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Abstract. In this paper, we describe attacks on the recently proposed Haraka hash
functions. First, for the two hash functions Haraka-256/256 and Haraka-512/256
in the family, we show how two colliding messages can be constructed in about
216 function evaluations. Second, we invalidate the preimage security claim for
Haraka-512/256 with an attack finding one preimage in about 2192 function evalua-
tions. These attacks are possible thanks to symmetries in the internal state that are
preserved over several rounds.
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1 Introduction
We analyze in this paper the recent Haraka hash function proposed in [Ste16] and presented
at the FSE 2016 rump session. It has been designed by Kölbl, Lauridsen, Mendel and
Rechberger, and relies on an AES-based permutation π in Davies-Meyer mode. The main
security goal is to provide (second) preimage resistance, while at the same time only
considering very short inputs. The rationale of the proposals consists of cryptographic
applications where the collision resistance is not required. However, the designers never-
theless claim that 128-bit security for collision resistance can be achieved with a slightly
stronger inner permutation π.

In the specifications of the design, the designers put a lot of effort to analyze the
capabilities of an attacker applying the rebound attack [MRST09]. This technique has
been used extensively during the SHA-3 competition to analyze the security of hash
functions, e.g. on the finalists Grøstl [JNP12], Keccak [DGPW12], JH [NTV11] and
Skein [KNR10]. However, other vectors of attacks are not discussed.

Our Contributions. In the remaining of the document, we present two different attacks on
the Haraka hash functions that break the security claims of the proposals for preimage and
collision resistances. The main observation for both attacks uses symmetric properties of the
keyless AES round function that are not prevented in Haraka due to highly structured round
constants. This kind of structural weakness has already been used in the past against some
primitives, for instance the submission PAES [JNSW14] to the CAESAR competition [Ber]
in [JNSW16], or the lightweight block cipher Midori [BBI+15] in [GJN+15].

We first present in Section 4 collision attacks for the two hash functions Haraka-256/256
and Haraka-512/256. The pair of colliding messages is constructed in about 216 operations.
We additionally give concrete examples of 5-collisions produced for the public reference
implementations; that is, sets {m1, . . . ,m5} of inputs such that h(mi) = h(mj) for all
(i, j), h being one of the Haraka hash functions (Appendix A).

Then in Section 5, we show how Haraka-512/256 can be inverted in 2192 computations,
saving a factor 264 over exhaustive search. The strategy also uses a 3-round distinguishing
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2 Cryptanalysis of Haraka

property of the underlying permutation, which can be extended to a preimage attack by
considering the partial diffusion of 1.5 round of AES.

2 Specifications of Haraka

We recall here the specifications of the two hash functions of the Haraka family; namely:
Haraka-256/256 and Haraka-512/256. For more details, we refer to the submission
document [Ste16].

Unlike general cryptographic hash functions, Haraka only handles short messages, so
that the input space is finite. Namely, the signatures of the two functions are given by:

Haraka-256/256 : GF (2256) −→ GF (2256),
Haraka-512/256 : GF (2512) −→ GF (2256).

The rationale behind this choice pertains to most applications that only process short
inputs and do not require collision resistance.

Both functions uses an inner permutation in a Davies-Meyer mode (see Figure 1): π256
for Haraka-256/256 acting on 256-bit values, and π512 for Haraka-512/256 acting on
512-bit values.

πm h

Figure 1: Haraka uses the Davies-Meyer construction with a permutation π.

The internal states are comprised of b AES states, with b = 2 for Haraka-256/256
and b = 4 for Haraka-512/256. Both functions output a 256-bit hash value, where
Haraka-512/256 truncates the final internal state by keeping only eight columns at
predetermined positions (see Figure 2).

c0c0 c1c1 c2 c3 c4c4 c5c5 c6 c7 c8 c9 c10c10 c11c11 c12 c13 c14c14 c15c15

Figure 2: Truncation in Haraka-512/256: the dashed columns are truncated away. Each
column ci contains four bytes.

One step of each construction applies two AES rounds and is depicted in Figure 3 and
Figure 4. The function A on the figures applies one round of keyless AES. The round
constants RC2i and RC2i+1 are injected during Round i, and are detailed in the subsequent
Section 3. The linear layers ending each step function that permute the AES column is
called mix256 in π2656 and mix512 in π512. For completeness, we give:

mix256(c0, . . . , c7) = (c0, c4, c1, c5, c2, c6, c3, c7)
mix512(c0, . . . , c15) = (c3, c11, c7, c15, c8, c0, c12, c4,

c9, c1, c13, c5, c2, c10, c6, c14).

