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Abstract. BLAKE2 is a hash function introduced at ACNS 2013, which has been
adopted in many constructions and applications. It is a successor to the SHA-3
finalist BLAKE, which received a significant amount of security analysis. Nevertheless,
BLAKE2 introduces sufficient changes so that not all results from BLAKE carry
over, meaning new analysis is necessary. To date, all known cryptanalysis done on
BLAKE2 has focused on its underlying building blocks, with little focus placed on
understanding BLAKE2’s generic security. We prove that BLAKE2’s compression
function is indifferentiable from a random function in a weakly ideal cipher model,
which was not the case for BLAKE. This implies that there are no generic attacks
against any of the modes that BLAKE2 uses.
Keywords: BLAKE · BLAKE2 · hash function · indifferentiability · PRF

1 Introduction
Widespread adoption of cryptographic algorithms in practice often occurs regardless of
their scrutiny by the cryptographic community. Although competitions such as AES and
SHA-3 popularize thoroughly analyzed algorithms, they are not the only means with which
practitioners find new algorithms. Standards, textbooks, and social media are sometimes
more effective than publications and competitions.

Nevertheless, analysis of algorithms is important regardless of how they were pop-
ularized, and can result in finding insecurities, but also new techniques. For example,
the PLAID protocol avoided cryptographic scrutiny by being standardized via the Cards
and personal identification subcommittee of ISO, instead of via the Cryptography and
security mechanisms working group, and when properly analyzed, PLAID turned out
to be significantly weaker than claimed [DFF+14]. Similarly the ANSI authenticated
encryption algorithm EAX′ modified Bellare, Rogaway, and Wagner’s EAX algorithm,
thereby introducing security vulnerabilities [MLMI13]. In other cases modifications actually
improve security, as with AMAC [BBT16], which processes the output of a hash function
to construct a MAC.

BLAKE2. Since its introduction in 2013, the hash function BLAKE2 has seen quick
adoption, despite the fact that it had not received as much analysis as the SHA-3 finalists.
It is a modification of the SHA-3 finalist BLAKE, which has high software performance
and withstood extensive cryptanalysis [CPB+12, Section 3.1]. BLAKE2 simplifies BLAKE,
resulting in better efficiency and ultimately its use in numerous constructions [FLW14,
BDK16,CJMS14,JAA+15,AABS14,HKR15] and applications [Per16,HBHW16,Ros13].
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Although BLAKE2 is based on BLAKE, one cannot claim that BLAKE’s crypt-
analysis [BNR11,AGK+10a,DK11] directly carries over. Nevertheless, the cryptanalytic
techniques used for BLAKE can generally be applied to BLAKE2, resulting in an increasing
amount of novel cryptanalysis [GKN+14,Hao14,KNP+15,EFK15]. The generic security of
BLAKE2’s mode, however, has not yet been analyzed, and the indifferentiability analysis
of BLAKE [ALM12,CNY11] does not carry over. The main reason for this is that BLAKE2
weakens its underlying compression function and uses it in many different modes: the plain
HAIFA mode, a tree mode, a parallelized mode, and a keyed HAIFA mode. Additionally,
these modes initialize the state using the salt, that can be freely chosen by the user.

Even slight modifications to modes or the underlying primitives might introduce
vulnerabilities. Besides the EAX example given above, other examples include Dual Counter
Mode [BS01,DGW01] versus IAPM [Jut01], and the masking used in OTR [Min14,BS16]
versus the classical XEX-masking [Rog04]. Therefore, properly analyzing the security of
the BLAKE2 modes of operation is important.

Results. Unlike BLAKE, the BLAKE2 compression function already achieves indifferen-
tiability at the compression function level. Using a weakly ideal block cipher, we prove
that the compression function is indifferentiable from a random function up to a query
complexity of about 2n/2, where n is the state size of the compression function. The
derivation in part relies on the fact that the BLAKE2 compression function can be seen as
a 7n/2-to-n-bit compression function based on a 2n-bit block cipher.

Using the indifferentiability composition result from Maurer et al. [MRH04], the
indifferentiability of the BLAKE2 hashing modes (based on an idealized underlying block
cipher) directly follows from the already existing indifferentiability analyses on the modes
(based on an ideal compression function) and the newly derived indifferentiability result of
the BLAKE2 compression function. In other words, rather than deriving three tedious
hash function indifferentiability proofs—as were the norm for the SHA-3 finalists [ALM12,
CNY11,AMP10,BMN10,MPS16,BDPV08,BKL+09]1—for BLAKE2 it suffices to derive a
surprisingly short and simple compression function indifferentiability result and rely on
the generic indifferentiability of the overlying modes. Note that our results also imply that
the BLAKE2 compression function could be used in any hash function mode that has an
indifferentiability proof if the underlying compression function is ideal.

We furthermore consider security of the keyed version of BLAKE2, and demonstrate
that the newly obtained indifferentiability result on the BLAKE2 compression function
immediately entails strong PRF-security of keyed BLAKE2 in the multi-key setting as
long as the total query complexity is at most 2n/2.

