ :

$$
\left(\begin{array}{llllllll}
\beta^{21} & \beta^{42} & \beta^{84} & \beta^{168} & \beta^{81} & \beta^{162} & \beta^{69} & \beta^{138} \\
\beta^{42} & \beta^{84} & \beta^{168} & \beta^{81} & \beta^{162} & \beta^{69} & \beta^{138} & \beta^{21} \\
\beta^{84} & \beta^{168} & \beta^{81} & \beta^{162} & \beta^{69} & \beta^{138} & \beta^{21} & \beta^{42} \\
\beta^{168} & \beta^{81} & \beta^{162} & \beta^{69} & \beta^{138} & \beta^{21} & \beta^{42} & \beta^{84}
\end{array}\right)
$$

- Hence the MDS matrix $M$ is written :

$$
M=\left(\begin{array}{llll}
\beta^{199} & \beta^{96} & \beta^{52} & \beta^{123} \\
\beta^{190} & \beta^{218} & \beta^{231} & \beta^{125} \\
\beta^{194} & \beta^{227} & \beta^{224} & \beta^{66} \\
\beta^{76} & \beta^{54} & \beta^{217} & \beta^{28}
\end{array}\right)
$$

## An example with small parameters $m=4$

- Its inverse matrix is $N=M^{[4]}$ and is written :

$$
N=\left(\begin{array}{llll}
\beta^{124} & \beta^{6} & \beta^{67} & \beta^{183} \\
\beta^{235} & \beta^{173} & \beta^{126} & \beta^{215} \\
\beta^{44} & \beta^{62} & \beta^{14} & \beta^{36} \\
\beta^{196} & \beta^{99} & \beta^{157} & \beta^{193}
\end{array}\right)
$$

- The companion matrix which recursively generates $M$ is associated with $g\langle X\rangle=\beta^{199}+\beta^{96} X+\beta^{52} X^{2}+\beta^{123} X^{3}+X^{4}$ and is written :

$$
C_{g}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\beta^{199} & \beta^{96} & \beta^{52} & \beta^{123}
\end{array}\right)
$$

## Plan

## (1) Involutory recursive MDS matrices

(2) Quasi-involutory recursive-like MDS matrices
(3) Implementations

## Normal Basis and Squaring

Let $\alpha$ be a normal element in $\mathbb{F}_{2^{2 m}} . \mathcal{B}=\left\{\alpha, \alpha^{[1]}, \ldots, \alpha^{[2 m-1]}\right\}$ is a basis of $\mathbb{F}_{2^{2 m}}$ as $\mathbb{F}_{2^{-}}$-space.

In such a basis, squaring consists in a cycling shift of the components of the vector representation :

$$
X=\sum_{i=0}^{1 m-1} x_{i} \alpha^{[i]} \Longrightarrow X^{[1]}=\sum_{i=0}^{2 m-1} x_{i} \alpha^{[i+1]}
$$

Thus, it admits an efficient hardware implementation: fixed bits permutation.

## Implementing recursive-like matrices

Implementing matrix-vector product with a recursive-like matrix is quite similar as classical case. The following algorithm computes it :

```
Algorithm 1 Matrix vector product
Require: \(\mathbf{x} \in \mathbb{F}_{2^{2 m}}^{m}\) an input vector and \(C_{g}\)
Ensure: \(\mathbf{y}=M \mathbf{x}\), with \(M=C_{g}^{[m-1]} C_{g}^{[m-2]} \ldots C_{g}^{[1]} C_{g}\)
    1: \(\mathbf{y} \leftarrow \mathbf{x}^{[1]}\)
    2: for \(i=0\) to \(m-1\) do
    3: \(\quad \mathbf{y} \leftarrow C_{g} \mathbf{y}^{[-1]} \quad \triangleright\) Matrix-vector product with companion matrix
    4: end for
    5: \(\mathbf{y} \leftarrow \mathbf{y}^{[m-1]} \quad \triangleright\) Final step
    6: return y
```


## And the inverse ?

```
Algorithm 2 Matrix-vector product for the inverse matrix
Require: \(\mathbf{x} \in \mathbb{F}_{2^{2 m}}^{m}\) an input vector and \(C_{g}\)
Ensure: \(\mathbf{y}=M^{-1} \mathbf{x}\), with \(M=C_{g}^{[m-1]} C_{g}^{[m-2]} \ldots C_{g}^{[1]} C_{g}\)
    1: \(\mathbf{y} \leftarrow \mathbf{x}^{[-m+1]}\)
                                    \(\triangleright\) Initialization
    2: for \(i=0\) to \(m-1\) do
    3: \(\quad \mathbf{y} \leftarrow C_{g} \mathbf{y}^{[-1]} \quad \triangleright\) Matrix-vector product with companion matrix
    4: end for
    5: \(\mathbf{y} \leftarrow \mathbf{y}^{[-1]} \quad \triangleright\) Final step
    6: return y
```


## Skewed-LFSR



## Exhaustive search of MDS matrices

| matrix type | Matrix Size | Ground Field | XOR Count | Reference |
| :---: | :---: | :---: | :---: | :---: |
| Circulant | $3 \times 3$ | $\mathbb{F}_{2^{4}}$ | $1+2 \times 4$ | $[$ LS16] |
| Skewed Recursive | $3 \times 3$ | $\mathbb{F}_{2^{4}}$ | $3+2 \times 4$ | this work |
| Circulant | $4 \times 4$ | $G L\left(4, \mathbb{F}_{2}\right)$ | $3+3 \times 4$ | [LW16] |
| Circulant | $4 \times 4$ | $\mathbb{F}_{2^{4}}$ | $3+3 \times 4$ | [LW16] |
| Skewed Recursive | $4 \times 4$ | $\mathbb{F}_{2^{4}}$ | $6+3 \times 4$ | this work |
| Circulant | $6 \times 6$ | $\mathbb{F}_{2^{4}}$ | $12+5 \times 4$ | [LS16] |

Table: Best known MDS matrices with $\mathbb{F}_{2^{4}}$ elements

## Exhaustive search of Involutory MDS matrices

| matrix type | Matrix Size | Ground Field | XOR Count | Reference |
| :---: | :---: | :---: | :---: | :---: |
| Circulant | $3 \times 3$ | $\mathbb{F}_{2^{4}}$ | $12+2 \times 4$ | [LS16] |
| Skewed Recursive | $3 \times 3$ | $\mathbb{F}_{2^{4}}$ | $12+2 \times 4$ | this work |
| Circulant | $4 \times 4$ | $G L\left(4, \mathbb{F}_{2}\right)$ | $5+3 \times 4$ | [LW16] |
| Skewed Recursive | $4 \times 4$ | $\mathbb{F}_{2^{4}}$ | $13+3 \times 4$ | this work |
| Skewed Recursive | $6 \times 6$ | $\mathbb{F}_{2^{4}}$ | $17+5 \times 4$ | this work |

Table: Best known Involutory MDS matrices with $\mathbb{F}_{2^{4}}$ elements

## Conclusion

- An algebraic framework to understand recursive and recursive-like matrices.
- A new direct construction of MDS matrices with interesting implementation properties.
- A new promising architecture : the SLFSR.