Security Claims. In the submission document [Ste16], the designers claim that step
functions with five steps allows to achieve (second) preimage resistance for both functions.
Additionally, they claim that using a stronger permutation using six steps instead of five
allows to achieve 128-bit security against collision attacks for both functions.
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Figure 4: Haraka-512/256 step function.

3 Symmetries in Haraka

Before describing the actual attacks, we briefly recall the symmetries of the keyless AES
round function and describe how it generalizes to the Haraka step function.

3.1 Preliminaries: the Case of AES

The observation that we recall here has first been established in [LSWD04] and considers
the keyless AES round function. It can be stated as follows: given a state X such that its
left and right halves are equal, then the keyless AES round function maintains this property.
We omit the proof which simply tracks the behavior of each transformation; namely,
SubBytes, ShiftRows and MixColumns. We define in particular an even more retricted case,
when all four columns of a state are equal (see Figure 5). We call such a state strongly
symmetric.

a a a a

b b b b

c c c c

d d d d

SB

a′ a′ a′ a′

b′ b′ b′ b′

c′ c′ c′ c′

d′ d′ d′ d′

SR

a′ a′ a′ a′

b′ b′ b′ b′

c′ c′ c′ c′

d′ d′ d′ d′

MC

a′′ a′′ a′′ a′′

b′′ b′′ b′′ b′′

c′′ c′′ c′′ c′′

d′′ d′′ d′′ d′′

Figure 5: An AES state with four equal columns is called strongly symmetric, and stays
strongly symmetric after the application of (any number of) the keyless AES round function.

3.2 Symmetry for π256 and π512

We observe that in the two permutations π256 and π512, the round constant RCi injected
in place of the AES subkey at Round i is highly structured. Namely, the round constants
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RCi consist of strongly symmetric states as previously defined. For instance, the two first
subkeys equal:

RC0 =


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 , RC1 =


2 2 2 2
0 0 0 0
0 0 0 0
0 0 0 0

 .

Subsequent constants RCj are deduced from RCj−1 by applying the same function to each
column of the state, hence preserving the strong symmetry.

Since in the Haraka permutation π256 (resp. π512), the columns of state are reordered by
the mix256 (resp. mix512) linear layer, the strong symmetric property is also maintained
by the Haraka step functions.

Consequently, starting with a strongly symmetric state yields a strongly symmetric
state after any number of steps of the two permutations π256 and π512. We note that there
are a total of 232 different strongly symmetric states.

3.3 Symmetry for π512

We now describe another property for the large permutation π512. Again, it relies on
internal symmetries but only covers three steps. Our main goal is to increase the number of
states that verify some symmetric property over three steps of π512. Both classes presented
has been found by hand by careful analysis of the step functions.

Consider the state described by eight independent columns c0, . . . , c7 represented in
the first line of Figure 6. This figure also shows how this state is transformed after three
steps of π512. We note that there are 2256 internal states of this structure.

c0 c1 c2 c3 c4 c5 c6 c7 c6 c7 c4 c5 c2 c3 c0 c1

c′0 c′1 c′2 c′3 c′4 c′5 c′6 c′7 c′2 c′3 c′0 c′1 c′6 c′7 c′4 c′5

c′′0 c′′1 c′′2 c′′3 c′′4 c′′5 c′′6 c′′7 c′′0 c′′1 c′′2 c′′3 c′′4 c′′5 c′′6 c′′7

c′′′0 c′′′0 c′′′1 c′′′1 c′′′2 c′′′2 c′′′3 c′′′3 c′′′4 c′′′4 c′′′5 c′′′5 c′′′6 c′′′6 c′′′7 c′′′7

Step 1

Step 2

Step 3

Figure 6: In Haraka-512/256, an internal state verifying the column-wise symmetry of
the first line maintains some symmetry after three steps of the permutation π512.

The first two steps essentially boil down to the following property: two states S and S′
that have equal halves but swapped have the same structure after one round of keyless
AES. More precisely, let

S1 =


b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b12 b15

 and S2 =


b8 b12 b0 b4
b9 b13 b1 b5
b10 b14 b2 b6
b12 b15 b3 b7

 ,
then the states after the application of f = ShiftRows ◦ SubBytes can be written as:

f(S1) =


b′0 b′4 b′8 b′12
b′5 b′9 b′13 b′1
b′10 b′14 b′2 b′6
b′15 b′3 b′7 b′12

 and f(S2) =


b′8 b′12 b′0 b′4
b′13 b′1 b′5 b′9
b′2 b′6 b′10 b′14
b′7 b′12 b′15 b′3

 ,
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where the two halves are still equal, which is maintained by the subsequent MixColumns
(b′i = S(bi) for all i, with S the AES Sbox). The round constant addition does not change
this, and the same procedure is repeated a second time during this step. The last mix512
transformation finally reorders the columns and creates two new pairs of states with
swapped halves.

