Rotational Cryptanalysis in the Presence of Constants

Tomer Ashur Yunwen Liu

ESAT/COSIC, KU Leuven, and imec, Belgium

FSE, March 2017

Table of Contents

ARX & Rotational Cryptanalysis

Rotational cryptanalysis with constants

Experiment Verification

Conclusion

• Symmetric-key designs

- Symmetric-key designs
- Addition + Rotation + XOR

- Symmetric-key designs
- Addition + Rotation + XOR
- Differential cryptanalysis and linear cryptanalysis

- Symmetric-key designs
- Addition + Rotation + XOR
- Differential cryptanalysis and linear cryptanalysis
- Rotational cryptanalysis

Differences

XOR difference

Differences

XOR difference

Modular difference

 E_k

Differences

Circular Rotation

$$(x \lll r) \lll s = x \lll (r+s)$$

Circular Rotation

$$(x \lll r) \lll s = x \lll (r+s)$$

XOR

$$(x \lll r) \oplus (y \lll r) = (x \oplus y) \lll r$$

Circular Rotation

$$(x \lll r) \lll s = x \lll (r+s)$$

XOR

$$(x \lll r) \oplus (y \lll r) = (x \oplus y) \lll r$$

Modular Addition

$$(x\lll r)\boxplus (y\lll r)=(x\boxplus y)\lll r \qquad \text{with probability }p$$

Modular Addition

 $(x \lll r) \boxplus (y \lll r) = (x \boxplus y) \lll r \qquad \text{with probability } p$

Modular Addition

$$(x\lll r)\boxplus (y\lll r)=(x\boxplus y)\lll r \qquad \text{with probability }p$$

When r = 1, p achieves the maximum.

$$p = 2^{-1.415}$$

Modular Addition

$$(x\lll r)\boxplus (y\lll r)=(x\boxplus y)\lll r \qquad \text{with probability }p$$

When r = 1, p achieves the maximum.

$$p = 2^{-1.415}$$

Denote $x \ll 1$ by \overleftarrow{x} for simplicity.

Rotational Cryptanalysis (v1), [KN10]

The probability that a rotational distinguisher holds for an ARX primitive is determined by the number of modular additions.

$$\Pr = (2^{-1.415})^{\#\boxplus}$$

[KN10]: D. Khovratovich, I. Nikolic: Rotational Cryptanalysis of ARX, FSE 2010

Rotational Cryptanalysis (v2), [KNP+15]

The probability that a rotational distinguisher holds for an ARX primitive is dependent with the chained modular additions.

Rotational Cryptanalysis (v2), [KNP+15]

The probability that a rotational distinguisher holds for an ARX primitive is dependent with the chained modular additions.

$$(x \lll r) \boxplus (y \lll r) = (x \boxplus y) \lll r$$
$$(x \lll r) \boxplus (y \lll r) \boxplus (z \lll r) = (x \boxplus y \boxplus z) \lll r$$

[KNP+15]: D. Khovratovich, I. Nikolic, J. Pieprzyk, P. Sokolowski, R. Steinfeld: Rotational Cryptanalysis of ARX Revisited. FSE 2015 Table of Contents

ARX & Rotational Cryptanalysis

Rotational cryptanalysis with constants

Experiment Verification

Conclusion

• Complete system ARX-C

- Complete system ARX-C
- Constants come with keys and round constants

- Complete system ARX-C
- Constants come with keys and round constants

XOR with a rotational variable

$$(x\lll r)\oplus (y\lll r)=(x\oplus y)\lll r$$

- Complete system ARX-C
- Constants come with keys and round constants

XOR with a rotational variable

$$(x\lll r)\oplus (y\lll r)=(x\oplus y)\lll r$$

XOR with a constant

$$(x \lll r) \oplus k$$

- Complete system ARX-C
- Constants come with keys and round constants

XOR with a rotational variable

$$(x\lll r)\oplus (y\lll r)=(x\oplus y)\lll r$$

XOR with a constant

$$(x\lll r)\oplus k$$

• Previous analyses: experiment

Rotational cryptanalysis on ARX-C

Rotational cryptanalysis on ARX-C

Rotational cryptanalysis on ARX-C

Combine rotational difference with XOR difference

 $(x, (x \lll \gamma)$

Combine rotational difference with XOR difference

 $(x, (x \lll \gamma) \oplus a)$

Combine rotational difference with XOR difference

 $(x,(x\lll \gamma)\oplus a)$

 $((a_1,a_2),\gamma) ext{-Rotational-XOR difference (RX-difference)}$ $(x\oplus a_1,(x\lll\gamma)\oplus a_2)$

