Security Analysis of BLAKE2's Modes of Operation

Atul Luykx, Bart Mennink, Samuel Neves

KU Leuven (Belgium) and Radboud University (The Netherlands)

FSE 2017
March 7, 2017

BLAKE2

- Cryptographic hash function
- Aumasson, Neves, Wilcox-O'Hearn, Winnerlein (2013)
- Simplification of SHA-3 finalist BLAKE

BLAKE2

Use in Password Hashing

- Argon2 (Biryukov et al.)
- Catena (Forler et al.)
- Lyra (Almeida et al.)
- Lyra2 (Simplício Jr. et al.)
- Rig (Chang et al.)

Use in Authenticated Encryption

- AEZ (Hoang et al.)

Applications

- Noise Protocol Framework (Perrin)
- Zcash Protocol (Hopwood et al.)
- RAR 5.0 (Roshal)

Security Inheritance?

BLAKE

cryptanalysis Aumasson et al. 2010
Biryukov et al. 2011
Dunkelman\&K. 2011
generic Andreeva et al. 2012
Chang et al. 2012

Security Inheritance?

	BLAKE	BLAKE2
cryptanalysis	Aumasson et al. 2010	Guo et al. 2014
	Biryukov et al. 2011	Hao 2014
	Dunkelman\&K. 2011	Khovratovich et al. 2015
		Espitau et al. 2015
generic	Andreeva et al. 2012	
	Chang et al. 2012	

Security Inheritance?

	BLAKE	BLAKE2
cryptanalysis	Aumasson et al. 2010	Guo et al. 2014
	Biryukov et al. 2011	Hao 2014
	Dunkelman\&K. 2011	Khovratovich et al. 2015
		Espitau et al. 2015
generic	Andreeva et al. 2012	???
	Chang et al. 2012	

Security Inheritance?

	BLAKE	BLAKE2
cryptanalysis	Aumasson et al. 2010	Guo et al. 2014
	Biryukov et al. 2011	Hao 2014
	Dunkelman\&K. 2011	Khovratovich et al. 2015
		Espitau et al. 2015
generic	Andreeva et al. 2012	???
	Chang et al. 2012	

Even slight modifications may make a scheme insecure!

Indifferentiability

- Indifferentiability of function \mathcal{C} from a random oracle
- $\mathcal{C}^{\mathcal{P}}$ is indifferentiable from \mathcal{R} if \exists simulator \mathcal{S} such that $(\mathcal{C}, \mathcal{P})$ and $(\mathcal{R}, \mathcal{S})$ indistinguishable

Indifferentiability

- Indifferentiability of function \mathcal{C} from a random oracle
- $\mathcal{C}^{\mathcal{P}}$ is indifferentiable from \mathcal{R} if \exists simulator \mathcal{S} such that $(\mathcal{C}, \mathcal{P})$ and $(\mathcal{R}, \mathcal{S})$ indistinguishable
- No structural design flaws
- Well-suited for composition

Composition

Composition

(i) First hash-function indifferentiability results

- Chop-/PF-MD with ideal $F \longrightarrow$ indifferentiable

Composition

(i) First hash-function indifferentiability results

- Chop-/PF-MD with ideal $F \longrightarrow$ indifferentiable
(ii) Most obvious second step (composition)
- But (e.g.) Davies-Meyer with ideal $E \longrightarrow$ differentiable

Composition

(i) First hash-function indifferentiability results

- Chop-/PF-MD with ideal $F \longrightarrow$ indifferentiable
(ii) Most obvious second step (composition)
- But (e.g.) Davies-Meyer with ideal $E \longrightarrow$ differentiable
(iii) Researchers focused on direct proofs
- Chop-/PF-MD with Davies-Meyer and ideal $E \longrightarrow$ indifferentiable

Composition

(i) First hash-function indifferentiability results

- Chop-/PF-MD with ideal $F \longrightarrow$ indifferentiable
(ii) Most obvious second step (composition)
- But (e.g.) Davies-Meyer with ideal $E \longrightarrow$ differentiable
(iii) Researchers focused on direct proofs
- Chop-/PF-MD with Davies-Meyer and ideal $E \longrightarrow$ indifferentiable

Our Results

Compression Level Indifferentiability

- BLAKE2 indifferentiable at compression function level
- Immediately implies
- indifferentiability of sequential hash mode
- indifferentiability of tree/parallel hash mode
- multi-key PRF security of keyed BLAKE2 mode
- One proof fits all!

