

Invariant Subspace Attack Against Midori64 and The Resistance Criteria for S-box Designs

Jian Guo¹, Jeremy Jean², Ivica Nikolić¹, Kexin Qiao³, <u>Yu Sasaki⁴</u>, and Siang Meng Sim¹

- 1. Nanyang Technological University, Singapore
- 2. ANSSI, Paris, France
- 3. Institute of Information Engineering, Chinese Academy of Sciences, China
- 4. NTT Secure Platform Laboratories

Midori: a low energy block cipher proposed at Asiacrypt2015

Invariant subspace attack [Lender++ CRYPTO2011]

- Weak key attack on Midori64 with 2³² weak keys.
- Distinguisher with 1 chosen plaintext.
- Key recovery with 2¹⁶ computations.

Feedback to Design

• Searching for S-boxes avoiding invariant subspace attack for any choice of constant.

Suppose key nibbles $\in \{0,1\}$, plaintext nibbles $\in \{8,9\}$, then ciphertext nibbles $\in \{8,9\}$.

Appendix A: Test Vectors [ePrint2015/1142]

Test vector uses a weak key.

Our experiment

Find subsets, (S, \mathcal{K}) , of the state space and key space which are invariant of the round function.

Encrypt plaintext $P \in S$ under the key $K \in \mathcal{K}$ (weak-key attack). Ciphertext also belongs to S.

All subkeys must be in \mathcal{K} . The main target is ciphers with no key schedule, common structure for lightweight cryptography

Applications: PRINTcipher, Robin, iScream, Zorro

Invariant Subspace Attack [LAA2011]

General Form:

- A weak-key distinguisher often with 1 query.
- Possibility of the extension to key recovery depends on the cipher's structure.

Invariant Subspace Attack [LAA2011]

In practice:

- S is an affine space with dimension *i*, namely $< x_1, x_2, \dots, x_i > \bigoplus u$, where $< \dots >$ is a linear space and u is a constant.
- K ∈ < x₁, x₂, …, x_i > preserves subspace even after subkey XOR.

"Midori: A Block Cipher for Low Energy" Banik et al. at Asiacrypt 2015

- Midori64: 64-bit block, 128-bit key
 SPN with 4-bit cell, 16 rounds
- Midro128: 128-bit block, 128-bit key
 SPN with 8-bit cell, 20 rounds

64,128

128

 $K \rightarrow$

 \boldsymbol{P}

Midori64: Overall Structure

State048State1591 cell = 4 bits26102-5-10

Master key: K_0 , K_1

Innovative R&D by NT

 $RF = MixColumn \circ ShuffuleCell \circ SubCell(state)$ RF' = SubCell(state)

7

SubCell (4-bit involution S-box)

x	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
$Sb_0[x]$	С	a	d	3	e	b	f	7	8	9	1	5	0	2	4	6

[ePrint2015/1142, Table 4]

ShuffleCell (cell permutation)

 $\begin{bmatrix} s_0 \ s_4 \ s_8 \ s_{12} \\ s_1 \ s_5 \ s_9 \ s_{13} \\ s_2 \ s_6 \ s_{10} \ s_{14} \\ s_3 \ s_7 \ s_{11} \ s_{15} \end{bmatrix} \longrightarrow \begin{bmatrix} s_0 \ s_{14} \ s_9 \ s_7 \\ s_{10} \ s_4 \ s_3 \ s_{13} \\ s_5 \ s_{11} \ s_{12} \ s_2 \\ s_{15} \ s_1 \ s_6 \ s_8 \end{bmatrix}$

MixColumn (multiplication with non-MDS binary matrix)

$$\begin{pmatrix} s_i \\ s_{i+1} \\ s_{i+2} \\ s_{i+3} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} s_i \\ s_{i+1} \\ s_{i+2} \\ s_{i+3} \end{pmatrix}, \text{ for } i \in \{0, 4, 8, 12\}$$

All cells in all round constants, α_i , are binary.

