Rotational Cryptanalysis in the Presence of Constants

Tomer Ashur Yunwen Liu

ESAT/COSIC, KU Leuven, and imec, Belgium

FSE, March 2017

Table of Contents

ARX \& Rotational Cryptanalysis

Rotational cryptanalysis with constants

Experiment Verification

Conclusion

ARX

ARX

- Symmetric-key designs

ARX

- Symmetric-key designs
- Addition + Rotation + XOR

ARX

- Symmetric-key designs
- Addition + Rotation + XOR
- Differential cryptanalysis and linear cryptanalysis

ARX

- Symmetric-key designs
- Addition + Rotation + XOR
- Differential cryptanalysis and linear cryptanalysis
- Rotational cryptanalysis

Differences

Differences

XOR difference

Differences

XOR difference

Modular difference

Differences

XOR difference

Modular difference

Rotational difference

Rotational Cryptanalysis

Rotational Cryptanalysis

Circular Rotation

$$
(x \lll r) \lll s=x \lll(r+s)
$$

Rotational Cryptanalysis

Circular Rotation

$$
(x \lll r) \lll s=x \lll(r+s)
$$

XOR

$$
(x \lll r) \oplus(y \lll r)=(x \oplus y) \lll r
$$

Rotational Cryptanalysis

Circular Rotation

$$
(x \lll r) \lll s=x \lll(r+s)
$$

XOR

$$
(x \lll r) \oplus(y \lll r)=(x \oplus y) \lll r
$$

Modular Addition
$(x \lll r) \boxplus(y \lll r)=(x \boxplus y) \lll r$
with probability p

Rotational Cryptanalysis

Modular Addition

$$
(x \lll r) \boxplus(y \lll r)=(x \boxplus y) \lll r \quad \text { with probability } p
$$

Rotational Cryptanalysis

Modular Addition

$$
(x \lll r) \boxplus(y \lll r)=(x \boxplus y) \lll r \quad \text { with probability } p
$$

When $r=1, p$ achieves the maximum.

$$
p=2^{-1.415}
$$

Rotational Cryptanalysis

Modular Addition

$$
(x \lll r) \boxplus(y \lll r)=(x \boxplus y) \lll r \quad \text { with probability } p
$$

When $r=1, p$ achieves the maximum.

$$
p=2^{-1.415}
$$

Denote $x \lll 1$ by \overleftarrow{x} for simplicity.

Rotational Cryptanalysis

Rotational Cryptanalysis (v1), [KN10]

The probability that a rotational distinguisher holds for an ARX primitive is determined by the number of modular additions.

$$
\operatorname{Pr}=\left(2^{-1.415}\right)^{\# \boxplus}
$$

[KN10]: D. Khovratovich, I. Nikolic: Rotational Cryptanalysis of ARX, FSE 2010

Rotational Cryptanalysis

Rotational Cryptanalysis (v2), [KNP+15]
The probability that a rotational distinguisher holds for an ARX primitive is dependent with the chained modular additions.

Rotational Cryptanalysis

Rotational Cryptanalysis (v2), [KNP+15]

The probability that a rotational distinguisher holds for an ARX primitive is dependent with the chained modular additions.

$$
\begin{aligned}
& (x \lll r) \boxplus(y \lll r)=(x \boxplus y) \lll r \\
& (x \lll r) \boxplus(y \lll r) \boxplus(z \lll r)=(x \boxplus y \boxplus z) \lll r
\end{aligned}
$$

[KNP+15]: D. Khovratovich, I. Nikolic, J. Pieprzyk, P. Sokolowski, R. Steinfeld:
Rotational Cryptanalysis of ARX Revisited. FSE 2015

