

Chosen-Key Distinguishers on 12-Round Feistel-SP and 11-Round Collision Attacks on Its Hashing Modes

Xiaoyang Dong and Xiaoyun Wang

Shandong University, Tsinghua University

FSE 2017 Tokyo, Japan

Outline

- 1. Attack Modes
- 2. Chosen-Key Attacks
- 3. Feistel-SP Based Block Ciphers
- 4. Rebound Attack
- 5. Hashing Modes: PGV s
- 6. Collision Attacks

Secret-key and Open-key Models

Secret-key model

- the key is random and secret
- the attacker tries to recovery the key or distinguish from random permutation

Open-key model

- known-key, the key is known to the attacker, proposed by Knudsen and Rijmen in ASIACRYPT 2007
- chosen-key, the key is under the control of the attacker
- the attacker tries to exhibit some non-ideal property of the primitive

Previous works of chosen-key attacks

- Biryukov et al [CRYPTO 2009]
- Lamberger et al [ASIACRYPT 2009]
- Gilbert and Peyrin [FSE 2010]
- PA Fouque et al [CRYPTO 2013]
- Nikolić et al [ICISC 2010]
- Minier et al. [FSE 2011]
- Sasaki and Yasuda [FSE 2011]
- Sasaki et al [ACISP 2012]
- Sasaki et al [INDOCRYPT 2012]

Full AES-256 Full Whirlpool CP func **AES-like permutations** 9-r AES-128 Feistel and SPN **Generalized Feistel** Feistel-SP and MMO MP Camellia

Double SP-functions

Known-key attacks

Our attacks

 Knudsen and Rijmen (ASIACRYPT 2007) 7-round Feistel Known-key Distinguisher 	Arbitrary Round Function
 7-round half-collision on hashing modes 	
 Sasaki and Yasuda (FSE 2011) 11-round Feistel Known-key Distinguisher 9-round full-collision on hashing modes 	SP Round Function
 Our works 12-round Feistel Chosen-key Distinguisher 11-round full-collision on hashing modes 	

Classification of Feistels by Round Function

Isobe and Shibutani [AC 2013] divide Feistels into three types

Feistel-3 is also called Feistel-SP

Feistel-SP Round Functions

Figure 1: (a) One Round of Feistel-SP block cipher, (b) Detailed Description of the Round Function

Permutation is assumed to be MDS: Maximum distance separable

Common: find such a pair for the Feistel network faster than we do for a random permutation

Basic Technique: Rebound Attack

- Rebound attack, proposed by Mendel et al.
- Find pairs meet certain truncated differential
 - Inbound phase: a MITM phase that generate pairs meet the truncated differential in E_{in} in low time
 - Outbound phase: pairs generated in Inbound propagate forward and backward to match the full path

Sasaki and Yasuda's work

Our work

The equation makes 7r inbound phase right

 $S^{-1}(P^{-1}(X_5 \oplus k_5 \oplus \gamma)) \oplus k_6 \oplus S^{-1}(P^{-1}(X_9 \oplus k_9 \oplus \gamma)) \oplus k_8 = P(S(\gamma \oplus k_7))$

- One must find γ to make it right
 - if we find it by traversing it, it costs 2^{64}

- **Our Idea:** suppose the underlined are equal, γ is find immediately
- In fact, we only choose key to make the underlined equal partially, i.e.

 $(0, 0, 0, 0, 0, 0, *, *) \oplus k_6 \oplus k_8 = P \circ S(\gamma \oplus k_7)$

Thus we tranverse only 2 bytes to get γ , cost 2¹⁶

Only γ is

unknwon

3r Outbound phase

2r Outbound phase

We get a 12r Chosen-key Distinguisher

Application to Hashing Modes

Merkle–Damgård Hash

Hashing modes (PGV modes)

- apply to MMO-mode and Miyaguchi-Preneel modes
- keys are the chaining value or IV

Collision: Hash Function

- Translate the collision of Compression Function to Hash
 - Using two blocks to generate collision in H2
 - Rebound attack is in the 2nd block
 - Prepare all (H_1, M_1, M_1) , H_1 as key, that meet the truncated differential
 - Randomly pick M₀, compute H₁, check H₁

计算7轮inbound的起点

Algorithm 1 Calculate Starting Point by the 7-round Inbound Phase

- **Phase A:** Prepare DDTs for all S-boxes.
 - (a) Choose an active-byte position j for differential **1**.
 - (b) **Inbound Part 1:** For 2^c differences of ΔY_4 , compute the corresponding ΔX_5 after applying the (forward) permutation layer. For each of the 2^c differences of ΔZ_5 , compute the corresponding full-byte difference ΔY_5 after applying the inverse permutation layer, and check whether ΔX_5 matches ΔY_5 by looking up the DDTs. If we pass the check, go to the following steps.
 - (c) **Inbound Part 1:** For 2^c differences of ΔY_{10} , compute the corresponding ΔX_9 after applying the (forward) permutation layer. For all 2^c differences of ΔZ_9 , compute the corresponding full-byte differences ΔY_9 after applying the inverse permutation layer, and check whether ΔX_9 matches ΔY_9 by looking up the DDTs. If we pass the check, go to the next step.
 - (d) For the matched pairs $(\Delta X_5, \Delta Y_5)$ and $(\Delta X_9, \Delta Y_9)$, we get values (X_5, X'_5) , (X_9, X'_9) and store values $(P^{-1}(X_5 \oplus X_9), j, X_5, X'_5, X'_9)$ in a table \mathcal{T} .

