Direct construction of quasi-involutory recursive-like MDS matrices from 2-cyclic codes

Cauchois Victor¹ Loidreau Pierre¹ Merkiche Nabil²³

¹DGA-MI / IRMAR

²DGA-IP

³Sorbonnes Université, UPMC, LIP6

FSE 2017 March 6. 2017

프 () () () (

Motivations

Definition

MDS matrices are matrices such that any minor is non singular.

- MDS matrices are widely used in Blockciphers and Hash functions.
- Lightweight designs \Rightarrow circulant or recursive matrices.
- Involutory matrices \Rightarrow Both encryption and decryption with the same structure.
- No circulant involutory MDS matrix [GR14].

A B M A B M

- Recursive involutory MDS matrix ?
- We propose a new direct construction of MDS matrices that are recursive-like and quasi-involutory.
- Implementations and results

() <) <)
 () <)
 () <)
</p>

Involutory recursive MDS matrices

2 Quasi-involutory recursive-like MDS matrices

3 Implementations

Recursive matrices

From
$$g(X) = X^m + \sum_{i=0}^{m-1} g_i X^i \in \mathbb{F}_{2^n}[X]$$
, we build the matrix :

$$C_g = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & 1 \\ g_0 & g_1 & \dots & g_{m-2} & g_{m-1} \end{pmatrix}$$

Definition

M is a recursive matrix $\Leftrightarrow \exists \ g \in \mathbb{F}_{2^n}[X]$ monic of degree m such that

$$M = C_g^m$$

A 10

A B M A B M

э

Companion matrices

$$C_g = \begin{pmatrix} X & \text{mod} & g(X) \\ X^2 & \text{mod} & g(X) \\ & \vdots & \\ X^m & \text{mod} & g(X) \end{pmatrix}$$

Successive powers of companion matrices have a similar description :

$$C_g^i = \begin{pmatrix} X^i & \text{mod} & g(X) \\ X^{i+1} & \text{mod} & g(X) \\ & \vdots & \\ X^{i+m-1} & \text{mod} & g(X) \end{pmatrix}, \ \forall i \in \mathbb{N}$$

э

A B + A B +

Redundancy matrices of cyclic codes

Let C be a $[2m,m]_{2^n}$ cyclic code. It has a circulant generator matrix :

$$G = \begin{pmatrix} g_0 & g_1 & \dots & g_m & 0 & \dots & 0 \\ 0 & g_0 & g_1 & \dots & g_m & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & g_0 & g_1 & \dots & g_m \end{pmatrix}$$

Assume $g_m = 1$, this code has a systematic generator matrix shaped as :

$$\tilde{G} = \begin{pmatrix} X^m & \text{mod} & g(X) & 1 & 0 & \dots & 0 \\ X^{m+1} & \text{mod} & g(X) & 0 & 1 & \ddots & 0 \\ & \vdots & & \vdots & \ddots & \ddots & \vdots \\ X^{2m-1} & \text{mod} & g(X) & 0 & \dots & 0 & 1 \end{pmatrix}$$

白 と く ヨ と く ヨ と

Involutory recursive MDS matrices ?

• A recursive matrix C_q^m is an involutory matrix if

$$C_g^{2m} = I_m$$

- Construct MDS cyclic codes \Rightarrow BCH codes.
- No element of even order in $\mathbb{F}_{2^n} \Rightarrow$ No BCH code yielding involutory recursive MDS matrix.

Involutory recursive MDS matrices

2 Quasi-involutory recursive-like MDS matrices

3 Implementations

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Skewing polynomial rings

```
Let \theta: x \mapsto x^{[1]} the squaring in \mathbb{F}_{2^{2m}}.
```

Definition

The ring of 2-polynomials, $\mathbb{F}_{2^{2m}}[X,\theta]$, is defined as the set $\{\sum_i a_i X^i, a_i \in \mathbb{F}_{2^{2m}}\}$ together with :

- Addition : usual polynomial addition.
- Multiplication: $X * a = \theta(a) * X = a^{[1]} * X$.

