Lightweight Diffusion Layer: Importance of Toeplitz Matrices

SUMANTA SARKAR Habeeb Syed

TCS Innovation Labs

March 6, 2017

< ∃ >

Outline

SUMANTA SARKAR, Habeeb Syed lightweight cryptography

< 注)→ < 注)→

Ξ.

Outline

2 Background

SUMANTA SARKAR, Habeeb Syed lightweight cryptography

★ 注 ▶ ★ 注 ▶

< □ > < / → >

Lightweight Cryptography: Examples

- Lightweight cryptography mostly based on symmetric key.
- Lightweight stream ciphers: eSTREAM finalists Grain v1, MICKEY 2.0, and Trivium, etc.
- Lightweight block ciphers: CLEFIA, PRESENT: Standardized by ISO/IEC 29192, etc.
- Lightweight hash function: PHOTON, SPONGENT, etc.

(E) < E)</p>

- 20

Introduction Background Our Results

Lightweight Cryptography: Metric

- Lightweight cryptosystem: How to measure the "weight"?
- Measure (Silicon) Area.
- Area measured by number of Gate Equivalent (GE)

프 🖌 🔺 프 🕨

Block Ciphers

- A block cipher has two building blocks: Confusion & Diffusion
- Diffusion spreads the plaintext statistics throughout the ciphertext.

프 🖌 🔺 프 🕨

- Diffusion layer: multiplication of a vector with a matrix (over $GF(2^n)$).
- Maximum Distance Separable (MDS) matrix is chosen for Diffusion: Highest diffusion power.

< 臣 → (臣 →

- Diffusion layer: multiplication of a vector with a matrix (over $GF(2^n)$).
- Maximum Distance Separable (MDS) matrix is chosen for Diffusion: Highest diffusion power.
 MDS matrix: square matrix whose every submatrix is nonsingular.

< 回 > (回 >

- Diffusion layer: multiplication of a vector with a matrix (over $GF(2^n)$).
- Maximum Distance Separable (MDS) matrix is chosen for Diffusion: Highest diffusion power.
 MDS matrix: square matrix whose every submatrix is nonsingular.
- In practice, product of two field elements is implemented simply by some XORs.
- [Khoo et al. CHES 2014] looked at the number of XORs required to multiply a fixed field element by an arbitrary field element and termed it as

XOR Count

- Diffusion layer: multiplication of a vector with a matrix (over $GF(2^n)$).
- Maximum Distance Separable (MDS) matrix is chosen for Diffusion: Highest diffusion power.
 MDS matrix: square matrix whose every submatrix is nonsingular.
- In practice, product of two field elements is implemented simply by some XORs.
- [Khoo et al. CHES 2014] looked at the number of XORs required to multiply a fixed field element by an arbitrary field element and termed it as

XOR Count

XOR count is strongly related to GE.

Introduction Background Our Results

Our Contribution in a Nutshell

We construct 4×4 MDS and involutory MDS matrices with low XOR counts.

프 🖌 🔺 프 🕨

Outline

SUMANTA SARKAR, Habeeb Syed lightweight cryptography

- 4 日 1 - 4 日 1

æ 👘

< 17 ▶

- Consider GF(2³) under $(X^3 + X + 1)$ and a basis $\{1, \alpha, \alpha^2\}$.
- How many XORs required to multiply α^4 with a general field element?

医下 不医下

- Consider $GF(2^3)$ under $(X^3 + X + 1)$ and a basis $\{1, \alpha, \alpha^2\}$.
- How many XORs required to multiply α^4 with a general field element?
- $\alpha^4 = \alpha + \alpha^2 \rightarrow (0, 1, 1)$
- Take a general element $b_0 + b_1 \alpha + b_2 \alpha^2 \in \mathrm{GF}(2^3) \to (b_0, b_1, b_2).$

프 🖌 🔺 프 🕨

- Consider $GF(2^3)$ under $(X^3 + X + 1)$ and a basis $\{1, \alpha, \alpha^2\}$.
- How many XORs required to multiply α^4 with a general field element?
- $\alpha^4 = \alpha + \alpha^2 \rightarrow (0, 1, 1)$
- Take a general element $b_0 + b_1 \alpha + b_2 \alpha^2 \in \mathrm{GF}(2^3) \to (b_0, b_1, b_2).$ Implement

 $(b_0, b_1, b_2)(0, 1, 1)$

프 🖌 🔺 프 🕨

- Consider $GF(2^3)$ under $(X^3 + X + 1)$ and a basis $\{1, \alpha, \alpha^2\}$.
- How many XORs required to multiply α^4 with a general field element?

