Lightweight Diffusion Layer: Importance of Toeplitz Matrices

SUMANTA SARKAR Habeeb Syed

TCS Innovation Labs

March 6, 2017

Outline

(1) Introduction
(2) Background
(3) Our Results

Outline

(1) Introduction
(2) Background

(3) Our Results

Lightweight Cryptography: Examples

- Lightweight cryptography mostly based on symmetric key.
- Lightweight stream ciphers: eSTREAM finalists Grain v1, MICKEY 2.0, and Trivium, etc.
- Lightweight block ciphers: CLEFIA, PRESENT: Standardized by ISO/IEC 29192, etc.
- Lightweight hash function: PHOTON, SPONGENT, etc.

Lightweight Cryptography: Metric

- Lightweight cryptosystem: How to measure the "weight"?
- Measure (Silicon) Area.
- Area measured by number of Gate Equivalent (GE)

Block Ciphers

- A block cipher has two building blocks:

Confusion \& Diffusion

- Diffusion spreads the plaintext statistics throughout the ciphertext.

Lightweight Block Ciphers: Metric

- Diffusion layer: multiplication of a vector with a matrix (over $G F\left(2^{n}\right)$).
- Maximum Distance Separable (MDS) matrix is chosen for Diffusion: Highest diffusion power.

Lightweight Block Ciphers: Metric

- Diffusion layer: multiplication of a vector with a matrix (over $G F\left(2^{n}\right)$).
- Maximum Distance Separable (MDS) matrix is chosen for Diffusion: Highest diffusion power.
MDS matrix: square matrix whose every submatrix is nonsingular.

Lightweight Block Ciphers: Metric

- Diffusion layer: multiplication of a vector with a matrix (over $G F\left(2^{n}\right)$).
- Maximum Distance Separable (MDS) matrix is chosen for Diffusion: Highest diffusion power.
MDS matrix: square matrix whose every submatrix is nonsingular.
- In practice, product of two field elements is implemented simply by some XORs.
- [Khoo et al. CHES 2014] looked at the number of XORs required to multiply a fixed field element by an arbitrary field element and termed it as

XOR Count

Lightweight Block Ciphers: Metric

- Diffusion layer: multiplication of a vector with a matrix (over $G F\left(2^{n}\right)$).
- Maximum Distance Separable (MDS) matrix is chosen for Diffusion: Highest diffusion power.
MDS matrix: square matrix whose every submatrix is nonsingular.
- In practice, product of two field elements is implemented simply by some XORs.
- [Khoo et al. CHES 2014] looked at the number of XORs required to multiply a fixed field element by an arbitrary field element and termed it as

XOR Count

XOR count is strongly related to GE.

Our Contribution in a Nutshell

We construct $4 \times 4 \mathrm{MDS}$ and involutory MDS matrices with low XOR counts.

Outline

(1) Introduction

(2) Background

(3) Our Results

XOR count

- Consider $\operatorname{GF}\left(2^{3}\right)$ under $\left(X^{3}+X+1\right)$ and a basis $\left\{1, \alpha, \alpha^{2}\right\}$.
- How many XORs required to multiply α^{4} with a general field element?

XOR count

- Consider $\operatorname{GF}\left(2^{3}\right)$ under $\left(X^{3}+X+1\right)$ and a basis $\left\{1, \alpha, \alpha^{2}\right\}$.
- How many XORs required to multiply α^{4} with a general field element?
- $\alpha^{4}=\alpha+\alpha^{2} \rightarrow(0,1,1)$
- Take a general element $b_{0}+b_{1} \alpha+b_{2} \alpha^{2} \in \operatorname{GF}\left(2^{3}\right) \rightarrow\left(b_{0}, b_{1}, b_{2}\right)$.

XOR count

- Consider $\operatorname{GF}\left(2^{3}\right)$ under $\left(X^{3}+X+1\right)$ and a basis $\left\{1, \alpha, \alpha^{2}\right\}$.
- How many XORs required to multiply α^{4} with a general field element?
- $\alpha^{4}=\alpha+\alpha^{2} \rightarrow(0,1,1)$
- Take a general element $b_{0}+b_{1} \alpha+b_{2} \alpha^{2} \in \operatorname{GF}\left(2^{3}\right) \rightarrow\left(b_{0}, b_{1}, b_{2}\right)$. Implement

$$
\left(b_{0}, b_{1}, b_{2}\right)(0,1,1)
$$

XOR count

- Consider $\operatorname{GF}\left(2^{3}\right)$ under $\left(X^{3}+X+1\right)$ and a basis $\left\{1, \alpha, \alpha^{2}\right\}$.
- How many XORs required to multiply α^{4} with a general field element?
- $\alpha^{4}=\alpha+\alpha^{2} \rightarrow(0,1,1)$
- Take a general element $b_{0}+b_{1} \alpha+b_{2} \alpha^{2} \in \operatorname{GF}\left(2^{3}\right) \rightarrow\left(b_{0}, b_{1}, b_{2}\right)$. Implement

$$
\begin{gathered}
\left(b_{0}, b_{1}, b_{2}\right)(0,1,1) \\
\left(b_{0}+b_{1} \alpha+b_{2} \alpha^{2}\right) \alpha^{4}=\left(b_{1}+b_{2}\right)+\left(b_{0}+b_{1}\right) \alpha+\left(b_{0}+b_{1}+b_{2}\right) \alpha^{2}
\end{gathered}
$$

- In vector form this product is of the form $\left(b_{1} \oplus b_{2}, b_{0} \oplus b_{1}, b_{0} \oplus b_{1} \oplus b_{2}\right)$

XOR count

- Consider $\operatorname{GF}\left(2^{3}\right)$ under $\left(X^{3}+X+1\right)$ and a basis $\left\{1, \alpha, \alpha^{2}\right\}$.
- How many XORs required to multiply α^{4} with a general field element?
- $\alpha^{4}=\alpha+\alpha^{2} \rightarrow(0,1,1)$
- Take a general element $b_{0}+b_{1} \alpha+b_{2} \alpha^{2} \in \operatorname{GF}\left(2^{3}\right) \rightarrow\left(b_{0}, b_{1}, b_{2}\right)$. Implement

$$
\begin{gathered}
\left(b_{0}, b_{1}, b_{2}\right)(0,1,1) \\
\left(b_{0}+b_{1} \alpha+b_{2} \alpha^{2}\right) \alpha^{4}=\left(b_{1}+b_{2}\right)+\left(b_{0}+b_{1}\right) \alpha+\left(b_{0}+b_{1}+b_{2}\right) \alpha^{2}
\end{gathered}
$$

- In vector form this product is of the form $\left(b_{1} \oplus b_{2}, b_{0} \oplus b_{1}, b_{0} \oplus b_{1} \oplus b_{2}\right)$
- $X O R\left(\alpha^{4}\right)=4$.

XOR count distribution

- XOR count distribution The set of XOR counts of all the elements of $\operatorname{GF}\left(2^{n}\right)$ is the XOR count distribution of $\operatorname{GF}\left(2^{n}\right)$.

XOR count distribution

- XOR count distribution The set of XOR counts of all the elements of $\operatorname{GF}\left(2^{n}\right)$ is the XOR count distribution of $\operatorname{GF}\left(2^{n}\right)$.

XOR count distribution of $\operatorname{GF}\left(2^{n}\right)$ varies when different irreducible polynomial is considered or a different basis of $\operatorname{GF}\left(2^{n}\right)$ is considered.
$\operatorname{GF}\left(2^{4}\right)$ under $X^{4}+X+1$ basis $\left\{1, \alpha, \alpha^{2}\right\}$ then $X O R(\alpha)=1$. But for irreducible polynomial to $X^{4}+X^{3}+X^{2}+X+1$, then none of the elements of GF $\left(2^{4}\right)$ has XOR count 1.

Elements	0	1	α	α^{2}	α^{3}	α^{4}	α^{5}	α^{6}	Sum
Basis $\left\{1, \alpha, \alpha^{2}\right\}$	0	0	1	2	4	4	3	1	15
Basis $\left\{\alpha^{3}, \alpha^{6}, \alpha^{5}\right\}$	0	0	3	3	2	3	2	2	15

XOR count distribution of $\operatorname{GF}\left(2^{3}\right)$ under $X^{3}+X+1$

Outline

(1) Introduction

(2) Background

(3) Our Results

XOR count of full matrix

- M is $n \times n$ matrix over $\operatorname{GF}\left(2^{m}\right)$

XOR count of $\mathrm{M}=\sum_{i=0}^{n-1}\left(\sum_{j=0}^{n-1} \gamma_{i j}+\left(\ell_{i}-1\right) \cdot m\right)=C(M)+\sum_{i=0}^{n-1}\left(\ell_{i}-1\right) \cdot m$.
$\gamma_{i}=$ XOR count of the i-th entry,
$\ell=$ number of nonzero entries,
The term $C(M)$ is the sum of XOR counts of all the entries of M.

XOR count of full matrix

- M is $n \times n$ matrix over $\operatorname{GF}\left(2^{m}\right)$

XOR count of $\mathrm{M}=\sum_{i=0}^{n-1}\left(\sum_{j=0}^{n-1} \gamma_{i j}+\left(\ell_{i}-1\right) \cdot m\right)=C(M)+\sum_{i=0}^{n-1}\left(\ell_{i}-1\right) \cdot m$.
$\gamma_{i}=$ XOR count of the i-th entry,
$\ell=$ number of nonzero entries,
The term $C(M)$ is the sum of XOR counts of all the entries of M.

- For MDS matrix M XOR count is

$$
C(M)+n(n-1) m
$$

XOR Count of Some Field Elements

We present following properties of XOR counts of field elements.

XOR count under polynomial basis

Suppose $\mathbb{F}_{2^{m}}$ is defined by $q(X)=X^{m}+p(X)+1$ which is an irreducible polynomial of degree m over \mathbb{F}_{2}, where $p(X)$ has t nonzero coefficients. Then XOR count of $\alpha \in \mathbb{F}_{2}[X] /(q(x))$ is t, where $q(\alpha)=0$.

Further $X O R(\alpha)=X O R\left(\alpha^{-1}\right)$.
If α is a primitive element of $\operatorname{GF}\left(2^{4}\right)$ and root of the irreducible polynomial $X^{4}+X^{3}+X^{2}+X+1$.
Then $X O R(\alpha)=3$

Toeplitz Matrices

Definition

A matrix is called Toeplitz if every descending diagonal from left to right is constant.

A typical 4×4 Toeplitz matrix looks like

$$
\mathrm{T}=\left[\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \tag{1}\\
a_{-1} & a_{0} & a_{1} & a_{2} \\
a_{-2} & a_{-1} & a_{0} & a_{1} \\
a_{-3} & a_{-2} & a_{-1} & a_{0}
\end{array}\right]
$$

More concisely as:

$$
\mathrm{T}=\left[m_{i, j}\right] \quad \text { where } \quad m_{i, j}=a_{j-i}
$$

- Recall that a matrix is "Circulant" if each of its row is left circulant shift of its previous row.
- Circulant Matrices are specific kinds of Toeplitz Matrices.

Our results on Toeplitz MDS Matrices

Result: Theorem 1

Let T be an $n \times n$ Toeplitz matrix defined over $\mathbb{F}_{2^{m}}$. Then T cannot be both MDS and involutory.

Result: Theorem 2

Let T be an $n \times n$ Toeplitz matrix defined over $\mathbb{F}_{2^{m}}$. Then T cannot be both MDS and orthogonal when $n=2^{r}$.

Constructing 4×4 Toeplitz MDS Matrices over $\mathbb{F}_{2^{m}}$

Let $\mathrm{T}_{1}(x)$ be the following 4×4 Toeplitz matrix defined over $\mathbb{F}_{2^{m}}$:

$$
\mathrm{T}_{1}(x)=\left[\begin{array}{cccc}
x & 1 & 1 & x^{-2} \\
1 & x & 1 & 1 \\
x^{-2} & 1 & x & 1 \\
x^{-2} & x^{-2} & 1 & x
\end{array}\right]
$$

If $x \in \mathbb{F}_{2^{m}}^{*}$ is such that the degree of its minimal polynomial over \mathbb{F}_{2} is ≥ 5, then $\mathrm{T}_{1}(x)$ is MDS.

Proof idea that T_{1} is MDS.
Find the determinants of all the submatrices, then check the degrees of their irreducible factors. Max degree is 4.

The Matrix T_{2}

Let $T_{2}(x)$ be the following 4×4 Toeplitz matrix defined over $\mathbb{F}_{2^{m}}$:

$$
\mathrm{T}_{2}(x)=\left[\begin{array}{cccc}
1 & 1 & x & x^{-1} \tag{2}\\
x^{-2} & 1 & 1 & x \\
1 & x^{-2} & 1 & 1 \\
x^{-1} & 1 & x^{-2} & 1
\end{array}\right]
$$

If $x \in \mathbb{F}_{2^{m}}^{*}$ is such that

- the degree of the minimal polynomial of x is ≥ 4, and
- x is not a root of the polynomial $X^{6}+X^{5}+X^{4}+X+1$, then $\mathrm{T}_{2}(x)$ is MDS.

Proof idea that T_{2} is MDS.
Check the irreducible factors of the determinants of all the submatrices, Max degree is 3 and only one factor

$$
X^{6}+X^{5}+X^{4}+X+1
$$

XOR count of T_{2}

Consider $\mathbb{F}_{2^{8}}$ generated by the primitive element α which is a root of $X^{8}+X^{6}+X^{5}+X^{2}+1$, then the matrix $\mathrm{T}_{2}(\alpha)$ as given in (2) is MDS and has XOR count $30+4 \cdot 3 \cdot 8$.

Consider $\mathbb{F}_{2^{8}}$ generated by the primitive element α which is a root of $X^{8}+X^{7}+X^{6}+X+1$, then the MDS matrix $\mathrm{T}_{2}(\alpha)$ as given in (2) has XOR count $27+4 \cdot 3 \cdot 8$.
Earlier best known matrix was $32+4 \cdot 3 \cdot 8$.

Consider $\mathbb{F}_{2^{4}}$ generated by the primitive element α which is a root of $X^{4}+X^{3}+1$, then the matrix $\mathrm{T}_{2}(\alpha)$ as given in (2) has XOR count $10+4 \cdot 3 \cdot 4$.
Earlier best known matrix was $12+4 \cdot 3 \cdot 4$.

Searching for 4×4 MDS Matrices with Minimal XOR Count

Search result:
For $\operatorname{GF}\left(2^{8}\right)$, the lowest XOR count of a 4×4 MDS matrix is $27+4 \cdot 3 \cdot 8$.

For $\operatorname{GF}\left(2^{4}\right)$, the lowest XOR count of a 4×4 MDS matrix is $10+4 \cdot 3 \cdot 4$.

The search Technique

- We apply a kind of "divide and conquer" method.
- Divide 4×4 matrix A in two 2×4 submatrices.

$$
A=\left[\frac{A_{u}}{A_{\ell}}\right]
$$

The search Technique

- We apply a kind of "divide and conquer" method.
- Divide 4×4 matrix A in two 2×4 submatrices.

$$
A=\left[\frac{A_{u}}{A_{\ell}}\right]
$$

- If A is MDS then every submatrix of both A_{u} and A_{ℓ} are nonsingular!
- Search only for A_{u} such that all its submatrices are nonsingular.
- This will serve for A_{ℓ} also.
- Combine every options of A_{u} and A_{ℓ} check if A is MDS.
- Search space: suppose A takes elements from S, search space is $|S|^{2 \times 4}$.

The search Technique (Contd..)

- $C(A)=$ Sum of the XOR counts of all the elements of A.
- Suppose the least known $C(A)$ for any 4×4 MDS matrix A is C.
- First find A such that $C(A)<\mathrm{C}$.
- Update $\mathrm{C}=C(A)$.

Search: 4×4 MDS matrix over $\mathbb{F}_{2^{8}}$ with the minimum XOR count

- Consider the primitive polynomial $X^{8}+X^{7}+X^{6}+X+1$ of $\mathbb{F}_{2} 8$.
- Goal: Find A such that $C(A) \leq 26$.