After three steps (see Figure 6), the last the mix512 stops the process, and the internal
state is comprised of adjacent pairs of equal columns (last line of Figure 6).

4 Collision Attack on Haraka

Distinguisher. In the previous section, we have seen that the image of a strongly sym-
metric state by π256 and π512 is also strongly symmetric. The simple observation that the
feed-forward XOR of Davies-Meyer maintains this property allows to trivially distinguish
Haraka-256/256.

For Haraka-512/256, we additionally note that the final truncation is performed column-
wise, so that the observation also provides an efficient distinguisher for Haraka-512/256.

Collisions. Based on the previous distinguisher, we therefore expect to collide on the
256-bit hash values after trying approximately 216 strongly symmetric messages drawn
from the reduced 32-bit input space. We give such values in Table 1 below, produced from
the public C implementation of Haraka [Ste].1

The input space being small, we also provide examples of 5-collisions generated by
exhausting over the 232 input space of strongly symmetric messages. We recall the result
from [STKT06] which states that a t-way collision on a random n-bit map is expected
after (t!)1/t · 2n(t−1)/t function evaluations. There are a total of 31 different 5-collisions
that we list in Appendix A. There is no 6-collision or more.

Table 1: Examples of colliding messages for Haraka. The messages m and their outputs
h(m) consist of n equal blocks of 32-bit, with n = 8 for h = Haraka-256/256 and n = 16
for h = Haraka-512/256.

m h(m)

000325eb...000325eb 9ca2e0a5...9ca2e0a5
00016734...00016734 9ca2e0a5...9ca2e0a5

0b1bdced...0b1bdced 04db0fe0...04db0fe0
0a0ef844...0a0ef844 04db0fe0...04db0fe0
0964701e...0964701e 04db0fe0...04db0fe0
0387c94b...0387c94b 04db0fe0...04db0fe0
016549d0...016549d0 04db0fe0...04db0fe0

5 Preimage Attack on Haraka-512/256

We continue the analysis of Haraka by presenting a preimage attack on Haraka-512/256.
The main idea also uses symmetries, but with the larger equivalence class presented in
Section 3.3. Indeed, in the case of collisions, we want the equivalence class to be as small
as possible to collide as quickly as possible in the reduced output space.

1We emphasize that we used a permutation implementing six steps.
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In the preimage attack presented in the sequel, we use an equivalence class of size 256
bits, and rely on the truncation to invert any 256-bit value. This explains why the same
strategy cannot be directly applied to Haraka-256/256.

Let h be the 256-bit challenge value for the preimage attack. To reduce the search
space, we rely on the symmetry class presented before in Section 3.3 and assume that a
symmetric state is reached at the output of the Haraka permutation. We already note
that this happens with probability 2−256, but since the truncation removes exactly 256
bits from the internal state to produce h, we expect that one of the 2256 preimages of h
should be symmetric.

We denote by x ∈ GF (2512) the preimage of h. Assume that x is defined by the
following AES states

c0c0 c1c1 c2 c3 c4c4 c5c5 c6 c7 c8 c9 c10c10 c11c11 c12 c13 c14c14 c15c15

and is transformed to the symmetric state

c′0c
′
0 c′0c

′
0 c′1 c′1 c′2c

′
2 c′2c

′
2 c′3 c′3 c′4 c′4 c′5c

′
5 c′5c

′
5 c′6 c′6 c′7c

′
7 c′7c

′
7

after the π512 permutation. We observe that the final feed-forward truncating 8 of the 16
columns produces the 256-bit values composed of the following columns:

c′1 ⊕ c2 c′1 ⊕ c3 c′3 ⊕ c6 c′3 ⊕ c7 c′4 ⊕ c8 c′4 ⊕ c9 c′6 ⊕ c12 c′6 ⊕ c13

Consequently, the XORs of the consecutive pairs of columns only depends on the input
state:

∆0
def= c2 ⊕ c3, ∆1

def= c6 ⊕ c7,

∆2
def= c8 ⊕ c9, ∆3

def= c12 ⊕ c13.

Therefore, from the value h, one can deduce a 128-bit constraint that the 512-bit
message has to verify to reach a symmetric state at the output of π512. More specifically,
each of the four AES states defining the input message only has 96 bits of entropy.