•
$$\alpha^4 = \alpha + \alpha^2 \rightarrow (0, 1, 1)$$

• Take a general element $b_0 + b_1 \alpha + b_2 \alpha^2 \in \mathrm{GF}(2^3) \to (b_0, b_1, b_2).$ Implement

$$(b_0, b_1, b_2)(0, 1, 1)$$

$$(b_0 + b_1 \alpha + b_2 \alpha^2) \alpha^4 = (b_1 + b_2) + (b_0 + b_1) \alpha + (b_0 + b_1 + b_2) \alpha^2.$$

프 🖌 🔺 프 🕨

• In vector form this product is of the form $(b_1 \oplus b_2, b_0 \oplus b_1, b_0 \oplus b_1 \oplus b_2)$

- Consider $GF(2^3)$ under $(X^3 + X + 1)$ and a basis $\{1, \alpha, \alpha^2\}$.
- How many XORs required to multiply α^4 with a general field element?

•
$$\alpha^4 = \alpha + \alpha^2 \rightarrow (0, 1, 1)$$

• Take a general element $b_0 + b_1 \alpha + b_2 \alpha^2 \in \mathrm{GF}(2^3) \to (b_0, b_1, b_2).$ Implement

$$(b_0, b_1, b_2)(0, 1, 1)$$

$$(b_0 + b_1 \alpha + b_2 \alpha^2) \alpha^4 = (b_1 + b_2) + (b_0 + b_1) \alpha + (b_0 + b_1 + b_2) \alpha^2.$$

In vector form this product is of the form (b₁ ⊕ b₂, b₀ ⊕ b₁, b₀ ⊕ b₁ ⊕ b₂)
XOR(α⁴) = 4.

医下 不医下

Introduction Background Our Results

XOR count distribution

• XOR count distribution The set of XOR counts of all the elements of GF(2ⁿ) is the XOR count distribution of GF(2ⁿ).

▲ 臣 ▶ | ★ 臣 ▶

XOR count distribution

• XOR count distribution The set of XOR counts of all the elements of $GF(2^n)$ is the XOR count distribution of $GF(2^n)$.

XOR count distribution of $GF(2^n)$ varies when different irreducible polynomial is considered or a different basis of $GF(2^n)$ is considered.

 $GF(2^4)$ under $X^4 + X + 1$ basis $\{1, \alpha, \alpha^2\}$ then $XOR(\alpha) = 1$. But for irreducible polynomial to $X^4 + X^3 + X^2 + X + 1$, then none of the elements of $GF(2^4)$ has XOR count 1.

Elements	0	1	α	α^2	α^3	α^4	α^5	α^6	Sum
Basis $\{1, \alpha, \alpha^2\}$	0	0	1	2	4	4	3	1	15
Basis $\{\alpha^3, \alpha^6, \alpha^5\}$	0	0	3	3	2	3	2	2	15

XOR count distribution of $GF(2^3)$ under $X^3 + X + 1$

Outline

SUMANTA SARKAR, Habeeb Syed lightweight cryptography

- 4 日 1 - 4 日 1

< □ > < / → >

XOR count of full matrix

• M is $n \times n$ matrix over $GF(2^m)$

XOR count of
$$\mathrm{M} = \sum_{i=0}^{n-1} \left(\sum_{j=0}^{n-1} \gamma_{ij} + (\ell_i - 1) \cdot m \right) = C(M) + \sum_{i=0}^{n-1} (\ell_i - 1) \cdot m \ .$$

 $\gamma_i = \text{XOR count of the } i\text{-th entry},$ $\ell = \text{number of nonzero entries},$ The term C(M) is the sum of XOR counts of all the entries of M.

≣ ▶

XOR count of full matrix

• M is $n \times n$ matrix over $GF(2^m)$

$$\text{XOR count of } \mathrm{M} = \sum_{i=0}^{n-1} \left(\sum_{j=0}^{n-1} \gamma_{ij} + (\ell_i-1) \cdot m \right) = C(M) + \sum_{i=0}^{n-1} (\ell_i-1) \cdot m \ .$$

 $\begin{array}{l} \gamma_i = {\rm XOR \ count \ of \ the \ i-th entry,} \\ \ell = {\rm number \ of \ nonzero \ entries,} \\ {\rm The \ term \ } C(M) \ {\rm is \ the \ sum \ of \ XOR \ counts \ of \ all \ the \ entries \ of \ M.} \end{array}$

• For MDS matrix M XOR count is

C(M) + n(n-1)m

< ∃ >

XOR Count of Some Field Elements

We present following properties of XOR counts of field elements.

