Cryptanalysis of Haraka

Jérémy Jean

Agence Nationale de la Sécurité des Systèmes d'Information Crypto Laboratory

FSE 2017 @ Tokyo, Japan March 6, 2017 Jeremy.Jean@ssi.gouv.fr Introduction | Specifications of Haraka Symmetries Collision Attacks Preimage Attack Conclusion

Introduction

Let n be a positive integer (typically, n = 128, n = 160 or n = 256)

General Hash Function

- "Securely" hashes any string to a fixed-width n-bit string
- $h: \{0,1\}^* \longrightarrow \{0,1\}^n$
- Required security levels:
 - \blacksquare (Second) preimage resistance: n bits
 - Collision resistance: n/2 bits
- Examples: SHA-2, SHA-3, etc.

Hash Function for Hash-Based Signature Schemes

- Why? Used in a few schemes for PQ crypto:
 - e.g., Lamport [Lam79], XMSS [BDH11], SPHINCS [BHH+15]
- One pair of short-input hash functions:

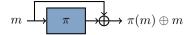
$$h_n: \{0,1\}^n \longrightarrow \{0,1\}^n \text{ and } h_{2n}: \{0,1\}^{2n} \longrightarrow \{0,1\}^n$$

- \blacksquare Only required security: n-bit (second) preimage resistance
- Example: Haraka (n = 256)
- No collision resistance: non-trivial to adapt usual design strategies to drop this security requirement

Specifications of Haraka: High-Level Overview

Haraka: Two Functions

Haraka-256/256: $\{0,1\}^{256} \longrightarrow \{0,1\}^{256}$


and: Haraka-512/256: $\{0,1\}^{512} \longrightarrow \{0,1\}^{256}$

Haraka-256/256

- Internal state: 256 bits
- Davies-Meyer mode
- Inner permutation: π_{256}
- Output size: 256 bits

Haraka-512/256

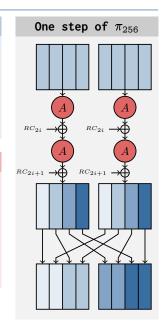
- Internal state: 512 bits
- Davies-Meyer mode
- Inner permutation: π_{512}
- Output size: 256 bits
- Final truncation

Claimed Security

- 256-bit preimage security
- Stronger Haraka variant: 128-bit collision security

[Broken]

[Broken]


Haraka-256/256

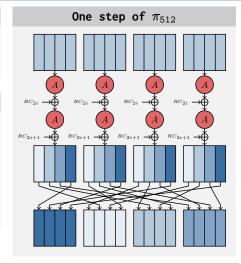
Inner Permutation π_{256}

- Internal state: 2 AES states
- Repeat 5 steps (i = 0, ..., 4):
 - lacksquare Apply 1R AES on each state w/ key RC_{2i}
 - lacksquare Apply 1R AES on each state w/ key RC_{2i+1}
- Permute the AES columns (mix)
- Final Davies-Meyer feed-forward

Claimed Security

- Preimage resistance:
 - #steps: 5
 - Security level: 256 bits
- Collision resistance:
 - #steps: 6 (stronger)
 - Security level: 128 bits

Specifications of Haraka Symmetries Collision Attacks Preimage Attack Conclusion


Haraka-512/256

Inner Permutation π_{512}

- lacksquare Same principle as π_{256}
- Final truncation to produce 256 bits

Claimed Security

- Preimage resistance:
 - #steps: 5
 - Security level: 256 bits
- Collision resistance:
 - #steps: 6 (stronger)
 - Security level: 128 bits

Final Truncation: Remove 8 out of 16 AES columns

Haraka Round Constants

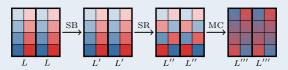
Highly Structured Round Constants

The 128-bit round constant RC_i verifies:

$$RC_i = \begin{bmatrix} c_i & c_i & c_i & c_i \end{bmatrix}$$

where 32-bit c_i has one bit at Position i.

Spoiler Alert


The attacks proposed in this talk rely on this structure

Symmetries in the Keyless AES Round Function A

Classes of Size 2^{64} and 2^{32}

(used in the collision attack)

A **symmetric state** with two equal halves stays symmetric after A:

A state with four equal columns is called **strongly symmetric**

Pairs of States with Swapped Halves

(used in the preimage attack)

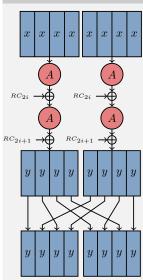
Let (S_1, S_2) be a pair of AES states with swapped halves, then $A(S_1)$ and $A(S_2)$ also have swapped halves

$$S_{1} = \begin{bmatrix} L & R & \xrightarrow{SB} & L' & R' & \xrightarrow{SR} & L'' & R'' \\ & & & & & & & & \\ S_{2} = & R & L & \xrightarrow{SB} & R' & L' & \xrightarrow{SR} & R'' & L'' \\ & & & & & & & & \\ \end{array}$$

Collision Attack on Haraka

General Idea

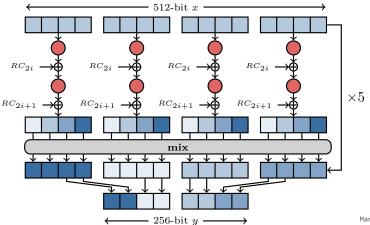
The strongly symmetric property propagates in all the Haraka components since the round constants are strongly symmetric

