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Abstract. At CCS 2015, Gueron and Lindell proposed GCM-SIV, a provably secure
authenticated encryption scheme that remains secure even if the nonce is repeated.
While this is an advantage over the original GCM, we first point out that GCM-SIV
allows a trivial distinguishing attack with about 248 queries, where each query has
one plaintext block. This shows the tightness of the security claim and does not
contradict the provable security result. However, the original GCM resists the attack,
and this poses a question of designing a variant of GCM-SIV that is secure against
the attack. We present a minor variant of GCM-SIV, which we call GCM-SIV1, and
discuss that GCM-SIV1 resists the attack, and it offers a security trade-off compared
to GCM-SIV. As the main contribution of the paper, we explore a scheme with a
stronger security bound. We present GCM-SIV2 which is obtained by running two
instances of GCM-SIV1 in parallel and mixing them in a simple way. We show that
it is secure up to 285.3 query complexity, where the query complexity is measured
in terms of the total number of blocks of the queries. Finally, we generalize this to
show GCM-SIVr by running r instances of GCM-SIV1 in parallel, where r ≥ 3, and
show that the scheme is secure up to 2128r/(r+1) query complexity. The provable
security results are obtained under the standard assumption that the blockcipher is a
pseudorandom permutation.
Keywords: GCM-SIV · nonce-reuse misuse-resistance authenticated encryption ·
provable security · beyond-birthday-bound security.

1 Introduction
AE Schemes and MRAE Schemes. An authenticated encryption (AE) scheme is a
symmetric key primitive that is used for efficiently protecting both privacy and authenticity
of digital data. The Galois/Counter Mode (GCM) of operation, proposed in 2004 by
McGrew and Viega [MV04a, MV04b], is one of the widely used AE schemes. It is included
in various standards e.g. in [Dwo07, IEE06, SCM08]. GCM is a nonce-based AE scheme,
that is, it takes data called a nonce as a part of the input, and the security relies on
the fact that the nonce is never repeated. Under this assumption, GCM is provably
secure [IOM12, NOMI15], and when the nonce length is restricted to 96 bits, it is provably
secure up to the standard birthday-bound of about 2n/2 query complexity, where n is the
block length of the underlying blockcipher. When AES is used, n = 128, and the query
complexity refers to the total number of blocks of the queries.

However, as with the case for many other nonce-based AE schemes, repeating the nonce
has critical impact on the security of GCM. In fact, Joux showed that if the adversary can
repeat the nonce, then a secret key of a universal hash function used in GCM called GHASH
can be obtained, and the key can be used for a universal forgery attack [Jou06]. A practical
threat to TLS implementations based on this attack was shown by Böck et al. [BZD+16].
While the mathematical definition of a non-repeating nonce is simple, implementation of
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the nonce is often non-trivial, and the assumption is repeatedly compromised in practice.
For instance software to generate the nonce may contain a bug, or the nonce generation
process may rely on poor randomness. This leads to the formalization of nonce-reuse
misuse-resistance AE (MRAE) by Rogaway and Shrimpton [RS06].

MRAE schemes are AE schemes that remain secure even if a nonce is repeated.
Specifically, we consider AE schemes that take (N,A,M) as input, where N is a nonce, A
is associated data, andM is a plaintext. N and A are supposed to be authenticated (but not
encrypted), and M is authenticated and encrypted. The privacy of MRAE demands that
the repetition of (N,A,M) is observed by the adversary, since the encryption algorithm
returns the same output, while nothing else is revealed. The authenticity of MRAE
demands that a forgery is impossible regardless of the repetition of a nonce.

The scheme we focus on in this paper is GCM-SIV, an MRAE scheme designed and
proposed by Gueron and Lindell at CCS 2015 [GL15a]. The design follows the approach
of SIV [RS06], and GCM-SIV can be seen as an efficient instantiation of SIV that uses
components from GCM. Compared to GCM, the security advantage of GCM-SIV is that
it remains secure even if the nonce is repeated. While achieving this may have efficiency
penalty, the authors demonstrate that the efficiency loss is limited. GCM-SIV achieves
0.92 cycles per byte on the Broadwell architecture, showing that an MRAE scheme can
achieve less than one cycle per byte, and the speed is close to that of GCM [GL15a]. The
authors conclude that GCM-SIV is a viable alternative to GCM, providing full nonce-reuse
misuse-resistance at little cost. An updated version of GCM-SIV was submitted as the
Internet-Draft [GLL16].1

This Paper. We first observe that there is a subtle difference in the security bounds of
GCM and GCM-SIV. Specifically, the security bound of GCM contains O(σ2/2n) both for
privacy and authenticity notions, while the security bound of GCM-SIV contains a term
of the form O(q2/2n−k) instead, where σ is the total number of blocks of the queries, n
denotes the block length in bits, q is the number of queries, and 2k denotes the maximum
block length of all the encryption and decryption queries, and n and k are specified as
n = 128 and k = 32. That is, while GCM has a standard birthday-bound security which
is expressed in terms of the total number of blocks of the queries, the security bound of
GCM-SIV is in the number of queries. In this paper, we first point out that there is a trivial
distinguishing attack against GCM-SIV that works with about 2(n−k)/2 queries, which
amounts to 248 queries with n = 128 and k = 32, and each query has one plaintext block.
This merely shows the tightness of the security claim and does not contradict the provable
security result. If we compare the two security bounds, O(σ2/2n) and O(q2/2n−k), we
see that O(σ2/2n) is better (smaller) if σ/q ≤ 2k/2, i.e., if the average query length (in
blocks) is smaller than 2k/2 blocks, while O(q2/2n−k) is better otherwise. We note that
2k/2 blocks correspond to 1 MB (megabyte), and this is larger than the maximum packet
size on the Internet. Therefore, there is a practical case where achieving the security bound
of the form O(σ2/2n) is desirable.

This observation motivates us to design a variant of GCM-SIV that resists the above
mentioned attack. We present a minor variant of GCM-SIV, which we call GCM-SIV1. We
discuss that GCM-SIV1 resists the attack, but it turns out that there are cases where the
security bound of GCM-SIV is better, and therefore, the security bound of GCM-SIV1 offers
a trade-off compared to GCM-SIV. We point out that the security bound of GCM-SIV1 is
comparable to GCM, that is, it is secure up to the standard birthday-bound security of
about 2n/2 query complexity, under the assumption that the average query length is at least
`1/2 blocks, where ` denotes the maximum block length of the queries. The algorithmic
modification is minimal, while on the downside, it would raise the implementation cost in
particular if we reuse components of GCM.

1Throughout this paper, GCM-SIV refers to the three-key construction in [GL15a].
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Next, as the main contribution of the paper, we explore a scheme with a stronger
security guarantee. A scheme that is secure beyond 2n/2 query complexity is often called
to have the beyond-birthday-bound (BBB) security. We consider a theoretical question of
designing a simple BBB secure MRAE scheme from a blockcipher, and we first present
GCM-SIV2 that is obtained by running two instances of GCM-SIV1 in parallel and mixing
them in a simple way. We show that it is secure up to about 22n/3 query complexity. As
with GCM-SIV and GCM-SIV1, GCM-SIV2 follows the design approach of SIV [RS06] and
one of the generic constructions called A4 [NRS14], where it combines a pseudo-random
function (PRF) and an IV-based encryption (ivE) scheme. Here, ivE is an encryption
scheme that encrypts a plaintext using an initialization vector IV that is randomly chosen
inside the encryption process. The design of GCM-SIV2 can be seen as combining a
BBB secure PRF and a BBB secure ivE scheme. Previous BBB secure PRFs based on a
blockcipher include SUM-ECBC [Yas10], a variant of PMAC in [Yas11], the Hash-then-Sum
construction [DDN+15], and a construction in [Osa12]. The PRF in GCM-SIV2 is similar
to them, with a difference being the length of the output. That is, the output length of the
PRF in GCM-SIV2 is 2n bits, while the length is n bits in the above mentioned schemes.
This is a disadvantage from a view point of communication cost, however, this plays a
crucial role in proving the BBB security when combined with a BBB secure ivE scheme.
We note that a generic approach of constructing a BBB secure MRAE scheme is discussed
in [IY09a, IY09b]. These are either complex and inefficient, or require a stronger primitive
than a blockcipher called a tweakable blockcipher [LRW11]. However, we remark that a
tweakable blockcipher based AE scheme can be instantiated with a blockcipher by using a
BBB secure tweakable blockcipher in [LST12].