Table of Contents

ARX \& Rotational Cryptanalysis

Rotational cryptanalysis with constants

Experiment Verification

Conclusion

ARX with constants

ARX with constants

- Complete system ARX-C

ARX with constants

- Complete system ARX-C
- Constants come with keys and round constants

ARX with constants

- Complete system ARX-C
- Constants come with keys and round constants

XOR with a rotational variable

$$
(x \lll r) \oplus(y \lll r)=(x \oplus y) \lll r
$$

ARX with constants

- Complete system ARX-C
- Constants come with keys and round constants

XOR with a rotational variable

$$
(x \lll r) \oplus(y \lll r)=(x \oplus y) \lll r
$$

XOR with a constant

$$
(x \lll r) \oplus k
$$

ARX with constants

- Complete system ARX-C
- Constants come with keys and round constants

XOR with a rotational variable

$$
(x \lll r) \oplus(y \lll r)=(x \oplus y) \lll r
$$

XOR with a constant

$$
(x \lll r) \oplus k
$$

- Previous analyses: experiment

Rotational cryptanalysis on ARX-C

Rotational cryptanalysis on ARX-C

Rotational cryptanalysis on ARX-C

Rotational-XOR difference

Combine rotational difference with XOR difference

$$
(x,(x \lll \gamma)
$$

Rotational-XOR difference

Combine rotational difference with XOR difference

$$
(x,(x \lll \gamma) \oplus a)
$$

Rotational-XOR difference

Combine rotational difference with XOR difference

$$
(x,(x \lll \gamma) \oplus a)
$$

(($\left.\left.a_{1}, a_{2}\right), \gamma\right)$-Rotational-XOR difference (RX-difference)

$$
\left(x \oplus a_{1},(x \lll \gamma) \oplus a_{2}\right)
$$

Rotational-XOR difference

Combine rotational difference with XOR difference

$$
(x,(x \lll \gamma) \oplus a)
$$

$\left(\left(a_{1}, a_{2}\right), \gamma\right)$-Rotational-XOR difference (RX-difference)

$$
\left(x \oplus a_{1},(x \lll \gamma) \oplus a_{2}\right)
$$

equivalent to

$$
\left(\tilde{x},(\tilde{x} \lll \gamma) \oplus\left(a_{1} \lll \gamma\right) \oplus a_{2}\right)
$$

Rotational-XOR difference through ARX

Rotational-XOR difference through ARX

Rotation

$$
\begin{gathered}
x \stackrel{\lll \gamma}{ } x \lll \gamma \\
\overleftarrow{x} \oplus a \xrightarrow{\lll} \overleftrightarrow{x} \nVdash \gamma \oplus(a \lll \gamma) \\
\Rightarrow((0, a), 1) \xrightarrow{\lll \gamma}((0, a \lll \gamma), 1)
\end{gathered}
$$

Rotational-XOR difference through ARX

Rotation

$$
\begin{gathered}
x \stackrel{\lll \gamma}{ } x \lll \gamma \\
\overleftarrow{x} \oplus a \xrightarrow{\lll} \overleftrightarrow{x} \nless \gamma \oplus(a \lll \gamma) \\
\Rightarrow((0, a), 1) \xrightarrow{\lll \gamma}((0, a \lll \gamma), 1)
\end{gathered}
$$

XOR

$$
\begin{gathered}
x, y \xrightarrow{\oplus} x \oplus y \\
\overleftarrow{x} \oplus a, \overleftarrow{y} \oplus b \stackrel{\oplus}{\longrightarrow} \overleftrightarrow{x \oplus y} \oplus(a \oplus b) \\
\Rightarrow((0, a), 1),((0, b), 1) \stackrel{\oplus}{\longrightarrow}((0, a \oplus b), 1)
\end{gathered}
$$

Rotational-XOR difference through ARX

Modular addition

Rotational-XOR difference through ARX

Modular addition

$$
\overleftarrow{\left(x \oplus a_{1}\right) \boxplus\left(y \oplus b_{1}\right) \oplus \Delta_{1}}=\left(\overleftarrow{x} \oplus a_{2}\right) \boxplus\left(\overleftarrow{y} \oplus b_{2}\right) \oplus \Delta_{2}
$$

