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Abstract. We present an invariant subspace attack on the block cipher Midori64,
proposed at Asiacrypt 2015. Our analysis shows that Midori64 has a class of 232 weak
keys. Under any such key, the cipher can be distinguished with only a single chosen
query, and the key can be recovered in 216 time with two chosen queries. As both
the distinguisher and the key recovery have very low complexities, we confirm our
analysis by implementing the attacks.
Some tweaks of round constants make Midori64 more resistant to the attacks, but
some lead to even larger weak-key classes. To eliminate the dependency on the round
constants, we investigate alternative S-boxes for Midori64 that provide certain level
of security against the found invariant subspace attacks, regardless of the choice of
the round constants. Our search for S-boxes is enhanced with a dedicated tool which
evaluates the depth of any given 4-bit S-box that satisfies certain design criteria. The
tool may be of independent interest to future S-box designs.
Keywords: Midori · Block Cipher · Invariant Subspace Attack · Weak Key

1 Introduction
Designing a block cipher simultaneously achieving high efficiency and high security has
been a challenging topic for many years. Dozens of lightweight ciphers have been proposed
for in last decade, and it is important to select good designs.

Regarding efficiency, several evaluation criteria can be considered, such as gate size,
throughput and latency. One of the most important criteria is a low energy consumption.
For example, in a sensor network, many sensor nodes having limited amount of computation
resources and battery will be distributed. Substituting old nodes with empty battery
into new ones requires an expensive maintenance cost, thus making the amount of energy
consumption as low as possible is crucial in such a situation.

Midori is a family of lightweight block ciphers published at Asiacrypt 2015 [BBI+15],
which have been advertised as one of the first lightweight ciphers optimized with respect
to energy consumed by the circuit per bit in encryption or decryption operation. To
achieve the desired low energy goal, several design decisions were made in Midori. It
adopts an AES-like SPN structure, and the diffusion layer consists of almost MDS 4× 4
binary matrices. The 4-bit S-box has a small delay, i.e. 1.5-2 times faster than those of
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PRINCE [BCG+12] and PRESENT [BKL+07]. The round constants are seemingly random
binary values extracted for the constant π. The key schedule is trivial and efficient. Finally,
the number of rounds is rather small in comparison to other lightweight ciphers: only
16-20 rounds are used.

Given the above choices of round function operations, security of the design must be
carefully discussed. The submission document of Midori contains a standard analysis of
the proposed ciphers against various types of attacks: differential and linear, boomerangs,
impossible differentials, etc. As a result, it has been concluded that the ciphers provide a
safe security margin. Additional analysis of Midori has been provided in [LW15], which
shows that 12 rounds (out of 16) of Midori64 can be attacked with the meet-in-the-middle
technique, with a rather high complexity: the key recovery requires around 255 chosen
plaintexts, 2106 memory, and 2125.5 computations.

Our Contributions. We show that Midori64 has a class of 232 weak keys that can be
distinguished with a complexity of a single query. Furthermore, within this class of keys, a
key recovery can be efficiently achieved given two plaintext-ciphertext pairs, including the
pair used in the distinguisher.

Our analysis is based on the invariant subspace attacks [LAAZ11]. It uses the unfor-
tunate combination in Midori64 of round constants, S-box, and multiplication by binary
matrix in the diffusion layer. When each cell of the master key has the value 0 or 1 (in
total 232 such keys), and each cell of the state (including the plaintext) has the value of 8
or 9, then the transformations in Midori64 keep the state in the same class (of cells values
8 and 9). Hence, regardless of the number of rounds, the class is maintained, and as a
result, the ciphertext belongs to this class as well. This fact allows to launch an efficient
distinguisher. The key recovery uses an additional fact: the values 8 and 9 are fixed points
for the S-box used in Midori64. As a result, the whole cipher under the weak-key class
becomes a linear transformation (the only non-linear component, the S-box, turns into the
identity mapping). Therefore, recovering the key is equivalent to solving a system of linear
equations and it can be achieved given only two pairs of plaintext-ciphertext verifying the
distinguisher. We have confirmed the correctness of the whole analysis by implementing
independently the distinguisher and the key recovery. At the current stage, our attacks do
not apply to Midori128.

Our attacks can be prevented with a change of the round constants of Midori64. On
the other hand, there exist such constants that allow even larger weak-key classes. Hence,
in the second part of the paper we analyze S-box alternatives that provide security against
invariant subspace attacks, regardless of the round constants. That is, we examine the
possibility to show that a cipher is resistant against invariant subspace attacks (or has
only a small set of weak keys) by focusing only on the S-boxes in combination with the key
schedule. We stress that we are not encouraging to remove round constants, but to find
strong S-boxes that resist the attack free to choose any round constants without worries.
Note, we take into account only invariant subspace attacks as our attack on Midori64,
however, Leander et al. [LMR15] have shown several other flavours of these attacks. We
show that involution S-boxes can provide certain level of security (without analyzing the
round constants) only when the key schedule is very simple (consists of identical round
keys). On the other hand, with non-involution S-boxes we can extend the security to
arbitrary key schedules. In both of the cases, we provide actual S-boxes found with a
dedicated tool that covers the space of all 4-bit S-boxes with certain design criteria (good
linear and differential properties and low number of fixed points, besides and low depth).
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2 Preliminaries

2.1 Description of Midori

Midori consists of two algorithms Midori64 and Midori128. The block size, n, is 64 bits for
Midori64 and 128 bits for Midori128, and the key size is 128 bits for both. The ciphers
adopt a standard SPN structure, and the internal state is represented as 4× 4 cells, where
the size of each cell is 4 bits for Midori64 and 8 bits for Midori128. The state S has sixteen
cells s0, s1, . . . , s15 arranged as :

S =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .
From the 128-bit master key, Midori64 and Midori128 generate a 64-bit whitening

key WK and r − 1 64-bit round keys RK0,RK1, . . . ,RK r−2. Here, r is the number of
rounds, which is 16 for Midori64 and 20 for Midori128. The plaintext is first loaded into
the state and the whitening key WK is XORed to the state. Then, the round function
RF : {0, 1}n × {0, 1}64 7→ {0, 1}n, which takes as input the current state and the round
key RKi and outputs the updated state, is iterated r − 1 times. Finally, the last round
function RF l is applied and the resulting state is output as the ciphertext.

2.1.1 Key Generation

In Midori64, the 128-bit key K is separated into two 64-bit states K0 and K1. Then, the
whitening key WK is computed as K0 ⊕K1, and the round keys RK i for i = 0, 1, . . . 14
are computed as K(i mod 2) ⊕ αi, where αi is a round constant described below.

The round constants αi where i = 0, 1, . . . . , 14 consist of 16 binary cells. The constants
have been derived from the hexadecimal encoding of the fractional part of π. For example,
α0 and α1 are defined as follows:

α0 =


0 0 1 0
0 1 0 0
0 0 1 1
1 1 1 1

 and α1 =


0 1 1 0
1 0 1 0
1 0 0 0
1 0 0 0

 .
The remaining αi are defined similarly. Refer to [BBI+15] for more details. We later
exploit the fact that all the αi’s are binary matrices, i.e. all the cells in any αi are either 0
or 1.

2.1.2 Round Function and the Last Round Function

The round function RF consists of the four operations SubCell, ShuffleCell, MixColumn and
KeyAdd that update the n-bit state S.

SubCell This operation in Midori64 applies a 4-bit S-box Sb0 to each cell, while in
Midori128 applies four 8-bit S-boxes SSb0, SSb1, SSb2 and SSb3 to each of the four cells in
Row 0, Row 1, Row 2 and Row 3, respectively. Each SSbi is generated by 4-bit S-box Sb1.
Refer to [BBI+15] for the details of how to generate SSbi from Sb1. The full specifications
of Sb0 and Sb1 are shown in Table 1.
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Table 1: Specifications of Sb0 and Sb1

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

Sb0(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6
Sb1(x) 1 0 5 3 e 2 f 7 d a 9 b c 8 4 6

ShuffleCell This transformation is a cell-wise permutation. Each cell is permuted as
follows. 

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 −→

s0 s14 s9 s7
s10 s4 s3 s13
s5 s11 s12 s2
s15 s1 s6 s8

 .
MixColumn This transformation applies a 4× 4 binary involution matrix to each column
of the state as follows.

si

si+1
si+2
si+3

 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




si

si+1
si+2
si+3

 , for i ∈ {0, 4, 8, 12}.

KeyAdd KeyAdd(S,RK i) cell-wise XORs RK i to the state S.

