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Abstract. MDS matrices are used as building blocks of diffusion layers in block
ciphers, and XOR count is a metric that estimates the hardware implementation cost.
In this paper we report the minimum value of XOR counts of 4 × 4 MDS matrices
over F24 and F28 , respectively. We give theoretical constructions of Toeplitz MDS
matrices and show that they achieve the minimum XOR count. We also prove that
Toeplitz matrices cannot be both MDS and involutory. Further we give theoretical
constructions of 4 × 4 involutory MDS matrices over F24 and F28 that have the best
known XOR counts so far: for F24 our construction gives an involutory MDS matrix
that actually improves the existing lower bound of XOR count, whereas for F28 , it
meets the known lower bound.
Keywords: No keywords given.

1 Introduction
Lightweight cryptography is about cryptosystems that require low implementation costs,
and this topic has drawn huge attention over the last few years. Currently lightweight
variants exist for many symmetric-key primitives. The eSTREAM finalists Grain v1 [11],
MICKEY 2.0 [1], and Trivium [21] are examples of lightweight stream ciphers. Examples of
lightweight block ciphers are CLEFIA [19], PRESENT [6], LED [9], SIMECK [22], etc., where
the first two have been standardized by ISO/IEC 29192.

Confusion and diffusion are the two important cryptographic criteria of a block cipher.
The confusion layer makes the relation between key and ciphertext as complex as possible,
on the other hand the diffusion layer spreads the plaintext statistics through the ciphertext.
In practice maximum distance separable (MDS) matrices are used as the diffusion layer
as these matrices can achieve the maximum diffusion power. For instance AES [8] uses an
MDS matrix for its diffusion layer. On top of the MDS property, if the diffusion matrix is
an involution (self-inverse), then the implementation cost for its inverse is saved, which is
certainly an advantage in the hardware implementation of lightweight cryptosystems. One
may note that the diffusion matrix of KHAZAD [3] is an involution.

Choosing an MDS or MDS involution matrix that fits in a lightweight cipher is a
challenging task as the designer has to keep in mind the constraints in the implementation
cost. For software implementation of diffusion matrices clock cycle is important, if elements
of an MDS matrix are of low Hamming weight, then multiplication takes lesser number
of clock cycles. However, if we simply use look-up tables (like T-tables for AES), then
software implementation can be very fast.

In 2014, [14] introduced the metric XOR count that measured the cost of hardware
implementation of a diffusion matrix. One may think that by filling a matrix with
field elements having low Hamming weight would result in low hardware cost for the
implementation of the matrix. But [14] instead measured the number of XORs required
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to compute the multiplication of a fixed field element, and showed that there are MDS
diffusion matrices with higher Hamming weight than the AES diffusion matrix but needed
lesser XORs to implement.

After the introduction of XOR count, several attempts have been made to find (involu-
tory) MDS matrices with low XOR count. For example, [20] made a huge search effort to
find lightweight diffusion matrices, and they also observed that XOR count distribution
varies with different irreducible polynomial that generate the field. Later [18] showed
that under the same irreducible polynomial, XOR count distribution still can be different
under different choice of basis. However, considering different bases they did not get any
improved (involutory) MDS matrix than [20]. The best known XOR count of a 4× 4 MDS
matrix over F28 is 32 + 4 · 3 · 8, and over F24 it is 12 + 4 · 3 · 4 which were obtained by [16].
Another attempt has been made by [15] to obtain efficient 4 × 4 MDS diffusion matrix
when the matrices are defined over the general linear groups GL(8, 2) and GL(4, 2) instead
of fields F28 and F24 . In [5], a slightly different notion of XOR count has been considered,
and accordingly some matrices have been presented.

Search efforts for MDS matrices with low XOR count in the previous works have
been made in some subclasses of matrices like Hadamard matrices and circulant matrices.
Hadamard matrices have advantages in hardware implementation as one row of such a
matrix defines all the rows. A circulant matrix has a similar property, precisely, all the rows
are some cyclic shifts of the first row. The diffusion matrix of AES is circulant MDS. On top
of circulant property, if an MDS matrix is involutory, then it is even more advantageous in
the implementation. However, a circulant MDS matrix cannot be involution [10]. Thus
one has to look beyond these special subclasses to find MDS involutory matrices. The
total number of MDS matrices is so huge that it is difficult to exhaust.

1.0.1 Our contributions

In this paper, we aim to determine the minimum values of the XOR counts of MDS matrices
of order 4× 4 over F24 and F28 , respectively, as MDS matrices with these dimensions are
very common in practice.

In Section 2 we give the definition of XOR count of a field element and also discuss
some of the properties of this metric. Then in Section 3, we consider Toeplitz matrices
and prove that if a Toeplitz matrix is MDS then it cannot be involutory. We also give
theoretical constructions of Toeplitz MDS matrices in Propositions 3 and 4. In Section 5
and 6, we determine the minimum value of the XOR counts of 4× 4 MDS matrices over
F28 and F24 respectively, through a search strategy described in Section 4. We are able to
obtain 4× 4 MDS matrices over F24 and F28 that have the minimum XOR counts. The
values are 10 + 4 · 3 · 4 and 27 + 4 · 3 · 8 for F24 and F28 , respectively. This concludes the
hunt for 4× 4 MDS matrices over F24 and F28 with low XOR counts. Interestingly our
theoretical construction of Toeplitz MDS matrix (Corollaries 2, 3) attain the minimum
XOR count for F28 and F24 respectively.

In Section 7, we give constructions of 4 × 4 involutory MDS matrices (Propositions
10 and 11). For F24 our construction gives an involutory MDS matrix (Example 3) with
XOR count 16 + 4 · 3 · 4 which improves the existing lower bound 24 + 4 · 3 · 4. On the
other hand for F28 , our construction gives an involutory MDS matrix (Example 2) with
XOR count 64 + 4 · 3 · 8 that matches with the existing known lower bound.

2 Preliminaries
Let F2m be a finite field with 2m elements, alternatively we will denote this by F2[X]/(q(X)),
where q(X) is an irreducible polynomial of degree m that generates the extension field
F2m . Throughout this paper α will denote a root of the irreducible polynomial q(X).
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The exclusive-or (XOR) sign ⊕ will specifically mean addition modulo 2, and we will
use the + sign to mean addition over any field (that applies to F2 as well).

An n× n matrix M is MDS if the n× 2n matrix G = [InM ] is a generator of an MDS
code, where In is the n × n identity matrix. One necessary and sufficient condition for
M to be MDS is that every submatrix of M is nonsingular. An MDS matrix attains
the maximum diffusion power. If M is such that M2 = In, then M is called involutory,
and when MM t = In, then it is orthogonal, where M t is the transpose of M . Since an
involutory matrix is self-inverse, thus implementation of its inverse comes for free, similarly
for orthogonal matrices, its inverse can be implemented just by taking its transpose.

