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Lightweight Cryptography: Examples

Lightweight cryptography mostly based on symmetric key.

Lightweight stream ciphers: eSTREAM finalists Grain v1, MICKEY
2.0, and Trivium, etc.

Lightweight block ciphers: CLEFIA, PRESENT: Standardized by
ISO/IEC 29192, etc.

Lightweight hash function: PHOTON, SPONGENT, etc.
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Lightweight Cryptography: Metric

Lightweight cryptosystem: How to measure the “weight”?

Measure (Silicon) Area.

Area measured by number of Gate Equivalent (GE)
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Block Ciphers

A block cipher has two building blocks:
Confusion & Diffusion

Diffusion spreads the plaintext statistics throughout the ciphertext.
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Lightweight Block Ciphers: Metric

Diffusion layer: multiplication of a vector with a matrix (over GF (2n )).

Maximum Distance Separable (MDS) matrix is chosen for Diffusion:
Highest diffusion power.

MDS matrix: square matrix whose every submatrix is nonsingular.

In practice, product of two field elements is implemented simply by
some XORs.

[Khoo et al. CHES 2014] looked at the number of XORs required to
multiply a fixed field element by an arbitrary field element and termed
it as

XOR Count
XOR count is strongly related to GE.
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Our Contribution in a Nutshell

We construct 4× 4 MDS and involutory MDS matrices with
low XOR counts.
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XOR count

Consider GF(23) under (X 3 + X + 1) and a basis {1, α, α2}.

How many XORs required to multiply α4 with a general field element?

α4 = α + α2 → (0, 1, 1)

Take a general element b0 + b1α + b2α
2 ∈ GF(23) → (b0, b1, b2).

Implement
(b0, b1, b2)(0, 1, 1)

(b0 + b1α + b2α
2)α4 = (b1 + b2) + (b0 + b1)α + (b0 + b1 + b2)α

2.

In vector form this product is of the form (b1 ⊕ b2, b0 ⊕ b1, b0 ⊕ b1 ⊕ b2)

XOR(α4) = 4.
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XOR count distribution

XOR count distribution The set of XOR counts of all the elements of
GF(2n ) is the XOR count distribution of GF(2n ).
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XOR count distribution

XOR count distribution The set of XOR counts of all the elements of
GF(2n ) is the XOR count distribution of GF(2n ).

XOR count distribution of GF(2n ) varies when
different irreducible polynomial is considered or
a different basis of GF(2n ) is considered.

GF(24) under X 4 + X + 1 basis {1, α, α2} then XOR(α) = 1. But for
irreducible polynomial to X 4 +X 3 +X 2 +X + 1, then none of the elements
of GF(24) has XOR count 1.

Elements 0 1 α α2 α3 α4 α5 α6 Sum
Basis {1, α, α2} 0 0 1 2 4 4 3 1 15

Basis {α3, α6, α5} 0 0 3 3 2 3 2 2 15

XOR count distribution of GF(23) under X 3 + X + 1
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XOR count of full matrix

M is n × n matrix over GF(2m )

XOR count of M =

n−1∑
i=0

n−1∑
j=0

γij + (`i − 1) ·m

 = C (M )+

n−1∑
i=0

(`i−1)·m .

γi = XOR count of the i-th entry,
` = number of nonzero entries,
The term C (M ) is the sum of XOR counts of all the entries of M .

For MDS matrix M XOR count is

C (M ) + n(n − 1)m
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XOR Count of Some Field Elements

We present following properties of XOR counts of field elements.

XOR count under polynomial basis

Suppose F2m is defined by q(X ) = Xm + p(X ) + 1 which is an irreducible
polynomial of degree m over F2, where p(X ) has t nonzero coefficients.
Then XOR count of α ∈ F2[X ]/(q(x )) is t , where q(α) = 0.

Further XOR(α) = XOR(α−1).