XOR count under polynomial basis

Suppose \mathbb{F}_{2^m} is defined by $q(X) = X^m + p(X) + 1$ which is an irreducible polynomial of degree m over \mathbb{F}_2 , where p(X) has t nonzero coefficients. Then XOR count of $\alpha \in \mathbb{F}_2[X]/(q(x))$ is t, where $q(\alpha) = 0$.

Further $XOR(\alpha) = XOR(\alpha^{-1})$.

If α is a primitive element of GF(2⁴) and root of the irreducible polynomial $X^4 + X^3 + X^2 + X + 1$. Then $XOR(\alpha) = 3$

(E) < E)</p>

Toeplitz Matrices

Definition

A matrix is called Toeplitz if every descending diagonal from left to right is constant.

A typical 4×4 Toeplitz matrix looks like

$$\mathbf{T} = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 \\ a_{-1} & a_0 & a_1 & a_2 \\ a_{-2} & a_{-1} & a_0 & a_1 \\ a_{-3} & a_{-2} & a_{-1} & a_0 \end{bmatrix}.$$
 (1)

∢ 国 ▶

э.

More concisely as:

$$T = [m_{i,j}]$$
 where $m_{i,j} = a_{j-i}$.

- Recall that a matrix is "Circulant" if each of its row is left circulant shift of its previous row.
- Circulant Matrices are specific kinds of Toeplitz Matrices.

Introduction Background Our Results

Our results on Toeplitz MDS Matrices

Result: Theorem 1

Let T be an $n \times n$ Toeplitz matrix defined over \mathbb{F}_{2^m} . Then T cannot be both MDS and involutory.

Result: Theorem 2

Let T be an $n \times n$ Toeplitz matrix defined over \mathbb{F}_{2^m} . Then T cannot be both MDS and orthogonal when $n = 2^r$.

Constructing 4×4 Toeplitz MDS Matrices over \mathbb{F}_{2^m}

Let $T_1(x)$ be the following 4×4 Toeplitz matrix defined over \mathbb{F}_{2^m} :

$$\Gamma_1(x) = egin{bmatrix} x & 1 & 1 & x^{-2} \ 1 & x & 1 & 1 \ x^{-2} & 1 & x & 1 \ x^{-2} & x^{-2} & 1 & x \end{bmatrix}$$

If $x \in \mathbb{F}_{2^m}^*$ is such that the degree of its minimal polynomial over \mathbb{F}_2 is ≥ 5 , then $T_1(x)$ is MDS.

Proof idea that T_1 is MDS.

Find the determinants of all the submatrices, then check the degrees of their irreducible factors. Max degree is 4.

< 臣 → (臣 →

The Matrix T_2

Let $T_2(x)$ be the following 4×4 Toeplitz matrix defined over \mathbb{F}_{2^m} :

$$\Gamma_2(x) = egin{bmatrix} 1 & 1 & x & x^{-1} \ x^{-2} & 1 & 1 & x \ 1 & x^{-2} & 1 & 1 \ x^{-1} & 1 & x^{-2} & 1 \end{bmatrix}.$$

(2)

글 🕨 🔺 글 🕨

If $x \in \mathbb{F}_{2^m}^*$ is such that

- the degree of the minimal polynomial of x is \geq 4, and
- x is not a root of the polynomial $X^6 + X^5 + X^4 + X + 1$,

then $T_2(x)$ is MDS.

Proof idea that T_2 is MDS.

Check the irreducible factors of the determinants of all the submatrices, Max degree is 3 and only one factor $X^6 + X^5 + X^4 + X + 1$.

XOR count of T_2

Consider \mathbb{F}_{2^8} generated by the primitive element α which is a root of $X^8 + X^6 + X^5 + X^2 + 1$, then the matrix $T_2(\alpha)$ as given in (2) is MDS and has XOR count $30 + 4 \cdot 3 \cdot 8$.

Consider \mathbb{F}_{2^8} generated by the primitive element α which is a root of $X^8 + X^7 + X^6 + X + 1$, then the MDS matrix $T_2(\alpha)$ as given in (2) has XOR count $27 + 4 \cdot 3 \cdot 8$. Earlier best known matrix was $32 + 4 \cdot 3 \cdot 8$.

Consider \mathbb{F}_{2^4} generated by the primitive element α which is a root of $X^4 + X^3 + 1$, then the matrix $T_2(\alpha)$ as given in (2) has XOR count $10 + 4 \cdot 3 \cdot 4$. Earlier best known matrix was $12 + 4 \cdot 3 \cdot 4$.