The last round function RF l only applies two operations; namely, SubCell(S) and
KeyAdd(S,WK ).

Algorithm 1 – Midori encryption algorithm
1: function Midori-Encryption(P )
2: S ← P
3: S ← KeyAdd(S,WK )
4: for i = 0, . . . , r − 2 do
5: S ← SubCell(S)
6: S ← ShuffleCell(S)
7: S ← MixColumn(S)
8: S ← KeyAdd(S,RK i)
9: end for
10: S ← SubCell(S)
11: S ← KeyAdd(S,WK )
12: return S
13: end function

2.1.3 Summary

The encryption of Midori can be summarized as shown in Algorithm 1, and Midori64
encryption function is depicted in Figure 1. Note that the decryption can be described
similarly. However, since our attack only uses the encryption, we omit the description of
the decryption.
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Figure 1: Midori64 encryption algorithm.

2.2 The Invariant Subspace Attack
As a method of cryptanalysis, the invariant subspace attack was introduced by Leander
et al. at CRYPTO 2011 [LAAZ11]. In this method, the adversary aims to find so-called
invariant subspaces, i.e. subsets of the set of all possible state and key values, invariant of
the round transformations used in the analyzed cipher. When such a subset exists, then the
adversary encrypts plaintexts that belong to the subset, assumes the master key belongs
as well to the subset (thus it is a weak-key attack) and expects to obtain corresponding
ciphertexts that also belong to the subset. This immediately yields a distinguisher for the
cipher, while more advanced approaches can be used for a key recovery.

The invariant subspaces for an n-bit iterated cipher with a round function FKi
(x) =

R(x⊕Ki), where x is the state, Ki is the subkey of round i, formally can be introduced
as follows. Assume there exist two constants u, v ∈ Fn

2 and a subspace A ⊆ Fn
2 such that

R(u⊕A) = v ⊕A.

If all the subkeys Ki are such that Ki ∈ u⊕ v ⊕A, then it follows:

FKi
(v ⊕A) = R(u⊕ v ⊕A⊕ v ⊕A) = R(u⊕A) = v ⊕A.

Therefore, if the plaintext P ∈ v ⊕A, it follows that the ciphertext C ∈ v ⊕A regardless
of the number of rounds.

Non-trivial invariant subspaces do not necessarily exist for a given cipher. When they
do exist, they are found either by a careful analysis (as it is the case of the analysis of
PRINTCipher [LAAZ11]) or with the use of a specialized tool [LMR15]. To deduce the
invariant subspace, the former method requires examination of all the transformations
used in the cipher, which usually provides a hint of the possible subspace. On the other
hand, the latter method is generic and is achieved by a computer search. Its feasibility
depends on the proportion of the sizes of weak to all key class.

3 Invariant Subspace Attack on Midori64
In this section, we present the invariant subspace attack on Midori64. Our analysis reveals
a class of 232 weak keys. Within this class, Midori64 can be distinguished from a random
permutation with a single chosen plaintext query, a negligible computational cost, and a
negligible memory. Moreover, the key can be recovered from the 232 potential candidates
in 216 operations.

3.1 Distinguisher with Invariant Subspace Attack
We first introduce several notations used in this attack.

K: a subspace of cell values consisting of two elements 0 and 1, i.e., K , {0, 1}
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K: a subspace of state values in which each of its sixteen cells belongs to K, i.e., K , K16

S: an affine subspace of cell values consisting of two elements 8 and 9, i.e., S , {8, 9} =
8⊕K

S: an affine subspace of state values in which each of its sixteen cells belongs to S,
i.e., S , S16

Proposition 1 (Invariant Subspace). If the 128-bit master key K0‖K1 satisfies K0,K1 ∈
K, then any plaintext P ∈ S is mapped by Midori64 to a ciphertext C ∈ S with probability
one.

Throughout this section, we prove Proposition Proposition 1. To achieve this, we focus
independently on each transformation used in Midori64.

3.1.1 Round Key Generation

Let x, y ∈ K. Then, x⊕ y ∈ K. Therefore, for any X,Y ∈ K, X ⊕ Y ∈ K.
The whitening key WK is computed by K0 ⊕K1. By assuming K0,K1 ∈ K, we have

WK ∈ K.
The round key for the i-th round, RK i, is computed by K(i mod 2) ⊕ αi. Here, an

important observation for our attack is that all the round constants αi only consist of 0
and 1, i.e., αi ∈ K for i = 0, 1, . . . , 14. By assuming K0,K1 ∈ K, we have RK i ∈ K for all
i = 0, 1, . . . , 14.

3.1.2 Data Processing Part

Let x ∈ S and y ∈ K. Then, x⊕ y ∈ S. Therefore, for any X ∈ S and Y ∈ K, X ⊕ Y ∈ S.
As long as the plaintext P ∈ S, the state after adding the whitening key, WK ∈ K, belongs
to S.

Then, the state is processed by the SubCell operation. Here, we exploit two particular
data transitions through the S-box for Midori64; Sb0(8) = 8 and Sb0(9) = 9. Namely,
as long as the input state belongs to S, SubCell is equivalent to the identity mapping.
Obviously, we obtain S← SubCell(S).

The subsequent ShuffleCell is a cell-wise permutation, and since all cells in S satisfy S,
S← ShuffleCell(S).

The MixColumn operation is slightly more complex. Because the diffusion matrix is a
binary matrix, each output cell from MixColumn can be represented as the XOR of three
input cells. As long as the input state belongs to S, each of three cells is either 8 or 9.
Thus, the possibilities for each output cell is the following eight cases:

8⊕ 8⊕ 8 = 8, 8⊕ 8⊕ 9 = 9, 8⊕ 9⊕ 8 = 9, 8⊕ 9⊕ 9 = 8,
9⊕ 8⊕ 8 = 9, 9⊕ 8⊕ 9 = 8, 9⊕ 9⊕ 8 = 8, 9⊕ 9⊕ 9 = 9.

In any case, each output cell belongs to S, thus S← MixColumn(S).
The KeyAdd operation is the same as the whitening key addition, i.e.:

S← KeyAdd(S,RK i ∈ K).

3.1.3 Summary

Thanks to the property of αi ∈ K, any weak key K0,K1 ∈ K leads to WK ∈ K and
RK i ∈ K. Let P ∈ S. Then, the state after the whitening key addition becomes
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S ← KeyAdd(P ∈ S,WK ∈ K). Then, the following round function is iterated by
incrementing the round number i.

S← SubCell(S),
S← ShuffleCell(S),
S← MixColumn(S),
S← KeyAdd(S, RKi ∈ K).

As a result, regardless of the number of rounds applied, the state belongs to S with
probability one. The last round consists of only SubCell and the whitening key addition,
which does not break the property. This completes the proof of Proposition Proposition 1.

By following the notations in [LMR15], the affine subspace 8 ⊕ {0, 1} is mapped to
itself with SubCell,ShuffleCell,MixColumn and KeyAdd when RKi ∈ K.

3.1.4 Experiments

We implemented our invariant subspace distinguisher and verified its correctness. Some
examples are shown in Table 2.

Table 2: Experimental data
Example 1 Example 2 Example 3

K0 0000000000000000 1100110011001100 0000101001001110
K1 0000000000000000 0011001100110011 1101010100010001
P 8888888888888888 9999999999999999 9889898898898989
C 9998899889888899 8999999988988989 9999988988898889

3.1.5 Computer Search of Invariant Subspaces

We performed a computer search to detect the largest weak-key class. We brute-forced all
possible subspaces of cell values in the plaintext (each cell belongs to the same subset) and
all possible values of master key cells (similarly, they all belong to another subset). As
there are 16 values for the cells in each of the two cases, the brute-force required around
216 · 216 = 232 time. We found five subspaces, all subsets of the original subspace. Thus,
we can conclude that no larger weak-key classes of the analyzed type exist in Midori64.

We emphasize that while the generic search algorithm presented in [LMR15] could
detect Midori64’s invariant subspaces, about 22(64−16) = 296 operations are required for
brute-forcing all the possibilities. Even with their advanced probabilistic search, about
50× 264−16 ≈ 253.6 operations are required. Indeed, the time complexity of this generic
algorithm decreases exponentially with the dimension of the subspace, making it harder to
detect small subspaces like in Midori64 (being apart from generic, reducing the search space
to feasible one is possible by using the specific structure of Midori64’s round function).

In contrast, the exhaustive analysis we present in the sequel has been found by careful
analysis of the components of the cipher without using the generic invariant subspace
detection algorithm.

3.2 Key Recovery with Invariant Subspace Attack
In this section, we describe how a chosen plaintext P and its corresponding ciphertext C
satisfying the subspace distinguisher can be used to efficiently recover the 128-bit weak key.
Because the size of the weak-key class is 232, the exhaustive search on the entire weak-key
space requires 232 computations. Hence, our goal is to recover the key in time less than
232.
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The main observation pertains to the behavior of the S-box on the subset S. Indeed,
the S-box Sb0 used in Midori64 has four fixed points S ⊂ {3, 7, 8, 9}. Consequently, under
the assumption that S ∈ S, the S-box behaves like the identity mapping, which in turn
makes linear the full Midori64 cipher.

Therefore, recovering the 128-bit key K = K0||K1 can be done by writing the system
of linear equations between P ∈ S and C ∈ S. To describe the system, we denote
by k0, . . . , k15 the 16 variables from K0, and by k16, . . . , k31 the 16 ones from K1. We
emphasize that ki ∈ K, since we assume that K belongs to the weak-key class K. Similarly,
we denote the 16 known variables of the plaintext P by p0, . . . , p15 and the 16 known
variables of the ciphertext C by c0, . . . , c15, that is:

K0 =


k0 k4 k8 k12
k1 k5 k9 k13
k2 k6 k10 k14
k3 k7 k11 k15

 ∈ K, K1 =


k16 k20 k24 k28
k17 k21 k25 k29
k18 k22 k26 k30
k19 k23 k27 k31

 ∈ K,

P =


p0 p4 p8 p12
p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15

 ∈ S, C =


c0 c4 c8 c12
c1 c5 c9 c13
c2 c6 c10 c14
c3 c7 c11 c15

 ∈ S.

Under these notations, the linear system of 16 equations becomes:
k0 ⊕ k11 ⊕ k14 ⊕ k15 ⊕ k21 ⊕ k22 ⊕ k23 ⊕ k26 ⊕ k28 ⊕ k29 ⊕ k30 ⊕ k31 = p0 ⊕ p5 ⊕ p6 ⊕ p7 ⊕ p10 ⊕ p11 ⊕ p12 ⊕ p13

⊕ c5 ⊕ c6 ⊕ c7 ⊕ c10 ⊕ c12 ⊕ c13 ⊕ c14 ⊕ c15
k1 ⊕ k11 ⊕ k19 ⊕ k24 ⊕ k26 ⊕ k29 ⊕ k31 = p1 ⊕ p3 ⊕ p8 ⊕ p10 ⊕ p11 ⊕ p13 ⊕ p15

⊕ c3 ⊕ c8 ⊕ c10 ⊕ c13 ⊕ c15 ⊕ 1

k2 ⊕ k14 ⊕ k19 ⊕ k21 ⊕ k22 ⊕ k23 ⊕ k24 ⊕ k28 ⊕ k30 ⊕ k31 = p2 ⊕ p3 ⊕ p5 ⊕ p6 ⊕ p7 ⊕ p8 ⊕ p12 ⊕ p15
⊕ c3 ⊕ c5 ⊕ c6 ⊕ c7 ⊕ c8 ⊕ c12 ⊕ c14 ⊕ c15

k3 ⊕ k15 ⊕ k19 ⊕ k24 ⊕ k25 ⊕ k29 = p8 ⊕ p9 ⊕ p13 ⊕ p15 ⊕ c3 ⊕ c8 ⊕ c9 ⊕ c13 ⊕ 1

k4 ⊕ k11 ⊕ k13 ⊕ k15 ⊕ k22 ⊕ k25 ⊕ k27 ⊕ k28 ⊕ k29 ⊕ k30 = p4 ⊕ p6 ⊕ p9 ⊕ p12 ⊕ p14 ⊕ p15
⊕ c6 ⊕ c9 ⊕ c11 ⊕ c12 ⊕ c13 ⊕ c14 ⊕ 1

k5 ⊕ k14 ⊕ k22 ⊕ k23 ⊕ k25 ⊕ k28 ⊕ k29 ⊕ k30 = p5 ⊕ p6 ⊕ p7 ⊕ p9 ⊕ p12 ⊕ p13
⊕ c6 ⊕ c7 ⊕ c9 ⊕ c12 ⊕ c13 ⊕ c14 ⊕ 1

k6 ⊕ k13 ⊕ k14 ⊕ k15 ⊕ k22 ⊕ k25 ⊕ k28 ⊕ k29 = p9 ⊕ p12 ⊕ p14 ⊕ p15 ⊕ c6 ⊕ c9 ⊕ c12 ⊕ c13
k7 ⊕ k13 ⊕ k14 ⊕ k15 ⊕ k23 = p13 ⊕ p14 ⊕ p15 ⊕ c7

k8 ⊕ k15 ⊕ k24 ⊕ k29 = p13 ⊕ p15 ⊕ c8 ⊕ c13
k9 ⊕ k11 ⊕ k13 ⊕ k14 ⊕ k24 ⊕ k28 = p8 ⊕ p9 ⊕ p11 ⊕ p12 ⊕ p13 ⊕ p14 ⊕ c8 ⊕ c12

k10 ⊕ k11 ⊕ k25 = p9 ⊕ p10 ⊕ p11 ⊕ c9 ⊕ 1

k12 ⊕ k13 ⊕ k14 ⊕ k15 ⊕ k29 = p12 ⊕ p14 ⊕ p15 ⊕ c13
k16 ⊕ k19 ⊕ k24 ⊕ k25 ⊕ k29 ⊕ k31 = p0 ⊕ p3 ⊕ p8 ⊕ p9 ⊕ p13 ⊕ p15

⊕ c0 ⊕ c3 ⊕ c8 ⊕ c9 ⊕ c13 ⊕ c15 ⊕ 1

k17 ⊕ k19 ⊕ k22 ⊕ k23 ⊕ k24 ⊕ k25 ⊕ k26 ⊕ k27 ⊕ k28 ⊕ k31 = p1 ⊕ p3 ⊕ p6 ⊕ p7 ⊕ p8 ⊕ p9 ⊕ p10 ⊕ p11
⊕ p12 ⊕ p15 ⊕ c1 ⊕ c3 ⊕ c6 ⊕ c7 ⊕ c8 ⊕ c9
⊕ c10 ⊕ c11 ⊕ c12 ⊕ c15

k18 ⊕ k19 ⊕ k21 ⊕ k22 ⊕ k23 ⊕ k24 ⊕ k28 ⊕ k29 ⊕ k30 ⊕ k31 = p2 ⊕ p3 ⊕ p5 ⊕ p6 ⊕ p7 ⊕ p8 ⊕ p12 ⊕ p13
⊕ p14 ⊕ p15 ⊕ c2 ⊕ c3 ⊕ c5 ⊕ c6 ⊕ c7 ⊕ c8
⊕ c12 ⊕ c13 ⊕ c14 ⊕ c15 ⊕ 1

k20 ⊕ k22 ⊕ k23 ⊕ k25 ⊕ k28 ⊕ k29 = p4 ⊕ p6 ⊕ p7 ⊕ p9 ⊕ p12 ⊕ p13
⊕ c4 ⊕ c6 ⊕ c7 ⊕ c9 ⊕ c12 ⊕ c13,

where there are 32 unknowns. The system being undetermined, the set of solution contains
216 elements, which provides 216 key candidates for the 128-bit master key K. Using an
additional known plaintext-ciphertext pair, we uniquely determine the key in 216 operations.
More precisely, the above system of equations describes a Gröbner Basis so that one can sim-
ply enumerate all the 216 values for k0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k12, k16, k17, k18,
k20 ∈ K and uniquely and efficiently determine the remaining 16 key variables.

4 Extended Analysis: Weaker Constant
The selection of the round constants (which currently have cells that are either 0 or 1)
certainly has contributed towards the existence of the invariant subspace for the whole
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cipher. There are, however, round constants that allow even larger invariant subspaces.
We further describe such constants. Similarly to the original selection, we assume that
all cells of the round constants belong to a particular set RC which is a proper subset of
{0, 1}4.

An analysis of the S-box Sb0 reveals possible values for RC. More precisely, we first
find all possible affine invariant subspaces for the S-box1, that is, Sb0(u ⊕ A) = v ⊕ A.
Subsequently, if RC ⊆ A, then the addition of the round constants lies in A, thus the
space is stable. For instance, in the original Midori64, u = 8, v = 8, A = {0,1} and
RC = {0,1} ⊆ A.

A computer search shows that there are several affine subspaces for Sb0, some even
of size 4 (refer to Table 3). For example, u = 2, v = d, A = {0, 5, a, f} is an affine
invariant subspace for Sb0. For this subspace, if RC ⊆ A, then the weak-key class would
be larger: each subkey cell can take any of the values from A, thus the size of the weak-key
class would become 264.

Table 3: Affine invariant subspaces for Sb0

u v A u v A

0 c 0 c 3 3 0 4

1 a 0 b 4 e 0 a

1 a 0 2 9 b 5 b 0 e

2 d 0 f 5 b 0 2 c e

2 d 0 5 a f 6 f 0 9

3 3 0 b 7 7 0 f

3 3 0 a 7 7 0 e

3 3 0 7 a d 8 8 0 1

The modified constants not only permit distinguishers for larger weak-key classes, but
lead to a key recovery for the classes. Note, in our key-recovery attack on Midori64 with
the original constants, we have used the fact Sb0(8) = 8,Sb0(9), thus it was possible to
model the S-box as a simple identity function, which in turn made the whole encryption to
behave as a linear function. In general, as long as the S-box behaves as an affine function
on the invariant subspace (for the S-box), the key recovery will be reduced to solving a
system of linear equations, e.g. any 2-bit permutation is an affine mapping. Let us focus on
the above example u = 2, v = d, A = {0, 5, a, f}, that is Sb0(2⊕ 0) = d⊕ 0,Sb0(2⊕ 5) =
d⊕ a,Sb0(2⊕ a) = d⊕ 5,Sb0(2⊕ f) = d⊕ f. We need to find a linear function l(x), such
that l(0) = 0, l(5) = a, l(a) = 5, l(f) = f, hence, Sb0(x) = l(2⊕ x)⊕ d on the points from
A. By solving the system of linear equations l(5) = a, l(a) = 5, where l is represented as
a binary 4× 4 matrix of unknowns, we deduce that l(x) = l(x1|x2|x3|x4) = x2|x1|x2|x1.
Similarly to the previous discussion from Section 3.2, we note that the remaining operations
in the cipher are all linear, thus the whole encryption becomes a linear function. Hence,
again the key can be recovered by solving a system of linear equations.

The search space can be enlarged to Sb0(u ⊕ A) = v ⊕ A′. If A ∩ A′ does not have
intersection other than 0 and RC ⊆ A ∩A′ the addition of the round constants lies in A
and A′, thus the space will be stable. There is a large number of such subspaces when the
sizes of A and A′ are both two. In addition, we also found two cases where the size of A
and A′ are four. Those two cases are shown in Table 4.

1This is in line with the discussion presented in [LMR15], see Lemma 6.
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Table 4: Affine invariant subspaces for Sb0 with A 6= A′, |A| = |A′| = 4

u A v A′

c 0 1 2 3 0 0 2 4 6

0 0 5 a f 1 0 7 a d

5 A Search for Strong S-boxes
In this section, we search for S-boxes that resist invariant subspace attacks against a
Midori-like structure, which will be detailed later. Our goal is to satisfy simultaneously
other general S-box design criteria, in particular, those considered in Midori. Among
several criteria, the concept minimizing depth deserves carefully attention, and we will
explain it in Section 5.1. To resist invariant subspace attacks, criteria for S-boxes depend
on what key schedule function is assumed, how strongly attacks are avoided, and on the
choice of involution S-boxes/non-involution S-boxes. We first present such classification for
case analysis in Section 5.4. Prior to the case analysis, we demonstrate in Section 5.2 that
the existence of affine subspaces for an S-box has a very close relation to its differential
distribution table (DDT). For example, all subspace transitions for Sb0 used in Midori64’s
can be recovered from its DDT. This observation is important to consider as an S-box
design criteria. The details for each case analysis are given in Section 5.5 and Section 5.6.

Previous Work on S-box Search

The research on S-boxes has been an ongoing topic for several years. One direction is to
analyse and classify the S-boxes based on their cryptographic properties such as resistance
against differential and linear attacks. For 4-bit S-boxes, Leander et al. [LP07] have
proposed 16 affine equivalence classes of S-boxes that are optimal against differential and
linear attacks, so-called optimal S-boxes. In 2011, Saarinen [Saa11] has extended the search
to all 4-bit S-boxes and has introduced the golden S-boxes which are not only optimal
against differential and linear attacks, but also have optimal algebraic degree and other
properties that may not be preserved under the affine equivalence classes. Another direction
is to search for better implementation of existing S-boxes like in [Osv00, Can05, UDCI+11].
In [Osv00, UDCI+11], heuristic searches were conducted to find the minimal sequence of
basic operations like XOR/NXOR, AND/OR, NAND/NOR and NOT to implement their
target S-boxes. Notable in [Sto16], Stoffelen built the SAT-solver based S-box search tool,
which can find a low-depth S-box along with other implementation criteria. In contrast
to the previous work, our goal is to search for 4-bit S-boxes which resist not only the
classical attacks, but as well the relatively new invariant subspace attacks. In addition,
by considering the depth of the S-boxes, we develop an evaluation tool that generates
the shortest depth of our target S-boxes (see Section 5.1 for the details). Note that the
definition of depth is slightly different between [Sto16] and ours.

5.1 General S-box Design Criteria
Our goal is to find S-boxes that satisfy the following criteria2:

• the maximal differential probability is 2−2.
2We would like to point out that these (plus the involution property) are the criteria chosen by the

designers of Midori. More generally, the discussion and criteria mentioned in this paper should be an
additional consideration on top of the other criteria, for instance the algebraic degree, that the designers
have when designing ciphers, especially for lightweight ciphers like Midori.
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• the maximal absolute bias of a linear approximation is 2−2.

When there are several candidates, we pick the S-box that has:

• the smallest number of fixed points,

• the smallest depth.

Let us clearly define the notion of depth of an S-box. The designers of Midori introduce
the metric depth to estimate the path delay of S-boxes as:

Definition 1 (Depth, [BBI+15]). The depth is defined as the sum of sequential path
delays of basic operations AND, OR, XOR, NAND, NOR, XNOR and NOT.3

To maintain consistency, we follow the same assumptions of depth and gate size (GEs)
for each basic operation as that in [BBI+15]. The depths as well as the required gates
of XOR/XNOR, AND/OR, NAND/NOR and NOT are weighted as 2, 1.5, 1 and 0.5,
respectively. For example, the depth of the following function is 3.5.

((c NAND d) NAND (b NAND ( NOT a))) NOR (b NOR (a NAND d))

5.1.1 S-box Depth Evaluation Tool

The designers of Midori discuss only how to evaluate the depth of an S-box that has already
been described by the aformentioned logical operations. However, the details on finding an
S-box description with small (or smaller) depth are omitted. This motivates us to develop
an S-box depth evaluation tool, which takes as input an S-box (given in tabular form) and
outputs its representation of the logical operations that has a certain depth4 (or detects
that no such representation exist). The tool has helped us to find S-boxes presented in the
latter part of this section. We provide our tool as an auxiliary supplemental material to
this submission, and will open it to the public as it will help future designers to identify
good S-boxes. In the following, we explain the concept behind it.

The tool evaluates the depth of a given S-box by matching against values from precom-
puted look-up tables. The tables are created as follows. We generate all Boolean-function
representations of each output bit of an S-box that has a certain depth, and store them in
a table. Hence, all representations within the same table have the same depth.

We use a recursive algorithm to enumerate all Boolean functions of four input bits that
can be expressed with certain depth. For each Boolean function, we record four types of
information;

• truth table for all 4-bit inputs 0000, 0001, 0010, . . . , 1111,

• expression,

• depth,

• gate size.

For instance, 1010101010101010 represents the truth table of a Boolean function “NOT d"
where a|b|c|d is the 4-bit input to the S-box, and the depth and gate size are both 0.5,
which is recorded as [1010101010101010, “NOT d", 0.5, 0.5].

The recursive algorithm to enumerate all Boolean functions works as follows:
3The original definition of depth in [BBI+15] does not contain XOR and XNOR, but XOR appears in

its example and XNOR is mentioned in gate estimations. We consider both XOR and XNOR here and
assume the depth of XNOR is 2.

4Recently, Biryukov and Perrin [BP15] have developed a very powerful tool for analysis of S-boxes, but
their motivation differs from ours.
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Depth 0: the four input bits themselves are four Boolean functions.

Depth 0.5: apply basic operation NOT to the 0-depth Boolean functions.