If α is a primitive element of GF(24) and root of the irreducible polynomial
X 4 + X 3 + X 2 + X + 1.
Then XOR(α) = 3

SUMANTA SARKAR, Habeeb Syed lightweight cryptography



Introduction Background Our Results

Toeplitz Matrices

Definition

A matrix is called Toeplitz if every descending diagonal from left to right is
constant.

A typical 4× 4 Toeplitz matrix looks like

T =


a0 a1 a2 a3

a−1 a0 a1 a2

a−2 a−1 a0 a1

a−3 a−2 a−1 a0

 . (1)

More concisely as:

T = [mi,j ] where m i,j = aj−i .

Recall that a matrix is “Circulant” if each of its row is left circulant
shift of its previous row.

Circulant Matrices are specific kinds of Toeplitz Matrices.
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Our results on Toeplitz MDS Matrices

Result: Theorem 1

Let T be an n × n Toeplitz matrix defined over F2m . Then T cannot be
both MDS and involutory.

Result: Theorem 2

Let T be an n × n Toeplitz matrix defined over F2m . Then T cannot be
both MDS and orthogonal when n = 2r .
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Constructing 4× 4 Toeplitz MDS Matrices over F2m

Let T1(x ) be the following 4× 4 Toeplitz matrix defined over F2m :

T1(x ) =


x 1 1 x−2

1 x 1 1
x−2 1 x 1
x−2 x−2 1 x

 .
If x ∈ F∗

2m is such that the degree of its minimal polynomial over F2 is ≥ 5,
then T1(x ) is MDS.

Proof idea that T1 is MDS.

Find the determinants of all the submatrices, then check the degrees of
their irreducible factors. Max degree is 4.
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The Matrix T2

Let T2(x ) be the following 4× 4 Toeplitz matrix defined over F2m :

T2(x ) =


1 1 x x−1

x−2 1 1 x
1 x−2 1 1

x−1 1 x−2 1

 . (2)

If x ∈ F∗
2m is such that

the degree of the minimal polynomial of x is ≥ 4, and

x is not a root of the polynomial X 6 + X 5 + X 4 + X + 1,

then T2(x ) is MDS.

Proof idea that T2 is MDS.

Check the irreducible factors of the determinants of all the
submatrices, Max degree is 3 and only one factor
X 6 + X 5 + X 4 + X + 1.
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XOR count of T2

Consider F28 generated by the primitive element α which is a root of
X 8 + X 6 + X 5 + X 2 + 1, then the matrix T2(α) as given in (2) is MDS and
has XOR count 30 + 4 · 3 · 8.

Consider F28 generated by the primitive element α which is a root of
X 8 + X 7 + X 6 + X + 1, then the MDS matrix T2(α) as given in (2) has
XOR count 27 + 4 · 3 · 8.
Earlier best known matrix was 32 + 4 · 3 · 8.

Consider F24 generated by the primitive element α which is a root of
X 4 + X 3 + 1, then the matrix T2(α) as given in (2) has XOR count
10 + 4 · 3 · 4.
Earlier best known matrix was 12 + 4 · 3 · 4.
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Searching for 4× 4 MDS Matrices with Minimal XOR Count

Search result:

For GF(28), the lowest XOR count of a 4× 4 MDS matrix is 27 + 4 · 3 · 8.

For GF(24), the lowest XOR count of a 4× 4 MDS matrix is 10 + 4 · 3 · 4.
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The search Technique

We apply a kind of "divide and conquer" method.

Divide 4× 4 matrix A in two 2× 4 submatrices.

A =

[
Au

A`

]

If A is MDS then every submatrix of both Au and A` are nonsingular!

Search only for Au such that all its submatrices are nonsingular.

This will serve for A` also.

Combine every options of Au and A` check if A is MDS.

Search space: suppose A takes elements from S , search space is |S |2×4.
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The search Technique (Contd..)

C (A) = Sum of the XOR counts of all the elements of A.

Suppose the least known C (A) for any 4× 4 MDS matrix A is C.

First find A such that C (A) < C.

Update C = C (A).
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Search: 4× 4 MDS matrix over F28 with the minimum XOR count

Consider the primitive polynomial X 8 + X 7 + X 6 + X + 1 of F28 .