★ E ► ★ E ► E

Searching for 4×4 MDS Matrices with Minimal XOR Count

Search result:

For GF(2^8), the lowest XOR count of a 4×4 MDS matrix is $27 + 4 \cdot 3 \cdot 8$.

For GF(2⁴), the lowest XOR count of a 4×4 MDS matrix is $10 + 4 \cdot 3 \cdot 4$.

医下 不医下

- E

The search Technique

- We apply a kind of "divide and conquer" method.
- Divide 4×4 matrix A in two 2×4 submatrices.

$$A = \left[egin{array}{c} A_u \ \hline A_\ell \end{array}
ight]$$

The search Technique

- We apply a kind of "divide and conquer" method.
- Divide 4 × 4 matrix A in two 2 × 4 submatrices.

$$A = \left[\begin{array}{c} A_u \\ \hline A_\ell \end{array} \right]$$

- If A is MDS then every submatrix of both A_u and A_ℓ are nonsingular!
- Search only for A_u such that all its submatrices are nonsingular.
- This will serve for A_{ℓ} also.
- Combine every options of A_u and A_ℓ check if A is MDS.
- Search space: suppose A takes elements from S, search space is $|S|^{2\times 4}$.

The search Technique (Contd..)

- C(A) =Sum of the XOR counts of all the elements of A.
- Suppose the least known C(A) for any 4×4 MDS matrix A is C.
- First find A such that C(A) < C.
- Update C = C(A).

프 🖌 🔺 프 🕨

- Consider the primitive polynomial $X^8 + X^7 + X^6 + X + 1$ of \mathbb{F}_{2^8} .
- Goal: Find A such that $C(A) \leq 26$.

< ∃ >

- Consider the primitive polynomial $X^8 + X^7 + X^6 + X + 1$ of \mathbb{F}_{2^8} .
- Goal: Find A such that $C(A) \leq 26$.
- Form all 2 × 4 matrices from the set S = {1, α, α⁻¹, α², α⁻²} and find the one with minimum XOR count such that all its submatrices are nonsingular

< 臣 > < 臣 >

∃ \0<</p>\0

- Consider the primitive polynomial $X^8 + X^7 + X^6 + X + 1$ of \mathbb{F}_{2^8} .
- Goal: Find A such that $C(A) \leq 26$.
- Form all 2 × 4 matrices from the set S = {1, α, α⁻¹, α², α⁻²} and find the one with minimum XOR count such that all its submatrices are nonsingular
- The minimum XOR count of 2×4 matrices over S is 11.
- Further we verify that this is indeed minimum XOR count of all 2×4 submatrices over \mathbb{F}_{2^8} .

- Consider the primitive polynomial $X^8 + X^7 + X^6 + X + 1$ of \mathbb{F}_{2^8} .
- Goal: Find A such that $C(A) \leq 26$.
- Form all 2 × 4 matrices from the set S = {1, α, α⁻¹, α², α⁻²} and find the one with minimum XOR count such that all its submatrices are nonsingular
- The minimum XOR count of 2×4 matrices over S is 11.
- Further we verify that this is indeed minimum XOR count of all 2×4 submatrices over \mathbb{F}_{2^8} .

• So in
$$A = \left[\frac{A_u}{A_\ell}\right]$$
, the maximum XOR count of A_u and A_ℓ can be $26 - 11 = 15$.

- Consider the primitive polynomial $X^8 + X^7 + X^6 + X + 1$ of \mathbb{F}_{2^8} .
- Goal: Find A such that $C(A) \leq 26$.
- Form all 2 × 4 matrices from the set S = {1, α, α⁻¹, α², α⁻²} and find the one with minimum XOR count such that all its submatrices are nonsingular
- The minimum XOR count of 2×4 matrices over S is 11.
- Further we verify that this is indeed minimum XOR count of all 2×4 submatrices over $\mathbb{F}_{2^8}.$
- So in $A = \left[\frac{A_u}{A_\ell}\right]$, the maximum XOR count of A_u and A_ℓ can be 26 11 = 15.
- Now we need to search for 2×4 matrices over \mathbb{F}_{2^8} such that their XOR count is bounded by 15.

 For this we just need to check 2 × 4 matrices over S = {β ∈ ℝ^{*}_{2⁸} : XOR(β) ≤ 12}.

 Number of 2 × 4 submatrices obtained is 3360 (these are the options for A_u and A_l).

• Combine pairs and check if
$$A = \begin{bmatrix} A_u \\ \hline A_\ell \end{bmatrix}$$
, is MDS or not.

• Need to check
$$3360^2 \approx 2^{24}$$
 pairs.