Combine rotational difference with XOR difference

$$(x,(x\lll \gamma)\oplus a)$$

$((a_1,a_2),\gamma)$ -Rotational-XOR difference (RX-difference) $(x\oplus a_1,(x\lll \gamma)\oplus a_2)$

equivalent to

$$(\tilde{x}, (\tilde{x} \ll \gamma) \oplus (a_1 \ll \gamma) \oplus a_2)$$

Rotational-XOR difference through ARX
Rotation

 $\Rightarrow ((0,a),1) \xrightarrow{\lll \gamma} ((0,a \lll \gamma),1)$

Rotation

$$x \xrightarrow{\ll \gamma} x \ll \gamma$$
$$\overleftarrow{x} \oplus a \xrightarrow{\ll \gamma} \overleftarrow{x} \ll \gamma \oplus (a \ll \gamma)$$

$$\Rightarrow ((0,a),1) \xrightarrow{\lll \gamma} ((0,a \lll \gamma),1)$$

XOR

$$x, y \xrightarrow{\oplus} x \oplus y$$

$$\overleftarrow{x} \oplus a, \overleftarrow{y} \oplus b \xrightarrow{\oplus} \overleftarrow{x \oplus y} \oplus (a \oplus b)$$

 $\Rightarrow ((0,a),1), ((0,b),1) \xrightarrow{\oplus} ((0,a \oplus b),1)$

Modular addition

Modular addition

 $\overleftarrow{(x \oplus a_1) \boxplus (y \oplus b_1) \oplus \Delta_1} = (\overleftarrow{x} \oplus a_2) \boxplus (\overleftarrow{y} \oplus b_2) \oplus \Delta_2$

Modular addition

 $\overleftarrow{(x \oplus a_1) \boxplus (y \oplus b_1) \oplus \Delta_1} = (\overleftarrow{x} \oplus a_2) \boxplus (\overleftarrow{y} \oplus b_2) \oplus \Delta_2$

Sketch of proof:

Modular addition

 $\overleftarrow{(x \oplus a_1) \boxplus (y \oplus b_1) \oplus \Delta_1} = (\overleftarrow{x} \oplus a_2) \boxplus (\overleftarrow{y} \oplus b_2) \oplus \Delta_2$ Sketch of proof:

$$\begin{array}{ccc} x = & L(x) & R(x) & = & L'(x) & R'(x) \\ & & \gamma \text{ bits} & & \gamma \text{ bits} \end{array}$$

Modular addition

 $\overleftarrow{(x \oplus a_1) \boxplus (y \oplus b_1) \oplus \Delta_1} = (\overleftarrow{x} \oplus a_2) \boxplus (\overleftarrow{y} \oplus b_2) \oplus \Delta_2$ Sketch of proof:

$$\begin{array}{ccc} x = & L(x) & R(x) & = & L'(x) & R'(x) \\ & & \gamma \text{ bits} & & \gamma \text{ bits} \end{array}$$

The addition of two variables:

proof continued

LHS: $\overleftarrow{(x \oplus a_1) \boxplus (y \oplus b_1) \oplus \Delta_1}$

 $=\overleftarrow{((L(x)\oplus L(a_1))\boxplus (L(y)\oplus L(b_1))\boxplus C^1_{n-\gamma})\oplus L(\Delta_1)||}$

 $\overline{((R(x)\oplus R(a_1))\boxplus (R(y)\oplus R(b_1)))\oplus R(\Delta_1))}$

proof continued

LHS: $\overleftarrow{(x \oplus a_1) \boxplus (y \oplus b_1) \oplus \Delta_1}$

 $=\overbrace{((L(x)\oplus L(a_1))\boxplus (L(y)\oplus L(b_1))\boxplus C_{n-\gamma}^1)\oplus L(\Delta_1)||}$