One feature of GCM-SIV2 is that the design approach is scalable in that it allows
strengthening the security bound by naturally increasing the number of instances of GCM-
SIV1. We present GCM-SIVr by running r instances of GCM-SIV1 in parallel, where
r ≥ 3, and show that the scheme is secure up to about 2nr/(r+1) query complexity. The
security bound of GCM-SIVr approaches 2n query complexity as r grows, however, this
comes with costs. The efficiency significantly degrades as r grows, and reusing GCM
implementations becomes more difficult than the original GCM-SIV.

We note that the construction is generic in that any universal hash function can be
used, while we heavily rely on the fact that the underlying ivE scheme is CTR mode. We
remark that all the provable security results are obtained under the standard assumption
that the blockcipher is a pseudorandom permutation. We also emphasize that all our
results hold under nonce-misuse setting, where the adversary can repeat the nonce.

Related Work. MRAE schemes provide a strong security guarantee, and they can be
obtained from a deterministic AE (DAE) scheme, which addresses the problem of key
wrapping, by encoding a nonce into a part of the input of the DAE scheme [RS06]. There
have been proposals that offer the strong security guarantee of MRAE or DAE. The first
scheme called SIV mentioned above was proposed by Rogaway and Shrimpton [RS06].
This followed by HBS [IY09b] and BTM [IY09a]. Reyhanitabar et al. proposed a hash
function-based MRAE scheme called misuse-resistant OMD [RVV14]. Chakraborty and
Sarkar [CS16] and Sarkar [Sar14] showed comprehensive studies on generic constructions
of AE and DAE schemes from a blockcipher or a stream cipher. See also the constructions
by Shrimpton and Terashima [ST13] of BBB secure AEAD schemes. Robust AE (RAE)
introduced by Hoang et al. [HKR15] is closely related to MRAE, where a RAE scheme has
a more flexible security guarantee than that of plain DAE. There are more recent schemes,
such as Abed et al. [AFL+16] and Granger et al. [GJMN16].

Another direction is on-line AE schemes, where they are more efficient than MRAE
schemes, while the security notion is weaker [FFL12]. Finally, CAESAR [CAE], a compe-
tition for AE schemes, attracted submissions of MRAE schemes, including AEZ [HKR15],
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HS1-SIV [Kro15], and Synthetic Counter in Tweak (SCT) mode [PS16] employed in
Deoxys [JNP15a] and Joltik [JNP15b].

2 Preliminaries
Notation. We write {0, 1}∗ for the set of all finite bit strings including the empty string
ε. For a bit string X ∈ {0, 1}∗, |X| denotes its length in bits, and for an integer ` ≥ 1,
|X|` = d|X|/`e denotes the length in `-bit blocks. For an integer ` ≥ 0, let {0, 1}` be
the set of all bit strings of ` bits, and Perm(`) be the set of all permutations on {0, 1}`.
For X,Y ∈ {0, 1}∗, X ‖Y denotes their concatenation, which is also written as XY for
simplicity. We write the `-bit zero string as 0` = 0 · · · 0 ∈ {0, 1}`. For X ∈ {0, 1}∗ with
|X| ≥ `, msb`(X) denotes the first (leftmost) ` bits of X, and lsb`(X) denotes the last
(rightmost) ` bits of X. For X ∈ {0, 1}∗ and ` ≥ 1, (X[1], . . . , X[x]) `← X denotes the
decomposition of X into `-bit blocks, where x = |X|`, i.e., X[1], . . . , X[x] are unique bit
strings such that X[1] ‖ · · · ‖X[x] = X, |X[1]| = · · · = |X[x− 1]| = `, and 1 ≤ |X[x]| ≤ `.
We follow the convention that if X = ε, then X[1] `← X, where X[1] = ε. For a finite set
X , X $← X means a uniform random sampling of an element X from X . For integers `
and x such that x < 2`, str`(x) is the standard `-bit binary representation of x.

Nonce-Based AEAD. A nonce-based authenticated encryption with associated data
(AEAD) scheme Π consists of an encryption algorithm Π-E and a decryption algorithm
Π-D, and it is associated with a set of keys KΠ ⊆ {0, 1}∗. We write Π = (KΠ,Π-E ,Π-D).
The encryption algorithm Π-E takes a key K ∈ KΠ, a nonce N ∈ NΠ, associated data
A ∈ AΠ, and a plaintext M ∈ MΠ as input, and returns a ciphertext C ∈ {0, 1}∗
and a tag T ∈ {0, 1}τ for some fixed τ , where NΠ is the set of nonces, AΠ is the set
of associated data, MΠ is the set of plaintexts, and NΠ,AΠ,MΠ ⊆ {0, 1}∗. We write
(C, T ) ← Π-EK(N,A,M). The decryption algorithm Π-D takes K, N , A, C, and T as
input, and returns M or the reject symbol ⊥. We write M/⊥ ← Π-DK(N,A,C, T ). If
(C, T )← Π-EK(N,A,M), then we have M ← Π-DK(N,A,C, T ).

We follow the security definition in [GL15a], which follows [NRS14, RS06]. Let A be
an adversary against Π = (KΠ,Π-E ,Π-D). We define the MRAE-advantage of A as

Advmrae
Π (A) = Pr

[
AEncK ,DecK ⇒ 1

]
− Pr

[
A$,⊥ ⇒ 1

]
,

where EncK is the encryption oracle that takes (N,A,M) as input and returns (C, T )←
Π-EK(N,A,M), DecK is the decryption oracle that takes (N,A,C, T ) as input and returns
M/⊥ ← Π-DK(N,A,C, T ), $ is the random-bits oracle that takes (N,A,M) as input and
returns a random string (C, T ) $← {0, 1}`, where ` = |Π-EK(N,A,M)| and is assumed to
depend only on |N |, |A|, and |M |, and finally the reject oracle ⊥ takes (N,A,C, T ) as
input and returns ⊥. The probabilities are taken over K, A, and $, and we without loss
of generality assume that A does not repeat the same query.

IV-Based Encryption. An IV-based encryption (ivE) scheme E consists of an encryption
algorithm E-E and a decryption algorithm E-D, with a set of keys KE ⊆ {0, 1}∗. We
write E = (KE,E-E ,E-D). The encryption algorithm E-E takes a key K ∈ KE and a
plaintext M ∈ME as input, and returns (IV, C), where IV $← {0, 1}τ is an initialization
vector for some fixed τ and C ∈ {0, 1}∗ is a ciphertext. We write (IV, C) ← E-EK(M).
The decryption algorithm E-D takes K, IV , and C as input, and returns M . We write
M ← E-DK(IV, C). If (IV, C)← E-EK(M), then we have M ← E-DK(IV, C).
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We use the security definition in [GL15a, NRS14, RS06]. Let A be an adversary against
E = (KE,E-E ,E-D). We define the priv$-advantage of A as

Advpriv$
E (A) = Pr

[
AEncK ⇒ 1

]
− Pr

[
A$ ⇒ 1

]
,

where the encryption oracle EncK takes M as input and returns (IV, C)← E-EK(M), and
the random-bits oracle $ takes M as input and returns a random string (IV, C) $← {0, 1}`,
where ` = |E-EK(M)| depends only on |M |. The probabilities are taken over K, A, and $.

PRF. A pseudo-random function (PRF) F is a keyed function with a set of keys KF,
domain DF, and range {0, 1}τ for some fixed τ . It takes K ∈ KF and X ∈ DF as input, and
returns Y = FK(X) ∈ {0, 1}τ . Let R $← Rand(DF, {0, 1}τ ) be a random function, where
Rand(DF, {0, 1}τ ) is the set of all functions with domain DF and range {0, 1}τ .

We define the prf-advantage of an adversary A as

Advprf
F (A) = Pr

[
AFK ⇒ 1

]
− Pr

[
AR ⇒ 1

]
,

where the oracle FK takes X as input and returns Y ← FK(X), and the oracle R takes X
as input and returns a random element Y $← R(X). The probabilities are taken over K,
A, and R.

Blockcipher. A blockcipher E is a keyed function that takes a keyK ∈ KE and a plaintext
blockM ∈ {0, 1}n as input, and returns a ciphertext block C ∈ {0, 1}n, where KE ⊆ {0, 1}∗
is a non-empty set of keys and n is the block length. We write C ← EK(M), and for each
K ∈ KE , the function EK : {0, 1}n → {0, 1}n is a permutation, i.e., EK ∈ Perm(n). We
call P $← Perm(n) a random permutation.

Hash Function. We consider a keyed hash function H with a set of keys KH ⊆ {0, 1}∗,
domain DH , and range {0, 1}n, where we assume the length of the output is the same
as the block length of the blockcipher. It takes a key L ∈ KH and X ∈ DH as input,
and returns the output Y ← HL(X) ∈ {0, 1}n. H is an ε-almost universal (ε-AU) hash
function if for any distinct X,X ′ ∈ DH , it holds that PrL[HL(X) = HL(X ′)] ≤ ε.

3 SIV: MRAE from PRF and ivE
Here we recall a result related to SIV [NRS14, RS06]. SIV is an MRAE scheme that is
obtained by combining a PRF F and an ivE scheme E. Consider a nonce-based AEAD
scheme Π = (KΠ,Π-E ,Π-D) composed from F and E, where DF = NΠ × AΠ × MΠ,
and ME = MΠ. Given K = (K1,K2) ∈ KF × KE, to encrypt (N,A,M) into (C, T ) ←
Π-EK(N,A,M), we first let T ← FK1(N,A,M), and then C ← E-EK2(M), where we use
the tag T as the IV in E-E . To decrypt (N,A,C, T ), we first let M ← E-DK2(T,C) and
T ∗ ← FK1(N,A,M), and then return M if T = T ∗ and ⊥ otherwise. We call this the SIV
construction using F as tag generation and E as the ivE scheme.

SIV is secure as an MRAE scheme if its tag generation is a PRF and the ivE scheme is
secure. More precisely, we say thatA is a (q, `, σ)-adversary if it makes at most q1 encryption
queries (Ni, Ai,Mi), 1 ≤ i ≤ q1, and at most q2 decryption queries (N ′i , A′i, C ′i, T ′i ),
1 ≤ i ≤ q2, where

• q1 + q2 ≤ q,

• |Ni|n + |Ai|n + |Mi|n ≤ ` for all i ∈ {1, . . . , q1},
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Algorithm GCM-SIV-EK(N,A,M)

1. V ← HL(N,A,M)
2. T ← EK′(V )
3. IV ← msbn−k(T ) ‖ 0k
4. m← |M |n
5. S← CTRK(IV,m)
6. C ←M ⊕msb|M |(S)
7. return (C, T )

Algorithm GCM-SIV-DK(N,A,C, T )

1. IV ← msbn−k(T ) ‖ 0k
2. m← |C|n
3. S← CTRK(IV,m)
4. M ← C ⊕msb|C|(S)
5. V ← HL(N,A,M)
6. T ∗ ← EK′(V )
7. if T 6= T ∗ then return ⊥
8. return M

Figure 1: Definitions of GCM-SIV-EK(N,A,M) and GCM-SIV-DK(N,A,C, T )

• |N ′i |n + |A′i|n + |C ′i|n ≤ ` for all i ∈ {1, . . . , q2}, and

•
∑

1≤i≤q1
|Mi|n ≤ σ.

We note that σ does not include the lengths of associated data or nonces, but this is
sufficient for the security analysis. Then the security of Π against (q, `, σ)-adversaries can
be proved as in the lemma below, which is shown in Theorem 2 of [RS06], Corollary 2.3
of [GL15a], and Theorem 1 of [NRS14].

Lemma 1. For any (q, `, σ)-adversary A, we have

Advmrae
Π (A) ≤ Advprf

F (A′) + Advpriv$
E (A′′) + q

2τ (1)

for some A′ that makes at most q queries and each query is at most ` blocks, and some
A′′ that makes at most q queries consisting of at most σ blocks in total.

Since all the schemes we consider in this paper fall into the SIV construction, their
security proofs are reduced to showing the security of the underlying PRF and the ivE
scheme.

4 Specification of GCM-SIV
We recall the specification of GCM-SIV [GL15a]. It uses a blockcipher E : KE ×{0, 1}n →
{0, 1}n and a hash functionH with the set of keys KH . We also fix an integer k that specifies
the maximum input length. GCM-SIV-E takes a key K = (L,K ′,K) ∈ KH ×KE ×KE ,
N , A, and M as input, and returns (C, T )← GCM-SIV-EK(N,A,M) such that |C| = |M |
and |T | = n. The algorithm is defined in Fig. 1 (left) and illustrated in Fig. 3. GCM-SIV
can be defined in a more general manner, but we focus on a particular instance of GCM-SIV
where we use AES as E, and we thus have n = 128, H is defined by using GHASH in Fig. 2,
and k = 32, following GCM. Specifically, the hash function used in GCM-SIV is defined
as HL(N,A,M) = GHASHL(A,M) ⊕ N , where L ∈ KH = {0, 1}n, N ∈ {0, 1}n, and
A,M ∈ {0, 1}∗ with the restriction that |A|n+ |M |n+1 ≤ 232. In Fig. 2, the multiplication
at line 6 is defined over GF(2n). We use CTR mode based on E defined in Fig. 2, where
the increment function is defined as inc(X) = msbn−32(X) ‖ lsb32(X) + 1 mod 232. Here,
we naturally interpret lsb32(X) as an integer, and lsb32(X) + 1 mod 232 as a 32-bit string.
GCM-SIV-D takes K = (L,K ′,K), N , A, C such that |A|n + |C|n + 1 ≤ 232, and T as
input, and returns M ← GCM-SIV-DK(N,A,C, T ) with |M | = |C| or the reject symbol
⊥. The algorithm is defined in Fig. 1 (right).
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Algorithm GHASHL(A,M)

1. len← strn/2(|A|) ‖ strn/2(|M |)
2. X ← A ‖ 0n|A|n−|A| ‖M ‖ 0n|M |n−|M | ‖ len
3. (X[1], . . . , X[x]) n← X
4. Y ← 0n
5. for j ← 1 to x do
6. Y ← L · (Y ⊕X[j])
7. return Y

Algorithm CTRK(IV,m)

1. if m = 0 then S← ε
2. else // m ≥ 1
3. I[1]← IV
4. S[1]← EK(I[1])
5. for i← 2 to m do
6. I[i]← inc(I[i− 1])
7. S[i]← EK(I[i])
8. S← S[1] ‖ · · · ‖S[m]
9. return S

Figure 2: Definitions of GHASHL(A,M) and CTRK(IV,m)

A MN

EK

HL

T

incinc inc

M [1] M [2] M [m− 1] M [m]

C[1] C[2] C[m− 1] C[m]

EK EK EK EKV

CTRK

IV = msbn−k(T ) 0k

Figure 3: The encryption algorithm of GCM-SIV

5 Distinguishing GCM-SIV
Gueron and Lindell showed in [GL15a] that

Advmrae
GCM-SIV(A) ≤ 2Advprf

E (A′) + q2

295 + q2 + q′

2128 , (2)

where A is an adversary that makes q encryption queries and q′ decryption queries, and
Advprf

E (A′) is the security of the underlying blockcipher E as a PRF, which is assumed
to be small. Here, q2/295 is derived as a sum of counter collision and GHASH collision
probabilities, where both probabilities are bounded by q2/2n−k = q2/296. See [GL15b,
Sect. 4.1].

We show that the above security bound is tight by pointing out a trivial distinguishing
attack on GCM-SIV. Let q = 2(n−32)/2, N1, . . . , Nq be q distinct nonces, A = ε, and
M = 0n. The adversary A first makes q encryption queries (N1, A,M), . . . , (Nq, A,M) to
receive (C1, T1), . . . , (Cq, Tq). Then A returns 1 if both msbn−32(Ti) = msbn−32(Ti′) and
Ci = Ci′ hold for some 1 ≤ i < i′ ≤ q.

If the encryption oracle implements GCM-SIV, then with a high probability, we have
msbn−32(Ti) = msbn−32(Ti′) for some 1 ≤ i < i′ ≤ q, in which case we also have Ci = Ci′ .
However, Ci = Ci′ holds with a probability of 1/2n for the random-bits oracle, and hence
the advantage of A is not small.

This observation does not violate the security claim in [GL15a]. On the other hand, for
original GCM, when the nonce length is restricted to 96 bits and a random permutation is
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used as the underlying blockcipher, it was shown in [IOM12] that

Advpriv
GCM(A) ≤ 0.5(σ + q + 1)2

2n , (3)

where Advpriv
GCM(A) measures the ability of the adversary to distinguish the ciphertexts

from random bits. This value remains small with q = 2(n−32)/2 and σ = 2(n−32)/2, where
σ denotes total block length of the ciphertexts. Therefore, GCM-SIV has stronger security
than GCM in that it resists attacks that repeat a nonce, but there is a case where GCM-
SIV is quantitatively less secure in that the distinguishing attack succeeds with the lower
number of queries.