Goal: Find A such that C (A) ≤ 26.

Form all 2× 4 matrices from the set S = {1, α, α−1, α2, α−2} and find
the one with minimum XOR count such that
all its submatrices are nonsingular

The minimum XOR count of 2× 4 matrices over S is 11.

Further we verify that this is indeed minimum XOR count of all 2× 4
submatrices over F28 .

So in A =

[
Au

A`

]
, the maximum XOR count of Au and A` can be

26 − 11 = 15.

Now we need to search for 2× 4 matrices over F28 such that their XOR
count is bounded by 15.

For this we just need to check 2× 4 matrices over
S = {β ∈ F∗

28 : XOR(β) ≤ 12}.
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Search: 4× 4 MDS matrix over F28 with the minimum XOR count
(Contd.)

Number of 2× 4 submatrices obtained is 3360 (these are the options
for Au and A`).

Combine pairs and check if A =

[
Au

A`

]
, is MDS or not.

Need to check 33602 ≈ 224 pairs.

We do not find any MDS matrix with XOR count ≤ 26.
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Search: 4× 4 MDS matrix over F28 with the minimum XOR count
(Conclusion)

For all irreducible polynomial there were no 4× 4 MDS matrix with
XOR count ≤ 26.

For GF(28), the lowest XOR count of a 4× 4 MDS matrix is 27 + 4 · 3 · 8.

Similarly we search for GF(24) and obtain that

For GF(24), the lowest XOR count of a 4× 4 MDS matrix is 10 + 4 · 3 · 4.
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Involutory MDS Matrix

Suppose N1(x ) is a 4× 4 matrix over F2m such that

N1(x ) =


1 x 1 x 2 + 1
x 1 x 2 + 1 1

x−2 1 + x−2 1 x
1 + x−2 x−2 x 1

 . (3)

Then N1(x ) is an involutory matrix for all nonzero x ∈ F2m , and if the
degree of the minimal polynomial of x over F2 is ≥ 4, then N1(x ) is also
MDS.

For F28 , the minimum XOR count obtained for N1 is 64 + 4 · 3 · 8 over
all irreducible polynomials of degree 8 over F2. Note that this is the
known lower bound for XoR count of 4× 4 MDS involutory matrices
over F28 [Sim et al. FSE 2015].
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Involutory MDS Matrix

Suppose N2(x ) is a 4× 4 matrix over F2m such that

N2(x ) =


1 x 2 + 1 x 1

x 2 + 1 1 1 x
x 3 + x x 2 + 1 1 x 2 + 1
x 2 + 1 x 3 + x x 2 + 1 1

 . (4)

Then N2(x ) is an involutory matrix for all x ∈ F2m , and if the degree of the
minimal polynomial of x over F2 is ≥ 4, then N2(x ) is also MDS.

For F24 , the minimum XOR count obtained for N1 is 16 + 4 · 3 · 4.
The best known was 24 + 4 · 3 · 4 [Sim et al. FSE 2015].
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Examples of Involutory MDS Matrices

The matrix 
1 α 1 α211

α 1 α211 1
α−2 α209 1 α

α209 α−2 α 1


is involutory and MDS over F28 , where α is a root of the irreducible
polynomial X 8 + X 6 + X 5 + X 2 + 1. XOR count of this matrix is
64 + 4 · 3 · 8.

The matrix 
1 α α2 1
α 1 1 α2

α3 α 1 α

α α3 α 1


is involutory and MDS over F24 , where α is a root of the irreducible
polynomial X 4 + X + 1 with XOR count 16 + 4 · 3 · 4.
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Conclusions

Searching for lightweight MDS matrices is an important problem and
we have settled this for 4× 4 MDS matrix.

We have shown the importance of Toeplitz matrices in the context of
MDS property for 4× 4 matrices.

What about the 8× 8 MDS matrices?

Any theoretical construction in this regard will be welcome.
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THANK YOU
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