Phase B:

- (i) Randomly choose a master key, and get all the subkeys by the key schedule.
- (ii) Check table \mathcal{T} to determine whether the master key belongs to one of the *Ukey* sets, if it passes the check, go to the next step; else go to step (i) to choose another master key.
- (iii) Calculate γ through Eq. (9) (note that the positions of the two unknown bytes may be changed corresponding to the 6-element-array determined in step (ii).) and Eq. (5).
- (iv) Follows the dashed lines, we calculate $\Delta X_6 = S^{-1}(P^{-1}(X_5 \oplus k_5 \oplus \gamma)) \oplus S^{-1}(P^{-1}(X'_5 \oplus k_5 \oplus \gamma))$ and $\Delta X_8 = S^{-1}(P^{-1}(X_9 \oplus k_9 \oplus \gamma)) \oplus S^{-1}(P^{-1}(X'_9 \oplus k_9 \oplus \gamma))$. If $\Delta X_6 = \Delta X_8$, then go to the next step; else go to step (i) to choose another master key.
- (v) Calculate $X_6 = S^{-1}(P^{-1}(X_5 \oplus k_5 \oplus \gamma))$ and X'_6, X_8, X'_8 similarly. Then calculate $X_4 = k_4 \oplus P(S(X_5)) \oplus X_6 \oplus k_6$ and X'_4, X_{10}, X'_{10} , similarly. Then check the following two equations. If these two hold, we get a starting point under the chosen key; else go to step (i) to choose another master key.

$$S_j(X_4[j]) \oplus S_j(X_4'[j]) \stackrel{?}{=} \Delta Y_4[j] \tag{11}$$

$$S_j(X_{10}[j]) \oplus S_j(X'_{10}[j]) \stackrel{?}{=} \Delta Y_{10}[j]$$
(12)

Experiment

 We replace the linear permutation of Camellia by block cipher Khazad' MDS [BR00], called Camellia-MDS in following, to give an experiment

	(0×01	0x03	0x04	0×05	0x06	0x08	0x0B	0x07 `
		0×03	0×01	0×05	0x04	0×08	0x06	0×07	0x0B
		0×04	0×05	0×01	0x03	0×0B	0×07	0×06	0×08
		0×05	0×04	0x03	0x01	0×07	0x0B	0x08	0x06
-		0×06	0x08	0x0B	0×07	0×01	0x03	0×04	0×05
		0×08	0x06	0×07	0x0B	0x03	0×01	0×05	0×04
		0x0B	0×07	0x06	0x08	0×04	0x05	0x01	0x03
	ĺ	0×07	0x0B	0x08	0x06	0×05	0×04	0x03	0×01

P =

Find a pair has the following differential

P1 = (1f 17 7f 72 7a f5 37 53, 5f f4 d9 23 59 e0 e6 75) P2 = (8a b5 11 89 23 29 49 9f, a1 9e 90 58 02 e8 fa 25)

key = (69 e4 4a 60 1e ea 50 20, 0a 3b 81 ae ad 3a 79 bc)

	Input Differences of Each Round				
1st Round	95 a2 6e fb 59 dc 7e cc	fe 6a 49 7h 5h 08 1c 50			
2nd Round	32 00 00 00 00 00 00 00 00	95 a2 be to 59 dc 7e cc			
3rd Round	00 00 00 00 00 00 00 00	32 00 00 00 00 00 00 00 00			
4th Round	32 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00			
5th Round	02 06 08 0a 0c 10 16 0e	32 00 00 00 00 00 00 00			
6th Round	a9 00 00 00 00 00 00 00 00	02 06 08 0a 0c 10 16 0e			
7th Round	00 00 00 00 00 00 00 00	a9 00 00 00 00 00 00 00			
8th Round	a9 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00			
9th Round	02 06 08 0a 0c 10 16 0e	a9 00 00 00 00 00 00 00			
10th Round	51 00 00 00 00 00 00 00	02 06 08 0a 0c 10 16 0e			
11th Round	00 00 00 00 00 00 00 00	51 00 00 00 00 00 00 00			
12th Round	51 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00			
13th Round	a2 fb b2 10 eb 79 82 49	51 00 00 00 00 00 00 00			

Differential of the Experiment Pair for 12-Round Chosen-Key Distinguisher

†: all the numbers are in hexadecimal.

Case $(N,c)^{\dagger}$	Rounds	Time	Memory	Power	Source
-	7	_	_	known-key distinguisher	[BKN09]
	11	2^{19}	2^{19}	known-key distinguisher	[SEHK12]
(199.9)	12	2^{38}	2^{35}	chosen-key distinguisher	Section 3.2
(128,8)	7	_	_	half-collision [‡]	[BKN09]
	9	2^{27}	2^{27}	full-collision	[SEHK12]
	11	$2^{48.6}$	2^{27}	full-collision	Section 3.3
2	7	_	_	known-key distinguisher	[BKN09]
	11	2^{12}	2^{12}	known-key distinguisher	[SY11]
(199.4)	12	2^{34}	$2^{38.9}$	chosen-key distinguisher	Section 4.1
(120,4)	7	-		half-collision	[BKN09]
	9	2^{24}	2^{24}	full-collision	[SEHK12]
	11	2^{44}	$2^{30.9}$	full-collision	Section 4.1
	7		_	known-key distinguisher	[BKN09]
$(GA \otimes)$	9	2^{19}	2^{19}	known-key distinguisher	[SY11]
(04,8)	7	_	-	half-collision	[BKN09]
	7	2^{24}	2^{24}	full-collision	[SEHK12]
	7			known-key distinguisher	[BKN09]
(64,4)	11	2^{11}	2^{11}	known-key distinguisher	[SY11]
	12	2^{18}	2^{19}	chosen-key distinguisher	Section 4.2
	7	_	-	half-collision	[BKN09]
	9	2^{16}	2^{16}	full-collision	[SEHK12]
	11	$2^{24.2}$	2^{15}	full-collision	Section 4.2

Thank you