 $\overline{((R(x)\oplus R(a_1))\boxplus (R(y)\oplus R(b_1)))\oplus R(\Delta_1))}$

 $= ((R(x) \oplus R(a_1)) \boxplus (R(y) \oplus R(b_1))) \oplus R(\Delta_1)||$

 $((L(x) \oplus L(a_1)) \boxplus (L(y) \oplus L(b_1)) \boxplus C^1_{n-\gamma}) \oplus L(\Delta_1).$

proof continued

LHS: $\overleftarrow{(x \oplus a_1) \boxplus (y \oplus b_1) \oplus \Delta_1}$

 $= ((L(x) \oplus L(a_1)) \boxplus (L(y) \oplus L(b_1)) \boxplus C^1_{n-\gamma}) \oplus L(\Delta_1)||$

 $\overline{((R(x)\oplus R(a_1))\boxplus (R(y)\oplus R(b_1)))\oplus R(\Delta_1))}$

 $= ((R(x) \oplus R(a_1)) \boxplus (R(y) \oplus R(b_1))) \oplus R(\Delta_1))$

 $((L(x) \oplus L(a_1)) \boxplus (L(y) \oplus L(b_1)) \boxplus C^1_{n-\gamma}) \oplus L(\Delta_1).$

RHS: $(\overleftarrow{x} \oplus a_2) \boxplus (\overleftarrow{y} \oplus b_2) \oplus \Delta_2$

 $= ((R(x) \oplus L^{'}(a_{2})) \boxplus (R(y) \oplus L^{'}(b_{2})) \boxplus C_{\gamma}^{2}) \oplus L^{'}(\Delta_{2})|| \\ ((L(x) \oplus R^{'}(a_{2})) \boxplus (L(y) \oplus R^{'}(b_{2}))) \oplus R^{'}(\Delta_{2}).$

proof continued

 $((L(x) \oplus L(a_1)) \boxplus (L(y) \oplus L(b_1)) \boxplus C_{n-\gamma}^1) \oplus L(\Delta_1) = \\ ((L(x) \oplus R^{'}(a_2)) \boxplus (L(y) \oplus R^{'}(b_2))) \oplus R^{'}(\Delta_2).$ $((R(x) \oplus L^{'}(a_2)) \boxplus (R(y) \oplus L^{'}(b_2)) \boxplus C_{\gamma}^2) \oplus L^{'}(\Delta_2) = \\ (R(x) \oplus R(a_1)) \boxplus (R(y) \oplus R(b_1)) \oplus R(\Delta_1),$

proof continued

$$((L(x) \oplus L(a_1)) \boxplus (L(y) \oplus L(b_1)) \boxplus \mathbb{C}_{n-\gamma}^1) \oplus L(\Delta_1) = \\ ((L(x) \oplus R^{'}(a_2)) \boxplus (L(y) \oplus R^{'}(b_2))) \oplus R^{'}(\Delta_2).$$
$$((R(x) \oplus L^{'}(a_2)) \boxplus (R(y) \oplus L^{'}(b_2)) \boxplus \mathbb{C}_{\gamma}^2) \oplus L^{'}(\Delta_2) = \\ (R(x) \oplus R(a_1)) \boxplus (R(y) \oplus R(b_1)) \oplus R(\Delta_1),$$

Consider the carry

$$0 + 0 = 00$$

 $0 + 1 = 01$
 $1 + 0 = 01$
 $1 + 1 = 10$

proof continued

$$((L(x) \oplus L(a_1)) \boxplus (L(y) \oplus L(b_1)) \boxplus C_{n-\gamma}^1) \oplus L(\Delta_1) =$$
$$((L(x) \oplus R^{'}(a_2)) \boxplus (L(y) \oplus R^{'}(b_2))) \oplus R^{'}(\Delta_2).$$
$$((R(x) \oplus L^{'}(a_2)) \boxplus (R(y) \oplus L^{'}(b_2)) \boxplus C_{\gamma}^2) \oplus L^{'}(\Delta_2) =$$
$$(R(x) \oplus R(a_1)) \boxplus (R(y) \oplus R(b_1)) \oplus R(\Delta_1),$$

