Chosen-Key Distinguishers on 12-Round Feistel-SP and

11-Round Collision Attacks on Its Hashing Modes

Xiaoyang Dong and Xiaoyun Wang
Shandong University, Tsinghua University
FSE 2017
Tokyo, Japan

Outline

1. Attack Modes
2. Chosen-Key Attacks
3. Feistel-SP Based Block Ciphers
4. Rebound Attack
5. Hashing Modes: PGV s
6. Collision Attacks

Secret-key and Open-key Models

- Secret-key model
\checkmark the key is random and secret
\checkmark the attacker tries to recovery the key or distinguish from random permutation
- Open-key model
\checkmark known-key, the key is known to the attacker, proposed by Knudsen and Rijmen in ASIACRYPT 2007
\checkmark chosen-key, the key is under the control of the attacker
\checkmark the attacker tries to exhibit some non-ideal property of the primitive

Previous works of chosen-key attacks

- Biryukov et al [CRYPTO 2009]
- Lamberger et al [ASIACRYPT 2009]
- Gilbert and Peyrin [FSE 2010]
- PA Fouque et al [CRYPTO 2013]
- Nikolić et al [ICISC 2010]
- Minier et al. [FSE 2011]
- Sasaki and Yasuda [FSE 2011]
- Sasaki et al [ACISP 2012]
- Sasaki et al [INDOCRYPT 2012]

Full AES-256
Full Whirlpool CP func
AES-like permutations
9-r AES-128
Feistel and SPN Generalized Feistel
Feistel-SP and MMO MP
Camellia
Double SP-functions

Our attacks

- Knudsen and Rijmen (ASIACRYPT 2007)
\checkmark 7-round Feistel Known-key Distinguisher
> Arbitrary Round Function
\checkmark 7-round half-collision on hashing modes
- Sasaki and Yasuda (FSE 2011)
\checkmark 11-round Feistel Known-key Distinguisher
\checkmark 9-round full-collision on hashing modes
- Our works
\checkmark 12-round Feistel Chosen-key Distinguisher
\checkmark 11-round full-collision on hashing modes
> SP Round Function

Classification of Feistels by Round Function

- Isobe and Shibutani [AC 2013] divide Feistels into three types

- Feistel-3 is also called Feistel-SP

Feistel-SP Round Functions

Figure 1: (a) One Round of Feistel-SP block cipher, (b) Detailed Description of the Round Function

Permutation is assumed to be MDS: Maximum distance separable

Known-key and Chosen-key Distinguisher

Sasaki and Yasuda's Known-key Distinguisher

Our Chosen-key Distinguisher

Common: find such a pair for the Feistel network faster than we do for a random permutation

Basic Technique: Rebound Attack

- Rebound attack, proposed by Mendel et al.
- Find pairs meet certain truncated differential
- Inbound phase: a MITM phase that generate pairs meet the truncated differential in $\mathrm{E}_{\text {in }}$ in low time
- Outbound phase: pairs generated in Inbound propagate forward and backward to match the full path
- First of all, find a proper path

Sasaki and Yasuda’s work

3 R \} Outbound Phase $5 R\} \quad$ Inbound Phase

Our works

Find a 7r Inbound

1

Inbound
Part 3

Inbound Part 2

$$
\mathbf{1} \bigoplus_{\bigoplus}^{k_{10} X_{10}} \stackrel{\text { filter }}{\mathbf{1}}, \mathrm{S}
$$

Our work

- The equation makes 7 r inbound phase right unknwon $S^{-1}\left(\underline{P^{-1}\left(X_{5} \oplus k_{5} \oplus \gamma\right)}\right) \oplus k_{6} \oplus S^{-1}\left(\underline{P^{-1}\left(X_{9} \oplus k_{9} \oplus \gamma\right)}\right) \oplus k_{8}=P\left(S\left(\gamma \oplus k_{7}\right)\right)$
- One must find γ to make it right
- if we find it by traversing it, it costs 2^{64}
- Our Idea: suppose the underlined are equal, γ is find immediately
- In fact, we only choose key to make the underlined equal partially, i.e.

$$
(0,0,0,0,0,0, *, *) \oplus k_{6} \oplus k_{8}=P \circ S\left(\gamma \oplus k_{7}\right)
$$

- Thus we tranverse only 2 bytes to get $\gamma, \operatorname{cost} 2^{16}$

Our works

3r Outbound phase

2r Outbound phase
> We get a 12r Chosen-key Distinguisher
\bullet Application to Hashing Modes

Merkle-Damgård Hash

Hashing modes (PGV modes)

- apply to MMO-mode and Miyaguchi-Preneel modes
- keys are the chaining value or IV

MMO-mode

Miyaguchi-Preneel

Collision: Compression Function

Collision: Hash Function

- Translate the collision of Compression Function to Hash
- Using two blocks to generate collision in H2
- Rebound attack is in the 2nd block
- Prepare all $\left(H_{1}, M_{1}, M_{1}\right), H_{1}$ as key, that meet the truncated differential
- Randomly pick M_{0}, compute H_{1}, check H_{1}