2 BLAKE2
BLAKE2 consists of a compression function that internally uses a block cipher. This
compression function is used to instantiate various keyless and keyed modes. We will discuss
the block cipher and compression function design in this section, omitting technical details
that are irrelevant for the generic analysis. We refer to the original publication [ANWW13]
and the RFC [SA15] for details. The keyless hashing modes are discussed in Section 5 and
the keyed hashing mode in Section 6.

Throughout, we adopt the following notation. For two bit strings x, y, their concatena-
tion is interchangeably denoted by x‖y, (x, y), and xy. For a bit string y of even length, we
denote by L(y) its left half and by R(y) its right half, so that y = L(y)‖R(y). We denote by
n ∈ {256, 512} the state size of the hash and compression function, and w = n/8 the word

1As well as beyond the SHA-3 finalists, as almost all known compression functions are differentiable,
the only known exceptions being the compression function of MD6 [DRRS09] and some double length
compression functions [Men13].
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size. The fixed initialization value is denoted by IV ∈ {0, 1}n; we refer to [ANWW13] for
the specification of the initialization value, where the only important property of IV is
that L(IV ) 6= aaaa for any word a ∈ {0, 1}w. A 2n-bit state aaaabbbbccccdddd may be
uniquely identified by its representation as a 4× 4 matrix(

a a a a
b b b b
c c c c
d d d d

)
;

we use either notation interchangeably.

2.1 Block Cipher
BLAKE2 internally uses a block cipher E : {0, 1}2n × {0, 1}2n → {0, 1}2n. In this work,
we will focus on the generic security of BLAKE2, and consider E as an idealized block
cipher. However, while BLAKE’s underlying block cipher had no known weaknesses and
could reasonably be modeled as an ideal cipher, this is no longer the case in BLAKE2. In
particular, the property

E

((
k k k k
k k k k
k k k k
k k k k

)
,

(
a a a a
b b b b
c c c c
d d d d

))
=
(
a′ a′ a′ a′

b′ b′ b′ b′

c′ c′ c′ c′

d′ d′ d′ d′

)
, (1)

for arbitrary words a, b, c, d, k ∈ {0, 1}w can be used to efficiently distinguish it from
an ideal cipher. This property is a central part of the “chosen-IV” attacks of Guo et
al. [GKN+14, Section 3 and 4], and is the generalization of a well-known property of
permutations derived from ChaCha [BHH+15, Section 4]. As discussed in Section 3, we
will deal with this caveat by modeling E as a weakly ideal cipher.

2.2 Compression Function
The BLAKE2 compression function F : {0, 1}n×{0, 1}2n×{0, 1}n/4×{0, 1}n/4 → {0, 1}n
gets as input a state value h, a message m, a counter t, and a flag f , and is defined as
follows:

x← h‖0n/2‖t‖f ⊕ 0n‖IV (2a)
y ← E(m,x) (2b)
h′ ← L(y)⊕ R(y)⊕ h (2c)
return h′ , (2d)

where we recall that IV is a fixed initialization value throughout this work. The BLAKE2
compression function F is depicted in Figure 1. Note that for the specification of the
compression function, we have not put any restrictions on the input values h, t, f : an
adversary has full freedom to select these values. In the BLAKE2 hashing and MAC modes
(Sections 5 and 6), the counter t and flag f are subject to specific formats.

For further analysis, we will also require the “inverse” of equation (2a). Define
by parseIV the mapping that gets as input an x ∈ {0, 1}2n, and outputs the unique
(h, z, t, f) ∈ {0, 1}n × {0, 1}n/2 × {0, 1}n/4 × {0, 1}n/4 such that

h‖z‖t‖f = x⊕ 0n‖IV .

Note that the z-value equals 0n/2 if and only if x could appear in the computation of (2a).
We define parseIV ,z : {0, 1}2n → {0, 1}n/2 as the function parseIV restricted to the z-value,
or more formally,

parseIV ,z(x) = L(R(parseIV (x))) .
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Figure 1: BLAKE2 compression function

3 Security Model
For l,m ∈ N such that l ≥ m, denote by Func(l,m) the set of all functions F : {0, 1}l →
{0, 1}m, and by Block(m) the set of all block ciphers E : {0, 1}m × {0, 1}m → {0, 1}m.

3.1 Weakly Ideal Cipher Model
A naive way of modeling the block cipher E in BLAKE2 would be to consider it as an ideal
cipher: E $←− Block(2n). However, this solution would not properly capture the structural
property (1) of the BLAKE2 block cipher as discussed in Section 2.1. Instead, we will
generate E as a weakly ideal cipher, i.e., an ideal cipher with the restriction that it adheres
to property (1). The approach shows similarities with the weakly ideal compression
functions used by Liskov [Lis06] to prove security of the zipper hash function if the
underlying compression function can be inverted. The weakly ideal cipher also resembles
ideas of the indifferentiability analyses of the SHA-3 candidates Shabal if the underlying
block cipher shows some non-random behavior [BCC+09] and SIMD if the underlying
compression function is distinguishable from a random function [BFL10]. We remark that,
unlike these works, our analysis should not be seen as a patch to an unexpected property
of BLAKE2. It appears that the property was known to the designers in advance (see,
e.g., [AGK+10b, Appendix C]) and simply accepted as being a harmless property. The
weakly ideal cipher model could also be seen as a specific instance of the weakened models
of Katz et al. [KLT15] and Mennink and Preneel [MP15], but these models are much more
general and more involved.