In terms of freedom degrees, there are 2256 possible symmetric states at the output
of the permutation, and 2256−128 = 2128 that verifies the restrictions from the ∆i on
the message input. Among these 2128 states, one expects only one to verify the 128-bit
unchecked values (c′1, c′3, c′4, c′6) from h. Indeed, 128 bits are already considered through
the differences ∆i.

Preimage Algorithm. If there exists an algorithm enumerating the 2128 symmetric states
in less than 2256 operations, then it directly yields a preimage attack. In the following, we
show how to do this in 2192 operations.

Since we assume to end the π512 permutation with a symmetric state, we know the
inner structure of the state three steps before due to the observation made in Section 3.3.
Consequently, we only have to analyze two steps of Haraka.

To do this, we need to go down one level by inspecting the AES states after each AES
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round functions. Let us denote the four AES states at the output of the second step by
α0 α4 α8 α12

α1 α5 α9 α13

α2 α6 α10 α14

α3 α7 α12 α15



α16 α20 α24 α28

α17 α21 α25 α29

α18 α22 α26 α30

α19 α23 α27 α31



α24 α28 α16 α20

α25 α29 α17 α21

α26 α30 α18 α22

α27 α31 α19 α23



α8 α12 α0 α4

α9 α13 α1 α5

α10 α14 α2 α6

α12 α15 α3 α7

 .
Next, we trace the evolution of the columns through mix−1

512:
α20 α28 α8 α0

α21 α29 α9 α1

α22 α30 α10 α2

α23 α31 α12 α3



α28 α20 α0 α8

α29 α21 α1 α9

α30 α22 α2 α10

α31 α23 α3 α12



α16 α24 α12 α4

α17 α25 α13 α5

α18 α26 α14 α6

α19 α27 α15 α7



α24 α16 α4 α12

α25 α17 α5 α13

α26 α18 α6 α14

α27 α19 α7 α15

 .
The columns only being reordered, the symmetry is maintained, and the bytes are

simply reordered by the subsequent ShiftRows−1. Consequently, at the output of the first
layer of AES round functions of the second step, we have the following shape of states:
β20 β28 β8 β0

β1 β21 β29 β9

β10 β2 β22 β30

β31 β12 β3 β23



β28 β20 β0 β8

β9 β29 β21 β1

β2 β10 β30 β22

β23 β3 β12 β31



β16 β24 β12 β4

β5 β17 β25 β13

β14 β6 β18 β26

β27 β15 β7 β19



β24 β16 β4 β12

β13 β25 β17 β5

β6 β14 β26 β18

β19 β7 β15 β27

 .
Observe that the 512-bit state still maintains some symmetry and can be described

with the 32 bytes β0, . . . , β31. The subsequent layer of AES round functions destroys the
symmetry since the columns can no longer be paired.

We now consider the three layers of AES round functions that link the message input to
this last state. We introduce the following notations (see Figure 7): for i = 0, the internal
state comprised of the four AES state (Xi, X

′
i, X

′′
i , X

′′′
i ) represents the input to π512. For

i = 1, this tuple represents the input to the subsequent AES round, for i = 2 the input to
the next mix512 layer, for i = 3 its output, and for i = 4 the output of the following AES
round.

The algorithm starts by enumerating (X4, X
′
4) in 2128 operations. For each (X4, X

′
4),

we compute (X3, X
′
3) and then deduce the first and last columns of X2, X ′2, X ′′2 and X ′′′2

and therefore two diagonals (8 bytes) of each X1, X ′1, X ′′1 and X ′′′1 .
Then, we observe that only 232 states X0 can match the partial information deduced

in X1. Indeed, there are only 296 inputs with the correct ∆0 difference between the two
last columns, and the additional known bytes after the MixColumns operation introduce a
64-bit constraint. To generate all the matching states X0, we first enumerate all 216 values
for (y8, y9) (see Figure 8), then we can deduce x8, x13, x2 and x7 in X0. Consequently, we
linearly deduce x12 and x9 from ∆0. Then, by also enumerating all 216 values of (y4, y13),
we deduce all remaining values, in particular the full state X0.

By repeating similar algorithms for all four branches, we therefore construct four lists
L, L′, L′′ and L′′′ that each contains 232 values of X0, X ′0, X ′′0 and X ′′′0 respectively.