Involutory recursive MDS matrices Quasi-involutory recursive-like MDS matrices Implementations

Skewing powers of companion matrices

Let
$$g\langle X \rangle = X^m + \sum_{i=0}^{m-1} g_i X^i \in \mathbb{F}_{2^{2m}}[X, \theta].$$

Theorem

$$C_g^{[i-1]}C_g^{[i-2]}\dots C_g^{[1]}C_g = \begin{pmatrix} X^i & \operatorname{mod}_* & g\langle X \rangle \\ X^{i+1} & \operatorname{mod}_* & g\langle X \rangle \\ & \vdots & \\ X^{i+m-1} & \operatorname{mod}_* & g\langle X \rangle \end{pmatrix}$$

Definition

M is a recursive-like matrix $\Leftrightarrow \exists \ g \in \mathbb{F}_{2^{2m}}[X,\theta]$ monic of degree m such that

$$M = C_g^{[m-1]} C_g^{[m-2]} \dots C_g^{[1]} C_g$$

▲□ → ▲ 三 → ▲ 三 →

Redundancy matrices of 2-cyclic codes

Let ${\mathcal C}$ be a $[2m,m]_{2^{2m}}$ 2-cyclic code. It has a circulant generator matrix :

$$G = \begin{pmatrix} g_0 & g_1 & \dots & g_m & 0 & \dots & 0 \\ 0 & g_0^{[1]} & g_1^{[1]} & \dots & g_m^{[1]} & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & g_0^{[m-1]} & g_1^{[m-1]} & \dots & g_m^{[m-1]} \end{pmatrix}$$

Assume $g_m = 1$, this code has a systematic generator matrix shaped as :

$$\tilde{G} = \begin{pmatrix} X^m & \operatorname{mod}_* & g\langle X \rangle & 1 & 0 & \dots & 0 \\ X^{m+1} & \operatorname{mod}_* & g\langle X \rangle & 0 & 1 & \ddots & 0 \\ & \vdots & & \vdots & \ddots & \ddots & \vdots \\ X^{2m-1} & \operatorname{mod}_* & g\langle X \rangle & 0 & \dots & 0 & 1 \end{pmatrix}$$

(*) = (*) = (*)

Quasi-involutory Recursive-like MDS matrices

A recursive-like matrix is a quasi-involutory matrix if

$$C_g^{[2m-1]}C_g^{[2m-2]}\dots C_g^{[1]}C_g = I_m$$

$$\left(C_g^{[m-1]}C_g^{[m-2]}\dots C_g^{[1]}C_g\right)^{[m]} \left(C_g^{[m-1]}C_g^{[m-2]}\dots C_g^{[1]}C_g\right) = I_m$$

 \boldsymbol{g} yields a quasi-involutory recursive-like matrix if

$$X^{2m} - 1 \bmod {}_*g\langle X \rangle = 0$$

There exist $[2m,m]_{2^{2m}}$ 2-cyclic MDS matrix whose a redundancy matrix of a systematic generator matrix is quasi-involutory.

(B) < B)</p>

2-cyclic Gabidulin codes

Let λ be a normal element in $\mathbb{F}_{2^{2m}}.$ The following matrix is the parity-check matrix of a Maximum Rank Distance (thus MDS) 2-cyclic code, $\mathcal C$:

$$H_{\lambda} = \begin{pmatrix} \lambda^{[0]} & \lambda^{[1]} & \dots & \lambda^{[2m-1]} \\ \lambda^{[1]} & \lambda^{[2]} & \dots & \lambda^{[0]} \\ \vdots & \ddots & \ddots & \vdots \\ \lambda^{[m-1]} & \lambda^{[m]} & \dots & \lambda^{[m-2]} \end{pmatrix}$$

All roots of g unique monic polynomial generating C are roots of $X^{2m} - 1 \Rightarrow X^{2m} - 1 \mod {}_*g\langle X \rangle = 0.$

Thus g yields a quasi-involutory recursive-like matrix.