In more detail, consider the partition {0, 1}2n = W ∪ S (W for weak and S for strong),
where:

W =
{
aaaabbbbccccdddd ∈ {0, 1}2n

∣∣ a, b, c, d ∈ {0, 1}w} , (3)
S = {0, 1}2n \W . (4)

We define by Block∗(2n) to be the set of all block ciphers E ∈ Block(2n) with the additional
restriction that

E

((
k k k k
k k k k
k k k k
k k k k

)
, ·
)

(5)

is W- and S-subspace invariant for all k ∈ {0, 1}w, that is, inputs in W map to W, and
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likewise for S. For notational simplicity, define the set of weak keys for E as

WK =
{
kkkkkkkkkkkkkkkk ∈ {0, 1}2n

∣∣ k ∈ {0, 1}w} . (6)

A random E
$←− Block∗(2n) can now be modeled as follows: on input of (k, x) ∈WK×W, it

generates its response y randomly from W up to repetition; on input of (k, x) ∈WK× S, it
generates its response y randomly from S up to repetition. For key values k ∈ {0, 1}2n\WK,
it behaves like an ideal cipher. The case of inverse queries is analogous.

We remark that, by resorting to the weakly ideal cipher model, we do not make
stronger assumptions than those used in previous results, and, despite the fact that we give
distinguishers more power (by weakening the cipher), we are able to get similar results.
Concerning the most up to date cryptanalysis on BLAKE2’s block cipher, there is currently
no reason to believe that it does not approximate a weakly ideal cipher as we define it.

3.2 Indifferentiability
One way to measure the extent to which a certain cryptographic function behaves like a
random function is via the indistinguishability framework, where a distinguisher is given
access to either the cryptographic function or the random function, with the goal to
distinguish both worlds. The indistinguishability security model inherently relies on the
existence of secret information in both worlds, either a secret key, or the random function.
Therefore, for keyless cryptographic hash functions the indistinguishability framework is
inadequate, and we will use the indifferentiability framework of Maurer et al. [MRH04]. At
a high level, the indifferentiability framework measures the distance from a construction
CP based on an ideal subcomponent P, for instance a compression function based on an
ideal cipher or a hash function based on a compression function, to an ideal functionality
R, and it guarantees that a construction has no structural design flaws. In this work, we
employ the adaptation and simplification of the indifferentiability framework by Coron et
al. [CDMP05]. We note that this indifferentiability framework only applies to single-stage
games; cf., Ristenpart et al. [RSS11].

Definition 1. Let C be a construction with oracle access to an ideal primitive P. Let R
be an ideal primitive with the same domain and range as C. Let S be a simulator with the
same domain and range as P with oracle access to R, and let D be a distinguisher. The
differentiability advantage of D is defined as

IndiffCP,S(D) =
∣∣∣P(DCP ,P = 1

)
− P

(
DR,S

R
= 1
)∣∣∣ .

Distinguisher D can query both its left oracle λ (either C or R) and its right oracle ρ
(either P or S). We refer to CP ,P as the real world, and to R,SR as the simulated world;
the distinguisher D converses with either of these worlds and its goal is to tell both worlds
apart.

3.3 PRF-Security
For keyed hash functions, the indistinguishability framework suffices, and we use it to
express the PRF-security of a keyed hash function. In this work, we will consider security
in the multi-key setting. We adopt the model of Mouha and Luykx [ML15] to PRF-security.
We refer to Bellare et al. [BBT16] for a more general discussion on multi-key security of
PRFs. In below definition, µ denotes the number of instantiations with which the adversary
interacts, and K the key space.

Definition 2. Let µ ≥ 1, and let k $←−
(
K
)µ. Let C be a keyed construction with key space

K and with oracle access to an ideal primitive P. Let R1, . . . ,Rµ be random functions
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with the same domains and ranges as Ck1 , . . . , Ckµ . Let D be a distinguisher. The PRF
distinguishing advantage of D is defined as

PrfCP (D) =
∣∣∣P(DCP

k1
,...,CP

kµ
,P = 1

)
− P

(
DR1,...,Rµ,P = 1

)∣∣∣ .
4 Indifferentiability of BLAKE2 Compression Function
We will prove that the BLAKE2 compression function is indifferentiable from a random
compression function up to about 2n/2 queries, under the assumption that the underlying
block cipher is randomly drawn from Block∗(2n). The bound is in fact tight: an adaptation
of the differentiability attack of [ALM12] from BLAKE to BLAKE2 does the job. We have
included the attack in Appendix A for completeness.