计算7轮inbound的起点

Algorithm 1 Calculate Starting Point by the 7－round Inbound Phase
Phase A：Prepare DDTs for all S－boxes．
（a）Choose an active－byte position j for differential 1.
（b）Inbound Part 1：For 2^{c} differences of ΔY_{4} ，compute the corresponding ΔX_{5} after applying the（forward）permutation layer．For each of the 2^{c} differences of ΔZ_{5} ，compute the corresponding full－byte difference ΔY_{5} after applying the inverse permutation layer，and check whether ΔX_{5} matches ΔY_{5} by looking up the DDTs．If we pass the check，go to the following steps．
（c）Inbound Part 1：For 2^{c} differences of ΔY_{10} ，compute the corresponding ΔX_{9} after applying the（forward）permutation layer．For all 2^{c} differences of ΔZ_{9} ， compute the corresponding full－byte differences ΔY_{9} after applying the inverse permutation layer，and check whether ΔX_{9} matches ΔY_{9} by looking up the DDTs． If we pass the check，go to the next step．
（d）For the matched pairs $\left(\Delta X_{5}, \Delta Y_{5}\right)$ and $\left(\Delta X_{9}, \Delta Y_{9}\right)$ ，we get values $\left(X_{5}, X_{5}^{\prime}\right)$ ， $\left(X_{9}, X_{9}^{\prime}\right)$ and store values $\left(P^{-1}\left(X_{5} \oplus X_{9}\right), j, X_{5}, X_{5}^{\prime}, X_{9}^{\prime}\right)$ in a table \mathcal{T} ．
(i) Randomly choose a master key, and get all the subkeys by the key schedule.
(ii) Check table \mathcal{T} to determine whether the master key belongs to one of the Ukey sets, if it passes the check, go to the next step; else go to step (i) to choose another master key.
(iii) Calculate γ through Eq. (9) (note that the positions of the two unknown bytes may be changed corresponding to the 6 -element-array determined in step (ii).) and Eq. (5).
(iv) Follows the dashed lines, we calculate $\Delta X_{6}=S^{-1}\left(P^{-1}\left(X_{5} \oplus k_{5} \oplus \gamma\right)\right) \oplus$ $S^{-1}\left(P^{-1}\left(X_{5}^{\prime} \oplus k_{5} \oplus \gamma\right)\right)$ and $\Delta X_{8}=S^{-1}\left(P^{-1}\left(X_{9} \oplus k_{9} \oplus \gamma\right)\right) \oplus S^{-1}\left(P^{-1}\left(X_{9}^{\prime} \oplus\right.\right.$ $\left.k_{9} \oplus \gamma\right)$). If $\Delta X_{6}=\Delta X_{8}$, then go to the next step; else go to step (i) to choose another master key.
(v) Calculate $X_{6}=S^{-1}\left(P^{-1}\left(X_{5} \oplus k_{5} \oplus \gamma\right)\right)$ and $X_{6}^{\prime}, X_{8}, X_{8}^{\prime}$ similarly. Then calculate $X_{4}=k_{4} \oplus P\left(S\left(X_{5}\right)\right) \oplus X_{6} \oplus k_{6}$ and $X_{4}^{\prime}, X_{10}, X_{10}^{\prime}$, similarly. Then check the following two equations. If these two hold, we get a starting point under the chosen key; else go to step (i) to choose another master key.

$$
\begin{gather*}
S_{j}\left(X_{4}[j]\right) \oplus S_{j}\left(X_{4}^{\prime}[j]\right) \stackrel{?}{=} \Delta Y_{4}[j] \tag{11}\\
S_{j}\left(X_{10}[j]\right) \oplus S_{j}\left(X_{10}^{\prime}[j]\right) \stackrel{?}{=} \Delta Y_{10}[j] \tag{12}
\end{gather*}
$$

Experiment

- We replace the linear permutation of Camellia by block cipher Khazad' MDS [BR00], called Camellia-MDS in following, to give an experiment

$$
P=\left(\begin{array}{cccccccc}
0 \times 01 & 0 \times 03 & 0 \times 04 & 0 \times 05 & 0 \times 06 & 0 \times 08 & 0 \times 0 \mathrm{~B} & 0 \times 07 \\
0 \times 03 & 0 \times 01 & 0 \times 05 & 0 \times 04 & 0 \times 08 & 0 \times 06 & 0 \times 07 & 0 \times 0 \mathrm{~B} \\
0 \times 04 & 0 \times 05 & 0 \times 01 & 0 \times 03 & 0 \times 0 \mathrm{~B} & 0 \times 07 & 0 \times 06 & 0 \times 08 \\
0 \times 05 & 0 \times 04 & 0 \times 03 & 0 \times 01 & 0 \times 07 & 0 \times 0 \mathrm{~B} & 0 \times 08 & 0 \times 06 \\
0 \times 06 & 0 \times 08 & 0 \times 0 \mathrm{~B} & 0 \times 07 & 0 \times 01 & 0 \times 03 & 0 \times 04 & 0 \times 05 \\
0 \times 08 & 0 \times 06 & 0 \times 07 & 0 \times 0 \mathrm{~B} & 0 \times 03 & 0 \times 01 & 0 \times 05 & 0 \times 04 \\
0 \times 0 \mathrm{~B} & 0 \times 07 & 0 \times 06 & 0 \times 08 & 0 \times 04 & 0 \times 05 & 0 \times 01 & 0 \times 03 \\
0 \times 07 & 0 \times 0 \mathrm{~B} & 0 \times 08 & 0 \times 06 & 0 \times 05 & 0 \times 04 & 0 \times 03 & 0 \times 01
\end{array}\right)
$$