Depth 1: apply basic operation NAND/NOR to two different 0-depth Boolean functions.

Depth 1.5: there are three ways to generate Boolean functions: 1) apply basic operation
AND/OR to two different 0-depth Boolean functions, 2) apply basic operation
NAND/NOR to two different 0.5-depth Boolean functions, and 3) apply basic
operation NOT to two different 1-depth Boolean functions.

Depth d ≥ 2: there are four ways to generate required Boolean functions: apply basic
operations XOR/XNOR, AND/OR, NAND/NOR and NOT to Boolean functions
with depth d− 2, d− 1.5, d− 1, d− 0.5 respectively.

For some Boolean functions, there are several expressions with the same depth. In this
case, we store the one with the smallest gate size. For expressions representing the same
Boolean function with the same depth and the same gate size, we treat them as equivalent
and store only the first.

Each output bit of a 4-bit S-box is a balanced Boolean function of the four input bits.
Therefore, we filter out the unbalanced, and store only the balanced to test for S-boxes.
Table 5 gives the number of balanced Boolean functions that can be expressed with a
small depth. The number of all 4-bit balanced Boolean functions is 12870 ≈ 213.65, while
our enumeration for depth of 4.5, which also includes depth of less than 4.5, enumerates
12806 ≈ 213.64 functions. Thus, most of the 4-bit balanced Boolean functions can be
expressed with depth 4.5.

Table 5: Number of balanced Boolean functions with respect to expression depth
Depth 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Number 22 22 0 0 24 26.86 28.39 210.72 213.43 213.64

Given an S-box, by calculating the truth table of each output bit, and subsequently
matching against the created look-up tables, we find its expressions with least depth and
gate size. The depth of the given S-box is estimated as the largest depth of the output
bits. We use the stored balanced Boolean functions to construct S-boxes of certain depth
in two steps:

Step 1. Search for pairs of balanced Boolean functions with certain depth that satisfy
2-bit balance, i.e., the weights of 00, 01, 10, 11 are equal in truth table. For instance,(

1100110011001100
1111111100000000

)
is a pair of 2-bit balanced Boolean functions.

Step 2. Search for combinations of 2-bit balanced pairs of Boolean functions that make
a permutation, i.e. an S-box, and simultaneously satisfy that the maximal probability of
differential is 2−2 and the maximal absolute bias of a linear approximation is 2−2.

With the tool, we have generated all 225.2 S-boxes with depth of at most 3.5, among
which 211.17 are of depth 3.
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5.2 The Relation between DDT and Invariant Subspace of an S-box

Affine invariant subspaces for an S-box are closely related to its differential distribution
table (DDT). The existence of the affine subspace transitions u1 ⊕ A

S−→ u2 ⊕ A′ with
low dimension of A and A′ immediately provides information about DDT and vice versa.
In particular, for a 4-bit S-box with maximal differential probability of 2−2, all subspace
transitions can be recovered only from DDT.

We show in this section the relation between affine subspace transitions and DDT of
an S-box, and explain how to use DDT to search for S-boxes that can be used to resist
invariant subspace attacks for the whole cipher.

5.2.1 Deriving DDT from Low Dimension Affine Subspace

If A is a vector space of dimension 2 or less, the number of elements in A will appear in
DDT. Suppose that there exists an affine subspace transition u1⊕A

S−→ u2⊕A′. It means
that for any input x ∈ A, the S-box can be seen as S(u1 ⊕ x) = l(u1 ⊕ x)⊕ u2 = l(x)⊕ u,
where l(x) is a linear function that transforms A into A′ and u is a constant calculated as
u = l(u1)⊕ u2. As l(x) is a linear function, for any input difference it has a differential
probability of one.

For instance, let us consider the vector space with dimension 1, i.e. u1⊕A
S−→ u2⊕A′,

where A = {0, v} and A = {0, v′}. This is simply converted into v S−→ v′. When the
difference of two values in the vector space is considered, it suggests ∆in

S−→ ∆out where
∆in = v and ∆out = v′. In the end, we have 2 for the entry (∆in,∆out) = (v, v′) in DDT.

The same is applied to a vector space with dimension 2, A = {0, v1, v2, v1 ⊕ v2} and
A′ = {0, v′1, v′2, v′1 ⊕ v′2}. Differently from dimension 1, there are three ways to make the
input difference which are ∆1 = 0 ⊕ v1, ∆2 = 0 ⊕ v2, and ∆3 = 0 ⊕ v1 ⊕ v2 (all result
in different output difference). Thus we will have 3 different entries with element 4. By
setting ∆′1 = S(0)⊕ S(v1), ∆′2 = S(0)⊕ S(v2), and ∆′3 = S(0)⊕ S(v1 ⊕ v2), the entries
for (∆1,∆′1), (∆2,∆′2) and (∆3,∆′3) will be 4.

5.2.2 Deriving Affine Subspace from DDT

Affine subspaces can be derived from DDT up to vector space level. Having 2 for the
entry of (∆in,∆out) = (v, v′) in DDT indicates that there are exactly 2 input values such
that S(x) ⊕ S(x ⊕ v) = v′. By setting u1 ← x and u2 ← S(x), it can be described as
u1 ⊕ {0, v}

S−→ u2 ⊕ {0, v′}. Without the exact specification of the S-box, DDT does not
provide the value of x and S(x) satisfying the difference transition. Therefore, the offset
values u1 and u2 cannot be recovered only from DDT.

The case of the value of 4 in DDT is basically the same. Having 4 for the entry of
(∆in,∆out) = (v, v′) in DDT indicates that there are exactly 4 input values such that
S(x)⊕S(x⊕v) = v′, i.e. x ∈ {x1, x1⊕v, x2, x2⊕v}. Let u1 be x1 and w be x1⊕x2. Then,
4 input values can be described as u1 ⊕ {0, v, w,w ⊕ v}. Similarly, let u2 be S(x1) and
w′ be S(x1)⊕ S(x2). Then, 4 output values can be described as u2 ⊕ {0, v′, w′, w′ ⊕ v′}.
Consequently, the affine subspace u1 ⊕ {0, v, w,w ⊕ v}

S−→ u2 ⊕ {0, v′, w′, w′ ⊕ v′} holds.
Note that three different entries with value 4 lead to an identical affine subspace of
dimension 2. Namely, not only (∆in,∆out) = (v, v′) but also (∆in,∆out) = (w,w′) and
(v ⊕ w, v′ ⊕ w′) lead to u1 ⊕ {0, v, w,w ⊕ v}

S−→ u2 ⊕ {0, v′, w′, w′ ⊕ v′}.
In Appendix A, we demonstrate how to recover all the affine subspaces of Sb0 used in

Midori64 from its DDT.
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5.2.3 Remarks on Affine Subspace with Higher Dimension

The above discussion does not apply to affine subspace transitions with dimension of 3.
This is because the 8 input values that correspond to 4 pairs that share the same output
difference through the S-box do not necessarily form an affine space. to be more precise,
suppose that DDT has value 4 for the entry of (∆in,∆out) = (v, v′), indicating that there
exist four input values x0, x1, x2, x3 such that

S(x0)⊕ S(x0 ⊕ v) = v′,

S(x1)⊕ S(x1 ⊕ v) = v′,

S(x2)⊕ S(x2 ⊕ v) = v′,

S(x3)⊕ S(x3 ⊕ v) = v′.

Let u1 be x0, u2 be S(x0), w be x0 ⊕ x1, w′ be S(x0) ⊕ S(x1), t be x0 ⊕ x2, and t′ be
S(x0)⊕S(x2). The necessary and sufficient condition that the above forms an affine space
of dimension 3 (bases and offset are (v, w, t) and u1 for input and (v′, w′, t′) and u2 for
output) is x0 ⊕ x3 = v ⊕ w and S(x0)⊕ S(x3) = v′ ⊕ w′. This is not always true. This
fact yields a few remarks that deserve attention.

The absence of affine subspace transition with dimension 3 for 4-bit S-boxes does not
imply that the maximal differential probability is 2−2, i.e. does not ensure that all elements
in DDT are at most 4. This is because an affine subspace transition with dimension 1 and
one with dimension 2 can impact to an identical entry in DDT, thus the number in this
entry becomes 6.

Similarly, ensuring the maximal differential probability of 2−2 for a 4-bit S-box, in other
words, having 4 or less in all entries of DDT, does not imply that there is no affine subspace
transition with dimension 3 (or higher for larger S-boxes). For example, a transition with
dimension 3 can be composed of two transitions with dimension 2.

In short, we have proven the following proposition.