Rotational-XOR difference through ARX

Modular addition

$$
\overleftarrow{\left(x \oplus a_{1}\right) \boxplus\left(y \oplus b_{1}\right) \oplus \Delta_{1}}=\left(\overleftarrow{x} \oplus a_{2}\right) \boxplus\left(\overleftarrow{y} \oplus b_{2}\right) \oplus \Delta_{2}
$$

Sketch of proof:

Rotational-XOR difference through ARX

Modular addition

$$
\overleftarrow{\left(x \oplus a_{1}\right) \boxplus\left(y \oplus b_{1}\right) \oplus \Delta_{1}}=\left(\overleftarrow{x} \oplus a_{2}\right) \boxplus\left(\overleftarrow{y} \oplus b_{2}\right) \oplus \Delta_{2}
$$

Sketch of proof:

$$
x=\underset{\gamma \text { bits }}{L(x)} \quad R(x) \quad L^{\prime}(x) \underset{\gamma \text { bits }}{R^{\prime}(x)}
$$

Rotational-XOR difference through ARX

Modular addition

$$
\overleftarrow{\left(x \oplus a_{1}\right) \boxplus\left(y \oplus b_{1}\right) \oplus \Delta_{1}}=\left(\overleftarrow{x} \oplus a_{2}\right) \boxplus\left(\overleftarrow{y} \oplus b_{2}\right) \oplus \Delta_{2}
$$

Sketch of proof:

$$
x=\underset{\gamma \text { bits }}{L(x) \quad R(x)}=\quad L^{\prime}(x) \quad R^{\prime}(x)
$$

The addition of two variables:

$\square \quad L(x) \boxplus L(y) \boxplus C_{n-\gamma}^{1} \quad R(x) \boxplus R(y)$

proof continued

LHS: $\overleftarrow{\left(x \oplus a_{1}\right) \boxplus\left(y \oplus b_{1}\right) \oplus \Delta_{1}}$
$=\overleftarrow{\left(\left(L(x) \oplus L\left(a_{1}\right)\right) \boxplus\left(L(y) \oplus L\left(b_{1}\right)\right) \boxplus C_{n-\gamma}^{1}\right) \oplus L\left(\Delta_{1}\right) \mid}$

$$
\overline{\left(\left(R(x) \oplus R\left(a_{1}\right)\right) \boxplus\left(R(y) \oplus R\left(b_{1}\right)\right)\right) \oplus R\left(\Delta_{1}\right)}
$$

proof continued

LHS: $\overleftarrow{\left(x \oplus a_{1}\right) \boxplus\left(y \oplus b_{1}\right) \oplus \Delta_{1}}$
$=\overleftarrow{\left(\left(L(x) \oplus L\left(a_{1}\right)\right) \boxplus\left(L(y) \oplus L\left(b_{1}\right)\right) \boxplus C_{n-\gamma}^{1}\right) \oplus L\left(\Delta_{1}\right) \|}$ $\overline{\left(\left(R(x) \oplus R\left(a_{1}\right)\right) \boxplus\left(R(y) \oplus R\left(b_{1}\right)\right)\right) \oplus R\left(\Delta_{1}\right)}$
$=\left(\left(R(x) \oplus R\left(a_{1}\right)\right) \boxplus\left(R(y) \oplus R\left(b_{1}\right)\right)\right) \oplus R\left(\Delta_{1}\right) \|$

$$
\left(\left(L(x) \oplus L\left(a_{1}\right)\right) \boxplus\left(L(y) \oplus L\left(b_{1}\right)\right) \boxplus C_{n-\gamma}^{1}\right) \oplus L\left(\Delta_{1}\right) .
$$