Theorem 1 (Indifferentiability of BLAKE2 Compression Function). Let E $←− Block∗(2n)
be a weakly ideal cipher, and consider the BLAKE2 compression function FE of (2) that
internally uses E. There exists a simulator S such that for any distinguisher D with total
complexity q,

IndiffFE,S(D) ≤
(
q
2
)

22n +
(
q
2
)

2n + q

2n/2
,

where S makes at most q queries to R.

Note that one compression function evaluation corresponds to one block cipher evalua-
tion, and vice versa, hence there is no need to separate the distinguisher’s complexity into
construction and primitive queries. The bound shows similarities with the analysis of the
MD6 compression function [DRRS09, Theorem 1], but multiple differences appear at a
technical level: most importantly, our analysis is in the weakly ideal cipher model.

The proof of Theorem 1 consists of two steps: in Section 4.1 we design the simulator
used in the proof, and the derivation of the bound is given in Section 4.2.

4.1 Simulator
The simulator will simulate the interface of a block cipher E ∈ Block∗(2n), but our
simulator will generate most of its responses as if it were a random function: while this
gives a small degradation in the security bound via the appearance of collisions, this
significantly simplifies the description of the simulator and of the proof. Likewise, the
simulator will not obey the S-subspace invariance: the probability that a random value
hits W is 24w/22n = 1/23n/2.

In more detail, our simulator will always generate uniformly random responses from
{0, 1}2n, with two exceptions:

(i) The bijective W-subspace invariance property for evaluations of the form (5) is
retained. In other words, in a forward query (m,x) ∈ WK ×W, the response y is
randomly and bijectively drawn from W, and similar for inverse queries;

(ii) A forward query (m,x), where x can be parsed into

h‖0n/2‖t‖f ← parseIV (x) ,

is responded with a randomly generated y that satisfies h′ = L(y)⊕ R(y)⊕ h, where
h′ = R(h,m, t, f).

Note that for exception (i), bijectivity on W for keys from WK is strictly necessary due
to the small size of W; otherwise, a distinguisher can find collision for the simulator in q
queries with probability

(
q
2
)
/|W|. The following brief lemma shows that exceptions (i) and

(ii) cannot apply to the same query simultaneously.
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Lemma 1. For any x ∈W of (3), parseIV ,z(x) 6= 0n/2.

Proof. Note that, by definition of parseIV ,z, we have

parseIV ,z(x) = L(R(parseIV (x))) = L(R(x))⊕ L(IV ) .

As x ∈W, L(R(x)) = cccc for some c ∈ {0, 1}w. On the other hand, the IV of BLAKE2
satisfies that L(IV ) 6= aaaa for any word a ∈ {0, 1}w (see the beginning of Section 2).
Therefore, parseIV ,z(x) 6= 0n/2.

The formal simulator is given in Figure 2. It maintains a table L in which all query-
response tuples (m,x, y) are stored. For convenience, we write L+

m(x) = y and L−m(y) = x.
Furthermore, write dom(Lm) = {x | (m,x, ·) ∈ L} and rng(Lm) = {y | (m, ·, y) ∈ L}.

Simulator Forward S
Input: (m,x) ∈ {0, 1}2n × {0, 1}2n
Output: y ∈ {0, 1}2n
1: if L+

m(x) = ⊥ then
2: h‖z‖t‖f ← parseIV (x)
3: if z = 0n/2 then
4: L(y) $←− {0, 1}n
5: h′ ← R(h,m, t, f)
6: L+

m(x)← L(y)‖(L(y)⊕ h⊕ h′)
7: else if (m,x) ∈WK×W then
8: L+

m(x) $←−W \ rng(Lm)
9: else
10: L+

m(x) $←− {0, 1}2n
11: end if
12: end if
13: return L+

m(x)

Simulator Inverse S−1

Input: (m, y) ∈ {0, 1}2n × {0, 1}2n
Output: x ∈ {0, 1}2n
1: if L−m(y) = ⊥ then
2: if (m, y) ∈WK×W then
3: L−m(y) $←−W \ dom(Lm)
4: else
5: L−m(y) $←− {0, 1}2n
6: end if
7: end if
8: return L−m(y)

Figure 2: Simulator S for the proof of Theorem 1

4.2 Proof
Let E $←− Block∗(2n) and F be the BLAKE2 compression function of Section 2.2. Let S
be the simulator of Figure 2, and let D be any distinguisher that makes at most q oracle
queries. Recall from Definition 1 that the distinguisher has access to either (F,E) or
(R,S):

IndiffFE,S(D) =
∣∣∣P(DFE ,E = 1

)
− P

(
DR,S

R
= 1
)∣∣∣ . (7)

As a first step, we apply a URP-URF switch to the real world: we replace E by a
functionality Ē that always generates its responses from {0, 1}2n, except for inputs from
WK×W. By the triangle inequality, we find for (7):

IndiffFE,S(D) ≤
∣∣∣P(DF Ē ,Ē = 1

)
− P

(
DR,S

R
= 1
)∣∣∣+

(
q
2
)