2.1 Basics of XOR counts
The field F2m can be identified to the vector space Fm

2 , which is the set of all m-tuple binary
vectors, by choosing some basis of the field. For example {1, α, . . . , αm−1} is a polynomial
basis. In practice field elements are implemented by their corresponding binary vectors,
and multiplication and addition of field elements can be realized by XOR operations. In
[14] the metric XOR count was proposed as follows.

Definition 1. The XOR count of an element β ∈ F2m is the number of XORs required
to implement the multiplication of β with an arbitrary element b ∈ F2m . We denote the
XOR count of β by XOR(β).

This metric is very much useful in estimating the hardware implementation cost of
the diffusion layer of a block cipher. The authors of [14] showed that low XOR count is
strongly correlated to the minimization of hardware area (GE). Note that [14] implemented
SPNs block ciphers considering circulant and serial type diffusion matrices to measure the
hardware cost.

Usually MDS matrices are used as diffusion layer, as they have the highest diffusion
power. For lightweight block ciphers, diffusion matrices with low XOR count are desired,
thus finding MDS matrices with low XOR count is an interesting problem. The set of
XOR counts of all the elements of F2m is termed as the XOR count distribution [18].
The authors of [18] have showed that XOR count distribution varies as the basis changes,
however they did not find better MDS matrices (in terms of low XOR count) for any other
bases than the polynomial basis. They observed that under the polynomial basis, fields
elements tend to have low XOR counts. It is also to be noted that polynomial basis is a
conventional choice for implementation. Therefore, we will only be considering polynomial
basis.

Consider F23 with the underlying irreducible polynomial X3 +X+1. The multiplication
of α4 = α+ α2 with an arbitrary element b = b0 + b1α+ b2α

2, where bi ∈ {0, 1} is

(b0 + b1α+ b2α
2)(α+ α2) = (b1 + b2) + (b0 + b1)α+ (b0 + b1 + b2)α2.

Thus in vector form the above product looks like

(b1 ⊕ b2, b0 ⊕ b1, b0 ⊕ b1 ⊕ b2),

in which there are 4 XORs.
It is obvious that the XOR count of the field element 0 is 0, and also XOR(1) = 0.

Remark 1. One may note that there might be repetitions of some terms in the coordinates
of the product vector, which could be reused to reduce the total XOR count. In [20, 18] it
is remarked that to get the advantage of reusing XORs might require additional cycle and
memory which is likely to exceed the cost that is saved in the XOR count. However, this
trade-off is more subtle and needs further explorations. Moreover, [20, 18] remarked that
XOR count was a simplified metric, and we too follow the same consideration.
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To measure the XOR count of a diffusion matrix one has to add the XOR counts of all
the entries in that matrix. In [14] XOR count of a row of a matrix was derived as follows.
The XOR count of the i-th row of an n× n matrix M over F2m is

n−1∑
j=0

γij + (`i − 1) ·m,

where γij is the XOR count of j-th element of i-th row, and `i is the number of nonzero
entries in that row.

We extend this notion of XOR count of a row to the XOR count of the whole matrix
by adding XOR counts of all the rows:

n−1∑
i=0

n−1∑
j=0

γij + (`i − 1) ·m

 = C(M) +
n−1∑
i=0

(`i − 1) ·m . (1)

The term C(M) is the sum of XOR counts of all the entries of M . For an n × n MDS
matrix over F2m , `i = n, so (1) becomes C(M) + n · (n− 1) ·m, note that C(M) varies
with the matrices.

2.1.1 Some properties of XOR count of field elements

In this section, we present some results on XOR counts.
Note that every irreducible polynomial of degree m always contains the terms Xm and

1, meaning that an irreducible polynomial can be written as Xm + p(X) + 1, where the
highest and lowest possible degree terms of p(X) are Xm−1 and X respectively.

Proposition 1. Suppose q(X) = Xm + p(X) + 1 is an irreducible polynomial of degree m
over F2, where p(X) has t nonzero coefficients. Then XOR count of α ∈ F2[X]/(q(x)) is t,
where q(α) = 0.

Proof. The XOR count of α is obtained from the product

(b0 + b1α+ . . .+ bm−1α
m−1)α = b0α+ b1α

2 + . . .+ bm−1α
m

= bm−1 + b0α+ b1α
2 + . . .+ bm−1 p(α),

replacing αm = p(α) + 1.

Clearly bm−1 will be XORed with bi, if the coefficient of Xi in p(X) is nonzero.

Proposition 2. Suppose q(X) = Xm + p(X) + 1 is an irreducible polynomial of degree m
over F2. Then XOR counts of α ∈ F2[X]/(q(x)) and α−1 are the same, where q(α) = 0.

Proof. The XOR count of α−1 is obtained from the product

(b0 + b1α+ . . .+ bm−1α
m−1)α−1 = b0α

−1 + b1 + . . .+ bm−1α
m−2.

From αm + p(α) = 1 we get αm−1 + α−1p(α) = α−1. Using this in the above relation

b0α
−1 + b1 + . . .+ bm−1α

m−2 = b0α
m−1 + b0α

−1p(α) + b1 + . . .+ bm−1α
m−2.

So b0 will be XORed with bi if coefficient of Xi is nonzero in p(X).
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3 Toeplitz MDS Matrices
In this section we present some results on Toeplitz MDS matrices and show their importance
with respect to XOR count.

Definition 2. A matrix, whose every row is a one cyclic shift of the previous row is called
a circulant matrix.

This kind of matrices are useful in the hardware design as the full matrix can be
generated from the first row. Following is an example of an n× n circulant matrix, where
a row is generated by right cyclic shift of the previous row.

Circ(a0, . . . , an−1) =


a0 a1 . . . an−1
an−1 a0 . . . an−2
...

...
...

...
a1 a2 . . . a0

 .
Definition 3. A matrix is called Toeplitz if every descending diagonal from left to right
is constant.

Following is an example of a Toeplitz matrix of order n× n

T =


a0 a1 a2 . . . an−2 an−1
a−1 a0 a1 . . . an−3 an−2
...

...
...

...
...

...
a−(n−1) a−(n−2) a−(n−3) . . . a−1 a0

 . (2)

Obviously circulant matrix is a special form of Toeplitz matrix. A Toeplitz matrix is defined
by its first row and first column. For instance {a0, a1, . . . , an−1, a−1, a−2, . . . , a−(n−1)}
defines the Toeplitz matrix T in 2. This matrix can also be defined as follows:

T = [aij ] where aij = aj−i. (3)

MDS circulant matrices have been used to build the diffusion layer of AES [8] and
WHIRLPOOL [4]. One may refer to [10] for the construction of circulant MDS matrices,
where they also proved that an MDS circulant matrix cannot be involutory. We prove that
this is indeed true for the Toeplitz matrices as well.

