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Rotational Cryptanalysis

Circular Rotation

(x≪ r)≪ s = x≪ (r + s)

XOR

(x≪ r)⊕ (y≪ r) = (x⊕ y)≪ r

Modular Addition

(x≪ r)� (y≪ r) = (x� y)≪ r with probability p
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Rotational Cryptanalysis

Modular Addition

(x≪ r)� (y≪ r) = (x� y)≪ r with probability p

When r = 1, p achieves the maximum.

p = 2−1.415

Denote x≪ 1 by ←−x for simplicity.
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Rotational Cryptanalysis

Rotational Cryptanalysis (v1), [KN10]

The probability that a rotational distinguisher holds for an ARX
primitive is determined by the number of modular additions.

Pr = (2−1.415)#�

[KN10]: D. Khovratovich, I. Nikolic: Rotational Cryptanalysis of ARX, FSE 2010
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Rotational Cryptanalysis

Rotational Cryptanalysis (v2), [KNP+15]

The probability that a rotational distinguisher holds for an ARX
primitive is dependent with the chained modular additions.

(x≪ r)� (y≪ r) = (x� y)≪ r

(x≪ r)� (y≪ r)� (z≪ r) = (x� y � z)≪ r

[KNP+15]: D. Khovratovich, I. Nikolic, J. Pieprzyk, P. Sokolowski, R. Steinfeld:

Rotational Cryptanalysis of ARX Revisited. FSE 2015
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ARX with constants

• Complete system ARX-C

• Constants come with keys and round constants

XOR with a rotational variable

(x≪ r)⊕ (y≪ r) = (x⊕ y)≪ r

XOR with a constant

(x≪ r)⊕ k

• Previous analyses: experiment
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Rotational cryptanalysis on ARX-C

Ek Ek

x≪ rx

y≪ ry

Ek Ek

x′ = x≪ rx

y y′⊕δ = y≪ r
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Rotational-XOR difference

Combine rotational difference with XOR difference

(x, (x≪ γ)

⊕ a)

((a1, a2), γ)-Rotational-XOR difference (RX-difference)

(x⊕ a1, (x≪ γ)⊕ a2)

equivalent to
(x̃, (x̃≪ γ)⊕ (a1 ≪ γ)⊕ a2)
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Rotational-XOR difference through ARX

Rotation
x
≪γ−−−→ x≪ γ

←−x ⊕ a ≪γ−−−→←−−−−x≪ γ ⊕ (a≪ γ)

⇒ ((0, a), 1)
≪γ−−−→ ((0, a≪ γ), 1)

XOR
x, y

⊕−−→ x⊕ y

←−x ⊕ a,←−y ⊕ b ⊕−−→←−−−x⊕ y ⊕ (a⊕ b)

⇒ ((0, a), 1), ((0, b), 1)
⊕−−→ ((0, a⊕ b), 1)
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Rotational-XOR difference through ARX
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Rotational-XOR difference through ARX

Modular addition

←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2

Sketch of proof:

x = R(x) L0(x) R0(x)=L(x)
� bits � bits

The addition of two variables:

R(x)L(x)

L(y) R(y)

� R(x) � R(y)L(x) � L(y)�C1
n��

x
one bit of carry
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proof continued

LHS:
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1

=
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
((L(x)⊕ L(a1))� (L(y)⊕ L(b1))� C1

n−γ)⊕ L(∆1)||

((R(x)⊕R(a1))� (R(y)⊕R(b1)))⊕R(∆1)

= ((R(x)⊕R(a1))� (R(y)⊕R(b1)))⊕R(∆1)||

((L(x)⊕ L(a1))� (L(y)⊕ L(b1))� C1
n−γ)⊕ L(∆1).

RHS: (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2

= ((R(x)⊕ L
′
(a2))� (R(y)⊕ L

′
(b2))� C2

γ)⊕ L
′
(∆2)||

((L(x)⊕R
′
(a2))� (L(y)⊕R

′
(b2)))⊕R

′
(∆2).
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Rotational-XOR difference through ARX

proof continued

((L(x)⊕ L(a1))� (L(y)⊕ L(b1))� C1
n−γ)⊕ L(∆1) =

((L(x)⊕R
′
(a2))� (L(y)⊕R

′
(b2)))⊕R

′
(∆2).