22n , (8)

and we focus on the success of D in distinguishing (F Ē , Ē) from (R,SR). We assume
without loss of generality that the distinguisher never makes trivial queries, i.e., repeating
a query to any of the oracles, querying ρ−1 on input of the response from ρ, or vice
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versa, where ρ ∈ {Ē,S}. The oracles are written out in detail in Figure 3 for convenience.
In the description, the functionality Ē maintains an initially empty list L as before. R
maintains an initially empty listM that stores all query-response tuples (h,m, t, f, h′),
and we writeM+(h,m, t, f) = h′. For the sake of the proof, the function F also maintains
an initially empty list YF of all responses given so far. The description of the simulator

Compression Function F
Input: (h,m, t, f) ∈ {0, 1}n+2n+n/4+n/4

Output: h′ ∈ {0, 1}n
1: x← h‖0n/2‖t‖f ⊕ 0n‖IV
2: y ← Ē(m,x)
3: YF ← YF ∪ {y} . administrative
4: h′ ← L(y)⊕ R(y)⊕ h
5: return h′

Ideal Cipher Ē
Input: (m,x) ∈ {0, 1}2n × {0, 1}2n
Output: y ∈ {0, 1}2n
1: if L+

m(x) = ⊥ then
2: if (m,x) ∈WK×W then
3: L+

m(x) $←−W \ rng(Lm)
4: else
5: L+

m(x) $←− {0, 1}2n
6: end if
7: end if
8: return L+

m(x)

Ideal Cipher Inverse Ē−1

Input: (m, y) ∈ {0, 1}2n × {0, 1}2n
Output: x ∈ {0, 1}2n
1: if y ∈ YF then
2: bad1
3: end if . administrative
4: if L−m(y) = ⊥ then
5: if (m, y) ∈WK×W then
6: L−m(y) $←−W \ dom(Lm)
7: else
8: L−m(y) $←− {0, 1}2n
9: end if
10: end if
11: return L−m(y)

Random Function R
Input: (h,m, t, f) ∈ {0, 1}n+2n+n/4+n/4

Output: h′ ∈ {0, 1}n
1: if M+(h,m, t, f) = ⊥ then
2: M+(h,m, t, f) $←− {0, 1}n
3: end if
4: returnM+(h,m, t, f)

Simulator Forward S
Input: (m,x) ∈ {0, 1}2n × {0, 1}2n
Output: y ∈ {0, 1}2n
1: if L+

m(x) = ⊥ then
2: h‖z‖t‖f ← parseIV (x)
3: if z = 0n/2 then
4: L(y) $←− {0, 1}n
5: h′ ← R(h,m, t, f)
6: L+

m(x)← L(y)‖(L(y)⊕ h⊕ h′)
7: else if (m,x) ∈WK×W then
8: L+

m(x) $←−W \ rng(Lm)
9: else
10: L+

m(x) $←− {0, 1}2n
11: end if
12: end if
13: return L+

m(x)

Simulator Inverse S−1

Input: (m, y) ∈ {0, 1}2n × {0, 1}2n
Output: x ∈ {0, 1}2n
1: if L−m(y) = ⊥ then
2: if (m, y) ∈WK×W then
3: L−m(y) $←−W \ dom(Lm)
4: else
5: L−m(y) $←− {0, 1}2n
6: end if
7: if parseIV ,z(L−m(y)) = 0n/2 then
8: bad2
9: end if . administrative
10: end if
11: return L−m(y)

Figure 3: Real world (F, Ē) (left) and simulated world (R,S) (right). The statements
“administrative” do not influence the operation of the oracles and are purely included for
administrative reasons. The description of S is identical to that of Figure 2, S−1 differs
only in the addition of lines 7-9
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inverse in Figure 3 is now equipped with two bad-events. Note that this adjustment is
purely administrative and does not influence the procedures of Ē−1 and S−1. We will
prove that, as long as Ē−1 does not set bad1 and S−1 does not set bad2, both oracles are
indistinguishable. More formally, by the principles of game playing, we obtain for (8):∣∣∣P(DF Ē ,Ē = 1

)
− P

(
DR,S

R
= 1
)∣∣∣

≤
∣∣∣P(DF Ē ,Ē = 1 | ¬bad1

)
− P

(
DR,S

R
= 1 | ¬bad2

)∣∣∣+ P (bad1) + P (bad2) .
(9)

bad1 is set if the distinguisher makes an inverse query Ē−1(m, y) that has already been
defined in an earlier compression function call. Event bad2 captures the case where
S−1(m, y) satisfies z = 0n/2 by accident, where h‖z‖t‖f ← parseIV (x). It is straightforward
to see that P (bad1) ≤

(
q
2
)
/2n and that P (bad2) ≤ q/2n/2. In the remainder of the proof,

we will show that∣∣∣P(DF Ē ,Ē = 1 | ¬bad1
)
− P

(
DR,S

R
= 1 | ¬bad2

)∣∣∣ = 0 , (10)

and the proof follows from (7)-(10). To prove (10), we will consider any query made by
the distinguisher, either to λ ∈ {F,R}, ρ ∈ {Ē,S}, or ρ−1 ∈ {Ē−1,S−1}, and show that
for every query the responses from the real or ideal world are identical. Without loss of
generality, we assume that the distinguisher never makes a repeat query, i.e., to which it
knows the answer in advance.