Proposition 2. For an n-bit S-box with maximal differential probability 2−n+2, every
affine subspace transition with dimension 2 corresponds to three entries of 4 in DDT.

5.2.4 Early Detection of Higher Dimension Affine Subspaces from DDT

As discussed in the earlier section, there is no clear relation between DDT and the affine
subspace transitions with dimension higher than 2. Nonetheless, by observing DDT of
an S-box we can still have some form of an early detection of higher dimension affine
subspaces. Suppose that the highest affine subspace transition is of dimension 2, then by
Proposition 2, the number of entries of 4 in DDT will be a multiple of 3.

Corollary 1. For an n-bit S-box with maximal differential probability 2−n+2, if the number
of entries of 4 in DDT is not a multiple of 3, then there exists an affine subspace transition
with dimension higher than 2.

5.3 Target Structure
In the following discussion, we mainly discuss the SPN-type cipher whose round function
consists of the following operations.

1. A subkey is XORed to the whole state. We consider three types of key schedule that
will be explained later.

2. A 4-bit S-box is applied to the entire block in parallel. We consider two types of
S-boxes, involution and non-involution. Some of the discussions can be extended to
an S-box of any size. We will mention it explicitly for this case.



J. Guo, J. Jean, I. Nikolić, K. Qiao, Y. Sasaki and S.M. Sim 47

3. A linear layer may be applied. To discuss the S-box criteria that stand independently
of the choice of the linear layer, we assume the worst case, i.e. affine space of the
input to the linear layer does not change through the linear layer. This stands against
an identity map and the linear layer of Midori64.

5.4 Classification for Case Analysis
Invariant subspace attacks on Midori64 exploit the property that if all the cells of the state
are in the same affine subspace, then the linear layer MixColumn ◦ ShuffleCell preserves this
subspace. Thus, the resistance against invariant subspace attacks should be evaluated by
considering the S-box, the key schedule function and the round constants.

In [LMR15], Leander et al. point out that the choice of proper round constants prevents
invariant subspace attacks (or makes them probabilistic, thus by increasing the number of
rounds, they can be avoided). Hence, altering round constants in Midori64 is the first, and
perhaps the easiest, choice to stop our attacks. That is, instead of the current values of 0
and 1 for the cells of the round constants, one can assign random values for the cells (or
even random values of Hamming weight not exceeding one), and expect resistance against
invariant subspace attacks after certain number of rounds.

It is possible to turn the problem upside down, and examine the case when the constants
are worse (with respect to invariant subspace attacks), but still we expect some level of
protection against this type of attacks. We have seen from Section 4 that the altered
Midori64 round constants lead to larger weak-key classes. In addition, altered key schedules
may lead to even larger classes. Can we make sure that regardless of the round constants
and of the key schedule (to a certain extent), a proper choice of an S-box may stop invariant
subspace attacks or may lead to such an attack but on only a small subset of keys? This
line of research brings us a step closer to a provable security against invariant subspace
attacks: it suffices to examine only the S-box (or to choose a good S-box), in order to stop
the attacks or to limit their applicability to a small set of weak keys. We will examine the
security in respect to the invariant subspace attacks as the one presented on Midori64.

In the remaining of the section, we examine the classes of S-boxes that ensure resistance
against invariant subspace attacks. We split the analysis according to three criteria as
presented further.

5.4.1 Choice of Involution/Non-involution S-box

In general, involution S-boxes have a lower implementation cost for the whole cipher
compared to non-involution S-boxes (do not require implementation of inverse), while
non-involution S-boxes have higher security. We will show that this principle also stands
with respect to resistance against invariant subspace attacks.

5.4.2 Classes of Key Schedule Function

In general, invariant subspace attacks can be prevented by using a strong key schedule
function. On the other hand, practical designs of lightweight cryptography use a light key
schedule function as in Midori. We consider the following three classes of key schedule
functions:

KSF1: A single key K is used in every round, e.g. Midori128 and LED-64 [GPPR11].

KSF2: Two keys K1 and K2 are alternately used in every two rounds, e.g. Midori64 and
LED-128.

KSF3: No assumption on the key schedule function.
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We will see that KSF1 is relatively easy to protect, i.e. finding suitable S-boxes is easy,
because of the limited degrees of freedom that the attacker is given (can choose only weak
keys of K). In KSF2 the attacker can choose weak keys on K1 and K2 independently, thus
protecting KSF2 is harder than KSF1. Finally, even though KSF3 is extremely hard to
protect, we still can find S-boxes resisting strong invariant subspace attacks.

5.4.3 Degree of Resistance

S-box design criteria also depend on how "strongly" designers want to avoid attacks. As
described in previous sections, invariant subspace attacks usually work only for a fraction
of the entire key space, or weak keys. To ensure that the number of weak keys is only one
is harder than to ensure that the number of weak keys is limited to a small size.

Goal1: The goal is to ensure that the number of weak keys is limited to c · 2b, where c is
a small constant, and b is the number of cells in the key (e.g. for Midori64 this is
roughly 232).

Goal2: The goal is to ensure that the number of weak keys is only one.

If some S-box achieves certain degree of resistance under KFS2, it can also achieve that
degree of resistance, or even better, under KFS1. On the other hand, if an S-box could not
achieve a particular degree of resistance under KFS2, neither will it under KFS3. Similarly,
we can see that Goal2 is of a higher degree resistance against invariant subspace attack
than Goal1.

5.5 A Search for Strong Involution S-boxes

Further, we examine the cases of involution S-boxes that provide a certain degree of
resistance (Goal1 and Goal2) against invariant subspace attack under the aforementioned
classes of key schedule function.

5.5.1 Impossibility for KFS2 and KFS3

An involution S-box, irrespectively of its size, cannot achieve Goal1 (and thus Goal2)
under KSF2 (and thus under KSF3). That is, for any choice of an involution S-box, it
is impossible to prove that the number of weak-keys in an invariant subspace attack is
limited to only c · 2b (which is Goal1) in a cipher that has alternating subkeys (which is
KSF2), without considering the round constants.

The main reason lies in the fact that any affine subspace transition is both ways due to
its involution property of the S-box, i.e. u1 ⊕ A1

S←→ u2 ⊕ A2. DDT of the S-box must
contain entries of 2, thus there exist A1 and A2 with dimension of 1. (In case of 4-bit
S-boxes, as mentioned earlier in Section 5.2, DDT must contain entries of 4, thus there
exist A1 and A2 with dimension of 2.) Let K1 ∈ A2 and K2 ∈ A1 – there are 2b such
keys. Then an attacker can launch a 2-iteration invariant subspace attack if the plaintext
belongs to the affine subspace u1 ⊕A1. More specifically, after the first substitution layer,
the affine subspace u2 ⊕A2 is XOR-ed with K1 which does not change the affine subspace.
The affine subspace is then transformed back to u1 ⊕ A1 under the second substitution
layer, which again remains unchanged after adding K2, and this cycle repeats. Hence, the
ciphertext will belong to u1 ⊕A1 or to u2 ⊕A2, depending on the parity of the number
of rounds, and thus the attack is possible under 2b weak keys (22b weak keys for 4-bit
S-boxes).



J. Guo, J. Jean, I. Nikolić, K. Qiao, Y. Sasaki and S.M. Sim 49

5.5.2 Impossibility for KFS1 with Goal2

Involution S-boxes always allow weak-key classes of size 2b under KSF1, hence no involution
S-box can achieve Goal2 under KSF1. The property stands irrespectively of the size of the
S-box.

Consider an element x such that S(x) 6= x. Note, such element always exists unless
the S-box is simply an identity mapping. Since S(S(x)) = x, affine subspace transition
u⊕A S←→ u⊕A of dimension 1 always exists, i.e. u⊕{0, x⊕S(x)} S←→ u⊕{0, x⊕S(x)},
where u ∈ {x, S(x)}. Thus a subkey K with cells from A will be weak with respect to
invariant subspace attack. The number of such keys is at least 2b, which contradicts with
Goal2.

5.5.3 KSF1, Goal1

With a proper choice of an S-box, we can achieve Goal1 with KSF1, i.e. we can show that
the number of weak keys for invariant subspace attack is limited to only 2b if the cipher
has identical subkeys, without considering the round constants (that is, for any round
constants).

As discussed in Section 5.2, if DDT of an S-box has nonzero entry for a pair of input and
output differences (v, v′), then there exists an affine subspace transition u1⊕A1

S−→ u2⊕A2,
where A1 = {0, v} and A2 = {0, v′}. However, under KSF1, an invariant subspace holds if
and only if A1 = A2 and K = u1 ⊕ u2 ⊕A1. Therefore, we can achieve Goal1 under KSF1
if we can avoid nonzero entries in the diagonal of DDT of an S-box.