• We do not find any MDS matrix with XOR count \leq 26.

医下 不医下

Introduction Background Our Results

Search: 4×4 MDS matrix over \mathbb{F}_{2^8} with the minimum XOR count (Conclusion)

• For all irreducible polynomial there were no 4×4 MDS matrix with XOR count \leq 26.

프 🖌 🔺 프 🕨

 $\bullet\,$ For all irreducible polynomial there were no 4×4 MDS matrix with XOR count \leq 26.

For GF(2^8), the lowest XOR count of a 4×4 MDS matrix is $27 + 4 \cdot 3 \cdot 8$.

글아 세글아

• For all irreducible polynomial there were no 4×4 MDS matrix with XOR count \leq 26.

For GF(2⁸), the lowest XOR count of a 4×4 MDS matrix is $27 + 4 \cdot 3 \cdot 8$.

Similarly we search for $GF(2^4)$ and obtain that

For GF(2⁴), the lowest XOR count of a 4×4 MDS matrix is $10 + 4 \cdot 3 \cdot 4$.

医下 不医下

Involutory MDS Matrix

Suppose $N_1(x)$ is a 4×4 matrix over \mathbb{F}_{2^m} such that

$$N_1(x) = egin{bmatrix} 1 & x & 1 & x^2+1 \ x & 1 & x^2+1 & 1 \ x^{-2} & 1+x^{-2} & 1 & x \ 1+x^{-2} & x^{-2} & x & 1 \end{bmatrix}.$$

Then $N_1(x)$ is an involutory matrix for all nonzero $x \in \mathbb{F}_{2^m}$, and if the degree of the minimal polynomial of x over \mathbb{F}_2 is ≥ 4 , then $N_1(x)$ is also MDS.

• For \mathbb{F}_{2^8} , the minimum XOR count obtained for N_1 is $64 + 4 \cdot 3 \cdot 8$ over all irreducible polynomials of degree 8 over \mathbb{F}_2 . Note that this is the known lower bound for XoR count of 4×4 MDS involutory matrices over \mathbb{F}_{2^8} [Sim et al. FSE 2015].

Involutory MDS Matrix

Suppose $N_2(x)$ is a 4×4 matrix over \mathbb{F}_{2^m} such that

$$N_2(x) = egin{bmatrix} 1 & x^2+1 & x & 1 \ x^2+1 & 1 & 1 & x \ x^3+x & x^2+1 & 1 & x^2+1 \ x^2+1 & x^3+x & x^2+1 & 1 \end{bmatrix}.$$

《글》 《글》

Then $N_2(x)$ is an involutory matrix for all $x \in \mathbb{F}_{2^m}$, and if the degree of the minimal polynomial of x over \mathbb{F}_2 is ≥ 4 , then $N_2(x)$ is also MDS.

- For \mathbb{F}_{2^4} , the minimum XOR count obtained for N_1 is $16 + 4 \cdot 3 \cdot 4$.
- The best known was $24 + 4 \cdot 3 \cdot 4$ [Sim et al. FSE 2015].

Examples of Involutory MDS Matrices

The matrix

$$\begin{bmatrix} 1 & \alpha & 1 & \alpha^{211} \\ \alpha & 1 & \alpha^{211} & 1 \\ \alpha^{-2} & \alpha^{209} & 1 & \alpha \\ \alpha^{209} & \alpha^{-2} & \alpha & 1 \end{bmatrix}$$

is involutory and MDS over \mathbb{F}_{2^8} , where α is a root of the irreducible polynomial $X^8 + X^6 + X^5 + X^2 + 1$. XOR count of this matrix is $64 + 4 \cdot 3 \cdot 8$.

The matrix

$$\begin{bmatrix} 1 & \alpha & \alpha^2 & 1 \\ \alpha & 1 & 1 & \alpha^2 \\ \alpha^3 & \alpha & 1 & \alpha \\ \alpha & \alpha^3 & \alpha & 1 \end{bmatrix}$$

is involutory and MDS over \mathbb{F}_{2^4} , where α is a root of the irreducible polynomial $X^4 + X + 1$ with XOR count $16 + 4 \cdot 3 \cdot 4$.

Conclusions

- Searching for lightweight MDS matrices is an important problem and we have settled this for 4×4 MDS matrix.
- We have shown the importance of Toeplitz matrices in the context of MDS property for 4 × 4 matrices.
- What about the 8×8 MDS matrices?
- Any theoretical construction in this regard will be welcome.

글 🕨 🔺 글 🕨

THANK YOU

SUMANTA SARKAR, Habeeb Syed lightweight cryptography

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで