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Abstract. Online ciphers, in spite of being insecure against an sprp adversary, can
be desirable at places because of their ease of implementation and speed. Here we
propose a single-keyed inverse-free construction that achieves online sprp security with
an optimal number of blockcipher calls. We also include a partial block construction,
without requiring any extra key.
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1 Introduction
Real Time Length-Preserving Encryption. We call an encryption scheme an enciphering
scheme when it is length-preserving, i.e., when the length of the input matches the length
of the output. Preserving length has uses in applications such as disk-sector encryption (as
addressed by the IEEE SISWG P1619), where a length-preserving encryption preserves the
file size after encryption. Other applications of enciphering schemes include bandwidth-
efficient network protocols and security-retrofitting of old communication protocols.

Real time applications of enciphering schemes often find it convenient to use a low buffer
size and process the data in one pass, or what we call online. A popular security notion for
enciphering schemes is that of prp or pseudorandom permutation. However, prp security
cannot be achieved in a single pass, and hence is not suitable to online ciphers, which
easily admit prp distinguishing attacks.

Optimal Security for Online Ciphers. Bellare et al. [BBKN12] introduced the notion of
online prp, the highest possible randomness in online ciphers. This notion tries to minimise
the computational distance with the uniform distribution over all online ciphers. Certain
popular online ciphers like CBC with fixed IV [BBKN12], ABC by Knudsen [KK00], etc.
failed to be secure under this notion.

Two secure online ciphers have been are HCBC [BBKN12] (online prp) and HPCBC [Nan07]
(online sprp), based on the AXU hash family [Rog02]. In these, the input lenghth of messages
are variable multiples of n, blocksize of the underlying prp. More efficient constructions
have been proposed in [Nan08] and later generalized, in the form of TC3 [RZ11], through
a tweakable blockcipher.

Inverse-Free Designs. Another important design aspect relevant today in designing
blockcipher-based encryption modes are inverse-free encryption modes, i.e., designs that
rely solely on the encryption circuit of the blockcipher both while encrypting and decrypting,
thus never needing to call its decryption circuit. These designs have numerous advantages,
like requiring just a prf-secure blockcipher and a low footprint in a combined implementation.
Encryption based on inverse-free primitive had been used earlier. Two-block or diblock
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Figure 1: OleF: A Schematic View

Feistel design was used in early block ciphers like Lucifer [Fei74][Sor84] and DES [Sta77].
Luby and Rackoff gave a security proof of Feistel ciphers [LR88], and later the design was
generalised to obtain inverse-free enciphering of longer messages [Nyb96].

1.1 Our Contributions
We propose an optimal inverse-free construction that achieves online sprp security (in
a slightly modified form). In other words, in analogy to the notion of sprp security,
an adversary with access to both encryption and decryption oracles cannot effectively
distinguish it from a random online permutation.

Schematically, OleF consists of a sequential encryption layer, followed by a mixing layer,
and another sequential encryption layer, so it follows the encrypt-mix-encrypt paradigm.

Advantages. Our construction has several advantages over its predecessors:

• Being inverse-free, this construction has two advantages:

– A combined implementation of encryption and decryption keeps the footprint
low;

– Some blockciphers (like AES [Pub01]) have faster encryption than decryption,
so and even individual implementation of OleF decryption can be faster than it
would be if it needed AES decryption;

– Underlying block cipher only needs prf-security, instead of sprp-security. This
is believed to be achievable in a smaller number of rounds in some standard
constructions like AES.

• Being online, this is easier to implement (due to a low buffer size) and also performs
better.

• We believe this is an optimal inverse-free online sprp construction, in terms of the
number of calls to the underlying prf. Earlier constructions like TC3 [RZ11] and
MCBC [Nan08], when implemented as inverse-free, require more calls per diblock,
as shown in the table. (An earlier version of McOE [FFLW11] had a variant called
McOE-D which was similar to TC3.) For comparison, we also include the inverse-free
full (offline) ciphers AEZ [HKR15] and FMix [BN15].

• Partial blocks are handled with the same key, instead of an independent key, as seen
in previous designs.
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Table 1: f -calls per diblock for constructions in inverse-free implementations.

Construction f -calls Online?
MCBC 7 Yes
TC3 6 Yes
AEZ 5 No
FMix 4 No
OleF 4 Yes

Table 1 compares calls to f per diblock for various constructions in inverse-free implemen-
tations. For blockcipher based construction requiring the inverse, we count the number of
calls after replacing the blockcipher (over a dibock) by a four-round Luby-Rackoff construc-
tion. This generic conversion, however, costs additional keys as four round Luby-Rackoff
construction requires at least two keys.

2 Preliminaries

2.1 Basic Notions
Deterministic Encryption Schemes. Formally, with a deterministic encryption scheme E,
we associate three finite spaces: the message spaceM, the ciphertext space C, and the key
space K. E consists of two deterministic functions: e : K×M −→ C and d : K× C −→M,
such that for any k ∈ K,m ∈M, we have

d(k, e(k,m)) = m.

Since any finite set can be encoded in binary, we’ll assume K,M and C to be sets of binary
strings. In addition, there is a key distribution µk (usually uniform over the key-space).
For a set S and a distribution µ over S, we’ll write x µ←− S to denote x is sampled from S

according to distribution µ. When µ is uniform, we also write x $←− S.

Blockcipher-based Inverse-Free Constructions. Formally, a blockcipher eK : {0, 1}n −→
{0, 1}n is a small-domain fixed-length deterministic encryption scheme. n is called the
block-size, and is usually 128 or 256. Elements of {0, 1}n are called blocks. In a wide
class of encryption schemes and other constructions, the only non-linear components
are blockciphers. We’ll call such a construction inverse-free if both the encryption and
the decryption use computations of eK (for possibly different values of K) but never
need to compute its inverse e−1

K . In this case, one can also replace the blockcipher by a
length-preserving keyed function, not necessarily invertible.

Random Functions. Let Funcn be the set of all block functions, i.e., functions from
{0, 1}n to {0, 1}n. When we call f a random function, we assume

f
$←− Funcn.

In our security proof, we will replace the blockcipher by a random function, using the
hybrid argument. This will let us work in a purely information-theoretic scenario. Thus,
the only source of randomness in our construction will be the random functions, and all
probabilities will be calculated based on this randomness.
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2.2 Security Games
Simple Distinguishing Game. Consider two classes of functions C0 and C1, with distri-
butions µ0 and µ1 defined over them. In a simple distinguishing game, the oracles O0 and
O1 behave as follows: for b ∈ {0, 1}, Ob samples fb

µb←− Cb and simulates it. The challenger
chooses a b ∈ {0, 1}, and the adversary A is allowed to make q queries x1, . . . , xq to Ob,
which simply returns fb(x1), . . . , fb(xq), respectively. Note that A is allowed to make these
queries adaptively, i.e., for 2 ≤ i ≤ q, he can choose xi after observing fb(x1), ..., fb(xi−1).
Additionally, at the end of the queries, A may receive some additional information from
Ob, which can be some hidden part of the computation or something sampled randomly
according to a known distribution. A finally returns a b′ ∈ {0, 1}, and wins if b′ = b.

Strong Distinguishing Game. Suppose C0 and C1 are classes of permutations, i.e., in-
vertible functions. As before, for b ∈ {0, 1}, Ob samples a permutation πb

µb←− Cb, and
challenger chooses a b ∈ {0, 1}. Now, however, each query of A is of the form (xi, δi),
where δi ∈ {e, d} represents the direction of the query. When δi = e, i.e., in an encryption
query, Ob returns πb(xi) as before; when δi = d, i.e., in a decryption query, Ob returns
π−1
b (xi). Again, at the end, A may receive additional information. As before, A returns
b′ ∈ {0, 1}, and wins if b = b′. We also denote these oracles by O±b to mean that it can
response both forward and inverse queries.

We’ll use the notation Prb [·] to denote probability under oracle Ob.

Pointless Adversary. An adversary A will be called pointless if he makes a pointless
query, i.e., a query whose response he already knows. In a simple distinguishing game, a
pointless query is simply a repeated query, i.e., a query xi such that xi = xi

′ for some
i′ < i. In a strong distinguishing game, a pointless query can take two additional forms:

1. (yi, d), such that for some i′ < i the query (xi′ , e) returned yi.

2. (xi, e), such that for some i′ < i the query (yi′ , d) returned xi.

In our analysis we’ll exclude pointless adversaries, because they can be trivially superseded
by non-pointless ones. Since we will work in an information-theoretic setup, replacing
all pointless queries by arbitrary non-pointless ones always gives the adversary more
information.

Distinguishing Advantage. For an adversary A interacting with oracles either O0 or O1,
we define the distinguishing advantage of A as

AdvO0
O1

(A) =
∣∣Pr0

[
AO0 returns 1

]
− Pr1

[
AO1 returns 1

]∣∣ .
If the distinguishing advantage is bounded above by ε for any adversary A, we say O0
and O1 are (1 − ε)-indistinguishable. When ε is “negligible”, we’ll often simply call O0
and O1 indistinguishable. When O±0 and O±1 are indistinguishable, we say O0 and O1 are
(1− ε)-strong-indistinguishable.

Pseudorandomness. Consider a class C of functions from D to R, and a key space K.
Consider the keyed family of functions F = {fk|k ∈ K} ⊂ C . We say F is pseudorandom
(or strong pseudorandom) in C if for f $←− C and k $←− K, oracles O0 simulating f (called
the ideal oracle) and O1 simulating fk (called the real oracle) are indistinguishable (or
strong-indistinguishable respectively).
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Blockciphers and the Switching Lemma. Suppose F is pseudorandom in C . When
C = Funcn, F is called an n-bit pseudorandom function (prf). When C = Permn, the set
of all permutations from {0, 1}n to {0, 1}n, F is called an n-bit pseudorandom permutation
(prp). A blockcipher will be assumed to be an n-bit prp. It is a well-known result that
for any family F , the prf distinguishing advantage of any adversary A cannot exceed
its prp distinguishing advantage by more than σ2

2n , σ being the total number of query
blocks. This result, known as the prp-prf switching lemma [BR06], lets us replace each
different blockcipher by a prf. The distinguishing advantage between a prf and a truly
random function will be considered negligible, allowing us to model the blockcipher as
truly random functions, as mentioned before.

2.3 Diblock-Online Security
The Diblock-Online Property. Fix a block-size n bits. For any binary string x, let ||x||
denote the number of bits in x, and for 1 ≤ r ≤ ||x||, let x1..r denote the r-bit prefix of x.
A permutation π : {0, 1}≥2n −→ {0, 1}≥2n is said to be length-preserving if for any x in
the domain of π,

||π(x)|| = ||x||.

We will call a length-preserving permutation diblock-online if for any x ∈ {0, 1}l, y ∈ {0, 1}l′

with l ≤ l′, for any r such that 1 ≤ 2nr ≤ l − 2n, we have

x1..2nr = y1..2nr =⇒ π(x)1..2nr = π(y)1..2nr.

In other words, the first r diblocks of π(m) depend only on the first r diblocks of m,
provided m has at least r + 1 complete diblocks. (When there’s an incomplete diblock at
the end, the last complete diblock may violate this property.)

Note that this property imposes no restrictions on the last 2n+ s bits of π(x), where s
is the remainder when ||x|| is divided by 2n. Here our definition deviates slightly from
the classical notions of online permutations, which insists that π(x) is a prefix of π(y)
whenever x is a prefix of y.

An encryption scheme E = (e, d) is said to be (diblock-online) length-preserving if for any
k ∈ K the permutation e(k, ·) is (diblock-online) length-preserving.

Diblock-Online Strong Pseudorandom Permutations. Take a diblock-online encryption
scheme E = (e, d). Let F be the family {ek = e(k, ·)|k ∈ K}. F is called a diblock-online
strong pseudorandom permutation (dosprp) if it is strong pseudorandom in the class of
all diblock-online permutations. (Note that the class of such permutations is actually
infinite, making uniform sampling meaningless, so we assume the length of the inputs do
not exceed 2nl, i.e., the number of diblocks cannot exceed some fixed cap l.) In such cases,
we shall call the encryption scheme E dosprp-secure.