• Query h′ ← λ(h,m, t, f). Write x = h‖0n/2‖t‖f⊕0n‖IV . We make the following
case distinction:

– L+
m(x) = ⊥. In the real world, this means that Ē(m,x) has never been queried.

We will thus have y $←− {0, 1}2n, and hence, h′ = L(y)⊕ R(y)⊕ h $←− {0, 1}n. In
the simulated world, the condition implies that S has never been evaluated on
(m,x), and hence, it never queried R on input of (h,m, t, f). Consequently, the
call to R is new, and responded with h′ $←− {0, 1}n;

– L+
m(x) 6= ⊥. Denote y = L+

m(x). In the real world, we necessarily have
h′ = L(y) ⊕ R(y) ⊕ h. In the simulated world, the tuple (m,x, y) must have
been added to L in a forward query to S: if it were an inverse query, it would
have set bad2. Thus, following the algorithm of S, we have L(y)⊕R(y) = h⊕h′.
Thus, the responses are identically distributed;

• Query y ← ρ(m,x). Parse h‖z‖t‖f ← parseIV (x). We make the following case
distinction:

– z 6= 0n/2. The response is distributed identically in both worlds: if (m,x) ∈
WK ×W the response y is generated uniformly at random from W without
replacement; otherwise it simply satisfies y $←− {0, 1}2n;

– z = 0n/2 andM+(h,m, t, f) = ⊥. The condition implies that Ē has never
been evaluated on (m,x). Additionally, by Lemma 1, we necessarily have x /∈ W.
In the real world, the response thus satisfies y $←− {0, 1}2n. In the simulated
world, S will generate L(y) $←− {0, 1}n and query h′ ← R(h,m, t, f), which will
also be uniformly randomly drawn. Concluding, the entire output y $←− {0, 1}2n;

– z = 0n/2 and M+(h,m, t, f) 6= ⊥. Denote h′ = M+(h,m, t, f). In the
real world, an earlier construction query has already specified the call, and
we necessarily have L(y) ⊕ R(y) ⊕ h = h′. In the simulated world, S will
define y as L(y)‖(L(y) ⊕ h ⊕ h′) for L(y) $←− {0, 1}n. Thus, in both cases,
y

$←− {0, 1}2n \ {ȳ ∈ {0, 1}2n | L(ȳ)⊕ R(ȳ) 6= h⊕ h′};
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F F F FIV ⊕ PB H(m)

m1 m2 m3 m`‖0∗

t1 t2 t3 t`f1 f2 f3 f`

Figure 4: BLAKE2 hash function

• Query x← ρ−1(m, y). If L−m(y) = ⊥, both oracles behave identically. Note that
in the simulated world, this condition always holds (by our assumption that the
distinguisher never makes trivial queries). For the real world, L−m(y) 6= ⊥ if and only
if y ∈ YF , in which case the query would trigger bad1.

Remark 1. In the simulator of Figure 3, bad2 is set if the response from S−1(m, y) satisfies
z = 0n/2, where h‖z‖t‖f ← parseIV (x). However, BLAKE2 evaluates its compression
function for at most 4 distinct flags f , rather than 2n/8. This means that it suffices
to set bad2 if z = 0n/2 AND f is a valid flag. This happens with probability at most
q/2n/2+n/8−2. For the sake of generality, we have opted not to include this optimization
in the proof.

5 BLAKE2 Hashing Modes
The BLAKE2 hashing mode differs from the one of BLAKE mostly in the use of a
parameter block PB ∈ {0, 1}n. Half of the parameter block, n/2 bits, consists of a salt and
personalization data, both of which can be freely chosen by the user. The remaining half
consists of mode-specific parameters (such as digest size, key size, tree parameters, etc.)
and are merely determined by the mode.

In more detail, the BLAKE2 mode H gets as input a parameter block PB and a
message m of size at most 2n/4 bytes. The message is padded into m1‖ · · · ‖m` ← m‖0∗ in
such a way that mi ∈ {0, 1}2n for i = 1, . . . , `. The HAIFA counter t1, . . . , t` and the flags
f1, . . . , f` are set in such a way that m 7→ (m1‖t1‖f1, . . . ,m`‖t`‖f`) is injective, suffix-free,
and prefix-free. We refer to [ANWW13,SA15] for details regarding the flags and to [BD07]
for details regarding the counter. The data is then hashed as follows:

h0 ← IV ⊕ PB (11a)
for i = 1, . . . , ` (11b)

hi ← F (hi−1,mi, ti, fi) (11c)
end for (11d)
return h` . (11e)

The mode is depicted in Figure 4.