Consider the carry

Distribution of $C^1_{n-\gamma}$ and $C^2_{\gamma},$ when $\gamma=1$

0 + 0 = 00	$\Pr[C_{\gamma}^2 = 0, C_{n-\gamma}^1 = 0] = 2^{-1.415}$
0 + 1 = 01	$\Pr[C_{\gamma}^2 = 0, C_{n-\gamma}^1 = 1] = 2^{-1.415}$
1 + 0 = 01	$\Pr[C_{2}^{2} = 1, C_{2}^{1}] = 0 = 2^{-3}$
1 + 1 = 10	$\Pr[C^2 = 1 \ C^1 = 1] = 2^{-3}$
	1 = 1 = 1

proof continued $x \boxplus y = (x \oplus \zeta_1) \boxplus (y \oplus \zeta_2) \oplus \zeta_3$

differential probability

proof continued

 $\begin{aligned} x &\boxplus y = (x \oplus \zeta_1) \boxplus (y \oplus \zeta_2) \oplus \zeta_3 \\ x &\boxplus y \boxplus 1 = (x \oplus \zeta_1) \boxplus (y \oplus \zeta_2) \oplus \zeta_3 \end{aligned}$

differential probability See Lemma 1

proof continued $x \boxplus y = (x \oplus \zeta_1) \boxplus (y \oplus \zeta_2) \oplus \zeta_3$ $x \boxplus y \boxplus 1 = (x \oplus \zeta_1) \boxplus (y \oplus \zeta_2) \oplus \zeta_3$

differential probability See Lemma 1

RX-difference through modular addition:

$$\Pr[\overleftarrow{x \oplus a_1} \boxplus (y \oplus b_1) \oplus \Delta_1 = (\overleftarrow{x} \oplus a_2) \boxplus (\overleftarrow{y} \oplus b_2) \oplus \Delta_2] \\= 1_{(I \oplus SHL)(\delta_1 \oplus \delta_2 \oplus \delta_3) \oplus 1 \preceq SHL((\delta_1 \oplus \delta_3)|(\delta_2 \oplus \delta_3))} \cdot 2^{-|SHL((\delta_1 \oplus \delta_3)|(\delta_2 \oplus \delta_3))|} \cdot 2^{-3} \\+ 1_{(I \oplus SHL)(\delta_1 \oplus \delta_2 \oplus \delta_3) \preceq SHL((\delta_1 \oplus \delta_3)|(\delta_2 \oplus \delta_3))} \cdot 2^{-|SHL((\delta_1 \oplus \delta_3)|(\delta_2 \oplus \delta_3))|} \cdot 2^{-1.415},$$

where
$$\delta_1 = R(a_1) \oplus L^{'}(a_2), \delta_2 = R(b_1) \oplus L^{'}(b_2), \delta_3 = R(\Delta_1) \oplus L^{'}(\Delta_2)$$

Table of Contents

ARX & Rotational Cryptanalysis

Rotational cryptanalysis with constants

Experiment Verification

- NSA cipher
- block size 32/48/64/96/128 (2n)
- key size mn with m = 2, 3, 4

- NSA cipher
- block size 32/48/64/96/128 (2n)
- key size mn with m = 2, 3, 4

- NSA cipher
- block size 32/48/64/96/128 (2n)
- key size mn with m = 2, 3, 4

• Track RX-difference propagation in the key schedule

- Track RX-difference propagation in the key schedule
- Based on the good RX-trails found in the key schedule, track the propagation of RX-differences in the encryption