As explained earlier, the observation here is that the security bound of GCM contains
σ2/2n while that of GCM-SIV contains q2/2n−k for the maximum input length 2k in blocks.
The former is better (smaller) if σ/q is at most 2k/2, which is around 1 MB (megabyte)
for n = 128 and k = 32. We speculate that this average query length condition is practical
considering standard communication protocols, where each message is at most a few KB
(kilobyte), and that offline computation is required in MRAE schemes including GCM-SIV.

6 GCM-SIV1: A Variant of GCM-SIV
In this section, we consider a problem of designing a variant of GCM-SIV that resists the
attack of the previous section. We make the following changes to GCM-SIV.

• The 3rd line of GCM-SIV-EK(N,A,M) in Fig. 1 is changed to IV ← T .

• The 1st line of GCM-SIV-DK(N,A,C, T ) in Fig. 1 is changed to IV ← T .

• The definition of inc(X) used in CTR in Fig. 2 is changed to inc(X) = X + 1 mod 2n.

In other words, instead of using a part of T as an IV for CTR mode, we simply use
the entire tag as the IV. We also remove the restriction |A|n + |M |n + 1 ≤ 232 for
GCM-SIV-EK(N,A,M) and |A|n+ |C|n+1 ≤ 232 for GCM-SIV-DK(N,A,C, T ). Instead,
we assume the same restriction as GCM, which says |A|n ≤ 2n/2, |M |n ≤ 232 − 2, and
|C|n ≤ 232 − 2. This can improve the usability, which is also taken in the updated version
of GCM-SIV [GLL16].

We use Lemma 1 to show the security of GCM-SIV1. It is sufficient to show that a
function F that maps (N,A,M) to T using a key (L,K ′) is a PRF, and CTR mode is a
secure ivE scheme. Consider GCM-SIV1 that uses an ε-AU hash function H and random
permutations P ′ and P as blockciphers EK′ and EK . For a (q, `, σ)-adversary A, we have
the following bound.

Advmrae
GCM-SIV1(A) ≤ 0.5q2ε+ 0.5q2

2n + σ2

2n + q

2n

It is folklore to show that the function F is a PRF with advantage at most 0.5q2ε+0.5q2/2n,
and CTR mode is secure in the sense of the ivE scheme with advantage at most σ2/2n
when IV is n bits. If we use GHASH in H as in GCM-SIV, then the bound becomes

Advmrae
GCM-SIV1(A) ≤ 0.5q2`

2n + 0.5q2

2n + σ2

2n + q

2n (4)

from ε ≤ `/2n [MV04a].
We discuss the relation between the security bounds of (2), (3), and (4). For simplicity,

let us consider the security bounds of the form q2/2n−32 (GCM-SIV), σ2/2n (GCM),
and q2`/2n + σ2/2n (GCM-SIV1) by taking the leading terms from (2), (3), and (4) and
ignoring the constants. We make the following observations.
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• We first see that q2/2n−32 ≤ σ2/2n holds if 216 ≤ σ/q, implying that the security
bound of GCM-SIV is better (smaller) than that of GCM if the average input length
is at least 216 blocks.

• We next observe that σ2/2n is always better than q2`/2n + σ2/2n, i.e., the security
bound of GCM is always better than that of GCM-SIV1. However, the security
bound of GCM-SIV1 can be bounded by O(σ2/2n) if σ/q ≥ `1/2, i.e., if the average
query length is at least `1/2 blocks, in which case GCM-SIV1 achieves the standard
birthday-bound security as with GCM.

• We then see that q2`/2n + σ2/2n ≤ q2/2n−32 if σ/q ≤ (232 − `)1/2. It depends on
the usage of the scheme if σ/q ≤ (232 − `)1/2 holds. Since the average query length
is at most the maximum query length, it holds that σ/q ≤ `, and if ` ≤ (232 − `)1/2,
which can be approximated as ` ≤ 216, i.e., if the maximum query length is at most
216 blocks, then the security bound of GCM-SIV1 is better than that of GCM-SIV.
Therefore, even though the attack described in Sect. 5 does not work on GCM-SIV1,
it does not mean that the security bound of GCM-SIV1 is always better.

• Suppose that the length of the plaintext in all the queries is about 232 blocks. Then
we observe that GCM-SIV remains secure as long as the number of queries is well
below than 248, while GCM and GCM-SIV1 require that the number of queries is
well below than 232. Therefore, in this case, GCM-SIV gives the strongest security
bound.

7 GCM-SIV2: BBB Secure Scheme
Specification of GCM-SIV2. GCM-SIV1 in the previous section is secure up to about
2n/2 query complexity by using an n-bit tag. This is the best possible security among the
construction in Lemma 1, since the best possible security of an ivE scheme with an n-bit
IV is O(q2/2n) priv$-advantage, due to collisions among IVs. In this section, we present an
extension that uses multiple instances of GCM-SIV1 to achieve stronger security, namely
beyond-birthday-bound (BBB) security, at the cost of increased tag length. We call our
BBB secure scheme GCM-SIV2. A pseudocode of GCM-SIV2 is shown in Fig. 4, and the
encryption function is illustrated in Fig. 5. The global structure of GCM-SIV2 follows
the SIV construction mentioned in Sect. 3, combined with 2n-bit tag generation function
using two n-bit hash functions, and an ivE scheme with 2n-bit IV using two blockciphers.
We remark that SCT [PS16] has also BBB security, however it is based on a tweakable
blockcipher, a more powerful primitive than a plain blockcipher, and BBB security is
achieved against nonce-respective adversaries.

We note that T in GCM-SIV2 is now 2n bits, the set of keys is (KH)2× (KE)4× (KE)2,
and we have K = (L1, L2,K

′
1,K

′
2,K

′
3,K

′
4,K1,K2) ∈ (KH)2 × (KE)4 × (KE)2.

Security Bound of GCM-SIV2. We focus on the information-theoretic security, namely
all blockciphers are assumed to be independent uniform random permutations. To obtain
computationally-secure counterpart, a standard technique can be applied [BDJR97], and the
provable security results hold under the assumption that the blockcipher is a pseudorandom
permutation.

Let F2L1,L2,P ′1,P
′
2,P
′
3,P
′
4
, which we abbreviate as F2, be the tag generation function of

GCM-SIV2 that takes (N,A,M) as input and outputs (T [1], T [2]). It is obtained by ex-
tracting lines from 1 to 4 of GCM-SIV2-EN,AK (M) from Fig. 4, and replacing EK′1 , . . . , EK′4
with independent random permutations P ′1, . . . , P ′4. We first present a lemma showing that
F2 is a secure PRF up to about 22n/3 query complexity.
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Algorithm GCM-SIV2-EN,AK (M)

1. V [1]← HL1(N,A,M)
2. V [2]← HL2(N,A,M)
3. T [1]← EK′1(V [1])⊕ EK′3(V [2])
4. T [2]← EK′2(V [1])⊕ EK′4(V [2])
5. S[1]← CTRK1(T [1], |M |n)
6. S[2]← CTRK2(T [2], |M |n)
7. C ←M⊕msb|M |(S[1])⊕msb|M |(S[2])
8. T ← T [1] ‖T [2]
9. return (C, T )

Algorithm GCM-SIV2-DN,AK (C, T )

1. S[1]← CTRK1(T [1], |C|n)
2. S[2]← CTRK2(T [2], |C|n)
3. M ← C⊕msb|M |(S[1])⊕msb|M |(S[2])
4. V [1]← HL1(N,A,M)
5. V [2]← HL2(N,A,M)
6. T [1]← EK′1(V [1])⊕ EK′3(V [2])
7. T [2]← EK′2(V [1])⊕ EK′4(V [2])
8. T ∗ ← T [1] ‖T [2]
9. if T 6= T ∗ then return ⊥
10. return M

Figure 4: Definitions of GCM-SIV2-EN,AK (M) and GCM-SIV2-DN,AK (C, T )
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Figure 5: The encryption algorithm of GCM-SIV2

Lemma 2. Let A be an adversary that makes q queries with the maximum block length `.
If HL1 and HL2 are ε-AU for any maximum input block length `, we have

Advprf
F2 (A) ≤ 8q3

3 · 22n + 6ε2q3 (5)

when q ≤ 2n−1. In particular, when HLi
is defined as HLi

(N,A,M) = GHASHLi
(A,M)⊕

N , it is an `/2n-AU hash function, and we have Advprf
F2 (A) ≤ 8.7`2q3/22n.