	$0 \ 0 \ 1 \ 0$		0110		1 0 0 0		$0 \ 0 \ 0 \ 0$		$0 \ 0 \ 0 \ 1$		1 0 0 0		0000
0	0100	$\begin{bmatrix} 0\\1\end{bmatrix}$ 1	1 0 1 0	2	$0 \ 1 \ 0 \ 1$	3	1 0 0 0	4	0 0 1 1	F	1 0 1 0	6	$0 \ 0 \ 1 \ 1$
0	$0 \ 0 \ 1 \ 1$		$1 \ 0 \ 0 \ 0$		$1 \ 0 \ 1 \ 0$		$1 \ 1 \ 0 \ 1$	4	$0 \ 0 \ 0 \ 1$	Э	$0 \ 0 \ 1 \ 0$	0	$0\ 1\ 1\ 1$
	$1\ 1\ 1\ 1\ 1$		$1 \ 0 \ 0 \ 0$		$0 \ 0 \ 1 \ 1$		$0 \ 0 \ 1 \ 1$		$1 \ 0 \ 0 \ 1$		$1 \ 1 \ 1 \ 0$		$0 \ 0 \ 0 \ 0$
	$0\ 1\ 1\ 1$		$1 \ 0 \ 1 \ 0$		$0 \ 0 \ 1 \ 1$		$0 \ 0 \ 1 \ 0$		$0 \ 0 \ 1 \ 1$		0000		1111
7	$0 \ 0 \ 1 \ 1$	8	$0\ 1\ 0\ 0$	9	$1 \ 0 \ 0 \ 0$	10	$1 \ 0 \ 0 \ 1$	11	$0 \ 0 \ 0 \ 1$	12	$1 \ 0 \ 0 \ 0$	13	$1 \ 0 \ 1 \ 0$
($0\ 1\ 0\ 0$		$0 \ 0 \ 0 \ 0$		$0 \ 0 \ 1 \ 0$	10	$1 \ 0 \ 0 \ 1$		$1 \ 1 \ 0 \ 1$		$0 \ 0 \ 1 \ 0$		$1 \ 0 \ 0 \ 1$
	$0\ 1\ 0\ 0$		$1 \ 0 \ 0 \ 1$		$0 \ 0 \ 1 \ 0$			$1\ 1\ 1\ 1$		$0 \ 0 \ 0 \ 0$		$1 \ 1 \ 1 \ 0$	
	$1\ 1\ 1\ 0$		$0\ 1\ 1\ 0$		$0\ 1\ 0\ 0$		$0 \ 0 \ 1 \ 0$		$0 \ 0 \ 1 \ 1$				
14	$1 \ 1 \ 0 \ 0$	15	$1 \ 1 \ 0 \ 0$	16	$0\ 1\ 0\ 1$	17	$0 \ 0 \ 0 \ 1$	10	$1 \ 0 \ 0 \ 0$				
14	$0\ 1\ 0\ 0$		$1 \ 0 \ 0 \ 0$	10	$0 \ 0 \ 1 \ 0$	11	$1 \ 1 \ 1 \ 0$	18	$1 \ 1 \ 0 \ 1$				
	$1 \ 1 \ 1 \ 0$		$1 \ 0 \ 0 \ 1$		$1 \ 0 \ 0 \ 0$		$0\ 1\ 1\ 0$		$0 \ 0 \ 0 \ 0$				

[ePrint2015/1142, Table 5]

Invariant Subspace Attack on Midori64

Copyright©2014 NTT corp. All Rights Reserved.

Whitening key: $K_0 \bigoplus K_1$ Round key: $K_{i \mod 2} \bigoplus \alpha_i$ for i = 0, 1, ..., 14

	0/1	0/1	0/1
Subspace $\mathcal{K} \triangleq \{0,1\}^{16} \triangleq$	0/1	0/1	0/1
	0/1	0/1	0/1
	0/1	0/1	0/1

As explained before, all α_i belong to \mathcal{K} .

When K_0 and K_1 belongs to \mathcal{K} , all round keys belong to \mathcal{K} . (There are 2^{32} such keys.)

0/1

0/1

0/1

0/1

AddKey operation XORs 0/1 to each state nibble.