An RX-characteristic in the keyschedule

Round	a_1	b_1	Δ_1	a_2	b_2	Δ_2	Predicted	Empirical	Accumulated
							Prob.	Prob.	Prob.
1	0	0	0	0	0	0	$2^{-1.415}$	$2^{-1.415}$	$2^{-1.415}$
2	0	0	0	0	0	0	$2^{-1.415}$	$2^{-1.415}$	$2^{-2.83}$
3	0	1	0	0	1	2	$2^{-2.415}$	$2^{-2.415}$	$2^{-5.245}$
4	0	2	6	0	0	8	$2^{-2.415}$	$2^{-2.415}$	$2^{-7.66}$
5	0	D	C4	0	В	78	$2^{-6.415}$	$2^{-6.415}$	$2^{-14.075}$
6	0	F4	0	1000	50	1088	$2^{-7.415}$	$2^{-7.415}$	$2^{-21.49}$
Total						2^{-2}	1.49		

An RX-characteristic in the keyschedule

Round	a_1	b_1	Δ_1	a_2	b_2	Δ_2	Predicted	Empirical	Accumulated
							Prob.	Prob.	Prob.
1	0	0	0	0	0	0	$2^{-1.415}$	$2^{-1.415}$	$2^{-1.415}$
2	0	0	0	0	0	0	$2^{-1.415}$	$2^{-1.415}$	$2^{-2.83}$
3	0	1	0	0	1	2	$2^{-2.415}$	$2^{-2.415}$	$2^{-5.245}$
4	0	2	6	0	0	8	$2^{-2.415}$	$2^{-2.415}$	$2^{-7.66}$
5	0	D	C4	0	В	78	$2^{-6.415}$	$2^{-6.415}$	$2^{-14.075}$
6	0	F4	0	1000	50	1088	$2^{-7.415}$	$2^{-7.415}$	$2^{-21.49}$
Total						2^{-2}	1.49		

Experimental probability: $2^{-25.046}$, leading to a weak-key class of size 2^{39} All RX-differences are in hexadecimal notation.

A corresponding RX-characteristic in the round function

Round	Input diff.	Key diff.	Output diff.	Predicted	Empirical
	(left,right)		(left,right)	accumu. Prob.	accumu. Prob.
0	0,0	0	0,0	$2^{-1.415}$	$2^{-1.415}$
1	0,0	0	0,0	$2^{-2.83}$	$2^{-2.85}$
2	0,0	3	3,3	$2^{-4.245}$	$2^{-4.27}$
3	3,3	4	607,60B	$2^{-8.66}$	$2^{-8.68}$
4	607,60B	11	40E, 1C22	$2^{-15.075}$	$2^{-15.01}$
5	40E, 1C22	1B8	3992,491A	$2^{-21.49}$	$2^{-21.44}$
6	3992,491A	1668	333F, 1756	$2^{-31.905}$	$2^{-31.6}$

All RX-differences are in hexadecimal notation.

A corresponding RX-characteristic in the round function

Round	Input diff.	Key diff.	Output diff.	Predicted	Empirical
	(left,right)		(left,right)	accumu. Prob.	accumu. Prob.
0	0,0	0	0,0	$2^{-1.415}$	$2^{-1.415}$
1	0,0	0	0,0	$2^{-2.83}$	$2^{-2.85}$
2	0,0	3	3,3	$2^{-4.245}$	$2^{-4.27}$
3	3,3	4	607,60B	$2^{-8.66}$	$2^{-8.68}$
4	607,60B	11	40E, 1C22	$2^{-15.075}$	$2^{-15.01}$
5	40E, 1C22	1B8	3992,491A	$2^{-21.49}$	$2^{-21.44}$
6	3992,491A	1668	333F, 1756	$2^{-31.905}$	$2^{-31.6}$

All RX-differences are in hexadecimal notation.

Open-key model vs. Single-key model

Table of Contents

ARX & Rotational Cryptanalysis

Rotational cryptanalysis with constants

Experiment Verification

• We propose a new notion of difference: Rotational-XOR difference

- We propose a new notion of difference: Rotational-XOR difference
- Rotational cryptanalysis in the presence of constants can be mathematically characterised

- We propose a new notion of difference: Rotational-XOR difference
- Rotational cryptanalysis in the presence of constants can be mathematically characterised
- RX-distinguisher on SPECK32/64 is found

- We propose a new notion of difference: Rotational-XOR difference
- Rotational cryptanalysis in the presence of constants can be mathematically characterised
- RX-distinguisher on SPECK32/64 is found
- Further applications on ARX ciphers

Thank you!