同下 イヨト イヨト

Direct Construction

- Choose a normal element $\lambda \in \mathbb{F}_{2^{2m}}$.
- O Define

$$H_{\lambda,1} = \begin{pmatrix} \lambda^{[0]} & \dots & \lambda^{[m-1]} \\ \vdots & \ddots & \vdots \\ \lambda^{[m-1]} & \dots & \lambda^{[2m-2]} \end{pmatrix} \text{ and } H_{\lambda,2} = \begin{pmatrix} \lambda^{[m]} & \dots & \lambda^{[2m-1]} \\ \vdots & \ddots & \vdots \\ \lambda^{[2m-1]} & \dots & \lambda^{[m-2]} \end{pmatrix}$$

- Sompute $H_{\lambda} = (H_{\lambda,1} \mid H_{\lambda,2})$
- Compute $M = H_{\lambda,2}H_{\lambda,1}^{-1}$. The inverse matrix is $N = M^{[m]}$.
- Compute C_q from the first line of M.

M is then a quasi-involutory recursive-like MDS matrix, recursively generated by $C_g. \label{eq:matrix}$

回 と く ヨ と く ヨ と

An example with small parameters m = 4

Let β be a a root of the irreducible polynomial $x^8+x^4+x^3+x^2+1$ (0x11c). β is a generator of the multiplication group of $\mathbb{F}_{2^8}.$

- We chose to consider the normal element $\lambda=\beta^{21}.$
- We compute $H_{\beta^{21}}$:

$$\begin{pmatrix} \beta^{21} & \beta^{42} & \beta^{84} & \beta^{168} & \beta^{81} & \beta^{162} & \beta^{69} & \beta^{138} \\ \beta^{42} & \beta^{84} & \beta^{168} & \beta^{81} & \beta^{162} & \beta^{69} & \beta^{138} & \beta^{21} \\ \beta^{84} & \beta^{168} & \beta^{81} & \beta^{162} & \beta^{69} & \beta^{138} & \beta^{21} & \beta^{42} \\ \beta^{168} & \beta^{81} & \beta^{162} & \beta^{69} & \beta^{138} & \beta^{21} & \beta^{42} & \beta^{84} \end{pmatrix}$$

• Hence the MDS matrix M is written :

$$M = \begin{pmatrix} \beta^{199} & \beta^{96} & \beta^{52} & \beta^{123} \\ \beta^{190} & \beta^{218} & \beta^{231} & \beta^{125} \\ \beta^{194} & \beta^{227} & \beta^{224} & \beta^{66} \\ \beta^{76} & \beta^{54} & \beta^{217} & \beta^{28} \end{pmatrix}$$

An example with small parameters m = 4

• Its inverse matrix is ${\cal N}={\cal M}^{[4]}$ and is written :

$$N = \begin{pmatrix} \beta^{124} & \beta^6 & \beta^{67} & \beta^{183} \\ \beta^{235} & \beta^{173} & \beta^{126} & \beta^{215} \\ \beta^{44} & \beta^{62} & \beta^{14} & \beta^{36} \\ \beta^{196} & \beta^{99} & \beta^{157} & \beta^{193} \end{pmatrix}$$

• The companion matrix which recursively generates M is associated with $g\langle X\rangle = \beta^{199} + \beta^{96}X + \beta^{52}X^2 + \beta^{123}X^3 + X^4$ and is written :

$$C_g = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \beta^{199} & \beta^{96} & \beta^{52} & \beta^{123} \end{pmatrix}$$

< 3 > < 3 >

Involutory recursive MDS matrices

2 Quasi-involutory recursive-like MDS matrices

Implementations

Normal Basis and Squaring

Let α be a normal element in $\mathbb{F}_{2^{2m}}$. $\mathcal{B} = \{\alpha, \alpha^{[1]}, ..., \alpha^{[2m-1]}\}$ is a basis of $\mathbb{F}_{2^{2m}}$ as \mathbb{F}_2 -space.

In such a basis, squaring consists in a cycling shift of the components of the vector representation :

$$X = \sum_{i=0}^{1m-1} x_i \alpha^{[i]} \Longrightarrow X^{[1]} = \sum_{i=0}^{2m-1} x_i \alpha^{[i+1]}$$

Thus, it admits an efficient hardware implementation : fixed bits permutation.