From the earlier section we have seen that involution S-box always permits an affine
subspace of dimension 1, however, we can avoid affine subspaces with dimension 2 by
searching for involution S-boxes with no entries of 4 on the diagonal of DDT. According
to the criteria from Section 5.1, we search for candidate S-boxes with minimal number of
fixed points and minimal depth. We found a few S-boxes with only 2 fixed points and a
depth of 4 (cf. Sb0 in Midori64 with 4 fixed points and depth of 3.5):

Snew
1 : 1 0 4 6 2 8 3 9 5 7 d b e a c f (fixed points: b,f)
Snew

2 : 1 0 4 6 2 8 3 9 5 7 a f e d c b (fixed points: a,d)
Snew

3 : 1 0 4 3 2 8 6 9 5 7 d f e a c b (fixed points: 3,6)

As a proof-of-concept, we list the Boolean-function representation of the first S-box
(a|b|c|d is the input and a′|b′|c′|d′ is the output), which clearly shows that the depth is 4:

a′ = (a NAND (b OR c)) NAND (b NAND d),
b′ = (a NOR (b NOR (NOT c))) NOR ((a NAND d) NOR (b XNOR c)),
c′ = (b NAND (a XNOR d)) NAND

((b NAND c) NAND ((a NOR c) NOR (b NOR d))),
d′ = ((c NOR d) NOR (a OR b)) NOR

((a NOR (NOT c)) NOR (b NAND (c NAND d))).

Note, the depth (resp. the GEs) for the outputs a′,b′,c′,d′ are 3.5, 4, 4, 4 (resp. 4.5, 7.5, 9, 9).

5.6 A Search for Strong Non-involution S-boxes
As we have seen, non-zero entries on the diagonal of DDT of involution S-boxes, correspond
to iterative invariant subspaces of certain dimension, and it is impossible to avoid them.
Hence, it is meaningful to consider non-involution S-boxes. Below, we show that for this
type of S-boxes achieving Goal2 is indeed possible, under some key schedules. Furthermore,
we give the best achievable goals under each key schedule function.
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5.6.1 KSF3 and KSF2, Goal1

To achieve Goal1, two conditions are imposed on the S-box:

1. There are no affine subspace transitions of dimension more than 2.

2. There are no affine subspace transitions of dimension 2 that can be connected (output
subspace of one coincides with input subspace of another).

S-boxes satisfying the above 2 conditions will allow only invariant subspaces of dimension
at most 1, i.e., they achieve Goal1. Condition 2 is particularly important as it assures that
one cannot build iterative affine subspace characteristic. For 4-bit S-boxes, the only proper
affine subspaces of {0, 1}4 with dimension greater than 2 are those of dimension 3, and there
are 15 such subspaces in total, hence an exhaustive verification can be done instantaneously.
To fulfill Condition 2, we list all affine subspace transitions u1 ⊕ Ai

1
S−→ u2 ⊕ Ai

2 with
Ai

1 and Ai
2 of dimension 2, for i = 1, 2, . . . , l. If Ai

1 6= Aj
2 for all i, j = 0, 1, . . . , l, i.e.,

there is no common input and output affine subspaces, then Ai
2 can not be mapped to

any dimension 2 affine subspace in the next round. Computer search shows such S-boxes
do exist, and there are many of them. We start with the 16 optimal S-boxes introduced
in [LP07]. Among other criteria, these S-boxes have the best possible differential/linear
properties. We find there are five of them fulfilling the above two conditions:

0 1 2 d 4 7 f 6 8 e b 5 a 9 3 c

0 1 2 d 4 7 f 6 8 e c 9 5 b a 3

0 1 2 d 4 7 f 6 8 e 9 5 a b 3 c

0 1 2 d 4 7 f 6 8 c 5 3 a e b 9

0 1 2 d 4 7 f 6 8 b e 3 a c 5 9

As mentioned before, Saarinen found golden S-boxes out of the 16 optimal S-boxes [Saa11].
Interestingly, all of the above 5 S-boxes do not have any intersection with Sarrinen’s golden
S-boxes. For the purpose of giving convenience to future research, we call the above 5
S-boxes silver S-boxes.

Notice that XORing some value to the input/output of the S-boxes only changes the
offset values of the affine subspaces while the subspaces remain unchanged, thus still
satisfies the above conditions. Simply considering XORing some value to the input/output
of the S-boxes, there are a total of 528 S-boxes with no fixed point. Here, we did not
enlarge the search space to P ◦ S ◦Q for linear transformations P and Q. This is because
such P and Q require to change MixColumn and then discussion exceeds the choice of the
S-box. As a result, we checked the depth of 528 S-boxes, and found that none of them
achieves depth 3.5. Hence, minimum depth is 4 and the following S-box is one of them.

Snew
4 : 5 4 7 8 1 2 a 3 d b e 0 f c 6 9

In Appendix B, we list Boolean functions to compute each output bit of Snew
4 with depth

4.

5.6.2 Impossibility for KSF3 and KSF2 with Goal2

To achieve Goal2 under KSF2 and KSF3, two types of transitions should be avoided,
i.e., ∆ S←→ ∆′ with first type of differences ∆ 6= ∆′ and second type of differences
∆ = ∆′. While the first type transition corresponds to symmetric non-zero entries with
respect to the diagonal of DDT, and could form 2-transition invariant subspace of the
form ∆ S−→ ∆′ S−→ ∆, the second type transition corresponds to non-zero entries on the
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diagonal and 1-transition invariant subspace ∆ S−→ ∆ with ∆ 6= 0. We find none of the
16 optimal S-boxes avoids these two transitions. Furthermore, we extend each of the 16
optimal S-boxes S by prepending and appending an invertible linear layer P and Q to
the input and output of the S-box, respectively. The extended S-boxes are of the form
P ◦ S ◦Q so that new S-boxes inherit the good differential and linear properties from S
itself. However, none of the extended S-boxes avoids both types of transitions in DDT
simultaneously.

5.6.3 KSF1 with Goal2

Note that Goal1 under KSF1 can be achieved with the same approach as Goal1 with KSF2
and KSF3. To achieve Goal2 under KSF1, there exists a simple method: we need to ensure
that all dimension 1 invariant subspaces for the S-box cannot be used in the invariant
subspace attack on the cipher. Since only 1-iteration transitions are useful here, i.e., those
entries in the diagonal of DDT with input and output differences of the S-box being the
same, we search for S-boxes with no non-zero entries in the diagonal. The search space is
of the form P ◦ S ◦Q, where S is one of the 16 optimal S-boxes. Note, there are roughly
219 candidates S-boxes that achieve Goal1. Furthermore, we add constants to the input
and output of the S-boxes to reduced the number of fixed points. We list below an S-box
found by program search that has a single fixed point and a depth of 4, generated from
the first optimal S-box. The detailed Boolean functions to compute each output bit is
postponed to Appendix B.

Snew
5 : 0 d 6 5 7 b e a 2 8 3 c 9 f 1 4

5.7 Discussion on the S-box Search Results

The results of the search for S-boxes are summarized in Table 6.

Table 6: Existence of S-boxes that prevents invariant subspace attacks

Involution Non-involution

KSF1 Goal1 X X
Goal2 - X

KSF2 Goal1 - X
Goal2 - -

KSF3 Goal1 - X
Goal2 - -

5.7.1 Involution S-boxes and Evaluation of Sb0

Table 6 clearly illustrates that resisting invariant subspace attacks only by choosing a
proper involution S-box is very hard due to the involution property. Secure constructions
based on S-box analysis exist only for Goal1 with KSF1. In Table 7 we compare one such
S-box, e.g. Snew

1 , and the original S-box Sb0 used in Midori64.
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Table 7: Comparison of involution S-boxes

Depth Goal1 Optimal
security

#fixed
points Gate size

Midori64 3.5 - X 4 23
Ours 4 X X 2 30

The new Snew
1 ensures that the maximal size of weak keys against invariant subspace

attacks is upper bounded by around 2b independently of the choice of round constants. In
comparison, Sb0 allows several weak-key classes of size 22b under a bad constant choice.
Our S-box as well has a smaller number of fixed points, and slightly larger depth (the
exhaustive search presented in Section 5.1 reveals that no depth 3.5 involution S-box exist
that satisfies all of our requirements). Note, the column of "Optimal security" means that
the S-box achieves the best possible security among all of the S-boxes with the same depth.