A proof is obtained from a proof that covers a more general case, which is presented in
Sect. 9. Here, we briefly show the intuition of the proof. Let (N1, A1,M1), . . . , (Nq, Aq,Mq)
be the queries made by A, and let (V1[1], V1[2]), . . . , (Vq[1], Vq[2]) be the corresponding
output values of HL1 and HL2 . For each 2 ≤ i ≤ q, we make the following cases.

• Case Vi[1] 6∈ {V1[1], . . . , Vi−1[1]} and Vi[2] 6∈ {V1[2], . . . , Vi−1[2]}. In this case, we
follow the analysis of [Yas10, Luc00] and see if the xor of two output values of two
independent random permutations is uniformly random.

• Case Vi[1] 6∈ {V1[1], . . . , Vi−1[1]} and Vi[2] ∈ {V1[2], . . . , Vi−1[2]}. In this case, we rely
on the randomness of P ′1 and P ′2 and see that P ′1(Vi[1]) and P ′2(Vi[1]) are random.
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• Case Vi[1] ∈ {V1[1], . . . , Vi−1[1]} and Vi[2] 6∈ {V1[2], . . . , Vi−1[2]}. This case is similar
to the above, and we rely on the randomness of P ′3 and P ′4.

• Case Vi[1] ∈ {V1[1], . . . , Vi−1[1]} and Vi[2] ∈ {V1[2], . . . , Vi−1[2]}. This case is a bad
event, and we assume that the adversary succeeds in the attack.

We remark that the bound of F2 using GHASH is better than that of SUM-ECBC
presented by Yasuda [Yas10], since the security bound of SUM-ECBC is O(`4q3/22n), while
that of F2 is O(`2q3/22n). This is simply due to the use of a polynomial hash function
(which is `/2n-AU) instead of CBC-MAC (which is `2/2n- or `4/22n-AU [BR00, BPR05])
for message hashing. We also remark that there are hash functions where the collision
probability is independent of the input length, see e.g. [LPTY16].

We next define the ivE scheme of GCM-SIV2, which we write E2P1,P2 . It takes 2n-bit
IV (T [1], T [2]) as input, and outputs the key stream S = S[1]⊕S[2], and encrypts plaintext
M as C = S⊕M , using two random permutations P1 and P2. Here we often abbreviate
E2P1,P2 as E2. It is obtained by extracting lines from 5 to 8 of GCM-SIV2-EN,AK (M) from
Fig. 4 and replacing EKi

with Pi.

Lemma 3. For any adversary A that makes q queries, where the total number of blocks
of the queries is at most σ blocks, we have

Advpriv$
E2 (A) ≤ 13σ3

3 · 22n . (6)

A proof is obtained from a proof in Sect. 9 that covers a more general case. Here, we
briefly point out that most of the analysis of F2 can be used for the analysis of E2 by
treating (T [1], T [2]) in E2 as (V [1], V [2]) in F2. By combining Lemma 1, Lemma 2, and
Lemma 3, we obtain the following security bound of GCM-SIV2.

Theorem 1. For any (q, `, σ)-adversary A, we have

Advmrae
GCM-SIV2(A) ≤ 7σ3

22n + 6ε2q3 + q

22n . (7)

From Theorem 1, when F2 uses two independently-keyed GHASH, we have ε = `/2n,
and the bound becomes

7σ3

22n + 6`2q3

22n + q

22n . (8)

This bound shows that GCM-SIV2 is secure up to about 22n/3 query complexity.

8 GCM-SIVr: Generalization
GCM-SIV2 achieves BBB security. However, there is still a gap from the optimal (i.e.
n-bit) security bound. To fill the gap, we put forward the idea of using multiple instances
of GCM-SIV1 more than two instances. The scheme is naturally defined as GCM-SIVr,
where r ≥ 2 denotes the number of instances, and by setting r = 2 it is exactly reduced to
GCM-SIV2.

A pseudocode of GCM-SIVr is shown in Fig. 6, and the encryption function for
r = 3 is illustrated in Fig. 7. The tag length of GCM-SIVr is rn bits, and its key is
K = (L1, . . . , Lr,K

′
1, . . . ,K

′
r2 ,K1, . . . ,Kr), where K ∈ (KH)r × (KE)r2 × (KE)r.

The information-theoretic security bound of GCM-SIVr is described as follows.

Theorem 2. For any (q, `, σ)-adversary A, we have

Advmrae
GCM-SIVr(A) ≤ r · (4ε)r · qr+1 + 4r · σr+1

2nr + q

2nr . (9)
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Algorithm GCM-SIVr-EN,AK (M)

1. for i = 1 to r do
2. V [i]← HLi

(N,A,M)
3. T [i]← 0n
4. for i = 1 to r do
5. for j = 1 to r do
6. T [i]← T [i]⊕ EK′

i+r(j−1)
(V [j])

7. for i = 1 to r do
8. S[i]← CTRKi

(T [i], |M |n)
9. M ←M ⊕msb|M |(S[i])
10. C ←M
11. T ← T [1] ‖T [2] ‖ · · · ‖T [r]
12. return (C, T )

Algorithm GCM-SIVr-DN,AK (C, T )

1. for i = 1 to r do
2. S[i]← CTRKi

(T [i], |C|n)
3. C ← C ⊕msb|C|(S[i])
4. M ← C
5. for i = 1 to r do
6. V [i]← HLi

(N,A,M)
7. T [i]← 0n
8. for i = 1 to r do
9. for j = 1 to r do
10. T [i]← T [i]⊕ EK′

i+r(j−1)
(V [j])

11. T ∗ ← T [1] ‖T [2] ‖ · · · ‖T [r]
12. if T 6= T ∗ then return ⊥
13. return M

Figure 6: Definitions of GCM-SIVr-EN,AK (M) and GCM-SIVr-DN,AK (C, T )
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Figure 7: The encryption algorithm of GCM-SIVr for r = 3

If HL1 , . . . ,HLr
used in GCM-SIVr are instantiated with independently-keyed GHASH,

then the bound is

r · (4`)r · qr+1

2nr + 4r · σr+1

2nr + q

2nr ,

and this shows that GCM-SIVr is secure up to about 2rn/(r+1) query complexity, and hence
it asymptotically achieves the optimal security. We remark that this type of rn/(r+ 1)-bit
security bound has been observed in various types of provably-secure constructions, such
as [CS14, Luc00, Mau02, MP03].

9 Security Proofs of GCM-SIV2 and GCM-SIVr

In this section, we present the security proofs of GCM-SIVr, where the proof of GCM-SIV2
is obtained by setting r = 2.
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Algorithm FrL1,...,Lr,P ′1,...,P
′
r2

(N,A,M)

1. for i = 1 to r do
2. V [i]← HLi(N,A,M)
3. for j = 1 to r do
4. if V [i] 6∈ Dom(P ′r(i−1)+j) then xi,j = 0
5. else xi,j = 1
6. end for
7. end for
8. for j = 1 to r do
9. Xj ← (x1,j , . . . , xr,j)

10. go to Case Xj // this generates T [j]
11. end for
12. T ← (T [1], . . . , T [r])
13. return T

Figure 8: Main Game of Fr, the PRF part of GCM-SIVr

9.1 Proving the PRF Bound of Fr

We first prove the security of the tag generation function of GCM-SIVr, which we call Fr.
Let FrL1,...,Lr,P ′1,...,P

′
r2

= P′(r,r) ◦H(r), where{
H(a)(N,A,M) = (HL1(N,A,M), . . . ,HLa(N,A,M)),
P′(a,b)(V [1], . . . , V [a]) =

(⊕b
j=1 P

′
b(j−1)+1(V [j]), . . . ,

⊕b
j=1 P

′
b(j−1)+a(V [j])

)
.

This corresponds to the tag generation function of GCM-SIVr using random permutations
P ′1, . . . , P

′
r2 .

Let R be the uniform random function taking (N,A,M) as input and generating rn-bit
output. We need to bound the PRF-advantage of Fr, which is Pr[AFr ⇒ 1]− Pr[AR ⇒ 1].