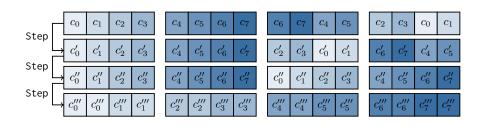

Details for Haraka-256/256

- Input: 2 AES strongly symmetric states
- Then, in each step:
 - Keyless AES maintains the property
 - Constant addition as well
 - Column reordering becomes identity
- Davies-Meyer feedforward keeps symmetry
- Hence, all output columns are equal

Notes

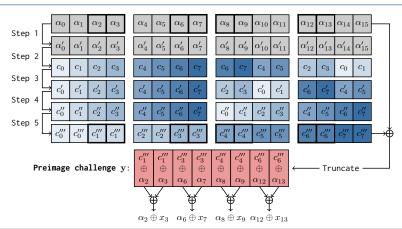
- Enough to collide on a 32-bit column
- \blacksquare Collisions after about 2^{16} evaluations
- Same cost for Haraka-512/256


Symmetric States


Preimage Attack on Haraka-512/256

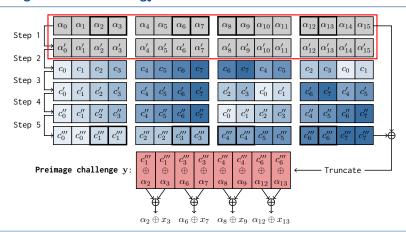
Preimage Problem Detail and Idea

- \blacksquare Given y the 256-bit preimage challenge, find one 512-bit x such that Haraka-512/256(x) = y
- About 2^{256} solutions \Rightarrow **rely on symmetry** to reduce this
- Problem too constrained for Haraka-256/256


A 3-Step Symmetry Class for π_{512}

Notes

- Each variable is a 32-bit AES column
- Symmetry class extended from the one with swapped halves on AES
- Rely on the structure of the **mix** column permutation
- Size: $2^{8 \times 32} = 2^{256}$ states following the 3-step symmetry
- Constrained problem: if we force the preimage to go through these 3 rounds, only one solution expected

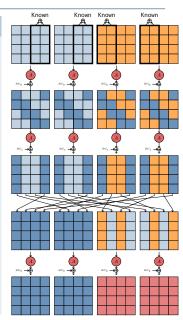

Preimage Attack Strategy I

Notes

- If the last 3 steps follow the symmetry \Rightarrow about 1 preimage for y
- The challenge fixes 128 bits of the 256-bit symmetry freedom
- Hence, if an algorithm can enumerate the 2^{128} possible input states in less than 2^{256} operations, it is a preimage attack.

Preimage Attack Strategy II

Towards an Enumeration Algorithm in 2^{192} Operations


- Focus on the steps not covered by the symmetry
- Step 2 partially inverted (formally)
- Reduction to an attack on 3-round AES with partial information on the input

Algorithm (simplified)

- Due to symmetry in last 3 steps
 - \blacksquare at most 2^{128} values for all \blacksquare
 - \blacksquare at most 2^{128} values for all \blacksquare
- For all 2^{128} values of
 - Each of the 4 inputs states can only assume $2^{128-32-64} = 2^{32}$ values

(32- and 64-bit constraints)

- For each State i = 0, ..., 3, store the 2^{32} states in list L_i
- For all in $L_0 \times L_1$, store partial \blacksquare in L_{01}
- For all in $L_2 \times L_3$, store partial \blacksquare in L_{23}
- lacksquare About 1 collision between L_{01} and L_{23} ⇒ one preimage candidate
- About 2¹²⁸ candidates generated in about $2^{128+64} = 2^{192}$ operations

Preimage Attack on Haraka-512/256: Wrapping Up

Preimage Algorithm

- Rely on the 3-step 256-bit symmetry class
- \blacksquare The challenge y fixes 128 bits of the 256-bit of symmetry freedom
- \blacksquare Generate 2^{128} preimage candidates in 2^{192} operations
- Filter them to verify the remaining 128 bits of the preimage challenge

Conclusion

One preimage is found in about 2^{192} function evaluations, 2^{64} times faster than exhaustive search

Conclusion

Attacks

- Collision attack
 - Complexity: 2¹⁶ evaluations
 - Break 128-bit claimed security
 - Apply to any number of steps
- Preimage attack
 - Only works for Haraka-512/256
 - Complexity: 2¹⁹² function evaluations, 2⁶⁴ memory
 - Break 256-bit claimed security

Final Remarks

- All attacks rely on a bad choice of round constant
- Designs very easy to patch
 - ⇒ Haraka v2 (see talk on Tuesday)

Conclusion

Attacks

- Collision attack
 - Complexity: 2¹⁶ evaluations
 - Break 128-bit claimed security
 - Apply to any number of steps
- Preimage attack
 - Only works for Haraka-512/256
 - Complexity: 2¹⁹² function evaluations, 2⁶⁴ memory
 - Break 256-bit claimed security

Final Remarks

- All attacks rely on a bad choice of round constant
- Designs very easy to patch
 - ⇒ Haraka v2 (see talk on Tuesday)

Thank you for your attention!