Search: 4×4 MDS matrix over $\mathbb{F}_{2^{8}}$ with the minimum XOR count

- Consider the primitive polynomial $X^{8}+X^{7}+X^{6}+X+1$ of $\mathbb{F}_{2^{8}}$.
- Goal: Find A such that $C(A) \leq 26$.
- Form all 2×4 matrices from the set $S=\left\{1, \alpha, \alpha^{-1}, \alpha^{2}, \alpha^{-2}\right\}$ and find the one with minimum XOR count such that all its submatrices are nonsingular

Search: 4×4 MDS matrix over $\mathbb{F}_{2^{8}}$ with the minimum XOR count

- Consider the primitive polynomial $X^{8}+X^{7}+X^{6}+X+1$ of $\mathbb{F}_{2^{8}}$.
- Goal: Find A such that $C(A) \leq 26$.
- Form all 2×4 matrices from the set $S=\left\{1, \alpha, \alpha^{-1}, \alpha^{2}, \alpha^{-2}\right\}$ and find the one with minimum XOR count such that all its submatrices are nonsingular
- The minimum XOR count of 2×4 matrices over S is 11 .
- Further we verify that this is indeed minimum XOR count of all 2×4 submatrices over $\mathbb{F}_{2^{8}}$.

Search: 4×4 MDS matrix over $\mathbb{F}_{2^{8}}$ with the minimum XOR count

- Consider the primitive polynomial $X^{8}+X^{7}+X^{6}+X+1$ of $\mathbb{F}_{2^{8}}$.
- Goal: Find A such that $C(A) \leq 26$.
- Form all 2×4 matrices from the set $S=\left\{1, \alpha, \alpha^{-1}, \alpha^{2}, \alpha^{-2}\right\}$ and find the one with minimum XOR count such that all its submatrices are nonsingular
- The minimum XOR count of 2×4 matrices over S is 11 .
- Further we verify that this is indeed minimum XOR count of all 2×4 submatrices over $\mathbb{F}_{2^{8}}$.
- So in $A=\left[\frac{A_{u}}{A_{\ell}}\right]$, the maximum XOR count of A_{u} and A_{ℓ} can be $26-11=15$.

Search: 4×4 MDS matrix over $\mathbb{F}_{2^{8}}$ with the minimum XOR count

- Consider the primitive polynomial $X^{8}+X^{7}+X^{6}+X+1$ of $\mathbb{F}_{2^{8}}$.
- Goal: Find A such that $C(A) \leq 26$.
- Form all 2×4 matrices from the set $S=\left\{1, \alpha, \alpha^{-1}, \alpha^{2}, \alpha^{-2}\right\}$ and find the one with minimum XOR count such that all its submatrices are nonsingular
- The minimum XOR count of 2×4 matrices over S is 11 .
- Further we verify that this is indeed minimum XOR count of all 2×4 submatrices over $\mathbb{F}_{2^{8}}$.
- So in $A=\left[\frac{A_{u}}{A_{\ell}}\right]$, the maximum XOR count of A_{u} and A_{ℓ} can be $26-11=15$.
- Now we need to search for 2×4 matrices over $\mathbb{F}_{2^{8}}$ such that their XOR count is bounded by 15 .
- For this we just need to check 2×4 matrices over $S=\left\{\beta \in \mathbb{F}_{2^{8}}^{*}: X O R(\beta) \leq 12\right\}$.

Search: 4×4 MDS matrix over $\mathbb{F}_{2^{8}}$ with the minimum XOR count (Contd.)

- Number of 2×4 submatrices obtained is 3360 (these are the options for A_{u} and A_{ℓ}).
- Combine pairs and check if $A=\left[\frac{A_{u}}{A_{\ell}}\right]$, is MDS or not.
- Need to check $3360^{2} \approx 2^{24}$ pairs.
- We do not find any MDS matrix with XOR count ≤ 26.

Search: 4×4 MDS matrix over $\mathbb{F}_{2^{8}}$ with the minimum XOR count (Conclusion)

- For all irreducible polynomial there were no 4×4 MDS matrix with XOR count ≤ 26.

Search: 4×4 MDS matrix over $\mathbb{F}_{2^{8}}$ with the minimum XOR count (Conclusion)

- For all irreducible polynomial there were no 4×4 MDS matrix with XOR count ≤ 26.

For $\operatorname{GF}\left(2^{8}\right)$, the lowest XOR count of a 4×4 MDS matrix is $27+4 \cdot 3 \cdot 8$.