The S-boxes we have found require relatively large gate size. For example, the S-box
Class13 identified in [UDCI+11] requires only 10.5 GEs. Searching for S-boxes that are
efficient in both of depth and gate size is an open problem. Meanwhile, there should be
many environments that energy is crucial while extra hundreds of GEs are acceptable.
Our S-boxes are very suitable in such a situation.

5.7.2 Non-Involution S-boxes

In contrast to involution S-boxes, there exist non-involution S-boxes that provide resistance
against invariant subspace attacks under KSF1, e.g., Snew

5 . Under KSF2 and even KSF3
(an arbitrary key schedule), they still provide resistance up to a small set of weak keys –
refer to the S-box Snew

4 . The minimum depth of the S-boxes in both cases is 4, and the
number of fixed points is as low as one.

6 Concluding Remarks
We have presented an invariant subspace attack against full Midori64. We have shown that
Midori64 has a class of 232 weak keys, and with such keys along with a properly chosen
plaintext, the cipher becomes a linear transformation thus can be distinguished with a
single chosen-plaintext query. Furthermore, the key recovery can be performed simply by
solving a system of linear equations.

We have also discussed the topic of provable security against invariant subspace attacks
against a certain type of the SPN structure. In certain scenarios, the resistance can be
achieved only by focusing on the S-boxes, regardless of the choice of the round constants.
With respect to 4-bit S-boxes, several non-involution ones help to achieve sufficiently high
level of security against such attacks.

At the current stage, the attack cannot be applied to Midori128. The difficulty comes
from the usage of four different S-boxes, SSb0, SSb1, SSb2 and SSb3. To apply the invariant
subspace attack, all the S-boxes must have an identical affine subspace transition, and this
is unlikely to occur.
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A Recovering All Affine Subspace Transitions from DDT
In this section, we demonstrate how to recover all the affine subspace transitions of Sb0
used in Midori64 (up to vector space level) only from DDT. First of all, DDT of Sb0 is
given in Table 8. Note that Sb0 is an involution, thus DDT is symmetric. Namely, for any
entry of DDT, another entry in the transposed position always has the same value. Also
note that Sb0 was generated to satisfy the maximal differential probability, thus numbers
in any entry are less than or equal to 4.

As discussed in Section 5.2, any entry (∆in,∆out) = (v, v′) corresponds to a dimension
1 affine subspace transition u1⊕{0, v}

S−→ u2⊕{0, v′}. Hence, it is very easy to recover all
affine subspace transitions with dimension 1. For example, the affine subspace transition
that we used in the attack, 8 ⊕ {0, 1} S−→ 8 ⊕ {0, 1} corresponds to element 2 for
(∆in,∆out) = (1, 1). In other words, only by looking the entry of (∆in,∆out) = (1, 1) in
DDT, we can conclude that no other invariant subspace which is consistent with round
constant of Midori64 exists.

Recovering transitions with dimension 2 is more difficult because one transition with
dimension 2 corresponds to 3 different entries of DDT with element 4. Hence, we need to
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Table 8: Differential Distribution Table (DDT) of Sb0 used in Midori64. Superscript alphabets
show groups of entries that correspond to an identical subspace transition with dimension 2.

∆in

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 2 4E 0 2 2 2 0 2 0 0 0 0 0 2 0

2 0 4E 0 0 4E 0 0 0 0 4C 0 0 4B 0 0 0

3 0 0 0 0 2 0 4E 2 2 2 0 0 0 2 0 2

4 0 2 4E 2 2 2 0 0 2 0 0 2 0 0 0 0

5 0 2 0 0 2 0 0 4F 0 2 4A 0 2 0 0 0

6 0 2 0 4E 0 0 0 2 2 0 0 0 2 2 0 2

∆out 7 0 0 0 2 0 4F 2 0 0 0 0 2 0 4D 2 0

8 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0

9 0 0 4C 2 0 2 0 0 2 2 0 2 2 0 0 0

a 0 0 0 0 0 4A 0 0 0 0 4D 0 0 4F 0 4F

b 0 0 0 0 2 0 0 2 2 2 0 4C 0 2 0 2

c 0 0 4B 0 0 2 2 0 2 2 0 0 2 0 2 0

d 0 0 0 2 0 0 2 4D 0 0 4F 2 0 0 2 0

e 0 2 0 0 0 0 0 2 2 0 0 0 2 2 4B 2

f 0 0 0 2 0 0 2 0 0 0 4F 2 0 0 2 4A

detect which of 3 different entries imply an identical affine subspace transition. We start
from finding triplets related to the diagonal of DDT.

Firstly, we focus on the entry (∆in,∆out) = (f, f). Considering that Sb0 is an involution,
this indicates that there exists a transition of the following form.

u1 + {0,∆1,∆2, f}
S←→ u1 + {0,∆1,∆2, f}, ∆1 ⊕∆2 = f.

Therefore, DDT must have elements 4 in the entry of (∆in,∆out) = (∆1,∆2) in which
∆1 ⊕∆2 = f . Then, there is only once case (∆1,∆2) = (5, a). In Table 8, those triplets
are denoted by superscript A. This affine subspace indeed corresponds to A = {0, 5, a, f}
in Table 3.

With the same analysis, (∆in,∆out) = (e, e) leads to A = {0, 2, c, e} in Table 3,
(∆in,∆out) = (b, b) leads to A = {0, 2, 9, b}, and (∆in,∆out) = (a, a) leads to A =
{0, 7, a, d}.

The remaining is no longer invariant (iterative with cycle 1) because they are not in
diagonal. As long as we have u1 + {0, a, b, a⊕ b} S−→ u2 + {0, x, y, x⊕ y}, we immediately
obtain another subspace u2 + {0, x, y, x⊕ y} S−→ u1 + {0, a, b, a⊕ b} due to the involution
property. Thus, it is natural to consider 6 entries with element 4 in one group.

We then focus on (∆in,∆out) = (1, 2) and its inverse (2, 1). Because there is no clue
that which of differential transitions belong to the same group, we do the exhaustive test.
When we pick (x, y) (and thus (y, x) for inverse), both of (1⊕ x, 2⊕ y) and (2⊕ y, 1⊕ x)
must have 4 in DDT. For example, we pick (5, 7) (and thus (7, 5) for inverse). Then,
(1⊕ 5, 2⊕ 7) = (4, 5) does not have elements 4 in DDT, showing that (5, 7) is not in the
same group as (1, 2). By applying the exhaustive test, we found that (1, 2), (2, 4), (3, 6)
and their inverse are forming a group, which leads to A = {0, 1, 2, 3} S←→ A′ = {0, 2, 4, 6}
in Table 4. Similarly, (5, 7), (a, d), (f, a) and their inverse are forming a group, which
leads to A = {0, 5, a, f} S←→ A′ = {0, 7, a, d} in Table 4.

In the end, all affine subspace transitions are recovered up to the vector space.
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B Boolean Function Representation of Snew
4 and Snew

5

Snew
4 : 5 4 7 8 1 2 a 3 d b e 0 f c 6 9

a′ =((a XOR c) NAND (b XOR d)) NAND (a NAND (b XNOR d))
b′ =((c NAND d) NAND (b NAND ( NOT a))) NOR (b NOR ( a NAND d))
c′ =((NOT d) NOR (a XOR b)) NOR

((c XOR d) NOR ((NOT b) NOR (a NOR c)))
d′ =((a NOR d) NOR (c NAND (NOT b))) NOR

((c XNOR d) NOR (b NOR (a NOR c)))

(Depth,GEs) of the Boolean functions for a′,b′,c′ and d′ are (4, 9), (3.5, 6.5), (4, 10) and
(4, 9.5), respectively.

Snew
5 : 0 d 6 5 7 b e a 2 8 3 c 9 f 1 4

a′ =(( NOT c) NOR (a XOR b)) NOR (d NOR (( NOT b) NOR (a NOR c)))
b′ =((b OR c) NAND (a XNOR d)) NAND (d NAND (a NOR b))
c′ =(b NOR (d NOR (a NOR c))) NOR ((a NAND b) NOR (c NOR ( NOT d)))
d′ =(d NAND (a NOR b)) NAND ((c NOR ( NOT b)) NOR (d NOR (a NAND c)))

(Depth,GEs) of the Boolean functions for a′,b′,c′ and d′ are (4, 8), (4, 7.5), (4, 7.5) and
(4, 7.5), respectively.
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