Theorem 1. Let T be an n×n Toeplitz matrix defined over F2m . Then T cannot be both
MDS and involutory.

Proof. Let T be a Toeplitz matrix as in (2) which is both MDS and involutory. We treat
the proof for odd and even n separately.

CASE 1 : When n is odd.
The (n− 2)-th element in the 0-th row of T 2 is

[T 2]0,n−2 = (a0, a1, . . . , an−1) · (an−2, an−3, . . . , a0, a−1)
= a0an−2 + a1an−3 + . . .+ a(n−1)/2a(n−3)/2 + . . .+ an−2a0 + an−1a−1

= an−1a−1.

Since T is involutory then
an−1a−1 = 0, (4)

which implies that an−1 = 0 or a−1 = 0, This contradicts that T is MDS, as being MDS
every element of T is nonzero.
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CASE 2 : When n is even. In this case

[T 2]0,n−2 = (a0, a1, . . . , an−1) · (an−2, an−3, . . . , a0, a−1)
= a0an−2 + a1an−3 + . . .+ a2

(n−2)/2 + . . .+ an−2a0 + an−1a−1

= a2
(n−2)/2 + an−1a−1.

Since T is an involution, so
a2

(n−2)/2 + an−1a−1 = 0. (5)

Consider the following 2× 2 submatrix of T by taking the 0-th and n/2-th row, and
(n− 2)/2-th and (n− 1)-th column,

A =
[
a(n−2)/2 an−1
a−1 a(n−2)/2

]
Since T is MDS matrix then determinant of A is

a2
(n−2)/2 + an−1a−1 6= 0,

which contradicts (5).
Hence for both odd and even n, T cannot be both MDS and involution. This completes

the proof.

Theorem 2. Let T be an n×n Toeplitz matrix defined over F2m . Then T cannot be both
MDS and orthogonal when n = 2r.

Proof. Let T be a Toeplitz matrix as in (2) which is both MDS and orthogonal. Suppose
T ′ = T · T t and let δi be the diagonal element of T ′ for i = 0, . . . , n− 1. We have

δi =
n−1∑
j=0

a2
j−i = 1, for i = 0, 1, . . . , n− 1. (6)

Considering the pair of equations (δi and δi+1) from the above system of equations we get

a−i = an−i for i = 1, . . . , n− 1, (7)

that is T is indeed a circulant matrix. From [10, Lemma 2] it is known that any 2r × 2r

circulant matrix cannot be both orthogonal and MDS, this completes the proof.

Therefore, to construct MDS involutory or MDS orthogonal (for order 2r×2r) matrices,
one has to look beyond the class of Toeplitz matrices.

3.1 Constructions of MDS Toeplitz matrix
We now give some theoretical constructions of Toeplitz MDS matrices. The idea behind
these constructions is the following. Form several examples of Toeplitz MDS matrices by
considering matrix entries with low XOR count, and then carefully check the relations
between the elements and all the determinants of the submatrices.

As we see that XOR count of 1 is zero, so more presence of 1’s in an MDS matrix is
likely to keep the total XOR count of the matrix low. However, it is known from [12] that
in a 4× 4 MDS matrix, 1 cannot occur more than 9 times. In the following, we consider
a special form of 4 × 4 Toeplitz matrix where 1 occurs 8 times, and analyze when this
becomes MDS.
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Proposition 3. Let T1(x) be the following 4× 4 Toeplitz matrix defined over F2m :

T1(x) =


x 1 1 x−2

1 x 1 1
x−2 1 x 1
x−2 x−2 1 x

 .
If x ∈ F∗2m is such that the degree of its minimal polynomial over F2 is ≥ 5, then T1(x)

is MDS.

Proof. As the minimal polynomial of x has degree > 4, so x 6= 1. Consider the set ∆2
(respectively ∆3) of all distinct determinants of submatrices of order 2× 2 (respectively
order 3× 3):

∆2(T1(x)) = {x2 + 1, x+ 1, (x3 + 1)/x2, (x+ 1)/x,
(x+ 1)/x2, (x4 + 1)/x2, (x5 + 1)/x4, (x2 + 1)/x2,

(x6 + 1)/x4, (x2 + 1)/x4},

∆3(T1(x)) = {(x8 + x4 + x2 + 1)/x6, (x2 + 1)/x2, x2 + 1, (x5 + x4 + x3 + 1)/x4,

(x2 + 1)/x4, (x5 + x4 + x3 + 1)/x3, (x7 + x5 + x3 + x2 + x+ 1)/x4,

(x5 + x2 + x+ 1)/x2, (x6 + x5 + x4 + x3 + x2 + 1)/x4, (x6 + 1)/x4}.

All the numerators of the elements of ∆2(T1(x)) and ∆3(T1(x)) can be factored into
irreducible polynomials over F2 of maximum degree 4 (refer to Appendix A.1). Therefore,
none of these determinants are equal to zero.

Finally, the determinant of T1(x) is (x10 +x8 +x6 + 1)/x6 = (x+ 1)4(x3 +x2 + 1)2/x6,
which is also nonzero as the minimal polynomial of x has degree ≥ 5.

Example 1. Consider the matrix T1(α) over F28 as given in Proposition 3 with the
irreducible polynomial X8 +X6 +X5 +X2 +1 with α as its root. According to Proposition
3, this is an MDS matrix. The XOR counts of 1, α and α−2 are 0, 3 and 6 respectively,
and there are 4 α’s and 4 α−2’s. For every row the additional XOR count is 3 · 8, therefore
XOR count of T1(α) is 4 · 3 + 4 · 6 + 4 · 3 · 8 = 36 + 4 · 3 · 8.

Note that in [14], a circulant matrix having the same XOR count was reported. To
get a better XOR count for this kind of Toeplitz matrices, we try exhaustively by putting
different values of x from F28 under the irreducible polynomial X8 +X6 +X5 +X2 + 1.
However, we do not get any improved matrix. So we look at some other form of Toeplitz
matrices. Next we consider the following Toeplitz matrix.

Proposition 4. Let T2(x) be the following 4× 4 Toeplitz matrix defined over F2m :

T2(x) =


1 1 x x−1

x−2 1 1 x
1 x−2 1 1
x−1 1 x−2 1

 .
If x ∈ F∗2m is such that

1. the degree of the minimal polynomial of x is ≥ 4, and

2. x is not a root of the polynomial X6 +X5 +X4 +X + 1,

then T2(x) is MDS.
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Proof. We show that all the square submatrices are nonsingular with this choice of x. The
list of distinct determinants of 2× 2 submatrices:

∆2(T2)(x) = { (x3 + 1)/x2, (x2 + 1)/x, (x+ 1)/x2, (x+ 1)/x,
1 + x, (x3 + 1)/x, (x3 + 1)/x4, (x3 + 1)/x3, (x2 + 1)/x2,

(x4 + 1)/x3, (x4 + 1)/x4 }.