5.1 Security Analysis
Coron et al. [CDMP05] gave an indifferentiability analysis of prefix-free hash functions,
based on the randomness of the underlying compression function. Improved bounds were
obtained by Chang et al. [CLNY06] and Bhattacharyya et al. [BMN09]. These analyses
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apply to the HAIFA structure, however, they assume a fixed IV of the state. For the
BLAKE2 hashing mode, the initial state value is IV ⊕PB, where PB is a parameter block,
which for a large part consists of data freely choosable by the user.

To simplify our analysis, we will henceforth simply consider IV ⊕PB =: m0, with input
to the hash function being (m0,m) where m is as above. We henceforth relax our security
games and simply consider a user that can freely choose (m0,m) for every query. Bagheri
et al. [BGKZ12] presented an indifferentiability analysis of sequential hashing with free IV
(or, in our terminology, “free m0”) if the first and last compression function are different
from the remaining ones. We will use the result on sufficient conditions for tree hashing
by Bertoni et al. [BDPV14]. Although the result focuses on trees, it is directly applicable
to the sequential mode of BLAKE2 (as a sequential mode is a specific type of tree). We
will state the result from [BDPV14] in generality.
Lemma 2 (Bertoni et al. [BDPV14]). Let H be an ideal hash function, and consider
a tree mode TH that internally uses H. Assume that the tree mode is tree-decodable,
message-complete, and final-node separable. There exists a simulator S such that for any
distinguisher D with total complexity q,

IndiffTH,S(D) ≤
(
q
2
)

2n ,

where S makes at most O(q3) queries to R.
Here, the total complexity counts the number of evaluations of H induced by all queries

by D. The three conditions on the tree informally imply that every tree is uniquely
parseable, that every message bit is compressed, and that the final call to H is domain-
separated from the other calls to H. We refer to [BDPV14] for a formal discussion of these
conditions.

Note that Lemma 2 can particularly be used in case H is a fixed-input-length compres-
sion function. As such, the BLAKE2 hash function (11) defines a tree that is tree-decodable,
message-complete, and final-node separable. The final condition is particularly covered
as the flag f` is distinct from f1, . . . , f`−1. From Theorem 1 and Lemma 2 we henceforth
obtain the following result.

Corollary 1 (Indifferentiability of BLAKE2 Hashing Mode). Let E $←− Block∗(2n) be a
weakly ideal cipher, and consider the BLAKE2 hash function HE of (11) that internally
uses E. There exists a simulator S such that for any distinguisher D with total complexity
q,

IndiffHE,S(D) ≤
(
q
2
)

22n +
2
(
q
2
)

2n + q

2n/2
,

where S makes at most O(q3) queries to R.
Here, the total complexity counts the number of evaluations of E induced by all queries

by D. Note that the combined simulator corresponds to the simulator for the compression
function (Theorem 1) which interacts with that of the mode (Lemma 2) which queries R,
and hence it has complexity O(q3). This will be inherited in applications of BLAKE2 due
to the composition result of Maurer et al. [MRH04].

5.2 Tree/Parallel Hashing Mode
The BLAKE2 specification [ANWW13] also supports tree hashing or parallel hashing,
performed on top of the BLAKE2 hash function (11). These modes are designed along
the methodology by Bertoni et al. [BDPV14]. They satisfy tree-decodability, message-
completeness, and final-node separability by design,2 and Lemma 2 directly applies. In

2Particularly, final-node separability is achieved as the finalization flags are defined in such a way that
the flag to the final evaluation of H is distinct from the other flags.



Atul Luykx, Bart Mennink and Samuel Neves 169

more detail, if TE denotes either the tree or parallel mode based on a weakly ideal cipher
E, from Lemma 2 and Corollary 1, we can obtain the following result. We remark that if
tree/parallel hashing is done in such a way that only one compression function call per
node is performed, a direct application of Lemma 2 to the compression function result
from Theorem 1 applies, and one can obtain a slightly better bound.

Corollary 2 (Indifferentiability of BLAKE2 Tree/Parallel Mode). Let E $←− Block∗(2n)
be a weakly ideal cipher, and consider the BLAKE2 tree/parallel hash function TE that
internally uses E. There exists a simulator S such that for any distinguisher D with total
complexity q,

IndiffTE,S(D) ≤
(
q
2
)

22n +
3
(
q
2
)

2n + q

2n/2
,

where S makes at most O(q3) queries to R.

6 BLAKE2 Keyed Hashing Mode
BLAKE2 supports keyed hashing by simply prepending the key to the message:

KH k(PB,m) = H(PB, k‖02n−κ‖m) , (12)

where κ ≤ 2n denotes the key size. In other words, the key gets processed as other data,
and the HAIFA counter and flags are designated to the key in a similar fashion as if they
were for normal data blocks. As claimed by the designers [ANWW13], the usage of the
HAIFA counter makes the need of a HMAC-like mode unnecessary.

6.1 Security Analysis
We first derive a generic PRF-security result for KH provided that H is a random oracle.
Recall from Definition 2 that we consider multi-key security, where the distinguisher gets
access to µ ≥ 1 independent instances.

Lemma 3. Let µ ≥ 1, and let k $←−
(
{0, 1}κ

)µ. Let H be an ideal hash function, and
consider the keyed hashing mode KHH of (12) that internally uses H. For any distinguisher
D with total complexity q,

PrfKHH (D) ≤ µq

2κ +
(
µ
2
)

2κ .