Search: 4×4 MDS matrix over $\mathbb{F}_{2^{8}}$ with the minimum XOR count (Conclusion)

- For all irreducible polynomial there were no 4×4 MDS matrix with XOR count ≤ 26.

For $\operatorname{GF}\left(2^{8}\right)$, the lowest XOR count of a 4×4 MDS matrix is $27+4 \cdot 3 \cdot 8$. Similarly we search for $\operatorname{GF}\left(2^{4}\right)$ and obtain that

For $\operatorname{GF}\left(2^{4}\right)$, the lowest XOR count of a 4×4 MDS matrix is $10+4 \cdot 3 \cdot 4$.

Involutory MDS Matrix

Suppose $N_{1}(x)$ is a 4×4 matrix over $\mathbb{F}_{2^{m}}$ such that

$$
N_{1}(x)=\left[\begin{array}{cccc}
1 & x & 1 & x^{2}+1 \tag{3}\\
x & 1 & x^{2}+1 & 1 \\
x^{-2} & 1+x^{-2} & 1 & x \\
1+x^{-2} & x^{-2} & x & 1
\end{array}\right]
$$

Then $N_{1}(x)$ is an involutory matrix for all nonzero $x \in \mathbb{F}_{2^{m}}$, and if the degree of the minimal polynomial of x over \mathbb{F}_{2} is ≥ 4, then $N_{1}(x)$ is also MDS.

- For $\mathbb{F}_{2^{8}}$, the minimum XOR count obtained for N_{1} is $64+4 \cdot 3 \cdot 8$ over all irreducible polynomials of degree 8 over \mathbb{F}_{2}. Note that this is the known lower bound for XoR count of 4×4 MDS involutory matrices over $\mathbb{F}_{2}{ }^{8}$ [Sim et al. FSE 2015].

Involutory MDS Matrix

Suppose $N_{2}(x)$ is a 4×4 matrix over $\mathbb{F}_{2^{m}}$ such that

$$
N_{2}(x)=\left[\begin{array}{cccc}
1 & x^{2}+1 & x & 1 \tag{4}\\
x^{2}+1 & 1 & 1 & x \\
x^{3}+x & x^{2}+1 & 1 & x^{2}+1 \\
x^{2}+1 & x^{3}+x & x^{2}+1 & 1
\end{array}\right]
$$

Then $N_{2}(x)$ is an involutory matrix for all $x \in \mathbb{F}_{2^{m}}$, and if the degree of the minimal polynomial of x over \mathbb{F}_{2} is ≥ 4, then $N_{2}(x)$ is also MDS.

- For $\mathbb{F}_{2^{4}}$, the minimum XOR count obtained for N_{1} is $16+4 \cdot 3 \cdot 4$.
- The best known was $24+4 \cdot 3 \cdot 4$ [Sim et al. FSE 2015].

Examples of Involutory MDS Matrices

The matrix

$$
\left[\begin{array}{cccc}
1 & \alpha & 1 & \alpha^{211} \\
\alpha & 1 & \alpha^{211} & 1 \\
\alpha^{-2} & \alpha^{209} & 1 & \alpha \\
\alpha^{209} & \alpha^{-2} & \alpha & 1
\end{array}\right]
$$

is involutory and MDS over $\mathbb{F}_{2^{8}}$, where α is a root of the irreducible polynomial $X^{8}+X^{6}+X^{5}+X^{2}+1$. XOR count of this matrix is $64+4 \cdot 3 \cdot 8$.

The matrix

$$
\left[\begin{array}{cccc}
1 & \alpha & \alpha^{2} & 1 \\
\alpha & 1 & 1 & \alpha^{2} \\
\alpha^{3} & \alpha & 1 & \alpha \\
\alpha & \alpha^{3} & \alpha & 1
\end{array}\right]
$$

is involutory and MDS over $\mathbb{F}_{2^{4}}$, where α is a root of the irreducible polynomial $X^{4}+X+1$ with XOR count $16+4 \cdot 3 \cdot 4$.

Conclusions

- Searching for lightweight MDS matrices is an important problem and we have settled this for 4×4 MDS matrix.
- We have shown the importance of Toeplitz matrices in the context of MDS property for 4×4 matrices.
- What about the 8×8 MDS matrices?
- Any theoretical construction in this regard will be welcome.

THANK YOU