Next we check the list of distinct determinants of 3× 3 submatrices:

∆3(T2)(x) = { (x2 + 1)/x3, (x2 + 1)/x4, (x4 + 1)/x3, (x6 + x5 + x3 + 1)/x5,

(x6 + x5 + x3 + 1)/x6, (x5 + x4 + x3 + 1)/x3,

(x5 + x4 + x3 + 1)/x4 }.

Notice that the elements of both ∆2(T2(x)) and ∆3(T2(x)) can be factored into
irreducible polynomials over F2 of maximum degree 3 (refer to Appendix A.2). If the
minimal polynomial of x is ≥ 4, then none of these determinants is zero.

Finally the determinant of the full matrix is

(x9 + x7 + x6 + 1)/x7 = (x+ 1)3 (x6 + x5 + x4 + x+ 1)/x7.

This also does not vanish if x is not a root of X6 +X5 +X4 +X + 1. Hence the proof.

Remark 2. It is to be noted that the number of 1’s in the MDS matrix T2(x) is 9, which
is the maximum possible occurrences of 1’s in an MDS 4× 4 matrix as pointed out in [12,
Lemma 1].

We choose x ∈ F∗2m according to Proposition 4 to construct MDS matrices and determine
their XOR counts. By choosing primitive α for x, it is likely that we would get an MDS
matrix with low XOR count as XOR(α), XOR(α−1) and XOR(α−2) tend to have low
XOR counts (see Proposition 1 and 2).

We consider the matrix T2(x) over F2m for x = α, where α is a primitive element of
F2m :

T2(α) =


1 1 α α−1

α−2 1 1 α
1 α−2 1 1
α−1 1 α−2 1

 . (8)

Corollary 1. Consider F28 generated by the primitive element α which is a root of
X8 + X6 + X5 + X2 + 1, then the matrix T2(α) as given in (8) is MDS and has XOR
count 30 + 4 · 3 · 8.

Proof. Since the degree of the minimal polynomial of α is 8, so by Proposition 4, T2(α) is
MDS.

Under this irreducible polynomial, XOR(α) = XOR(α−1) = 3, and XOR(α−2) = 6.
Therefore, the total sum of the XOR counts of the elements of T2(α) is C(T2(α)) =
4 · 3 + 3 · 6 = 30. Moreover, every row has the additional XOR count 3 · 8.

Here we get an improvement of the lower bound of the XOR count of 4×4 MDS matrices
over F28 . As pointed out in [20] that XOR counts differ as the underlying irreducible
polynomial varies, we check for another irreducible polynomial, for which the same matrix
T2 has even lesser XOR count.

Corollary 2. Consider F28 generated by the primitive element α which is a root of
X8 + X7 + X6 + X + 1, then the MDS matrix T2(α) as given in (8) has XOR count
27 + 4 · 3 · 8.
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Proof. Since the degree of the minimal polynomial of α is 8, so by Proposition 4, T2(α) is
MDS.

Under this irreducible polynomial, XOR(α) = XOR(α−1) = 3, and XOR(α−2) = 5.
Therefore, the sum of the XOR counts of the elements of T2(α) is C(T2(α)) = 4·3+3·5 = 27.
Per row the additional XOR count that is required is 3 · 8.

This gives even better improved lower bound of XOR count of a 4× 4 MDS matrices.
But is there any MDS matrix that has better XOR count than 27 + 4 · 3 · 4? We solve this
question in Section 5.
Corollary 3. Consider F24 generated by the primitive element α which is a root of
X4 +X3 + 1, then the matrix T2(α) as given in (8) has XOR count 10 + 4 · 3 · 4.
Proof. Since the degree of the minimal polynomial of α is 4, and α can never be a root of
X6 +X5 +X4 +X + 1, therefore, by Proposition 4, T2(α) is MDS.

Under this irreducible polynomial, XOR(α) = XOR(α−1) = 1, and XOR(α−2) = 2.
Therefore, the sum of the XOR counts of the elements of T2(α) is C(T2(α)) = 4·1+3·2 = 10.
Per row the additional XOR count required is 3 · 4.

This improves the previously known best XOR count: 12 + 4 · 3 · 4 in [16], we will check
if this can be improved further in Section 6.

4 Searching for MDSMatrix with the minimum XOR count
In this section, we consider matrices in general form to find the minimum value of XOR
count of 4× 4 matrices over F24 and F28 . We would like to remind that we will only be
considering polynomial basis as discussed in Section 2.1.

One can imagine the vastness of the search space as every single matrix is to be checked
if that holds the MDS property. In order to be able to determine the minimum XOR count,
we apply a search strategy which is a kind of “divide and conquer". Before describing the
strategy, we first define some sets. For a t× n matrix Y , we define the set ∆i(Y ) as the
set of determinants of all its i× i submatrices:

∆i(Y ) = { det(Z) : Z is an i× i submatrix of A }, i = 1, . . . ,min {t, n}.

With this notation, necessary and sufficient condition for a square matrix A of order n× n
to be MDS is that

0 /∈ ∆i(A), for i = 1, . . . , n. (9)
Given an n× n matrix A, for even n, it can be represented as

A =
[

Au

A`

]
, (10)

where Au (respectively A`) is an n
2 × n submatrix of A consisting of upper (respectively

lower) n
2 rows of A.

FACT 1: With block representation of A as in (10) a necessary condition for A to be
MDS matrix is that

0 /∈ ∆i(Au) and 0 /∈ ∆i(A`) for i = 1, . . . , n2 . (11)

Thus we see that every MDS matrix A of order n×n can be obtained from two matrices
U,L of order n

2 ×n satisfying (11) by taking Au = U and A` = L. In a nutshell, our search
strategy consists of searching for Au and A` and then constructing A.

The main advantage of halving A is that we need to search in a much smaller space.
For example if the matrix A is defined over a set S ⊂ F2m , exhaustive search would require
|S|n2×n instead of |S|n2 effort. We will carefully choose the set S so that |S|n2×n becomes
moderate which enables us to compute the set of matrices Au faster.
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Choosing the set S

As we just discussed, the set S plays central role in our search strategy and needs to be
chosen carefully, that we will do by keeping in mind the known lower bound of XOR count
of MDS matrices. One may note that 1 ∈ F2m has the minimum XOR count, which is
0. For m ≤ 8, one can check that the next minimum XOR count is associated with α
and α−1 (refer to Proposition 1 and Proposition 2 for the exact value). Therefore, more
presence of {1, α, α−1} in A is likely to keep XOR count low.

We now recall the notation C(A) from (1) and define C that we will be frequently using
in our search.

(i) C(A) : the sum of the XOR counts of all the entries of A.

(ii) C : known lower bound of C(A), where A is an n× n MDS matrix.

Recall from (1) that the XOR count of an n× n matrix A is C(A) + n · (n− 1) ·m. In
our computation we ignore the constant n · (n − 1) ·m, and look for MDS matrices A
with C(A) < C, as that would improve the existing lower bound. Beginning with F2m

and a C we choose the set S as follows. If there is any field element β ∈ F2m such that
XOR(β) ≥ C, then β can never be an entry of a matrix A that has C(A) < C.

Let
θ = min {C(H) : H is n2 × n matrix over F2m satisfying (11)}, (12)

and suppose that we know the value of θ. It follows that any MDS matrix A satisfies
C(Au) ≥ θ (respectively C(A`) ≥ θ), whence we have C(A`) ≤ C − 1 − θ (respectively
C(Au) ≤ C − 1 − θ) so as to make C(A) ≤ C − 1. We now determine the possible XOR
counts that elements of A` (respectively Au) can take so that C(A) ≤ C− 1. Suppose β0
is an element having the least nonzero XOR count, say τ . If there is any element β1 in A`

(respectively Au) with XOR(β1) > C− 1− θ − τ , then the only possible entries are 1’s,
otherwise C(A) > C− 1. In this case there will be singular submatrices. Thus choices of
elements for A` (respectively Au) are

S = {β ∈ F2m : XOR(β) ≤ C− 1− θ − τ}.

Once we have C and a subset S of F∗2m we construct the following set by searching
exhaustively:

Mn
2×n(S, C, θ) = { H : H is n2 × n matrix over S satisfying (11)

and C(H) ≤ C− 1− θ }.

Note that if A is an MDS matrix with C(A) < C then Au, A` ∈ Mn
2×n(S, C, θ). On the

other hand if U,L ∈Mn
2×n(S, C, θ), and

A =
[

U
L

]
as in (10) is an n× n MDS matrix with C(A) < C then our search succeeds in finding a
new matrix with lower XOR counts, that improves the lower bound C. Clearly during this
step, we need to consider |Mn

2×n(S, C, θ)|2 pairs. Thus the whole search requires

|S|n2×n + |Mn
2×n(S, C, θ)|2 (13)

effort. The second term grows with both S, (C− θ), and if these two values are moderate,
then |Mn

2×n(S, C, θ)|2 will be dominated by the initial search effort |S|n2×n, as can be seen
in Section 5 and 6.
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5 MDS matrices over F28 with minimal XOR count
So far the best known XOR count of a 4×4 MDS matrix over F28 is 32+4 ·3 ·8 as reported
in [16]. Thanks to Corollary 1 and Corollary 2, we know that there exist MDS matrices
with improved XOR counts as 30+4·3·8 under primitive polynomial X8 +X6 +X5 +X2 +1,
and 27 + 4 · 3 · 8 under primitive polynomial X8 +X7 +X6 +X + 1, respectively. Next we
determine the minimum possible XOR count of these matrices using the search method
described earlier.

5.1 Under the irreducible polynomial X8 + X7 + X6 + X + 1
We consider the primitive polynomial X8 +X7 +X6 +X + 1 of F28 , and check whether
there is any 4× 4 MDS matrix A such that C(A) < 27, i.e., in our search strategy we set
C = 27.

First we need to know the value of θ as given in (12), i.e., the minimum value of a
2× 4 matrix Au (respectively A`) over F28 such that all its submatrices are nonsingular.
We consider all possible 2 × 4 matrices H formed by elements with low XOR counts,
in particular we take {1, α, α−1, α2, α−2}, in which XOR count of every element is ≤ 5.
The minimum C(H) we obtain is 11. If there is a 2× 4 matrix H that satisfies (11) and
C(H) < 11, then an element β with XOR(β) ≥ 11 can never be a part of it, in fact any
β with XOR(β) > 7 can never be a part of it. The reason is the following: suppose
C(H) < 11 and H has an element β with 7 < XOR(β) < 11. Then 7 < C(H) < 11, which
implies all the other 7 elements of H are all equal to 1, as XOR(1) = 0, and the next
minimum XOR count in F28 is 3. In this case H has singular submatrices. So to know the
value of θ we form H with elements from B = {β : XOR(β) ≤ 7} and check whether H
satisfies (11) and C(H) < 11. Note that |B| = 6, and this search is 68 ≈ 221. We do not
find any such H, so we conclude that θ = 11.

Now that we know θ = 11, the maximum possible value of C(A`) (respectively C(Au))
is 15 in order to make the total sum ≤ 26. In a 2× 4 matrix Au (respectively A`) if one
element has XOR count 15, then rest of the 7 elements have to be 1, as XOR(1) = 0.
But such a matrix has singular submatrices. So an element with XOR count 15 cannot
be an entry of Au (respectively A`). Using the same logic as used in determining θ,
we conclude that the maximum possible XOR count of an element in Au (respectively
A`) could be 12, as the minimum nonzero XOR count value is 3. So we select the set
S = {β ∈ F∗28 : XOR(β) ≤ 12}. The cardinality of S is 23, and hence the search space
becomes 238 ≈ 236. Then we form all possible 2× 4 matrices Au such that C(Au) ≤ 15
and all its submatrices are nonsingular. The number of such matrices is 3360, and these
form the possible choices for both Au and A`. Combining Au and A` to form A, we further
check whether all the submatrices of A are nonsingular, if so, we check the value of C(A).
This requires to check 33602 ≈ 224 pairs of 2× 4 matrices. Exhausting the search we do
not find any MDS matrix A such that C(A) ≤ 26. Therefore, our search completes with
the conclusion that the minimum value of C(A) is 27. We write it more formally below.

Proposition 5. The minimum value of XOR count of a 4×4 MDS matrix over F28 under
the irreducible polynomial X8 +X7 +X6 +X + 1 is 27 + 4 · 3 · 8.

One may note that the initial search effort 236 dominates in the whole search effort as
the effort to combine the pairs is 224.

5.2 Under the irreducible polynomial X8 + X6 + X5 + X2 + 1
We consider the primitive polynomial X8 +X6 +X5 +X2 + 1 of F28 , and check whether
there is any 4× 4 MDS matrix A such that C(A) < 30.
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To do this search we consider C = 30, and carefully look at possible values of C(Au)
(respectively C(A`)) of every 2 × 4 matrix Au (respectively A`). As described in the
previous search, we first determine the value of θ following the same technique. First we
consider {1, α, α−1, α2, α−2}, where the maximum XOR count attained is 6, and form all
possible 2 × 4 matrices H satisfying (11). In this search, the minimum value of C(H)
is 12. As XOR(1) = 0 and the next minimum XOR count is 3, now we have to choose
B = {β : XOR(β) ≤ 8} in order to determine if the minimum value of C(H) is < 12 for all
H satisfying (11). We notice that B = {1, α, α−1, α2, α−2}. This concludes that θ = 12.