Proof. Let D be any distinguisher that makes at most q oracle queries. Let G be an ideal
hash function with the same domain and range as H. Starting from Definition 2:

PrfKHH (D) =
∣∣∣P(DKHH

k1
,...,KHH

kµ
,H = 1

)
− P

(
DR1,...,Rµ,H = 1

)∣∣∣
≤
∣∣∣P(DKHH

k1
,...,KHH

kµ
,H = 1

)
− P

(
DKHG

k1
,...,KHG

kµ
,H = 1

)∣∣∣ (13)

+
∣∣∣P(DKHG

k1
,...,KHG

kµ
,H = 1

)
− P

(
DR1,...,Rµ,H = 1

)∣∣∣ . (14)

Distance (13) is bound by the event that the distinguisher queries H directly on one of
the µ keys, which happens with probability at most µq/2κ. Distance (14) is bound by the
event that two distinct keys ki and kj collide, which happens with probability at most(
µ
2
)
/2κ.

We immediately obtain the following from the hash function indifferentiability of
Corollary 1 and from Lemma 3.



170 Security Analysis of BLAKE2’s Modes of Operation

Corollary 3 (PRF-Security of BLAKE2 Keyed Hashing Mode). Let µ ≥ 1, and let
k $←−

(
{0, 1}κ

)µ. Let E $←− Block∗(2n) be a weakly ideal cipher, and consider the keyed
hashing mode KHE of (12) that internally uses H of (11) that internally uses E. For any
distinguisher D with total complexity q,

PrfKHH (D) ≤
(
q
2
)

22n +
2
(
q
2
)

2n + q

2n/2
+ µq

2κ +
(
µ
2
)

2κ .

We remark that Dinur and Leurent [DL14] presented a state recovery attack on
a HAIFA MAC function, with complexity 24n/5. In our model, however, we consider
indistinguishability, a much weaker attack.
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function based on an ideal cipher E $←− Block(2n), rather than E $←− Block∗(2n). This is
without loss of generality. Note that, in below proof, the distinguisher may indeed opt to
take the messages so that mj 6∈WK.

Theorem 2 (Differentiability of BLAKE2 Compression Function). Let E $←− Block(2n) be
an ideal cipher, and consider the BLAKE2 compression function FE of (2) that internally
uses E. For any simulator S that makes at most qS ≤ 2n−3 queries to R, there exists a
distinguisher D that makes at most 2n/2 + 1 queries to its oracles, such that

IndiffFE,S(D) ≥ 1− e−1 − qS
2n ≥ 0.5 .

Proof. Consider any simulator S making at most qS queries to the random oracle R.
We will construct a distinguisher D that has access to either (F,E) and (R,S), and can
distinguish those with significant probability. Denote its oracles by (λ, ρ, ρ−1) (either
(F,E,E−1) or (R,S,S−1)). D operates as follows, where a return of 0 corresponds to
guessing that it is talking to the real world (F,E) and a return 1 that it is talking to the
simulated world (R,S):

1. D selects 2n/2 distinct messages mj , queries xj ← ρ−1(mj , 0), and parses

hj‖zj‖tj‖fj ← parseIV (xj) ;

2. If zj 6= 0n/2 for all j ∈ {1, . . . , 2n/2}, then D returns 1;

3. Let j ∈ {1, . . . , 2n/2} be such that zj = 0n/2. D queries

h← λ(hj ,mj , tj , fj) .

If h = hj , D returns 0, otherwise it returns 1.

The distinguisher guesses its oracles correctly except if one of the following events occur:

E1 : ∀ j ∈ {1, . . . , 2n/2} : zj 6= 0n/2
∣∣ (λ, ρ) = (F,E) ;

E2 : ∃ j ∈ {1, . . . , 2n/2} : zj = 0n/2 and h = hj
∣∣ (λ, ρ) = (R,S) .

In particular, IndiffFE,S(D) ≥ 1− P (E1)− P (E2).
Consider P (E1), and suppose that (λ, ρ) = (F,E). Because E is an ideal cipher and

the message blocks mj are all pairwise distinct, we have

P
(
∀ j ∈ {1, . . . , 2n/2} : zj 6= 0n/2

)
=

2n/2∏
j=1

P
(
zj 6= 0n/2

)
=

2n/2∏
j=1

1− P
(
zj = 0n/2

)

=
2n/2∏
j=1

1− 1
2n/2

=
(

1− 1
2n/2

)2n/2

≤ e−1 .

Next, consider P (E2), and suppose that (λ, ρ) = (R,S). The event implies that S has
generated an evaluation R(hj ,mj , tj , fj) = hj , i.e., a fixed-point in the first n bits of the
input to R. As S makes at most qS queries, it can find such a fixed-point with probability
at most qS/2n.

We have obtained that IndiffFE,S(D) ≥ 1− e−1 − qS/2n ≥ 0.5 for qS ≤ 2n−3.
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