proof continued

LHS: $\overleftarrow{\left(x \oplus a_{1}\right) \boxplus\left(y \oplus b_{1}\right) \oplus \Delta_{1}}$
$=\overleftarrow{\left(\left(L(x) \oplus L\left(a_{1}\right)\right) \boxplus\left(L(y) \oplus L\left(b_{1}\right)\right) \boxplus C_{n-\gamma}^{1}\right) \oplus L\left(\Delta_{1}\right) \|}$

$$
\overline{\left(\left(R(x) \oplus R\left(a_{1}\right)\right) \boxplus\left(R(y) \oplus R\left(b_{1}\right)\right)\right) \oplus R\left(\Delta_{1}\right)}
$$

$=\left(\left(R(x) \oplus R\left(a_{1}\right)\right) \boxplus\left(R(y) \oplus R\left(b_{1}\right)\right)\right) \oplus R\left(\Delta_{1}\right) \|$

$$
\left(\left(L(x) \oplus L\left(a_{1}\right)\right) \boxplus\left(L(y) \oplus L\left(b_{1}\right)\right) \boxplus C_{n-\gamma}^{1}\right) \oplus L\left(\Delta_{1}\right) .
$$

RHS: $\left(\overleftarrow{x} \oplus a_{2}\right) \boxplus\left(\overleftarrow{y} \oplus b_{2}\right) \oplus \Delta_{2}$
$=\left(\left(R(x) \oplus L^{\prime}\left(a_{2}\right)\right) \boxplus\left(R(y) \oplus L^{\prime}\left(b_{2}\right)\right) \boxplus C_{\gamma}^{2}\right) \oplus L^{\prime}\left(\Delta_{2}\right) \|$

$$
\left(\left(L(x) \oplus R^{\prime}\left(a_{2}\right)\right) \boxplus\left(L(y) \oplus R^{\prime}\left(b_{2}\right)\right)\right) \oplus R^{\prime}\left(\Delta_{2}\right) .
$$

Rotational-XOR difference through ARX

proof continued

$$
\begin{aligned}
& \left(\left(L(x) \oplus L\left(a_{1}\right)\right) \boxplus\left(L(y) \oplus L\left(b_{1}\right)\right) \boxplus C_{n-\gamma}^{1}\right) \oplus L\left(\Delta_{1}\right)= \\
& \quad\left(\left(L(x) \oplus R^{\prime}\left(a_{2}\right)\right) \boxplus\left(L(y) \oplus R^{\prime}\left(b_{2}\right)\right)\right) \oplus R^{\prime}\left(\Delta_{2}\right) . \\
& \left(\left(R(x) \oplus L^{\prime}\left(a_{2}\right)\right) \boxplus\left(R(y) \oplus L^{\prime}\left(b_{2}\right)\right) \boxplus C_{\gamma}^{2}\right) \oplus L^{\prime}\left(\Delta_{2}\right)= \\
& \left(R(x) \oplus R\left(a_{1}\right)\right) \boxplus\left(R(y) \oplus R\left(b_{1}\right)\right) \oplus R\left(\Delta_{1}\right),
\end{aligned}
$$

Rotational-XOR difference through ARX

proof continued

$$
\begin{aligned}
& \left(\left(L(x) \oplus L\left(a_{1}\right)\right) \boxplus\left(L(y) \oplus L\left(b_{1}\right)\right) \boxplus C_{n-\gamma}^{1}\right) \oplus L\left(\Delta_{1}\right)= \\
& \quad\left(\left(L(x) \oplus R^{\prime}\left(a_{2}\right)\right) \boxplus\left(L(y) \oplus R^{\prime}\left(b_{2}\right)\right)\right) \oplus R^{\prime}\left(\Delta_{2}\right) . \\
& \left(\left(R(x) \oplus L^{\prime}\left(a_{2}\right)\right) \boxplus\left(R(y) \oplus L^{\prime}\left(b_{2}\right)\right) \boxplus C_{\gamma}^{2}\right) \oplus L^{\prime}\left(\Delta_{2}\right)= \\
& \left(R(x) \oplus R\left(a_{1}\right)\right) \boxplus\left(R(y) \oplus R\left(b_{1}\right)\right) \oplus R\left(\Delta_{1}\right),
\end{aligned}
$$