We employ the Game-playing technique by Bellare and Rogaway [BR06]. Both Fr
and R are implemented as games, called real and ideal games, where the internal random
permutations P ′1, . . . , P ′r2 are implemented by lazy sampling. For each P ′i , the games
implicitly maintain two sets, Dom(P ′i ) and Rng(P ′i ), which keep the record of domain and
range points that are already determined. Formally, if we have x ∈ {0, 1}n which is not in
Dom(P ′i ) then we randomly sample y as y $← {0, 1}n \ Rng(P ′i ), and determine y = P ′i (x),
and then add x to Dom(P ′i ) and y to Rng(P ′i ).

The proofs are based on the proofs of SUM-ECBC by Yasuda [Yas10] and SUM
construction by Lucks [Luc00]. We define the main game in Fig. 8 which has a number
of cases (subroutines), depending on the input collisions on random permutations. Each
case is specified by an r-bit variable Xj , where j = 1, . . . , r, and Case Xj determines how
T [j] is produced. Let us describe the intuition how Xj = (x1,j , . . . , xr,j) works. We have
T [j] = P ′j(V [1]) ⊕ P ′r+j(V [2]) ⊕ · · · ⊕ P ′r(r−1)+j(V [r]), and if the i-th bit xi,j of Xj is 1,
where 1 ≤ i ≤ r, then this implies that V [i] was used in the previous query (and hence we
detect a collision of HLi

). If the i-th bit of Xj is 0, then this implies that V [i] was never
used previously. Observe that we have X1 = · · · = Xr.

We then describe the overview of the security proof. The proof is divided into Case
Xj = (0, . . . , 0), Case Xj = (1, . . . , 1, 0, . . . , 0), and Case Xj = (1 . . . , 1). Let wt(Xj)
denote the hamming weight of Xj .

• Case Xj = (0, . . . , 0) is the case where wt(Xj) = 0, and all the input values of the
random permutations are “new.” We follow the fair set analysis of [Yas10, Luc00] to
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see if the xor of r output values of r independent random permutations is uniformly
random. We make further cases depending on the value of r.

• Case Xj = (1, . . . , 1, 0, . . . , 0) is divided into cases depending on wt(Xj) = p. We
here only consider the case where Xj is of the form Xj = (1, . . . , 1, 0, . . . , 0), i.e., the
first p bits of Xj is 1. Due to the symmetry of the construction, other cases of weight
p have the same probability. We have three cases, 1 ≤ p ≤ r − 2 and r − p is even,
1 ≤ p ≤ r − 2 and r − p is odd, and p = r − 1. If 1 ≤ p ≤ r − 2, we apply the fair
set analysis of [Yas10, Luc00] to the last r − p random permutations, and see if the
output yields a random value. We make further cases depending on the value of r−p,
the number of random permutations with new input values. If wt(Xj) = r − 1, then
our analysis is based on the randomness of the single remaining random permutation.

• Case Xj = (1, . . . , 1), which corresponds to wt(Xj) = r, is considered to be a bad
event, and we assume that the adversary succeeds in the attack.

The details of the proof now follow.

• For clarity we treat Case Xj = (0, . . . , 0) and Case Xj = (1, . . . , 1) as special cases.
They are written in Fig. 9 and Fig. 11.

• Other cases, Case Xj = (1, . . . , 1, 0, . . . , 0), where 1 ≤ wt(Xj) ≤ r − 1, is shown in
Fig. 10.

• As stated above, we show the case where Xj is of the form Xj = (1, . . . , 1, 0, . . . , 0),
i.e., the first p bits are 1, since the evaluation of other cases is the same from the
symmetry.

The following proposition, which relies on the idea of resampling by Bellare and
Rogaway [BR06], shows that Fig. 8 implements the real and ideal games.

Proposition 1. When r is even, Fr is implemented with the main game of Fig. 8
taking Case Xj = (0, . . . , 0) without the boxed argument, Case Xj = (1, . . . , 1, 0, . . . , 0)
with the boxed argument, and Case Xj = (1, . . . , 1) without the boxed argument. In
addition, R is implemented by taking Case Xj = (0, . . . , 0) with the boxed argument, Case
Xj = (1, . . . , 1, 0, . . . , 0) without the boxed argument, and Case Xj = (1, . . . , 1) with the
boxed argument.

When r is odd, Fr is implemented taking Case Xj = (0, . . . , 0) with the boxed argument,
Case Xj = (1, . . . , 1, 0, . . . , 0) with the boxed argument, and Case Xj = (1, . . . , 1) without
the boxed argument. Finally, R is implemented by taking Case Xj = (0, . . . , 0) without
the boxed argument, Case Xj = (1, . . . , 1, 0, . . . , 0) without the boxed argument, and Case
Xj = (1, . . . , 1) with the boxed argument.

We will describe how Proposition 1 is verified in the subsequent analysis of Case Xj .
We observe that the difference between the games, i.e. real (Fr) and ideal (R) games, is
always seen after the bad flag is set. This shows that the two games are equivalent until
the bad flag is set. From the fundamental lemma of [BR06], we obtain

Advprf
Fr (A) ≤ Pr[AR sets bad] ≤

r∑
j=1

∑
Xj∈{0,1}r

Pr[AR sets bad at Case Xj ]. (10)

We next evaluate Pr[AR sets bad at Case Xj ], which we abbreviate as Pr[bad(Xj)].
Since AR always receives uniform random output, any adaptive choice of inputs does not
increase the chance of bad events (the same argument as [IY09a]). Therefore we focus on
the non-adaptive strategies.
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Case Xj = (0, . . . , 0). Our analysis follows [Luc00, Yas10]. This case first determines
Y (r) ⊆ ({0, 1}n)r, which denotes the set of all possible r-tuple of outputs of r permutations
in the real game. Then we use the notion of the fair set [Luc00]. Here, we say a set
S ⊆ ({0, 1}n)r is fair if for any z ∈ {0, 1}n, we have

|{(x1, . . . , xr) ∈ S | x1 ⊕ · · · ⊕ xr = z}| = |S|2n .

Then, [Luc00] pointed out that, when r is even, there exists a set C ⊂ Y (r) of size ir such
that Uj = Y (r) \C is a fair set, where i denotes the number of queries done so far. Similarly,
when r is odd, there exists a set C′ of size ir with C′ ∩ Y (r) = ∅ such that Uj = Y (r) ∪ C′ is
a fair set. See Lemma 2 of [Luc00] or [Yas10] for explicit constructions of fair sets.

When r is even and without the boxed argument, line 6 of Fig. 9 ensures that y is
uniformly random over Y (r). With the boxed argument and given y 6∈ Uj at line 7, y is
uniformly random over {0, 1}n by the definition of the fair set. Therefore, Proposition 1
holds in this case. When r is odd, we have a similar analysis, but the boxed argument is
then required to make sure that y is always uniform over Y (r) to implement the real game.

Based on these observations, when r is even, we have

Pr[bad(Xj)] ≤
q−1∑
i=0

|Y (r) \ Uj |
|Y (r)|

≤
q−1∑
i=0

ir

(2n − q)r ≤
2r

2nr
q−1∑
i=0

ir.

Similarly, when r is odd, we have the same bound since

Pr[bad(Xj)] ≤
q−1∑
i=0

|Uj \ Y (r)|
|Uj |

<

q−1∑
i=0

ir

|Y (r)|
≤

q−1∑
i=0

ir

(2n − q)r ≤
2r

2nr
q−1∑
i=0

ir. (11)

Here the last term is bounded by 2r(q − 1)r+1/2nr, since we have

x∑
i=0

ir ≤ xr+1 for x ≥ 0 and r ≥ 1. (12)

Case Xj = (1, . . . , 1, 0, . . . , 0). Let p = wt(Xj) be the hamming weight ofXj . Without
loss of generality, we assume that the first p bits of Xj are 1, and the game is shown
in Fig. 10. Let p̄ = r − p be the number of 0s.

At this point, we define an event which we write VColl(i, j1, . . . , jp). Let Vi[j] denote the
value of V [j] generated at the i-th query, i.e., Vi[j] = HLj (Ni, Ai,Mi) where (Ni, Ai,Mi)
denotes the i-th query. We define VColl(i, j1, . . . , jp) as the event (Vi[1] = Vj1 [1])∧ (Vi[2] =
Vj2 [2]) ∧ · · · ∧ (Vi[p] = Vjp

[p]). We have

Pr[bad(Xj)] ≤
q∑
i=2

i−1∑
j1=1
· · ·

i−1∑
jp=1

Pr[VColl(i, j1, . . . , jp) ∧ bad(Xj)]

≤
q∑
i=2

i−1∑
j1=1
· · ·

i−1∑
jp=1

Pr[VColl(i, j1, . . . , jp)] · Pr[bad(Xj) | VColl(i, j1, . . . , jp)]

≤
q∑
i=2

i−1∑
j1=1
· · ·

i−1∑
jp=1

εp · Pr[bad(Xj) | VColl(i, j1, . . . , jp)]. (13)

Let us fix i, j1, . . . , jp, and we analyze the last term of (13). We divide the analysis into
three cases, p̄ is 1, or p̄ is a larger odd integer, or p̄ is an even integer.
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Case Xj = (0, . . . , 0) with even r

1. for i = 1 to r do
2. Y (i)← {0, 1}n \ Rng(P ′r(i−1)+j)
3. end for
4. Y (r) ← Y (1)× · · · × Y (r)
5. Choose a fair set Uj ⊂ Y (r) // see [Luc00] and texts
6. y ← (y(1), . . . , y(r)) $← Y (r)

7. if y 6∈ Uj
8. bad ← true y ← (y(1), . . . , y(r)) $← Uj

9. end if
10. T [j]← y(1)⊕ y(2)⊕ · · · ⊕ y(r)
11. return T [j]
Case Xj = (0, . . . , 0) with odd r

1. for i = 1 to r do
2. Y (i)← {0, 1}n \ Rng(P ′r(i−1)+j)
3. end for
4. Y (r) ← Y (1)× · · · × Y (r)
5. Choose a fair set Uj ⊃ Y (r)

6. y ← (y(1), . . . , y(r)) $← Uj
7. if y 6∈ Y (r)

8. bad ← true y ← (y(1), . . . , y(r)) $← Y (r)

9. end if
10. T [j]← y(1)⊕ y(2)⊕ · · · ⊕ y(r)
11. return T [j]

Figure 9: Case Xj = (0, . . . , 0). When r is even, the boxed argument is only for the ideal
game, and when r is odd, the boxed argument is only for the real game.

If p̄ = 1, we have p = r− 1, and Fr is implemented with the boxed argument, and R is
implemented without the boxed argument. The probability of the bad event is bounded as

Pr[bad(Xj) | VColl(i, j1, . . . , jp)] ≤
q

2n , (14)

since bad is set when a random n-bit value is in the set Rng(P ′r(r−1)+j).
If p̄ > 1, the game first determines Y (r−p), and performs a fair set-based sampling. The

correctness of Proposition 1 can be verified in the same manner to Case Xj = (0, . . . , 0).
If p̄ is even, we have

Pr[bad(Xj) | VColl(i, j1, . . . , jp)] ≤
|Y (r−p) \ Uj |
|Y (r−p)|

≤ ir−p

(2n − q)r−p ≤
2r−p

2n(r−p) i
r−p. (15)

When p̄ is odd and larger than 1, we similarly have

Pr[bad(Xj) | VColl(i, j1, . . . , jp)] ≤
|Uj \ Y (r−p)|
|Uj |

<
ir−p

|Y (r−p)|
≤ ir−p

(2n − q)r−p

≤ 2r−p

2n(r−p) i
r−p. (16)
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Case Xj = (1, . . . , 1, 0) with p = r − 1 and p̄ = r − p = 1

1. for i = 1 to p do
2. y(i)← P ′r(i−1)+j(V [i])
3. end for
4. y(r) $← {0, 1}n
5. if y(r) ∈ Rng(P ′r(r−1)+j)

6. bad ← true y(r) $← {0, 1}n \ Rng(P ′r(r−1)+j)
7. end if
8. T [j]← y(1)⊕ · · · ⊕ y(r)
9. return T [j]

Case Xj = (1, . . . , 1, 0, . . . , 0) with 1 ≤ p < r− 1, p̄ = r− p, and even p̄

1. for i = 1 to p do
2. y(i)← P ′r(i−1)+j(V [i])
3. end for
4. for i = p+ 1 to r do
5. Y (i)← {0, 1}n \ Rng(P ′r(i−1)+j)
6. end for
7. Y (r−p) ← Y (p+ 1)× · · · × Y (r)
8. Choose a fair set Uj ⊂ Y (r−p)

9. y ← (y(p+ 1), . . . , y(r)) $← Y (r−p)

10. if y 6∈ Uj
11. bad ← true y ← (y(p+ 1), . . . , y(r)) $← Uj

12. end if
13. T [j]← y(1)⊕ · · · ⊕ y(r)
14. return T [j]

Case Xj = (1, . . . , 1, 0, . . . , 0) with 1 ≤ p < r − 1, p̄ = r − p, and odd p̄

1. for i = 1 to p do
2. y(i)← P ′r(i−1)+j(V [i])
3. end for
4. for i = p+ 1 to r do
5. Y (i)← {0, 1}n \ Rng(P ′r(i−1)+j)
6. end for
7. Y (r−p) ← Y (p+ 1)× · · · × Y (r)
8. Choose a fair set Uj ⊃ Y (r−p)

9. y ← (y(p+ 1), . . . , y(r)) $← Uj
10. if y 6∈ Y (r−p)

11. bad ← true y ← (y(p+ 1), . . . , y(r)) $← Y (r−p)

12. end if
13. T [j]← y(1)⊕ · · · ⊕ y(r)
14. return T [j]

Figure 10: Case Xj = (1, . . . , 1, 0, . . . , 0) with wt(Xj) = p and 1 ≤ p ≤ r − 1. When
p̄ = r− p is even, the boxed argument is only for the ideal game. When p̄ is odd (including
1), the boxed arguments are only for the real game.
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Case Xj = (1, . . . , 1)

1. bad ← true T [j] $← {0, 1}n, return T [j]
2. for i = 1 to r do
3. y(i)← P ′r(i−1)+j(V [i])
4. end for
5. T [j]← y(1)⊕ · · · ⊕ y(r)
6. return T [j]

Figure 11: Case Xj = (1, . . . , 1). This case immediately sets bad. The boxed argument
is only for the ideal game.

Now we return to the evaluation of Pr[bad(Xj)] by using (14), (15), and (16). When
p̄ = 1, Pr[bad(Xj)] is bounded by

q∑
i=2

i−1∑
j1=1
· · ·

i−1∑
jp=1

εp · q2n ≤
q∑
i=2

q−1∑
j1=1
· · ·

q−1∑
jp=1

εp · q2n ≤ q
p+1 · εp · q2n ≤

εr−1 · qr+1

2n , (17)

and when p̄ > 1, using (12) we obtain
q∑
i=2

i−1∑
j1=1
· · ·

i−1∑
jp=1

εp · 2r−p

2n(r−p) · i
r−p ≤

q∑
i=2

q−1∑
j1=1
· · ·

q−1∑
jp=1

εp · 2r−p

2n(r−p) · i
r−p

≤ qp · εp · 2r−p

2n(r−p) ·
q∑
i=2

ir−p ≤ 2r−pεpqr+1

2n(r−p) . (18)

The last term is bounded by 2rεrqr+1 from 1/2n(r−p) ≤ εr−p.

Case Xj = (1, . . . , 1). In this case, it is easy to verify the correctness of Proposition 1,
and we have

Pr[bad(Xj)] = Pr[AR enters Case Xj ] ≤
q∑
i=2

i−1∑
j1=1
· · ·

i−1∑
jr=1

Pr[VColl(i, j1, . . . , jr)]

≤
q∑
i=2

i−1∑
j1=1
· · ·

i−1∑
jr=1

εr ≤
q∑
i=2

q−1∑
j1=1
· · ·

q−1∑
jr=1

εr ≤ qr+1εr. (19)

Taking the Sum. The above analysis holds for any j = 1, . . . , r, and we observe that
the probability of the bad event of Case Xj shown above is determined solely depending
on wt(Xj) = p. Therefore, we write fbad(p) to denote Pr[AR sets bad at Case Xj ] for
any Xj of weight 0 ≤ p ≤ r, j = 1, . . . , r. Here, fbad(0) is given as (11), fbad(r) is (19),
fbad(r−1) is (17), and fbad(p) for 1 ≤ p ≤ r−2 is given as (18). Since fbad(p) ≤ (2ε)r ·qr+1

for any 0 ≤ p ≤ r, from (10), we obtain

Advprf
Fr (A) ≤ r ·

[
r∑
p=0

(
r

p

)
fbad(p)