2.4 Patarin’s Technique
Interpolation Probability Fix a set Q =

{
x1, ..., xq

}
of queries and a set R =

{
y1, ..., yq

}
of responses, obtained from an oracle O. (Note that here xi represents the entire query, so
for example in a strong distinguishing game, xi will include the query direction as well.
This is a departure from the notation used before, where xi was just the query string.)
Let S be the additional information revealed to A. We call τ = (Q,R,S) a transcript of
the game. Based on the randomness in O, there will be a certain probability of obtaining
R on querying with Q. We call this probability the interpolation probability PrO [τ ].
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Figure 2: OleF for ` Complete Diblocks

Patarin’s Coefficient H Technique Consider two oracles O0 and O1. Suppose for a set
Vg of views (called the good views) the following hold:

1. For any adversary A playing against O0, the probability of getting a good transcript
is at least 1− ε1;

2. For any good transcript τ , we have

Pr1 [τ ]
Pr0 [τ ] ≥ 1− ε2.

Theorem 1 (Coefficient H Technique). For oracles O0 and O1 satisfying (1) and (2)
above, for any adversary A, we have

AdvO0
O1

(A) ≤ ε1 + ε2.

This technique is due to Jacques Patarin [Pat08], and will be used in our security proofs.

3 The OleF Construction

3.1 Construction Details
Our construction takes as input one or more diblocks. When there are more than one
diblocks, the last one maybe partial. (An incomplete diblock may consist of one complete
block and one partial block, only one complete block or only one partial block.) Each
plaintext diblock is processed using four Feistel rounds and one tweak that is obtained from
processing the previous diblocks. After outputting the corresponding ciphertext diblock, a
new tweak is passed on to the next diblock. The construction details are illustrated in the
figure.

Handling Partial Blocks. If the last diblock is partial, it may require up to six calls to f
to handle it, as shown in the figure 3. pad is an injective pad (like 10∗), and chop simply
chops bits off the end of a full block till its size matches that of the partial block. (In the
figure, we use the conventional trapezium nodes to denote pad and chop).
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Balanced Linear Permutation. A permutation b over the set of n bits, is called a balanced
linear permutation, if for

t
$←− {0, 1}n,

each of b(t) and t + b(t) is uniformly distributed. A simple example of balanced linear
permutation is b(t) = α · t where α is a non-zero non-1 constant and ‘·’ is the finite field
multiplication. A software-friendly choice of b could be (y‖(x⊕ y) where t := x‖y and x, y
are n/2 bits. In this construction we use four balanced linear permutations b1, b2, b3 and
b4, defined as

bi(t) := αi · t,

where α is a primitive field element and ‘·’ is the finite field multiplication. Note that field
multiplication by a public primitive element is much faster than field multiplication by a
secret key.

3.2 Design Rationale
Injecting the Tweak. The first design question we consider is at which points in the
processing of a diblock we add the tweak T obtained from its prefix. A tempting choice
could be to add T to either strand midway, after two f calls have been completed, because
this would make the top encrypt layer fully parallel. However, as shown in [HR04], sprp
security can never be achieved in an ECB-linear mix-ECB mode, so this choice does not
work. Instead we add T in the middle of the top layer (after one f call) and of the bottom
layer (after three f calls). This allows some parallelisability of the top encrypt layer,
without turning it into an ECB, thus avoiding the pitfall mentioned above.

Choice of T. A more involved question is how we generate a tweak T from a diblock.
We could pick a public function of the view, such as T[i+ 1] = L[i] + R[i] + L’[i] + R’[i], so
that the adversary can directly get T from the view. This, however, leads to a simple prp
attack:

1. Make a query with first two diblocks (L[1],R[1]) and (L[2],R[2]). Find tweak T that
comes from the first diblock.

2. Make a query with first diblock (L[1],R[3]). Find new tweak T’ and calculate the
difference ∆T = T + T’.
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3. Make a query with first two diblocks (L[1],R[3]) and (L[2],R[2] + ∆T). Then the
right half of the second output diblock matches the corresponding block from the
first query.

This problem remains for a choice like T[i+ 1] = X[i] + L’[i] + R’[i], because even though
the adversary can no longer obtain T, he can still observe ∆T after the first two queries
above, by fixing the first input block which is the only source of randomness, and thus the
attack still works. Hence, it becomes necessary that in the computation of T, randomness
is provided both by the plaintext diblock and the ciphertext diblock, because then the
adversary cannot control both simultaneously, and differential attacks like the above no
longer work. A simple and obvious choice satisfying this is X + Y.

input : ` plaintext diblocks (L[1],R[1]), ..., (L[`],R[`])
output : ` ciphertext diblocks (L’[1],R’[1]), ..., (L’[`],R’[`])
begin

T[1]← 0
if |R[`]| = n then

for j ← 1 to ` do
(T[j + 1], L’[j],R’[j])← process(j,T[j], L[j],R[j])

end for
else

for j ← 1 to `− 2 do
(T[j + 1], L’[j],R’[j])← process(j,T[j], L[j],R[j])

end for
if |L[`]| < n then

Z← b4(f(pad (L[`]))
(T[`], L’[`− 1],R”[`− 1])← process(T[`− 1], L[`− 1]⊕ Z,R[`− 1])
L’[`]←chop (f(T[`])⊕ L[`])
R’[`− 1]← R”[`− 1]⊕ b4(f(pad (L’[`])))

else
Z← b4(f(L[`]))⊕ f(pad (R[`])
(T[`], L’[`− 1],R”[`− 1])← process(T[`− 1], L[`− 1]⊕ Z,R[`− 1])
L’[`]← f(T[`])⊕ L[`]
R’[`]←chop (f(T[`])⊕ R[`]⊕ 1)
R’[`− 1]← R”[`− 1]⊕ b4(f(L[`]))⊕ f(pad (R’[`])

end if
end if

end

Module process
input : j,T, (L,R)
output :TNEXT, (L’,R’)
begin

if j = ` then
bT← b3(T)

else
bT← b2(T)

end if
X← f(L)⊕ R⊕ bT
Y← f(X)⊕ L
R’← f(Y)⊕ X
L’← b1(f(R’))⊕ Y⊕ bT
TNEXT ← X⊕ Y

end

Algorithm 1: The OleF encryption algorithm for `− 1 complete diblocks and one
possibly incomplete diblock, where a single block has n bits

Need for b1. We make a call b1 after the last call to f in each diblock. This is necessary
in order to break the symmetry, because otherwise each diblock computation becomes
a 4-round Luby-Rackoff with a symmetric key sequence[Nan10], which is known to be
insecure. A simple prp attack:



38 OleF: an Inverse-Free Online Cipher

1. Make a query with first diblock (L,R). Note first diblock (L’,R’) of output.

2. Make a query with first diblock (R’, L’). The first diblock of the output will be (R, L).

Choice of b1. Suppose we choose a permutation b1 that is not balanced. Assume for
t

$←− {0, 1}n, t+ b1(t) takes a value x with probability p > 1
2n . Then the following attack

distinguishes it with advantage p:

1. Make a query with first diblock (L,R). Note first diblock (L’,R’) of output.

2. Make a query with first diblock (R’, L’ + x). The right half of the first diblock of the
output will be L with probability at least p.