((R(x)⊕ L
′
(a2))� (R(y)⊕ L

′
(b2))� C2

γ)⊕ L
′
(∆2) =

(R(x)⊕R(a1))� (R(y)⊕R(b1))⊕R(∆1),

Consider the carry

0 + 0 = 00

0 + 1 = 01

1 + 0 = 01

1 + 1 = 10

Distribution of C1
n−γ and C2

γ , when γ = 1

Pr[C2
γ = 0, C1

n−γ = 0] = 2−1.415

Pr[C2
γ = 0, C1

n−γ = 1] = 2−1.415

Pr[C2
γ = 1, C1

n−γ = 0] = 2−3

Pr[C2
γ = 1, C1

n−γ = 1] = 2−3.
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Rotational-XOR difference through ARX

proof continued
x� y = (x⊕ ζ1)� (y⊕ ζ2)⊕ ζ3 differential probability

x� y � 1 = (x⊕ ζ1)� (y ⊕ ζ2)⊕ ζ3 See Lemma 1

RX-difference through modular addition:

Pr[
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2]

= 1(I⊕SHL)(δ1⊕δ2⊕δ3)⊕1�SHL((δ1⊕δ3)|(δ2⊕δ3)) · 2
−|SHL((δ1⊕δ3)|(δ2⊕δ3))| · 2−3

+ 1(I⊕SHL)(δ1⊕δ2⊕δ3)�SHL((δ1⊕δ3)|(δ2⊕δ3)) · 2
−|SHL((δ1⊕δ3)|(δ2⊕δ3))| · 2−1.415,

where δ1 = R(a1)⊕ L
′
(a2), δ2 = R(b1)⊕ L

′
(b2), δ3 = R(∆1)⊕ L

′
(∆2)
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SPECK Family

• NSA cipher

• block size 32/48/64/96/128 (2n)

• key size mn with m = 2, 3, 4

li+m−2 · · · li ki

Rici

xi yi

≫ α

≪ β

xi+1 yi+1

ki

19



SPECK Family

• NSA cipher

• block size 32/48/64/96/128 (2n)

• key size mn with m = 2, 3, 4

li+m−2 · · · li ki

Rici

xi yi

≫ α

≪ β

xi+1 yi+1

ki

19



SPECK Family

• NSA cipher

• block size 32/48/64/96/128 (2n)

• key size mn with m = 2, 3, 4

li+m−2 · · · li ki

Rici

xi yi

≫ α

≪ β

xi+1 yi+1

ki

19



SPECK Family

• NSA cipher

• block size 32/48/64/96/128 (2n)

• key size mn with m = 2, 3, 4

li+m−2 · · · li ki

Rici

xi yi

≫ α

≪ β

xi+1 yi+1

ki

19



Application to SPECK32/64
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• Track RX-difference propagation in the key schedule

• Based on the good RX-trails found in the key schedule, track
the propagation of RX-differences in the encryption
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Application to SPECK32/64

An RX-characteristic in the keyschedule

Round a1 b1 ∆1 a2 b2 ∆2 Predicted Empirical Accumulated
Prob. Prob. Prob.

1 0 0 0 0 0 0 2−1.415 2−1.415 2−1.415

2 0 0 0 0 0 0 2−1.415 2−1.415 2−2.83

3 0 1 0 0 1 2 2−2.415 2−2.415 2−5.245

4 0 2 6 0 0 8 2−2.415 2−2.415 2−7.66

5 0 D C4 0 B 78 2−6.415 2−6.415 2−14.075

6 0 F4 0 1000 50 1088 2−7.415 2−7.415 2−21.49

Total 2−21.49

Experimental probability: 2−25.046, leading to a weak-key class of size 239

All RX-differences are in hexadecimal notation.
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Application to SPECK32/64

A corresponding RX-characteristic in the round function

Round Input diff. Key diff. Output diff. Predicted Empirical
(left,right) (left,right) accumu. Prob. accumu. Prob.

0 0, 0 0 0, 0 2−1.415 2−1.415

1 0, 0 0 0, 0 2−2.83 2−2.85

2 0, 0 3 3, 3 2−4.245 2−4.27

3 3, 3 4 607, 60B 2−8.66 2−8.68

4 607, 60B 11 40E, 1C22 2−15.075 2−15.01

5 40E, 1C22 1B8 3992, 491A 2−21.49 2−21.44

6 3992, 491A 1668 333F, 1756 2−31.905 2−31.6

All RX-differences are in hexadecimal notation.

Open-key model vs. Single-key model

22



Application to SPECK32/64

A corresponding RX-characteristic in the round function

Round Input diff. Key diff. Output diff. Predicted Empirical
(left,right) (left,right) accumu. Prob. accumu. Prob.

0 0, 0 0 0, 0 2−1.415 2−1.415

1 0, 0 0 0, 0 2−2.83 2−2.85

2 0, 0 3 3, 3 2−4.245 2−4.27

3 3, 3 4 607, 60B 2−8.66 2−8.68

4 607, 60B 11 40E, 1C22 2−15.075 2−15.01

5 40E, 1C22 1B8 3992, 491A 2−21.49 2−21.44

6 3992, 491A 1668 333F, 1756 2−31.905 2−31.6

All RX-differences are in hexadecimal notation.

Open-key model vs. Single-key model

22



Table of Contents

ARX & Rotational Cryptanalysis

Rotational cryptanalysis with constants

Experiment Verification

Conclusion

23



Conclusion

• We propose a new notion of difference: Rotational-XOR
difference

• Rotational cryptanalysis in the presence of constants can be
mathematically characterised

• RX-distinguisher on SPECK32/64 is found

• Further applications on ARX ciphers
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Thank you!
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