Therefore when we half a matrix A into Au and A` of order 2× 4, the minimum value
of C(Au) (respectively C(A`)) is 12. Consequently, the maximum possible value of C(A`)
(respectively C(Au)) is 17 in order to make the total sum ≤ 29. In a 2 × 4 matrix Au

(respectively A`) if one element has XOR count 17, then rest of the 7 elements have to be 1,
as 1 has XOR count zero. But such a matrix has singular submatrices. So an element with
XOR count 17 cannot be an entry of Au (respectively A`). Using the same logic as used
in the previous search, we conclude that the maximum possible XOR count of an element
in Au (respectively A`) could be 14, as the minimum nonzero XOR count value is 3. So
we select the set S = {β ∈ F28 : XOR(β) ≤ 14}. The cardinality of S is 22, and hence the
search space becomes 228 ≈ 236. Then we form all possible 2× 4 matrices Au such that
C(Au) ≤ 17 and all its submatrices are nonsingular. The number of such matrices is 3552,
and these form the possible choices for both Au and A`. Combining Au and A` to form
A, we further check whether all the submatrices of A are nonsingular, if so, we check the
value of C(A). This requires to check 35522 ≈ 224 pairs. Exhausting the search we do not
find any MDS matrix A such that C(A) ≤ 29. Therefore, our search completes with the
conclusion that the minimum value of C(A) is 30. We write it more formally below.

Proposition 6. The minimum value of XOR count of a 4×4 MDS matrix over F28 under
the irreducible polynomial X8 +X6 +X5 +X2 + 1 is 30 + 4 · 3 · 8.

As we see the initial search effort is 236 and checking the pairs is 224, thus in this case
also the initial search dominates in the whole search effort.

We check for all irreducible polynomials (up to reciprocals) that generate F28 , and did
not find any MDS matrix that improves the lower bound 27 + 4 · 3 · 8.

Proposition 7. Over all irreducible polynomials of degree 8, the minimum XOR count of
4× 4 MDS matrices over F28 is 27 + 4 · 3 · 8.

6 MDS matrices over F24 with minimal XOR count
Next we aim for finding MDS matrices with the least XOR count over F24 . The currently
known lower bound is 12 + 4 · 3 · 4 [16]. In Corollary 3, we already have obtained an
improved XOR count 10 + 4 · 3 · 4. We consider GF (24) generated by the primitive
element α which is a root of X4 +X3 + 1. We search for general MDS matrices A with
C(A) < 10. As previously done, we half the matrix A in two parts Au and A`. First
we find that the minimum possible value of Au (respectively A`) by following the same
strategy as used in the previous search. That is, we start with the set {1, α, α−1, α2, α−2}
and follow the exact method as before to reach the conclusion that minC(Au) = 4. As
the minimum nonzero XOR count value is 1, so using the same logic as done for F28 , we
set S = {β ∈ F24 : XOR(β) ≤ 4}, in this case |S| = 6. Thus the search space for Au is 68.
The total number of possible Au (respectively A`) is 1344. Then combining Au and A` we
do not obtain any matrix A such that C(A) < 10.

Proposition 8. The minimum value of the XOR count of a 4× 4 MDS matrix over F24

under the irreducible polynomial X4 +X3 + 1 is 10 + 4 · 3 · 4.
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There are 3 irreducible polynomials of degree 4: X4 + X3 + 1 and X4 + X + 1 are
reciprocals of each other and the remaining one is X4 +X3 +X2 +X + 1. We now check if
there is any 4× 4 MDS matrix A over F24 with C(A) < 10 under X4 +X3 +X2 +X + 1.
Let us first find what is the minimum possible XOR count that a 4× 4 MDS matrix can
have under this polynomial. Under X4 +X3 +X2 +X + 1, the minimum possible nonzero
XOR count is 3, which is for α, a root of X4 +X3 +X2 +X + 1 = 0, and we also have
XOR(1) = 0. We know from [12] that the maximum number of possible 1’s in a 4×4 MDS
matrix is 9. So if a 4× 4 MDS matrix M has 1 in 9 places, and the rest 7 are elements
with the least XOR counts, i.e., 3, then it shows that sum of the XOR counts of elements
of M , is C(M) ≥ 7× 3 = 21. Thus we conclude the following.

Proposition 9. Over all irreducible polynomials of degree 4, the minimum XOR count of
4× 4 MDS matrices over F24 is 10 + 4 · 3 · 4.

7 Involutory MDS matrices over F24 and F28

We have seen in the previous sections that there are 4× 4 Toeplitz MDS matrices that
achieve the minimum XOR counts over F24 and F28 respectively. As Theorem 1 suggests
that involutory MDS Toeplitz matrices do not exist, we have to check beyond the space
of Toeplitz matrices to get involutory MDS matrices. In the following we present results
related to involutory MDS matrices and their XOR counts. We construct 4× 4 involutory
MDS matrices of the form

N =
[
A B
C A

]
, (14)

where A,B and C are 2 × 2 Hadamard matrices. One may note that [23] searched for
involutory MDS matrices in a class, which is actually a subclass of (14). They considered
matrices of the form [

A A−1

A+A3 A

]
,

where A is an MDS matrix.
The intuition as mentioned in the constructions of MDS Toeplitz matrices at the

beginning of Section 3.1 can similarly be applied for the constructions of involutory MDS
matrices of the form (14). We are able to derive theoretical constructions of 4×4 involutory
MDS matrices. First we present a class of 4 × 4 involutory MDS matrices over F2m as
follows.

Proposition 10. Suppose N1(x) is a 4× 4 matrix over F2m such that

N1(x) =


1 x 1 x2 + 1
x 1 x2 + 1 1
x−2 1 + x−2 1 x

1 + x−2 x−2 x 1

 . (15)

Then N1(x) is an involutory matrix for all nonzero x ∈ F2m , and if the degree of the
minimal polynomial of x over F2 is ≥ 4, then N1(x) is also MDS.

Proof. It is easy to check that N1(x) is involutory for any x ∈ F∗2m . We now show that it
is MDS.

Consider the set ∆2 and ∆3 of all distinct determinants of submatrices of N1(x) of
order 2× 2 and 3× 3 respectively:
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∆2(N1(x)) = {x2 + 1, (x2 + 1)/x2, x2 + x+ 1, x3 + x+ 1, 1/x2, 1, x4,

(x3 + x2 + 1)/x2, (x4 + 1)/x2, (x4 + x2 + 1)/x2,

(x3 + x+ 1)/x2, (x2 + x+ 1)/x2},

∆3(N1(x)) = {1, x2 + 1, (x2 + 1)/x2, x, 1/x2}.