Thus, it is important to choose a balanced b1.

b2, b3 and b4. The other balanced permutations are chosen with similar concerns with
mind. For example, b2 + b3 should be full-rank, in order to attain the randomness in the
last diblock. In fact, the analysis in the appendix tells us that bi + bj should be full-rank
for any different i and j, and also bi + id should be full-rank for all i, where id denotes the
identity function. Our choice of bi’s attains this.

Why Diblocks? Classically, when one talks of online ciphers, one considers a blockwise
online property. However, since we’re attempting an inverse-free construction, and there’s
no known inverse-free mode to encrypt a single block (which would be necessary in a
blockwise online cipher), we settle for a diblock-online cipher instead.

4 Setup and Security Game
In this section we develop some notation we will use for our security analysis, and describe
in detail the security game, in preparation of the security results we will present in Section 5

4.1 Some Notation and Definitions
Let (Li[j],Ri[j]) and (L’i[j],R’i[j]) denote the j-th plaintext diblock and the j-th ciphertext
diblock of the i-th query respectively. Let `i denote the number of diblocks in the i-th query,
and let δi ∈ {e, d} denote the direction of the i-th query. Let E =

{
i | δi = e

}
, and D ={

i | δi = d
}
. We assume the dictionary order on the set I =

{
(i, j) | 1 ≤ i ≤ q, 1 ≤ j ≤ `i

}
.

σ = |I| will denote the total number of query diblocks. N = 2n will denote the number of
possible values for each block, where n is the blocksize.

Internal Input and Output Blocks. The inputs and outputs of the internal f -calls will
be called the internal input and output blocks. We introduce and summarise here some
notation that’ll be useful for describing these internal blocks. For j < `i, we recall that

Xi[j] = f(Li[j]) + Ri[j] + b2(Ti[j]),
Yi[j] = L’i[j] + b1(f(R’i[j])) + b2(Ti[j]).

We further recall that

X`
i

[j] = f(L`
i

[j]) + R`
i

[j] + b3(T`
i

[j]),

Y`
i

[j] = L’`
i

[j] + b1(f(R`
i

[j])) + b3(Ti[j]).
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Table 2: Summary of Internal Input and Output Blocks

f Call Input Block Output Block

First Li[j] Ri[j] + Xi[j] + b2(Ti[j])

Second Xi[j] Ui[j]

Third Yi[j] Vi[j]

Fourth R’i[j] b−1
1 (L’i[j] + Yi[j] + b2(Ti[j]))

Here Ti[1] is taken to be 0 and for j ≥ 2,

Ti[j] = Xi[j − 1] + Yi[j − 1].

For any (i, j) ∈ I, let f(Xi[j]) be called Ui[j] and f(Yi[j]) be called Vi[j]. We note that

Yi[j] = Li[j] + Ui[j],
Xi[j] = R’i[j] + Vi[j].

The notation is summarised in Table 2. Note that all internal input and output blocks are
linear functions Xi[j]’s, Yi[j]’s and the plaintext and ciphertext blocks.

Prefixes. Let Pi[j] and P’i[j] denote the j-diblock prefixes of the plaintext and ciphertext
respectively in the i-th query. We shall call i ∈ E encryption j-fresh if j = `i, or if j < `i

and for no i′ < i we have Pi[j] = Pi
′
[j], i.e., the plaintext prefix Pi[j] is distinct from

all previous plaintext prefixes. Similarly, we shall call i ∈ D decryption j-fresh if j = `i,
or if j < `i and for no i′ < i we have P’i[j] = P’i

′
[j] i.e., the ciphertext prefix P’i[j]

is distinct from all previous plaintext prefixes. (A plaintext or ciphertext is considered
distinct as a prefix from proper prefixes of other plaintexts or ciphertexts, even if they
match block-to-block. This is because we process the last diblock differently.) Note that for
every distinct plaintext prefix, we have a corresponding (i, j) pair such that i is encryption
j-fresh, and for every distinct ciphertext prefix, we have a corresponding (i, j) pair such
that i is decryption j-fresh.
We call a value x (i, j)-new if

x /∈
{

Li
′
[j′],R’i

′
[j′] | (i′, j′) < (i, j)

}
.

In other words, a value is (i, j)-new when it has not occurred before as an input to the
outer-layer f -calls. Note that the set

D :=
{

Li[j] | Li[j] is (i, j)-new
}
∪
{

R’i[j] | R’i[j] is (i, j)-new
}

is precisely the set of distinct values among the Li[j]’s and the R’i[j]’s, i.e.,

D =
{

Li[j],R’i[j] | (i, j) ∈ I
}
.

4.2 Oracle Behaviour and Bad Events
We’re now ready to describe how the two oracles behave in our security game. We recall
that the real oracle O1 interacts with the adversary using our construction with a random
function f , while the ideal oracle simulates a random diblock-online permutation. In
addition, at the end of the query phase, each oracle reveals some additional information
for the adversary. We describe their behaviour next.
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Real Oracle. The real oracleO1 samples a random function f . It uses f in the construction
to answer each adversary query, according to Algorithm 1. In the end, it also reveals all
the internal input and output blocks as described above.

Ideal Oracle. The ideal oracle O0 has two stages of sampling. It initially samples a
random diblock-online permutation π. To each encryption query x it returns π(x) and to
each decryption query y it returns π−1(y). We say the event badA has occurred if any of
the following happens:

• For some i ∈ {1, . . . , q}, j ≤ `i,

Li[j] = R’i[j];

• For some i ∈ E, j ≤ `i with i encryption j-fresh, R’i[j] is not (i, j)-new;

• For some i ∈ D, j ≤ `i with i decryption j-fresh, Li[j] is not (i, j)-new.

If O0 does not encounter badA, it proceeds to the second stage, where it samples values for
a set B described below, and uses these values to simulate the internal input and output
blocks, which it then reveals to the adversary. Before making this formal, we describe B
and its special property.

Basis. Recall the set
D =

{
Li[j],R’i[j] | (i, j) ∈ I

}
of distinct values that occur as Li[j] or R’i[j]. For x ∈ D, let (i(x), j(x)) denote the first
occurrence index of a shortest prefix where x occurs as Li[j] or R’i[j], i.e., x = Li(x)[j(x)]
or x = R’i(x)[j(x)], and

x /∈
{

Li
′
[j′],R’i

′
[j′] | (j′, i′) < (j(x), i(x))

}
.

Note that this is similar to the definition of (i, j)-new, except we’ve reversed the order of j
and i. We’re now looking at the earliest among all shortest prefixes, instead of the shortest
among all earliest ones.

We write D as D1 ∪ D2, where

D1 :=
{
x ∈ D | x = Li(x)[j(x)]

}
,

D2 :=
{
x ∈ D | x = R’i(x)[j(x)]

}
.

Note that unless badA has occurred,

D1 ∩ D2 = φ.

Next, we identify two sets of blocks B1 and B2 as

B1 :=
{

Vi(x)[j(x)] | x ∈ D1

}
,

B2 :=
{

Ui(x)[j(x)] | x ∈ D2

}
.

Finally, we define B as
B := B1 ∪ B2.

We call B the basis, for reasons to be soon explained. It immediately follows that

|B| = |D|.
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Extending a Basis. Suppose we have fixed values for all blocks in the basis B. We’ll now
show that this, along with the plaintext and ciphertext blocks, uniquely determines all
internal input and output blocks. For this it is enough to determine the Xi[j]’s and the
Yi[j]’s. We only consider the Xi[j]’s; it is easy to see the same analysis also applies to the
Yi[j]’s with little modification.

V1[1] is always in B, so we get X1[1] = R1[1] + V1[1]. Suppose for some i ≥ 2 we’ve
determined the values of Xi

′
[1] and Yi

′
[1] for all i′ < i. (Note that this means we’ve also

obtained Ti
′
[1] for all i′ ≤ i.) We consider three cases:

• if i(Li[1]) = i, Vi[1] ∈ B, so we get

Xi[1] = R’i[1] + Vi[1];

• if Li[1] = Li
′
[1] for some j′ < j, then

Xi[1] = Xi
′
[1] + Ri

′
[1] + Ti

′
[1] + Ri[1] + Ti[1];

• if Li[1] = R’i
′
[1] for some j′ < j, then

Xi[1] = b−1
1 (Yi

′
[1] + L’i

′
[1] + Ti

′
[1]) + Ri[1] + Ti[1].

Let b[ij](x) denote b3(x) when j = `i and b2(x) otherwise. Thus, the (i, j)-th diblock
gets as tweak b[ij](Ti[j]). Suppose for some i ≥ 2 and for some j ≤ li, we’ve already
determined the values of Xi

′
[j′] and Yi

′
[j′] for all (j′, i′) < (j, i). We again consider three

cases:

• if i(Li[j]) = i and j(Li[j]) = j, Vi[j] ∈ B, so we get

Xi[j] = R’i[j] + Vi[j];

• if Li[j] = Li
′
[j′] for some (j′, i′) < (j, i), then

Xi[j] = Xi
′
[j′] + Ri

′
[j′] + b[i′j′](Ti

′
[j′]) + Ri[j] + b[ij](Ti[j]);

• if Li[j] = R’i
′
[j′] for some (j′, i′) < (j, i), then

Xi[j] = b−1
1 (Yi

′
[j′] + L’i

′
[j′] + b[i′j′](Ti

′
[j′])) + Ri[j] + b[ij](Ti[j]).

This completes the extension. The equations used for obtaining the value of an Xi[j] or
a Yi[j] from the basis or from previously determined values will be called its extension
equations.

Sampling through the Basis. Now we formally describe the second stage of sampling by
O0. For each x ∈ B, O0 assigns a value through uniform with-replacement sampling. It
then uses the basis extension equations above to determine the values of the internal input
and output blocks, which it then reveals to the adversary. In doing so, it may encounter
the event badB, which happens when we have an accidental collision on a pair of internal
input blocks. We next describe what we mean by this.
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Real Oracle O1

1 : f
$←− Funcn

2 : use OleF[f ] to answer queries
3 : reveal internal input and output blocks

Ideal Oracle O0

1 : π
$←− DOPerm

2 : use π to answer queries
3 : if badA, classify transcript as bad

4 : for each x ∈ B, x $←− {0, 1}n

5 : simulate internal input and output blocks
6 : if badB, classify transcript as bad

Figure 4: Oracle Behaviour

Accidental Collisions. Let F be the first-occurrence indices of the distinct plaintext
prefixes, and F ′ be the first-occurrence indices of the distinct ciphertext prefixes, i.e.,

F =
{

(i, j) | (@i′ < i)(Pi
′
[j′] = Pi[j])

}
∪ L,

F ′ =
{

(i, j) | (@i′ < i)(P’i
′
[j′] = P’i[j])

}
∪ L,

where L =
{

(i, `i) | i ∈ {1, ..., q}
}
. If any of the following input collisions is observed, it

will be called accidental:

• For some (i1, j1), (i2, j2) ∈ F with (i1, j1) 6= (i2, j2),

Xi1 [j1] = Xi2 [j2];

• For some (i1, j1), (i2, j2) ∈ F ′ with (i1, j1) 6= (i2, j2),

Yi1 [j1] = Yi2 [j2];

• For some (i1, j1) ∈ F , (i2, j2) ∈ F ′,

Xi1 [j1] = Yi2 [j2];

• For some (i1, j1) ∈ F , (i2, j2) ∈ I,

Xi1 [j1] = Li2 [j2];

• For some (i1, j1) ∈ I, (i2, j2) ∈ F ′,

R’i1 [j1] = Yi2 [j2].

Good Transcript. The plaintexts and ciphertexts along with the internal input and
output blocks revealed at the end constitute the transcript for this game. We say the
transcript is bad if in sampling it the ideal oracle O0 encounters either of the events badA
and badB. Note that whether a bad event has occurred can be seen from the transcript
itself, so we don’t really need to consider the temporal aspect of the game in order to
classify a transcript. The oracle behaviour is summarised in Figure 4.

5 Security Results
In this section we provide the security analysis of our construction defined over all messages
having ending in a complete diblock. The proof for the partial blocks case is similar.
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Theorem 2. Suppose an adversary A interacting against OleF instantiated with some
block-function f in the real world, or an ideal random diblock-online permutation in the
ideal world, makes at most q queries, each consisting only of complete diblocks, and having
altogether σ diblocks. Then there is a prf-adversary A′ against f making at most σ queries
such that

Advdosprp
OleF[f ] (A) ≤ Advprf

f (A′) + 7σ2

2n .

For a perfect blockcipher eK , prp-prf switching lemma tells us that

Advprf
eK

(A′) ≤ σ2

2n ,

so when we instantiate OleF with eK , we have the following security bound:

Advdosprp
OleF[eK ](A) ≤ 8σ2

2n .

The rest of the section is to devote to a proof of Theorem 2. Using standard hybrid
reduction, we can replace the keyed function f by a true random function at the cost of
Advprf

f (A′). Then we apply coefficient H technique (as mentioned in Section 2) to obtain
the rest of the bound. So from now onwards we assume f is a true random function.

In order to apply the Coefficient H Technique, we first examine the probability of a bad
transcript in a game with the ideal oracle O0. We look at the two bad events one by one,
beginning with badA.

5.1 Probability of badA
Suppose i is encryption j-fresh. Then Pi[j] is a fresh plaintext prefix. For a random
diblock-online permutation π, the output will thus have almost full entropy in the final
diblock, the only restriction being that if for some i′ < i we have P’i

′
[j − 1] = P’i[j − 1],

then (L’i[j],R’i[j]) cannot be equal to (L’i
′
[j],R’i

′
[j]). This rules out at most q

N2 choices
for the diblock, so for any value x,

Pr
[
R’i[j] = x

]
≤ 1
N ·

(
1− q

N2

) = 1
N − q

N

≤ 1
N − 1 .

Since there are at most 2σ distinct plaintext and ciphertext prefixes, badA corresponds to
a collision on a set of size at most 2σ. Thus,

Pr0 [badA] ≤

(
2σ
2

)
N − 1 ≤

2σ2

N
.

5.2 Probability of badB
For this we assume that the first stage of sampling has been carried out, so the values
of all plaintext blocks and ciphertext blocks are fixed, and the event badA has not been
encountered. Suppose all elements of B have been uniformly sampled, and the internal
input and output blocks generated by extending the basis as expounded in Section 4. A
careful case-by-case analysis (see Appendix A) gives us the following bounds:

• For any (i1, j1), (i2, j2) ∈ F with (i1, j1) 6= (i2, j2), Pr0
[
Xi1 [j1] = Xi2 [j2]

]
≤ 1
N

;

• For any (i1, j1), (i2, j2) ∈ F ′ with (i1, j1) 6= (i2, j2), Pr0
[
Yi1 [j1] = Yi2 [j2]

]
≤ 1
N

;
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• For any (i1, j1) ∈ F , (i2, j2) ∈ F ′, Pr0
[
Xi1 [j1] = Yi2 [j2]

]
≤ 1
N

;

• For any (i1, j1) ∈ F , (i2, j2) ∈ I, Pr0
[
Xi1 [j1] = Li2 [j2]

]
= 1
N

;

• For any (i1, j1) ∈ I, (i2, j2) ∈ F ′, Pr0
[
R’i1 [j1] = Yi2 [j2]

]
= 1
N

.

We know that |F| and |F ′| are both bounded by σ. Thus, number of pairs over F and F ′
is at most 2σ2. We further know that |I| is also bounded by σ. Thus we conclude that

Pr0 [badB | not badA] ≤ 4σ2

N
.

Together with the result from the previous subsection, this implies that

Pr0 [badB or badA] ≤ 6σ2

N
.

5.3 Interpolation Probability of a Bad Transcript
In a good transcript τ , for the real oracle O1, there are exactly |D|+ |F|+ |F ′| distinct
inputs to f . Thus there are NN−(|D|+|F|+|F ′|) choices for f that lead to τ . Since O1
samples a random f and then works with OleF[f ], and the total number of choices for f is
NN , we have

Pr1 [τ ] ≥ N−(|D|+|F|+|F ′|).

For the ideal oracle O0, the D basis elements are chosen randomly, and the |F| + |F ′|
plaintext and ciphertext blocks are chosen through a random diblock-online permutation
π. Thus,

Pr0 [τ ] ≤ N−(|D|+|F|+|F ′|) · 1
1− σ2

N

,

since |F|+ |F ′| ≤ σ. Thus,
Pr1 [τ ]
Pr0 [τ ] ≥ 1− σ2

N
.

5.4 Wrapping up the proof

Let ε1 := 6σ2

N
and ε2 := σ2

N
. Then we have shown that

Pr0 [transcript is bad] ≤ ε1,

and when τ is a good transcript,

Pr1 [τ ]
Pr0 [τ ] ≥ 1− ε2.

From Theorem 1, the Coefficient H Technique, we have

Advdosprp
OleF[f ] (A)−Advprf

f (A′) ≤ ε1 + ε2.

This completes a proof of Theorem 2.
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Appendices

A A Detailed Analysis of badB
A.1 Notation
As mentioned in the previous section, we assume that the first stage of sampling has been
carried out, so the values of all plaintext blocks and ciphertext blocks are fixed, and the
event badA has not been encountered. Recall that in Section 4, we introduced the notation
(i(x), j(x)) for some x ∈ D to denote its first-occurrence index. We introduce some further
notation to simplify the subsequent analysis. For i ∈ E, let ĩ denote i(Li[j]) and j̃ denote
j(Li[j]), i.e., (̃i, j̃) is the first-occurrence index of Li[j]. (Note that (i(R’i[j]), j(R’i[j])) is
simply (i, j), unless badA has occurred.) Simlarly, for i ∈ D, let ĩ denote i(R’i[j]) and j̃
denote j(R’i[j]), while (i(Li[j]), j(Li[j])) is simply (i, j), unless badA has occurred. Note
that using this notation, the basis can be redefined as

B1 :=
{

Vi[j] | i ∈ E, (i, j) = (̃i, j̃)
}
,

B2 :=
{

Ui[j] | i ∈ D, (i, j) = (̃i, j̃)
}
.

Suppose all elements of B have been uniformly sampled, and the internal input and output
blocks generated by extending the basis as expounded in Section 4. In the subsequent
analysis, we shade basis elements to simplify notation.

A.2 badB: Type 1.
Let (i1, j1), (i2, j2) ∈ F with (j1, i1) > (j2, i2). We will show that

Pr0
[
Xi1 [j1] = Xi2 [j2]

]
≤ 1
N
.
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We recall that
Xi1 [j1] = Vi1 [j1] + R’i1 [j1].

Thus, when Xi1 [j1] = Vi1 [j1] + R’i1 [j1], since Vi1 [j1] cannot affect Xi2 [j2], we are done.
Thus we assume Vi1 [j1] /∈ B. Next we recall that, when Li1 [j1] = Lĩ1 [j̃1], we have

Xi1 [j1] = Xĩ1 [j̃1] + Rĩ1 [j̃1] + b[ĩ1j̃1](Tĩ1 [j̃1]) + Ri1 [j1] + b[i1j1](Ti1 [j1]),

and when Li1 [j1] = R’ĩ1 [j̃1], we have

Xi1 [j1] = b−1
1 (Yĩ1 [j̃1] + L’ĩ1 [j̃1] + b[ĩ1j̃1](Tĩ1 [j̃1])) + Ri1 [j1] + b[i1j1](Ti1 [j1]).

For any (i, j) such that (i, j) 6= (̃i, j̃) define

αij := Xĩ[j̃] + Rĩ[j̃] + b[̃ij̃](Tĩ[j̃]) + Ri[j] when Li[j] = Lĩ[j̃],

:= b−1
1 (Yĩ[j̃] + L’ĩ[j̃] + b[̃ij̃](Tĩ[j̃])) + Ri[j] when Li[j] = R’ĩ[j̃].

Note that αij is well-defined unless badA has occurred. Thus we can write

Xi1 [j1] = αi1j1 + b[i1j1](Ti1 [j1])
= αi1j1 + b[i1j1](Xi1 [j1 − 1]) + b[i1j1](Yi1 [j1 − 1])
= αi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1])

+ b[i1j1](R’i1 [j1 − 1] + Li1 [j1 − 1]).

As a final piece of notation, we define

βij := αij + b[ij](R’i[j − 1] + Li[j − 1]).

Thus,
Xi1 [j1] = βi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]).

We consider three cases, and some subcases under each :

• j2 < j1 − 1

– When Xi1 [j1] = βi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]), since b[i1j1] is
full-rank, and Vi1 [j1 − 1] cannot affect Xi2 [j2], we are done.

– When Xi1 [j1] = βi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]), since b[i1j1] is
full-rank, and Ui1 [j1 − 1] cannot affect Xi2 [j2], we are done.

• j2 = j1 − 1

– When Xi1 [j1] = βi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]), if Vi1 [j1 − 1]
does not affect Xi2 [j2], it’s the same as before. Otherwise, since Vi1 [j1 − 1]
cannot appear in Xi2 [j2] through a b-call, and b[i1j1] + id is full-rank, we’re
done.

– When Xi1 [j1] = βi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]), if Ui1 [j1 − 1]
does not affect Xi2 [j2], it’s the same as before. Otherwise, since Ui1 [j1 − 1]
cannot appear in Xi2 [j2] through a b-call, and b[i1j1] + id is full-rank, we’re
done.

• j1 = j2 These calculations are longer and omitted in this version of the paper.
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A.3 badB: Type 2.
Let (i1, j1), (i2, j2) ∈ F ′ with (j1, i1) > (j2, i2). We will show that

Pr0
[
Yi1 [j1] = Yi2 [j2]

]
≤ 1
N
.

We recall that
Yi1 [j1] = Ui1 [j1] + Li1 [j1].

When Yi1 [j1] = Ui1 [j1] + Li1 [j1], since Ui1 [j1] cannot affect Yi2 [j2], we are done. Thus we
can assume Yi1 [j1] /∈ B. Next we recall that, when R’i1 [j1] = R’ĩ1 [j̃1], we have

Yi1 [j1] = Yĩ1 [j̃1] + L’ĩ1 [j̃1] + b[ĩ1j̃1](Tĩ1 [j̃1]) + L’i1 [j1] + b[i1j1](Ti1 [j1]),

and when R’i1 [j1] = Lĩ1 [j̃1], we have

Yi1 [j1] = b1(Xĩ1 [j̃1] + Rĩ1 [j̃1] + b[ĩ1j̃1](Tĩ1 [j̃1])) + L’i1 [j1] + b[i1j1](Ti1 [j1]).

As before, for (i, j) such that (i, j) 6= (̃i, j̃), we define

α′ij := Yĩ[j̃] + L’ĩ[j̃] + b[̃ij̃](Tĩ[j̃]) + L’i[j] when R’i[j] = R’ĩ[j̃],

:= b1(Xĩ[j̃] + Rĩ[j̃] + b[̃ij̃](Tĩ[j̃])) + L’i[j] when R’i[j] = Lĩ[j̃].

Again, α′ij is well-defined unless badA has occurred. Thus we can write

Yi1 [j1] = α′i1j1
+ b[i1j1](Ti1 [j1])

= α′i1j1
+ b[i1j1](Xi1 [j1 − 1]) + b[i1j1](Yi1 [j1 − 1])

= α′i1j1
+ b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1])

+ b[i1j1](R’i1 [j1 − 1] + Li1 [j1 − 1]).

As before, we define
β′ij := α′ij + b[ij](R’i[j − 1] + Li[j − 1]).

Thus,
Yi1 [j1] = β′i1j1

+ b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]).
Again we consider three cases, and some subcases under each:
• j2 < j1 − 1

– When Yi1 [j1] = β′i1j1
+ b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]), since b[i1j1] is

full-rank, and Vi1 [j1 − 1] cannot affect Yi2 [j2], we are done.
– When Yi1 [j1] = β′i1j1

+ b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]), since b[i1j1] is
full-rank, and Ui1 [j1 − 1] cannot affect Yi2 [j2], we are done.

• j2 = j1 − 1

– When Yi1 [j1] = βi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]), if Vi1 [j1 − 1]
does not affect Yi2 [j2], it’s the same as before. Otherwise, since Vi1 [j1 − 1]
cannot appear in Yi2 [j2] through a b-call, and b[i1j1] + id is full-rank, we’re
done.

– When Yi1 [j1] = βi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]), if Ui1 [j1 − 1]
does not affect Yi2 [j2], it’s the same as before. Otherwise, since Ui1 [j1 − 1]
cannot appear in Yi2 [j2] through a b-call, and b[i1j1] + id is full-rank, we’re
done.

• j1 = j2 These calculations are longer and omitted in this version of the paper.
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A.4 badB: Type 3.
Let (i1, j1) ∈ F , (i2, j2) ∈ F ′. We will show that

Pr0
[
Xi1 [j1] = Yi2 [j2]

]
≤ 1
N
.

First we observe that if (j1, i1) > (j2, i2) and Xi1 [j1] = Vi1 [j1] + R’i1 [j1], Vi1 [j1] cannot
affect Yi2 [j2], so we’re done; and if (j2, i2) > (j1, i1) and Yi2 [j2] = Ui2 [j2] + Li2 [j2], Ui2 [j2]
cannot affect Xi1 [j1], so we’re done. Otherwise, we consider six cases, each with several
subcases:

• j2 < j1 − 1

– When Xi1 [j1] = βi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]), since b[i1j1] is
full-rank, and Vi1 [j1 − 1] cannot affect Yi2 [j2], we are done.

– When Xi1 [j1] = βi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]), since b[i1j1] is
full-rank, and Ui1 [j1 − 1] cannot affect Yi2 [j2], we are done.

• j1 < j2 − 1

– When Yi2 [j2] = β′i2j2
+ b[i2j2](Vi2 [j2 − 1]) + b[i2j2](Ui2 [j2 − 1]), since b[i2j2] is

full-rank, and Vi2 [j2 − 1] cannot affect Xi1 [j1], we are done.

– When Yi2 [j2] = β′i2j2
+ b[i2j2](Vi2 [j2 − 1]) + b[i2j2](Ui2 [j2 − 1]), since b[i2j2] is

full-rank, and Ui2 [j2 − 1] cannot affect Xi1 [j1], we are done.

• j2 = j1 − 1

– When Xi1 [j1] = βi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]), if Vi1 [j1 − 1]
does not affect Yi2 [j2], it’s the same as before. Otherwise, since Vi1 [j1 − 1]
cannot appear in Yi2 [j2] through a b-call, and b[i1j1] + id is full-rank, we’re
done.

– When Xi1 [j1] = βi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]), if Ui1 [j1 − 1]
does not affect Yi2 [j2], it’s the same as before. Otherwise, since Ui1 [j1 − 1]
cannot appear in Yi2 [j2] through a b-call, and b[i1j1] + id is full-rank, we’re
done.

• j1 = j2 − 1

– When Yi2 [j2] = βi2j2 + b[i2j2](Vi2 [j2 − 1]) + b[i2j2](Ui2 [j2 − 1]), if Vi2 [j2 − 1]
does not affect Xi1 [j1], it’s the same as before. Otherwise, since Vi2 [j2 − 1]
cannot appear in Xi1 [j1] through a b-call, and b[i2j2] + id is full-rank, we’re
done.

– When Yi2 [j2] = βi2j2 + b[i2j2](Vi2 [j2 − 1]) + b[i2j2](Ui2 [j2 − 1]), if Ui2 [j2 − 1]
does not affect Xi1 [j1], it’s the same as before. Otherwise, since Ui2 [j2 − 1]
cannot appear in Xi1 [j1] through a b-call, and b[i2j2] + id is full-rank, we’re
done.

• j1 = j2 These calculations are longer and omitted in this version of the paper.
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A.5 badB: Type 4.
Let (i1, j1) ∈ F , (i2, j2) ∈ I. We will show that

Pr0
[
Xi1 [j1] = Li2 [j2]

]
= 1
N
.

This is simple to see. As seen before, one of the following holds:

• Xi1 [j1] = Vi1 [j1] + R’i1 [j1];

• Xi1 [j1] = βi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]);

• Xi1 [j1] = βi1j1 + b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]).

In all three cases, by the randomness of the basis element (since b[i1j1] is full-rank), we
are done.

A.6 badB: Type 5.
Let (i1, j1) ∈ I, (i2, j2) ∈ F ′. We will show that

Pr0
[
R’i1 [j1] = Yi2 [j2]

]
= 1
N
.

This is simple to see. As seen before, one of the following holds:

• Yi1 [j1] = Ui1 [j1] + Li1 [j1];

• Yi1 [j1] = β′i1j1
+ b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]);

• Yi1 [j1] = β′i1j1
+ b[i1j1](Vi1 [j1 − 1]) + b[i1j1](Ui1 [j1 − 1]).

In all three cases, by the randomness of the basis element (since b[i1j1] is full-rank), we
are done.

B A Short Analysis for the Partial Block Construction
When we allow partial block queries we have a more general result.

Theorem 3. Suppose an adversary A interacting against OleF instantiated with some
block-function f in the real world, or an ideal random diblock-online permutation in the
ideal world, makes at most q queries and having altogether σ diblocks. Then there is a
prf-adversary A′ against f making at most σ queries such that

Advdosprp
OleF[f ] (A) ≤ Advprf

f (A′) + 4σ′2

2n + 3σ2

2n ,

where σ′ is such that 2σ′ is the total number of calls to f over the q queries.

Note that if all messages consist only of partial diblocks, by the definition of σ′, we
have

σ′ = σ,

so Theorem 2 is a special case of 3. If qI denotes the total number of incomplete blocks
(i.e., counting 1 for each incomplete diblock with ||∗L[`]|| < n and 2 for other incomplete
diblocks, then we have

σ′ = σ + qI .
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The proof of this is similar to that of Theorem 2. We give an intuition behind the proof
here. For counting badB earlier, we were avoiding accidental collisions over a set of size
2σ. Now, we need to avoid accidental collisions over a set of size 2σ′, because of the extra
f calls required by the partial block queries. The rest of the counting remains the same.
The inequalities proved in Appendix A can be extended to cover the new blocks, because
b4 is full-rank, and b4 + bi is full-rank for i ≤ 3.
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