]
≤ r · 2r max

p
{fbad(p)} ≤ r · (4ε)r · qr+1, (20)

which is r · (4`)r · qr+1/2nr if ε = `/2n. We remark that for given r, a slightly better bound
can be obtained. From (11), (17), (18), and (19), we have

Advprf
Fr (A) ≤ r ·

[
fbad(0) + fbad(r) + rfbad(r − 1) +

r−2∑
p=1

rp

p
fbad(p)

]
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≤ r ·

[
2r

2nr
q−1∑
i=0

ir + εr · qr+1 + r · qr+1 · εr−1

2n +
r−2∑
p=1

rp

p
fbad(p)

]

≤ r ·

[
2r

2nr
q−1∑
i=0

ir + (r + 1)εr · qr+1 +
r−2∑
p=1

rp · 2r−pεpqp

p · 2n(r−p)

q∑
i=2

ir−p

]
. (21)

When r = 2, we use

q−1∑
i=0

i2 = q(q − 1)(2q − 1)
6 ≤ q3

3 (22)

to (21) to have Advprf
F2 (A) ≤ 2.7q3/22n + 6ε2q3 as the PRF bound of F2, and additionally

let ε = `/2n to derive the bound in case of using GHASH. This proves Lemma 2.
Similarly, for r = 3 and r = 4, we can apply

q−1∑
i=0

i3 = 1
4(q2 · (q − 1)2) < q4

4 ,

q−1∑
i=0

i4 = 1
30(q(q − 1)(2q − 1)(3(q − 1)2 + 3(q − 1)− 1)) < 2q5

5

to (21) to obtain a slightly improved bound than (20).

9.2 Proving the ivE Security Bound of Er

The strategy is basically the same as in Sect. 9.1. We define the ivE scheme Er used in
GCM-SIVr following the definition of E2 of GCM-SIV2. Er generates an rn-bit random
IV T and encrypts a plaintext using T . Our analysis focuses on the internal key-stream
generator KS(r) of Er, which is a procedure that takes an integer m as input and outputs
uniformly random T and m-bit key-stream S. Then we have

Advpriv$
Er (A) ≤ Advprg

KS(r)(A),

where Advprg
KS(r)(A) is defined as Pr[AKS(r) = 1]− Pr[A$ = 1], and the oracle $ takes m

as input and outputs a uniform random string of rn+m bits.
Let X = (X[1], . . . , X[r]) ∈ ({0, 1}n)r and P(r)(X) =

⊕r
i=1 Pi(X[i]). For integers i

and j, let R(r)(i, j) = (incj(R1(i)), . . . , incj(Rr(i)), where for i = 1, . . . , r, Ri : Z→ {0, 1}n
denotes an independent random function. Let G(r) = P(r) ◦R(r). Then the sequence

G(r)(i, 0) ‖G(r)(i, 1) ‖ · · · ‖G(r)(i,mi − 1)

perfectly simulates the key-stream of KS(r) taking mi as input.
We note that the PRG-advantage of KS(r) can be bounded mostly in the same way as

Fr with the output chopped to the first n bits, by noting that R(r) is used instead of H(r).
We also note that Pr[incj(Rh(i)) = incj

′
(Rh(i′))] ≤ 1/2n for any (i, j) 6= (i′, j′), where

h ∈ {1, . . . , r}. Hence each component function of R(r) is independent and 1/2n-AU. Thus
we can define almost the same games and bad flags as in Sect. 9.1.

These observations imply that

Advprg
KS(r)(A) ≤ Advprf′

G(r)(A′) = Advprf
G(r)(A′), (23)

where Advprf′
G(r) denotes the advantage of distinguishing between R(r)(i, j) ‖G(r)(i, j) and

R(r)(i, j) ‖R′(i, j) for an independent random function R′ : Z2 → {0, 1}n, andA′ makes the
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firstm1 queries as (1, 0), (1, 1), . . . , (1,m1−1), the secondm2 queries as (2, 0), . . . , (2,m2−1)
and so on, with the restriction that

∑q
i=1mi ≤ σ. To see the equality of (23), we remark

that A′ can choose mi possibly adaptively, however, the input distribution of P(r) does not
change whether mi is chosen adaptively or not. We can therefore focus on non-adaptive
A′, and hence ignore the existence of R(r)(i, j) in the output.

The last term of (23) is bound by (20) or (21) without the preceding multiplication by
r, and replacing q with σ and ε with 1/2n. As a result, Advprf

G(r)(A′) is bounded by

4r · σr+1

2rn , (24)

or more precisely, by

2r

2nr
σ−1∑
i=0

ir + (r + 1) · σr+1

2nr +
r−2∑
p=1

rp · 2r−p · σp

p · 2nr
σ∑
i=2

ir−p. (25)

For the case r = 2, we use (22) to (25), and this proves Lemma 3. Theorem 2 is obtained
by combining (20), (24), and Lemma 1.

10 Reducing the Number of Keys
GCM-SIVr needs r2 + r blockcipher keys and r hash function keys, which can be an issue
when r gets large. We present a simple solution to reduce the number of blockcipher keys.
With this solution, it needs 2r blockcipher keys and r hash function keys, if the underlying
HLi

allows incremental update. The idea is also implicitly used in Sect. 9.2. For example,
consider the case HLi

(N,A,M) = GHASHLi
(A,M)⊕N and assume that the last c bits

of N is always zero, where r ≤ 2c. We define

P′(r)(V [1], . . . , V [r]) =
r⊕
i=1

P ′i (V [i]),

and F̃r = P′(r) ◦H(r). Since F̃r is the first component function of Fr, it is a PRF for
input (N,A,M). The overall PRF takes (N,A,M) as input and outputs (T [1], . . . , T [r]),
where T [j] = F̃r(N ⊕ 〈j〉, A,M), and we define 〈j〉 = (0n−c ‖ strc(j − 1)), where strc(j − 1)
denotes the c-bit binary representation of 0 ≤ j − 1 ≤ r − 1. This construction is secure
since each T [j] is generated from F̃r taking distinct inputs. Furthermore, computing
H(r)(N ⊕ 〈j〉, A,M) is just xoring 〈j〉 to all the components of H(r)(N,A,M) (recall that
the last c bits of N are assumed to be zero), and hence is quite simple.

11 Discussions and Conclusions
Advantages. GCM-SIV1 offers a security trade-off to GCM-SIV, and the security bound
is better if the maximum input length is at most about 216 blocks. The implementation of
GCM-SIV1 requires handling the carry in inc function, but we expect that the efficiency
impact is not significant. We emphasize the design simplicity of GCM-SIV2 and GCM-SIVr.
They are essentially obtained by multiple instances of GCM-SIV1, which allows us to reuse
a part of existing software libraries (e.g. OpenSSL) or hardware of GCM. In addition
they are parallelizable at the level of high-level components, i.e., GHASH and CTR. For
GCM-SIV2 with n = 128, we have about 2n/3 = 85.3-bit security which is practically
much stronger than GCM-SIV1, and for GCM-SIVr for r > 2, its security is even stronger.

We also remark that the security proof of Fr, the tag generation function of GCM-SIVr,
is a non-trivial extension of previous results on BBB secure MAC and PRF [Yas10, Osa12,
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ZWSW12] using an n-bit blockcipher. In fact, Fr is a variable-input-length blockcipher-
based MAC/PRF of rn/(r + 1)-bit security for any r ≥ 2, while [Yas10, Osa12] only
considered the case r = 2. Maurer’s PRF [Mau02] also has the same security and works for
any r, though it is based on an n-bit PRF rather than an n-bit PRP (i.e. a blockcipher).

Disadvantages. Although GCM-SIV2 and GCM-SIVr give a solution to a theoretical
question of designing a simple BBB secure MRAE scheme from a blockcipher, they incurs
significant loss in efficiency compared to GCM-SIV and GCM. The computation cost and
tag length are precisely increased by a factor of r, which would prohibit practical use
as r increases. In addition, they need many keys for the blockcipher and universal hash
function, though there is a solution to mitigate this as described in Sect. 10.

Possible Directions. A natural future direction is to consider MRAE schemes having
better efficiency while keeping BBB security. In particular, it would be interesting to
consider if it is possible to build a scheme as secure as GCM-SIVr while using a shorter
tag. In theory we could obtain full n-bit security using 2n-bit tag using (say) a 2n-bit
blockcipher and 2n-bit universal hash functions, however, building simple and efficient one
that reuses the component of GCM seems a challenging task. Another future direction is
reducing the number of keys, preferably to O(1), as Datta et al. [DDN+15] studied for the
case r = 2.
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