Note that numerators of all the elements of ∆2(N1(x)) and ∆3(N1(x)) can be factored
into irreducible polynomials over F2 of maximum degree 3 (refer to Appendix A.3).
Therefore, none of these determinants is equal to zero as the degree of the minimal
polynomial of x is ≥ 4. Since N1(x) is involutory so its determinant is 1. Thus N1(x) is
MDS for such a given x.

Next we present another class of 4× 4 involutory MDS matrices over F2m as follows.

Proposition 11. Suppose N2(x) is a 4× 4 matrix over F2m such that

N2(x) =


1 x2 + 1 x 1

x2 + 1 1 1 x
x3 + x x2 + 1 1 x2 + 1
x2 + 1 x3 + x x2 + 1 1

 . (16)

Then N2(x) is an involutory matrix for all x ∈ F2m , and if the degree of the minimal
polynomial of x over F2 is ≥ 4, then N2(x) is also MDS.

Proof. We skip the proof of the involutory property and only show that N2(x) is MDS.
Consider the set ∆2 and ∆3 of all distinct determinants of submatrices of N2(x) of

order 2× 2 and 3× 3 respectively:

∆2(N2(x)) = {x2 + 1, x4 + x3 + x+ 1, x4 + x2, x2 + x+ 1, x3 + x+ 1,
x4 + x2 + 1, x5 + x2 + x+ 1, x4, x3 + x2 + x+ 1, x2,

x6 + x4 + x2 + 1},

∆3(N2(x)) = {1, x2 + 1, x, x3 + x}.

All the elements of ∆2(N2(x)) and ∆3(N2(x)) can be factored into irreducible poly-
nomials over F2 of maximum degree 3 (refer to Appendix A.4). Therefore, none of these
determinants is equal to zero as the degree of the minimal polynomial of x is ≥ 4. Since
N2(x) is involutory so its determinant is 1. Thus N2(x) is MDS for such a given x.

We would like to point out that thanks to Propositions 10 and 11, it is very easy to
construct involutory MDS matrices. For example, for F2m , where m ≥ 4, one can just take
x = α, where α is a root of the underlying irreducible polynomial of the field.
Remark 3. One may note that both the classes N1 and N2 contain many involutory MDS
matrices over F2m . For example over F28 , the number of involutory MDS matrices that
both N1 and N2 give is |F28 | − |F22 | = 252.

We check XOR counts of the involutory MDS matrices of type N1 for all possible
irreducible polynomials of degree 4 and 8 for F24 and F28 respectively. For F28 , the
minimum XOR count obtained for N1 is 64 + 4 · 3 · 8. On the other hand, for F24 , the
minimum XOR count obtained for N1 is 30 + 4 · 3 · 4. Note that the known lower bound of
XOR count of 4× 4 involutory MDS matrices over F28 is 64 + 4 · 3 · 8, which was obtained



Sumanta Sarkar and Habeeb Syed 109

by searching over a huge space of Hadamard matrices [20]. However, we show that a
theoretical construction is possible to get such a matrix.

Similarly we check XOR counts of the involutory MDS matrices of the N2 for all
possible irreducible polynomials of degree 4 and 8 for F24 and F28 respectively. For F28 ,
the minimum XOR count obtained for N2 is 70 + 4 · 3 · 8. On the other hand for F24 , the
minimum XOR count obtained for N1 is 16 + 4 · 3 · 4. The best known XOR count of 4× 4
involutory MDS matrix over F24 was 24 + 4 · 3 · 4 obtained by a search [20]. Therefore, we
are actually improving the lower bound of XOR count of 4× 4 involutory MDS matrix
over F24 with a theoretical construction.

Below we give examples of 4× 4 involutory MDS matrices with XOR counts 64 + 4 · 3 · 8
and 16 + 4 · 3 · 4 over F28 and F24 respectively.

Example 2. The matrix 
1 α 1 α211

α 1 α211 1
α−2 α209 1 α
α209 α−2 α 1


is involutory and MDS over F28 , where α is a root of the irreducible polynomial X8 +X6 +
X5 +X2 + 1. As XOR counts of 1, α, α−2, α209 and α211 are 0, 3, 6, 10 and 10 respectively,
so the XOR count of this matrix is 64 + 4 · 3 · 8.

Example 3. The matrix 
1 α α2 1
α 1 1 α2

α3 α 1 α
α α3 α 1


is involutory and MDS over F24 , where α is a root of the irreducible polynomial X4 +X+1.
Since the XOR counts of 1, α, α2 and α3 are 0, 1, 2 and 3 respectively. with XOR count
16 + 4 · 3 · 4.

8 Summary
In this section, we summarize our findings, and compare with the previous results.

Table 1: Comparison of the minimum XOR count of 4× 4 MDS matrices over F28 and
F24 with the previous known values.

F28

Irreducible polynomial Reference Matrix type XOR Counts
X8 +X7 +X6 +X + 1 Corollary 2 Toeplitz 27 + 4 · 3 · 8 (Minimum)
X8 +X7 +X6 +X + 1 [20] Hadamard 52 + 4 · 3 · 8
X8 +X4 +X3 +X2 + 1 [14] serial/circulant 36 + 4 · 3 · 8
X8 +X7 +X6 +X + 1 [16] left-circulant 32 + 4 · 3 · 8

F24

X4 +X3 + 1 Corollary 3 Toeplitz 10 + 4 · 3 · 4 (Minimum)
X4 +X + 1 [20] Hadamard 20 + 4 · 3 · 4
X4 +X + 1 LED [9] serial 16 + 4 · 3 · 4
X4 +X + 1 [14] serial/circulant 12 + 4 · 3 · 4

Table 1 shows that the minimum possible XOR count of a 4× 4 MDS matrix over F28

is 27 + 4 · 3 · 8 and over F24 is 10 + 4 · 3 · 4, the previously known values are 32 + 4 · 3 · 8
and 12 + 4 · 3 · 4, respectively [16].
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Table 2: Comparison of the XOR counts of 4× 4 involutory MDS matrices over F28 and
F24 .

F28

Irreducible polynomial Reference Matrix type XOR Counts
X8 +X6 +X5 +X2 + 1 Example 2 As in (14) 64 + 4 · 3 · 8
X8 +X6 +X5 +X2 + 1 [20] Hadamard 64 + 4 · 3 · 8
X8 +X4 +X3 +X2 + 1 [2] Hadamard 88 + 4 · 3 · 8
X8 +X4 +X3 +X + 1 [7] Compact Cauchy 216 + 4 · 3 · 8

F24

X4 +X + 1 Example 3 As in (14) 16 + 4 · 3 · 4
X4 +X + 1 [20] Hadamard 24 + 4 · 3 · 4
X4 +X3 + 1 [13] Hadamard 24 + 4 · 3 · 4

In Table 2, we compare the XOR counts of 4× 4 involutory MDS matrices over F24

and F28 that we obtain in this paper with the previously known lower bound. For F24

we present a new lower bound of XOR count of a 4× 4 MDS involutory matrix which is
16 + 4 · 3 · 4.