Find a pair has the following differential

P1 = (1f 17 7f 72 7a f5 37 53, 5 f f4 d9 2359 e0 e6 75)

P2 = (8a b5 1189232949 9f, a1 9e 905802 e8 fa 25)
key $=(69$ e4 4a 60 1e ea 50 20, 0a 3b 81 ae ad 3a 79 bc)
Differential of the Experiment Pair for 12-Round Chosen-Key Distinguisher

	Input Differences of Each Round	
1st Round	95 a 26 e fb 59 dc 7 ecc	fe 6a 49 7b 5b 08 1c 50
2nd Round	3200000000000000	95 a 26 e fb 59 dc 7 ecc
3rd Round	0000000000000000	3200000000000000
4th Round	3200000000000000	0000000000000000
5th Round	020608 0a 0c 10160 e	3200000000000000
6th Round	a9 00000000000000	020608 0a 0c 10160 e
7th Round	0000000000000000	a9 00000000000000
8th Round	a9 00000000000000	0000000000000000
9th Round	020608 0a 0c 10160 e	a9 00000000000000
10th Round	5100000000000000	020608 0a 0c 10160 e
11th Round	0000000000000000	5100000000000000
12th Round	5100000000000000	0000000000000000
13th Round	a2 fb b2 10 eb 798249	5100000000000000

\dagger : all the numbers are in hexadecimal.

Case ($\mathrm{N}, \mathrm{c})^{\dagger}$	Rounds	Time	Memory	Power	Source
$(128,8)$	$\begin{gathered} \hline \hline 7 \\ 11 \\ 12 \\ 7 \\ 9 \\ 11 \end{gathered}$	$\begin{gathered} - \\ 2^{19} \\ 2^{38} \\ - \\ 2^{27} \\ 2^{48.6} \end{gathered}$	$\begin{gathered} - \\ 2^{19} \\ 2^{35} \\ - \\ 2^{27} \\ 2^{27} \end{gathered}$	known-key distinguisher known-key distinguisher chosen-key distinguisher half-collision ${ }^{\ddagger}$ full-collision full-collision	[BKN09] $[$ SEHK12] Section 3.2 $[$ BKN09] $[$ SEHK12] Section 3.3
$(128,4)$	$\begin{gathered} \hline \hline 7 \\ 11 \\ 12 \\ 7 \\ 9 \\ 11 \end{gathered}$	$\begin{gathered} - \\ 2^{12} \\ 2^{34} \\ - \\ 2^{24} \\ 2^{44} \end{gathered}$	$\begin{gathered} - \\ 2^{12} \\ 2^{38.9} \\ - \\ 2^{24} \\ 2^{30.9} \end{gathered}$	known-key distinguisher known-key distinguisher chosen-key distinguisher half-collision full-collision full-collision	[BKN09] $[$ SY11 Section 4.1 $[$ BKN09] $[$ SEHK12] Section 4.1
$(64,8)$	$\begin{aligned} & \hline \hline 7 \\ & 9 \\ & 7 \\ & 7 \end{aligned}$	$\begin{gathered} - \\ 2^{19} \\ - \\ 2^{24} \end{gathered}$	$\begin{gathered} - \\ 2^{19} \\ - \\ 2^{24} \end{gathered}$	known-key distinguisher known-key distinguisher half-collision full-collision	$[$ BKN09] $[$ SY11] $[$ BKN09] $[$ SEHK12]
$(64,4)$	$\begin{gathered} \hline 7 \\ 11 \\ 12 \\ 7 \\ 9 \\ 11 \end{gathered}$	$\begin{gathered} - \\ 2^{11} \\ 2^{18} \\ - \\ 2^{16} \\ 2^{24.2} \end{gathered}$	$\begin{gathered} - \\ 2^{11} \\ 2^{19} \\ - \\ 2^{16} \\ 2^{15} \end{gathered}$	known-key distinguisher known-key distinguisher chosen-key distinguisher half-collision full-collision full-collision	$\begin{gathered} \hline \text { [BKN09] } \\ {[\text { SY11] }} \\ \text { Section 4.2 } \\ {[\text { BKN09] }} \\ \text { [SEHK12] } \\ \text { Section } 4.2 \end{gathered}$

Thank you