□ > < E > < E > -

Implementing recursive-like matrices

Implementing matrix-vector product with a recursive-like matrix is quite similar as classical case. The following algorithm computes it :

Algorithm 1 Matrix vector productRequire: $\mathbf{x} \in \mathbb{F}_{2^{2m}}^m$ an input vector and C_g Ensure: $\mathbf{y} = M\mathbf{x}$, with $M = C_g^{[m-1]}C_g^{[m-2]}\dots C_g^{[1]}C_g$ 1: $\mathbf{y} \leftarrow \mathbf{x}^{[1]}$ \triangleright Initialization2: for i = 0 to m - 1 do \triangleright Matrix-vector product with companion matrix4: end for \triangleright Matrix-vector product with companion matrix5: $\mathbf{y} \leftarrow \mathbf{y}^{[m-1]}$ \triangleright Final step6: return \mathbf{y}

▲□ → ▲ □ → ▲ □ → …

And the inverse ?

Algorithm 2 Matrix-vector product for the inverse matrix

Require: $\mathbf{x} \in \mathbb{F}_{2^{2m}}^{m}$ an input vector and C_{g} **Ensure:** $\mathbf{y} = M^{-1}\mathbf{x}$, with $M = C_{g}^{[m-1]}C_{g}^{[m-2]}\dots C_{g}^{[1]}C_{g}$ 1: $\mathbf{y} \leftarrow \mathbf{x}^{[-m+1]}$ \triangleright Initialization 2: for i = 0 to m - 1 do 3: $\mathbf{y} \leftarrow C_{g}\mathbf{y}^{[-1]}$ \triangleright Matrix-vector product with companion matrix 4: end for 5: $\mathbf{y} \leftarrow \mathbf{y}^{[-1]}$ \triangleright Final step 6: return \mathbf{y}

3

伺 と く き と く き と

Involutory recursive MDS matrices Quasi-involutory recursive-like MDS matrices Implementations

Skewed-LFSR

æ

<ロ> <同> <同> < 回> < 回>

Exhaustive search of MDS matrices

matrix type	Matrix Size	Ground Field	XOR Count	Reference
Circulant	3×3	\mathbb{F}_{2^4}	$1+2 \times 4$	[LS16]
Skewed Recursive	3 imes 3	\mathbb{F}_{2^4}	$3+2\times4$	this work
Circulant	4×4	$GL(4, \mathbb{F}_2)$	$3+3 \times 4$	[LW16]
Circulant	4×4	\mathbb{F}_{2^4}	$3+3 \times 4$	[LW16]
Skewed Recursive	4×4	\mathbb{F}_{2^4}	$6+3 \times 4$	this work
Circulant	6×6	\mathbb{F}_{2^4}	$12+5 \times 4$	[LS16]

Table: Best known MDS matrices with \mathbb{F}_{2^4} elements

3

(日) (同) (三) (三)

Exhaustive search of Involutory MDS matrices

matrix type	Matrix Size	Ground Field	XOR Count	Reference
Circulant	3×3	\mathbb{F}_{2^4}	$12 + 2 \times 4$	[LS16]
Skewed Recursive	3×3	\mathbb{F}_{2^4}	$12 + 2 \times 4$	this work
Circulant	4×4	$GL(4, \mathbb{F}_2)$	$5+3 \times 4$	[LW16]
Skewed Recursive	4×4	\mathbb{F}_{2^4}	$13 + 3 \times 4$	this work
Skewed Recursive	6×6	\mathbb{F}_{2^4}	$17+5 \times 4$	this work

Table: Best known Involutory MDS matrices with \mathbb{F}_{2^4} elements

э

< 注→ < 注→

Conclusion

- An algebraic framework to understand recursive and recursive-like matrices.
- A new direct construction of MDS matrices with interesting implementation properties.
- A new promising architecture : the SLFSR.

() <) <)
 () <)
 () <)
</p>