Consider the carry

$$
\begin{aligned}
& 0+0=00 \\
& 0+1=01 \\
& 1+0=01 \\
& 1+1=10
\end{aligned}
$$

Rotational-XOR difference through ARX

proof continued

$$
\begin{aligned}
& \left(\left(L(x) \oplus L\left(a_{1}\right)\right) \boxplus\left(L(y) \oplus L\left(b_{1}\right)\right) \boxplus C_{n-\gamma}^{1}\right) \oplus L\left(\Delta_{1}\right)= \\
& \quad\left(\left(L(x) \oplus R^{\prime}\left(a_{2}\right)\right) \boxplus\left(L(y) \oplus R^{\prime}\left(b_{2}\right)\right)\right) \oplus R^{\prime}\left(\Delta_{2}\right) .
\end{aligned}
$$

$$
\left(\left(R(x) \oplus L^{\prime}\left(a_{2}\right)\right) \boxplus\left(R(y) \oplus L^{\prime}\left(b_{2}\right)\right) \boxplus C_{\gamma}^{2}\right) \oplus L^{\prime}\left(\Delta_{2}\right)=
$$

$$
\left(R(x) \oplus R\left(a_{1}\right)\right) \boxplus\left(R(y) \oplus R\left(b_{1}\right)\right) \oplus R\left(\Delta_{1}\right)
$$

Consider the carry

$$
\begin{aligned}
& 0+0=00 \\
& 0+1=01 \\
& 1+0=01 \\
& 1+1=10
\end{aligned}
$$

Distribution of $C_{n-\gamma}^{1}$ and C_{γ}^{2}, when $\gamma=1$

$$
\begin{aligned}
& \operatorname{Pr}\left[C_{\gamma}^{2}=0, C_{n-\gamma}^{1}=0\right]=2^{-1.415} \\
& \operatorname{Pr}\left[C_{\gamma}^{2}=0, C_{n-\gamma}^{1}=1\right]=2^{-1.415} \\
& \operatorname{Pr}\left[C_{\gamma}^{2}=1, C_{n-\gamma}^{1}=0\right]=2^{-3} \\
& \operatorname{Pr}\left[C_{\gamma}^{2}=1, C_{n-\gamma}^{1}=1\right]=2^{-3} .
\end{aligned}
$$

Rotational-XOR difference through ARX

proof continued

$x \boxplus y=\left(x \oplus \zeta_{1}\right) \boxplus\left(y \oplus \zeta_{2}\right) \oplus \zeta_{3}$
differential probability

Rotational-XOR difference through ARX

proof continued

$x \boxplus y=\left(x \oplus \zeta_{1}\right) \boxplus\left(y \oplus \zeta_{2}\right) \oplus \zeta_{3}$
$x \boxplus y \boxplus 1=\left(x \oplus \zeta_{1}\right) \boxplus\left(y \oplus \zeta_{2}\right) \oplus \zeta_{3}$
See Lemma 1

Rotational-XOR difference through ARX

proof continued

$x \boxplus y=\left(x \oplus \zeta_{1}\right) \boxplus\left(y \oplus \zeta_{2}\right) \oplus \zeta_{3}$
$x \boxplus y \boxplus 1=\left(x \oplus \zeta_{1}\right) \boxplus\left(y \oplus \zeta_{2}\right) \oplus \zeta_{3}$

differential probability See Lemma 1

RX-difference through modular addition:

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(x \oplus a_{1}\right) \boxplus\left(y \oplus b_{1}\right) \oplus \Delta_{1}\right. \\
& \left.=\left(\overleftarrow{x} \oplus a_{2}\right) \boxplus\left(\overleftarrow{y} \oplus b_{2}\right) \oplus \Delta_{2}\right] \\
& =1_{(I \oplus S H L)\left(\delta_{1} \oplus \delta_{2} \oplus \delta_{3}\right) \oplus 1 \preceq S H L\left(\left(\delta_{1} \oplus \delta_{3}\right) \mid\left(\delta_{2} \oplus \delta_{3}\right)\right)} \cdot 2^{-\left|S H L\left(\left(\delta_{1} \oplus \delta_{3}\right) \mid\left(\delta_{2} \oplus \delta_{3}\right)\right)\right|} \cdot 2^{-3} \\
& +1_{(I \oplus S H L)\left(\delta_{1} \oplus \delta_{2} \oplus \delta_{3}\right) \preceq S H L\left(\left(\delta_{1} \oplus \delta_{3}\right) \mid\left(\delta_{2} \oplus \delta_{3}\right)\right)} \cdot 2^{-\left|S H L\left(\left(\delta_{1} \oplus \delta_{3}\right) \mid\left(\delta_{2} \oplus \delta_{3}\right)\right)\right|} \cdot 2^{-1.415}, \\
& \text { where } \delta_{1}=R\left(a_{1}\right) \oplus L^{\prime}\left(a_{2}\right), \delta_{2}=R\left(b_{1}\right) \oplus L^{\prime}\left(b_{2}\right), \delta_{3}=R\left(\Delta_{1}\right) \oplus L^{\prime}\left(\Delta_{2}\right)
\end{aligned}
$$

Table of Contents

ARX \& Rotational Cryptanalysis

Rotational cryptanalysis with constants

Experiment Verification

Conclusion

SPECK Family

SPECK Family

- NSA cipher
- block size 32/48/64/96/128 (2n)
- key size $m n$ with $m=2,3,4$

SPECK Family

- NSA cipher
- block size 32/48/64/96/128 (2n)
- key size $m n$ with $m=2,3,4$

SPECK Family

- NSA cipher
- block size 32/48/64/96/128 (2n)
- key size $m n$ with $m=2,3,4$

Application to SPECK32/64

Application to SPECK32/64

Application to SPECK32/64

- Track RX-difference propagation in the key schedule

Application to SPECK32/64

- Track RX-difference propagation in the key schedule
- Based on the good RX-trails found in the key schedule, track the propagation of RX-differences in the encryption

Application to SPECK32/64

An RX-characteristic in the keyschedule

Round	a_{1}	b_{1}	Δ_{1}	a_{2}	b_{2}	Δ_{2}	Predicted Prob.	Empirical Prob.	Accumulated Prob.
1	0	0	0	0	0	0	$2^{-1.415}$	$2^{-1.415}$	$2^{-1.415}$
2	0	0	0	0	0	0	$2^{-1.415}$	$2^{-1.415}$	$2^{-2.83}$
3	0	1	0	0	1	2	$2^{-2.415}$	$2^{-2.415}$	$2^{-5.245}$
4	0	2	6	0	0	8	$2^{-2.415}$	$2^{-2.415}$	$2^{-7.66}$
5	0	D	C4	0	B	78	$2^{-6.415}$	$2^{-6.415}$	$2^{-14.075}$
6	0	F4	0	1000	50	1088	$2^{-7.415}$	$2^{-7.415}$	$2^{-21.49}$
Total									