SubColl	x	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
SUDCEII.	$Sb_0[x]$	С	a	d	3	е	b	f	7	8	9	1	5	0	2	4	6

$$Sb_0(8) = 8 \text{ and } Sb_0(9) = 9$$

Subspace
$$S \triangleq \{0,1\}^{16} + 8 \triangleq \begin{cases} 8/9 & 8/9 & 8/9 & 8/9 \\ 8/9 & 8/9 & 8/9 & 8/9 \\ 8/9 & 8/9 & 8/9 & 8/9 \\ 8/9 & 8/9 & 8/9 & 8/9 \\ 8/9 & 8/9 & 8/9 & 8/9 \end{cases}$$

Key $\in \mathcal{K}$

S

Analysis on MixColumn

$$MixColumn: \begin{pmatrix} s_i \\ s_{i+1} \\ s_{i+2} \\ s_{i+3} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} s_i \\ s_{i+1} \\ s_{i+2} \\ s_{i+3} \end{pmatrix}, \text{ for } i \in \{0, 4, 8, 12\}$$

Each nibble becomes XOR of 3 elements in state: $({0,1} \oplus 8) \oplus ({0,1} \oplus 8) \oplus ({0,1} \oplus 8)$ $= {0,1} \oplus 8$

For any number of rounds, state belongs to S.

$$S \xrightarrow{MixColumn} S$$

Weak-key distinguisher

- #weak keys = 2^{32} .
- Distinguisher with 1 CP query.

$Sb_0(8) = 8 \text{ and } Sb_0(9) = 9$

- When state belongs to *S*, *SubCell* is equivalent to identity mapping.
- The entire encryption algorithm falls into a linear transformation.
- With 1 (P, C) pair, key space is reduced to 2¹⁶.
 Brute force search with another pair.
 Complexity is 16³+2¹⁶ ≈ 2¹⁶.

Extension to Find Weaker Constant

Copyright©2014 NTT corp. All Rights Reserved.

The essence is the following property of S-box.

With the choice of Midori64's round constant, $A = \{0,1\}, u = v = 8.$

What occurs when the constant is changed?

Search Results

u	v	A	u	v	A
0	С	0 c	3	3	0 4
1	а	0 b	4	е	0 a
1	а	029b	5	b	0 e
2	d	0 f	5	b	02ce
2	d	05af	6	f	09
3	3	0 b	7	7	0 f
3	3	0 a	7	7	0 e
3	3	07ad	8	8	0 1

For example, if RoundConstant $\subseteq A \oplus 2 \oplus d = A$, the weak-key class will be bigger (2⁶⁴).

The search space can be enlarged to A + u and A' + v as shown below, as long A and A' has non-empty intersection.

Feedback to S-box Design

Copyright©2014 NTT corp. All Rights Reserved.

- S-box analysis is the essence of the invariant subspace.
- Is it possible to choose S-box such that the power of invariant subspace can be upperbounded with any choice of constant?
- Such S-boxes reduce the designer's work load.
- (standard S-box criteria should not be compromised such as maxDP=2⁻², maxLP=2⁻².)

Assumptions: 4-bit S-box,

good maxDP, maxLP (variants of golden S-boxes), weakest linear layer (never changes affine subspace).

Choices of S-boxes

involution or non-involution

Maximal effect of invariant subspace attack

• Up to dim=1 or even avoiding dim=1

Key schedule

Identical subkey or independent subkeys

Involution S-box

	Up to dim=1	Avoiding dim=1
Identical K	\checkmark	_
Independent K	_	_

Non-involution S-box

	Up to dim=1	Avoiding dim=1
Identical K	\checkmark	\checkmark
Independent K	\checkmark	_

For any x such that $S(x) \neq x$, affine subspace transition of $A \bigoplus u \stackrel{S}{\leftrightarrow} A \bigoplus U$ always exits because of S(S(x)) = x.

Then $\{0, x \bigoplus S(x)\} + x$ is mapped to itself by applying S or S^{-1} .

This shows impossibility of avoiding dim=1 with an involution S-box for any constant.

- 1. First we ensure up to dim=1 by checking:
 - no affine subspace of dim=3 or more.
 - no affine subspace of dim=2 that can be connected (output subspace of one coincides with input subspace of another).

2. To resist dim=1 for identical subkeys, we avoid iterative affine transformations, which can be ensured by making diagonal entries of DDT zero.

Concluding Remarks

Copyright©2014 NTT corp. All Rights Reserved.

Invariant subspace attack on Midori64.

- Weak-key attack for 2³² weak keys.
- Distinguisher with 1 CP, key recovery with 2¹⁶.

S-box search to prevent invariant subspace

- Involution S-box avoiding weak constant for identical subkeys
- Non-involution S-box avoiding weak constant for any key schedule
- Non-involution S-box avoiding invariant subspace attack for identical subkeys.

Thank you for your attention !!