9 Conclusions
In this paper we have obtained the minimum values of XOR counts of 4× 4 MDS matrices
over F24 and F28 . We have considered the polynomial basis as this is a conventional choice
in practice. Moreover, as in [18] we already have seen that all the best MDS matrices were
found under polynomial basis, we are not attempting other bases. It is unlikely to get lower
values of XOR counts on other bases. The interesting finding is that MDS matrix with the
minimum XOR count belongs to the class of Toeplitz matrices. As the first row and the
first column defines a Toeplitz matrix, these are efficiently implementable in hardware, and
thus the Toeplitz matrix that have the minimum XOR count becomes a suitable candidate
for lightweight diffusion matrix. However, we must remind that as our proof shows that
Toeplitz matrix cannot be both involutory and MDS, hence the lightweight diffusion layer
that demands the both of these properties, Toeplitz matrices do not apply there.

We also have improved the lower bounds of XOR counts of involutory MDS matrices
over F24 , and provide theoretical constructions of a class of involutory MDS matrices which
contains such a matrix. For F28 , we have another construction of involutory MDS matrices
that yields a matrix with the best known XOR count.

At this moment it looks difficult to determine the minimum value of XOR count of
8× 8 matrices. However, by using a more involved strategy based on our search method,
this might be doable. We leave it for the future research.
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A Factorizations of the determinants in Proposition 3, Propo-
sition 4, Proposition 10 and Proposition 11

A.1 Determinants in Proposition 3
We only factor the terms having degree > 4.

∆2(T1(x)) = {x2 + 1, x+ 1, (x3 + 1)/x2, (x+ 1)/x,
(x+ 1)/x2, (x4 + 1)/x2, (x5 + 1)/x4, (x2 + 1)/x2,

(x6 + 1)/x4, (x2 + 1)/x4}
= {x2 + 1, x+ 1, (x3 + 1)/x2, (x+ 1)/x,

(x+ 1)/x2, (x4 + 1)/x2, (x + 1)(x4 + x3 + x2 + x + 1)/x4,

(x2 + 1)/x2, (x + 1)2(x2 + x + 1)2/x4, (x2 + 1)/x4}.

∆3(T1(x)) = {(x8 + x4 + x2 + 1)/x6, (x2 + 1)/x2, x2 + 1, (x5 + x4 + x3 + 1)/x4,

(x2 + 1)/x4, (x5 + x4 + x3 + 1)/x3, (x7 + x5 + x3 + x2 + x + 1)/x4,

(x5 + x2 + x + 1)/x2, (x6 + x5 + x4 + x3 + x2 + 1)/x4, (x6 + 1)/x4}
= {(x + 1)2(x3 + x2 + 1)2/x6, (x2 + 1)/x2, x2 + 1,

(x + 1)2(x3 + x2 + 1)/x4, (x2 + 1)/x4, (x + 1)2(x3 + x2 + 1)/x3,

(x + 1)2(x2 + x + 1)(x3 + x2 + 1)/x4, (x + 1)2(x3 + x + 1)/x2,

(x + 1)2(x4 + x3 + 1)/x4, (x + 1)2(x2 + x + 1)2/x4}.

http://eprint.iacr.org/
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A.2 Determinants in Proposition 4
We only factor the terms having degree > 3.

∆2(T2)(x) = {(x3 + 1)/x2, (x2 + 1)/x, (x+ 1)/x2, (x+ 1)/x,
1 + x, (x3 + 1)/x, (x3 + 1)/x4, (x3 + 1)/x3, (x2 + 1)/x2,

(x4 + 1)/x3, (x4 + 1)/x4}
= {(x3 + 1)/x2, (x2 + 1)/x, (x+ 1)/x2, (x+ 1)/x,

1 + x, (x3 + 1)/x, (x3 + 1)/x4, (x3 + 1)/x3, (x2 + 1)/x2,

(x + 1)4/x3, (x + 1)4/x4}.

∆3(T2)(x) = { (x2 + 1)/x3, (x2 + 1)/x4, (x4 + 1)/x3, (x6 + x5 + x3 + 1)/x5,

(x6 + x5 + x3 + 1)/x6, (x5 + x4 + x3 + 1)/x3,

(x5 + x4 + x3 + 1)/x4}
= { (x2 + 1)/x3, (x2 + 1)/x4, (x + 1)4/x3, (x + 1)3(x3 + x + 1)/x5,

(x + 1)3(x3 + x + 1)/x6, (x + 1)2(x3 + x2 + 1)/x3,

(x + 1)2(x3 + x2 + 1)/x4}.

A.3 Determinants in Proposition 10
We only factor terms with degree > 3.

∆2(N1(x)) = {x2 + 1, (x2 + 1)/x2, x2 + x+ 1, x3 + x+ 1, 1/x2, 1, x4,

(x3 + x2 + 1)/x2, (x4 + 1)/x2, (x4 + x2 + 1)/x2,

(x3 + x+ 1)/x2, (x2 + x+ 1)/x2}
= {x2 + 1, (x2 + 1)/x2, x2 + x+ 1, x3 + x+ 1, 1/x2, 1, x4,

(x3 + x2 + 1)/x2, (x + 1)4/x2, (x2 + x + 1)2/x2,

(x3 + x+ 1)/x2, (x2 + x+ 1)/x2}.

A.4 Determinants in Proposition 11
We only factor terms with degree > 3.

∆2(N2(x)) = {x2 + 1,x4 + x3 + x + 1,x4 + x2, x2 + x+ 1, x3 + x+ 1,
x4 + x2 + 1,x5 + x2 + x + 1, x4, x3 + x2 + x+ 1, x2,

x6 + x4 + x2 + 1}
= {x2 + 1, (x + 1)2(x2 + x + 1), (x2 + x)2, x2 + x+ 1, x3 + x+ 1,

(x2 + x + 1)2, (x + 1)2(x3 + x + 1), x4, x3 + x2 + x+ 1, x2,

(x + 1)6}.


	Introduction
	Preliminaries
	Basics of XOR counts

	Toeplitz MDS Matrices
	Constructions of MDS Toeplitz matrix

	Searching for MDS Matrix with the minimum XOR count
	MDS matrices over F28 with minimal XOR count
	Under the irreducible polynomial X8 + X7 + X6 + X + 1
	Under the irreducible polynomial X8 + X6 + X5 + X2 + 1

	MDS matrices over F24 with minimal XOR count
	Involutory MDS matrices over F24 and F28
	Summary
	Conclusions
	Factorizations of the determinants in Proposition 3, Proposition 4, Proposition 10 and Proposition 11 
	Determinants in Proposition 3
	Determinants in Proposition 4
	Determinants in Proposition 10
	Determinants in Proposition 11