Our Results

Compression Level Indifferentiability

- BLAKE2 indifferentiable at compression function level
- Immediately implies
- indifferentiability of sequential hash mode
- indifferentiability of tree/parallel hash mode
- multi-key PRF security of keyed BLAKE2 mode
- One proof fits all!

Weakly Ideal Cipher Model

- BLAKE2 cipher has known, but harmless, properties
- Analysis tolerates these properties

BLAKE2 Compression Function

- h is state, m is message, t is counter, f is flag
- $I V$ is initialization value

Underlying Block Cipher

$$
\begin{gathered}
\left(\begin{array}{llll}
k & k & k & k \\
k & k & k & k \\
k & k & k & k \\
k & k & k & k
\end{array}\right) \\
\left(\begin{array}{llll}
a & a & a \\
b & b & b & b \\
c & c & c & c \\
d & d & d & d
\end{array}\right) \xrightarrow{2 n} \xrightarrow{2 n}\left(\begin{array}{llll}
a^{\prime} & a^{\prime} & a^{\prime} & a^{\prime} \\
b^{\prime} & b^{\prime} & b^{\prime} & b^{\prime} \\
c^{\prime} & c^{\prime} & c^{\prime} & c^{\prime} \\
d^{\prime} & d^{\prime} & d^{\prime} & d^{\prime}
\end{array}\right)
\end{gathered}
$$

Underlying Block Cipher

$$
\begin{aligned}
& \left(\begin{array}{llll}
k & k & k & k \\
k & k & k & k \\
k & k & k & k \\
k & k & k & k
\end{array}\right) \\
& \left(\begin{array}{llll}
a & a & a \\
b & b & b & b \\
c & c & c & c \\
d & d & d & d
\end{array}\right) \xrightarrow{2 n} \xrightarrow{2 n}\left(\begin{array}{llll}
a^{\prime} & a^{\prime} & a^{\prime} & a^{\prime} \\
b^{\prime} & b^{\prime} & b^{\prime} & b^{\prime} \\
c^{\prime} & c^{\prime} & c^{\prime} & c^{\prime} \\
d^{\prime} & d^{\prime} & d^{\prime} & d^{\prime}
\end{array}\right)
\end{aligned}
$$

Weakly Ideal Cipher Model

- E is an ideal cipher modulo above property

Underlying Block Cipher

$$
\begin{aligned}
& \left(\begin{array}{llll}
k & k & k & k \\
k & k & k & k \\
k & k & k & k \\
k & k & k & k
\end{array}\right) \\
& \left(\begin{array}{llll}
a & a & a \\
b & b & b & b \\
c & c & c & c \\
d & d & d & d
\end{array}\right) \xrightarrow{2 n} \xrightarrow{2 n}\left(\begin{array}{llll}
a^{\prime} & a^{\prime} & a^{\prime} & a^{\prime} \\
b^{\prime} & b^{\prime} & b^{\prime} & b^{\prime} \\
c^{\prime} & c^{\prime} & c^{\prime} & c^{\prime} \\
d^{\prime} & d^{\prime} & d^{\prime} & d^{\prime}
\end{array}\right)
\end{aligned}
$$

Weakly Ideal Cipher Model

- E is an ideal cipher modulo above property
- Weak- and strong-subspace invariance for weak keys

Underlying Block Cipher

$$
\begin{aligned}
& \left(\begin{array}{llll}
k & k & k & k \\
k & k & k & k \\
k & k & k & k \\
k & k & k & k
\end{array}\right)
\end{aligned}
$$

Weakly Ideal Cipher Model

- E is an ideal cipher modulo above property
- Weak- and strong-subspace invariance for weak keys
- Evaluation of E in BLAKE2 is never weak (as left half of $I V$ is not of the form $c c c c$)

Proof Idea

Construction F^{E} :

Simulator \mathcal{S} :

Proof Idea

Construction F^{E} :

Simulator \mathcal{S} :

Proof Idea

Construction F^{E} :

Simulator \mathcal{S} :

Proof Idea

Construction F^{E} :

collision in uniformly random responses

Proof Idea

Construction F^{E} :

Simulator \mathcal{S} :

collision in uniformly random responses

Proof Idea

Construction F^{E} :

Simulator \mathcal{S} :

collision in uniformly random responses

$$
\operatorname{Indiff}_{F^{E}, \mathcal{S}}(q)=\Theta\left(\frac{q}{2^{n / 2}}\right)
$$

BLAKE2 Hashing Modes

- Message m padded into $m_{1}\|\cdots\| m_{\ell}$
- $t_{1}\|\cdots\| t_{\ell}$ are counter values, $f_{1}\|\cdots\| f_{\ell}$ are flags
- $P B$ is a parameter block

BLAKE2 Hashing Modes

- Message m padded into $m_{1}\|\cdots\| m_{\ell}$
- $t_{1}\|\cdots\| t_{\ell}$ are counter values, $f_{1}\|\cdots\| f_{\ell}$ are flags
- $P B$ is a parameter block

Prefix-Free Merkle-Damgård?

BLAKE2 Hashing Modes

- $P B$ is largely freely choosable by user
\rightarrow Essentially just an extra message block m_{0}

BLAKE2 Hashing Modes

- $P B$ is largely freely choosable by user
\rightarrow Essentially just an extra message block m_{0}
- Captured by generalized design of Bertoni et al. 2014

BLAKE2 Hashing Modes

- $P B$ is largely freely choosable by user
\rightarrow Essentially just an extra message block m_{0}
- Captured by generalized design of Bertoni et al. 2014
- Same reasoning for tree and parallel modes of BLAKE2

Keyed BLAKE2 Mode

- Key k as first message block, rest unchanged

Keyed BLAKE2 Mode

- Key k as first message block, rest unchanged

1. Multi-key PRF security if BLAKE2 is random oracle

$$
\operatorname{Prf}_{K H^{E}}(q)=\frac{\mu q}{2^{\kappa}}+\frac{\binom{\mu}{2}}{2^{\kappa}}
$$

Keyed BLAKE2 Mode

- Key k as first message block, rest unchanged

1. Multi-key PRF security if BLAKE2 is random oracle
2. Indifferentiability of BLAKE2 with weakly ideal cipher

$$
\operatorname{Prf}_{K H^{E}}(q)=\frac{\mu q}{2^{\kappa}}+\frac{\binom{\mu}{2}}{2^{\kappa}}+\Theta\left(\frac{q}{2^{n / 2}}\right)
$$

Conclusion

Indifferentiability of BLAKE2

- Short compression function indifferentiability proof
- Security of hashing modes due to composition

Optimality?

- Birthday bound security in the end
- Improved analysis for (second) preimage resistance?
- PRF security: direct analysis could give better result

Thank you for your attention!

Supporting Slides

Underlying Block Cipher

$$
\begin{gathered}
\left(\begin{array}{llll}
k & k & k & k \\
k & k & k & k \\
k & k & k & k \\
k & k & k & k
\end{array}\right) \\
\left(\begin{array}{llll}
a & e & a & e \\
b & f & b & f \\
c & g & c & g \\
d & h & d & h
\end{array}\right) \stackrel{2 n}{2 n} \xrightarrow{2 n} \xrightarrow{2 n}\left(\begin{array}{llll}
a^{\prime} & e^{\prime} & a^{\prime} & e^{\prime} \\
b^{\prime} & f^{\prime} & b^{\prime} & f^{\prime} \\
c^{\prime} & g^{\prime} & c^{\prime} & g^{\prime} \\
d^{\prime} & h^{\prime} & d^{\prime} & h^{\prime}
\end{array}\right)
\end{gathered}
$$

"Cryptanalysis of NORX v2.0" by Chaigneau et al.

- An unexpected structural property of E
- Analysis easily extends to this property
- Left half of $I V$ is not of the form cgcg either