Application to SPECK32/64

An RX-characteristic in the keyschedule

Round	a_{1}	b_{1}	Δ_{1}	a_{2}	b_{2}	Δ_{2}	Predicted Prob.	Empirical Prob.	Accumulated Prob.
1	0	0	0	0	0	0	$2^{-1.415}$	$2^{-1.415}$	$2^{-1.415}$
2	0	0	0	0	0	0	$2^{-1.415}$	$2^{-1.415}$	$2^{-2.83}$
3	0	1	0	0	1	2	$2^{-2.415}$	$2^{-2.415}$	$2^{-5.245}$
4	0	2	6	0	0	8	$2^{-2.415}$	$2^{-2.415}$	$2^{-7.66}$
5	0	D	C4	0	B	78	$2^{-6.415}$	$2^{-6.415}$	$2^{-14.075}$
6	0	F4	0	1000	50	1088	$2^{-7.415}$	$2^{-7.415}$	$2^{-21.49}$
Total									

Experimental probability: $2^{-25.046}$, leading to a weak-key class of size 2^{39} All RX-differences are in hexadecimal notation.

Application to SPECK32/64

A corresponding RX-characteristic in the round function

Round	Input diff. (left,right)	Key diff.	Output diff. (left,right)	Predicted accumu. Prob.	Empirical accumu. Prob.
0	0,0	0	0,0	$2^{-1.415}$	$2^{-1.415}$
1	0,0	0	0,0	$2^{-2.83}$	$2^{-2.85}$
2	0,0	3	3,3	$2^{-4.245}$	$2^{-4.27}$
3	3,3	4	$607,60 \mathrm{~B}$	$2^{-8.66}$	$2^{-8.68}$
4	$607,60 \mathrm{~B}$	11	$40 \mathrm{E}, 1 \mathrm{C} 22$	$2^{-15.075}$	$2^{-15.01}$
5	$40 \mathrm{E}, 1 \mathrm{C} 22$	$1 \mathrm{B8}$	$3992,491 \mathrm{~A}$	$2^{-21.49}$	$2^{-21.44}$
6	$3992,491 \mathrm{~A}$	1668	$333 \mathrm{~F}, 1756$	$2^{-31.905}$	$2^{-31.6}$

All RX-differences are in hexadecimal notation.

Application to SPECK32/64

A corresponding RX-characteristic in the round function

Round	Input diff. (left,right)	Key diff.	Output diff. (left,right)	Predicted accumu. Prob.	Empirical accumu. Prob.
0	0,0	0	0,0	$2^{-1.415}$	$2^{-1.415}$
1	0,0	0	0,0	$2^{-2.83}$	$2^{-2.85}$
2	0,0	3	3,3	$2^{-4.245}$	$2^{-4.27}$
3	3,3	4	$607,60 \mathrm{~B}$	$2^{-8.66}$	$2^{-8.68}$
4	$607,60 \mathrm{~B}$	11	$40 \mathrm{E}, 1 \mathrm{C} 22$	$2^{-15.075}$	$2^{-15.01}$
5	$40 \mathrm{E}, 1 \mathrm{C} 22$	$1 \mathrm{B8}$	$3992,491 \mathrm{~A}$	$2^{-21.49}$	$2^{-21.44}$
6	$3992,491 \mathrm{~A}$	1668	$333 \mathrm{~F}, 1756$	$2^{-31.905}$	$2^{-31.6}$

All RX-differences are in hexadecimal notation.

Open-key model vs. Single-key model

Table of Contents

ARX \& Rotational Cryptanalysis
Rotational cryptanalysis with constants
Experiment Verification

Conclusion

Conclusion

Conclusion

- We propose a new notion of difference: Rotational-XOR difference

Conclusion

- We propose a new notion of difference: Rotational-XOR difference
- Rotational cryptanalysis in the presence of constants can be mathematically characterised

Conclusion

- We propose a new notion of difference: Rotational-XOR difference
- Rotational cryptanalysis in the presence of constants can be mathematically characterised
- RX-distinguisher on SPECK32/64 is found

Conclusion

- We propose a new notion of difference: Rotational-XOR difference
- Rotational cryptanalysis in the presence of constants can be mathematically characterised
- RX-distinguisher on SPECK32/64 is found
- Further applications on ARX ciphers

Thank you!