Next, we enumerate all 264 pairs of states (X0, X
′
0) ∈ L×L′, and deduce all intermediate

values in the permutation. In particular, we get partial values of both X ′′4 and X ′′′4 . We
store the partial (X ′′4 , X ′′′4 ) in a table T . We do the same for all 264 pairs of states
(X ′′0 , X ′′′0 ) ∈ L′′ × L′′′ deduce the other half (X ′′4 , X ′′′4 ) and look for collisions in T . Since
the two states are defined with only 128 bits due to the symmetry, we expect one solution
(X ′′4 , X ′′′4 ) on average that verifies the symmetry.

All in all, after trying 2128 values for (X4, X
′
4), we get a symmetric pair for (X ′′4 , X ′′′4 )

in about 264 computations. This algorithm therefore generates 2128 candidates for the
output of the permutation, where one is expected to verify the remaining 128-bit constraint
on the target value h.
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x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

x16 x20 x24 x28

x17 x21 x25 x29

x19 x22 x26 x30

x19 x23 x27 x31

x32 x36 x40 x44

x33 x37 x41 x45

x34 x38 x42 x46

x35 x39 x43 x47

x48 x52 x56 x60

x49 x53 x57 x61

x50 x54 x58 x62

x51 x55 x59 x63

∆0 ∆1 ∆2 ∆3

A A A A

RC0 RC0 RC0 RC0

y0 y4 y8 y12

y1 y5 y9 y13

y2 y6 y10 y14

y3 y7 y11 y15

y16 y20 y24 y28

y17 y21 y25 y29

y18 y22 y26 y30

y19 y23 y27 y31

y32 y36 y40 y44

y33 y37 y41 y45

y34 y38 y42 y46

y35 y39 y43 y47

y48 y52 y56 y60

y49 y53 y57 y61

y50 y54 y58 y62

y51 y55 y59 y63

A A A A

RC1 RC1 RC1 RC1 RC1

z0 z4 z8 z12

z1 z5 z9 z13

z2 z6 z10 z14

z3 z7 z11 z15

z16 z20 z24 z28

z17 z21 z25 z29

z19 z22 z26 z30

z19 z23 z27 z31

z32 z36 z40 z44

z33 z37 z41 z45

z34 z38 z42 z46

z35 z39 z43 z47

z48 z52 z56 z60

z49 z53 z57 z61

z50 z54 z58 z62

z51 z55 z59 z63

t0 t4 t8 t12

t1 t5 t9 t13

t2 t6 t10 t14

t3 t7 t11 t15

t0 t4 t8 t12

t1 t5 t9 t13

t2 t6 t10 t14

t3 t7 t11 t15

t0 t4 t8 t12

t1 t5 t9 t13

t2 t6 t10 t14

t3 t7 t11 t15

t0 t4 t8 t12

t1 t5 t9 t13

t2 t6 t10 t14

t3 t7 t11 t15

A A A A

RC2 RC2 RC2 RC2 RC2

β20 β28 β8 β0

β1 β21 β29 β9

β10 β2 β22 β30

β31 β11 β3 β23

β28 β20 β0 β8

β9 β29 β21 β1

β2 β10 β30 β22

β23 β3 β11 β31

β16 β24 β12 β4

β5 β17 β25 β13

β14 β6 β18 β26

β27 β15 β7 β19

β24 β16 β4 β12

β13 β25 β17 β5

β6 β14 β26 β18

β19 β7 β15 β27

X0 X ′
0 X ′′

0 X ′′′
0

X1 X ′
1 X ′′

1 X ′′′
1

X2 X ′
2 X ′′

2 X ′′′
2

X3 X ′
3 X ′′

3 X ′′′
3

X4 X ′
4 X ′′

4 X ′′′
4

Figure 7: General overview of the final phase of the preimage attack. The darkgray bytes
are guessed and the lightgray bytes are deduced.
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x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

∆0

x′
0 x′

4 x′
8 x′

12

x′
5 x′

9 x′
13 x′

1

x′
10 x′

14 x′
2 x′

6

x′
15 x′

3 x′
7 x′

11

SB

SR

y0 y4 y8 y12

y1 y5 y9 y13

y2 y6 y10 y14

y3 y7 y11 y15

MC

X0 X1 ⊕RC0

Figure 8: First AES round in the preimage attack: the darkgray bytes are known and we
guess (y4, y8, y9, y13) to enumerate all the 232 states X0 that match all the known bytes.
The lightgray bytes are deduced, and allow to deduce the values in all remaining bytes.

Complexity. The total time complexity of this algorithm can be expressed as follows:

2128 ·
(
4 · 232 + 2 · 264) ≈ 2192

and the memory complexity essentially stores the final meet-in-the-middle table T of 264

values.

6 Conclusion
In this paper, we have provided attacks against Haraka hash functions, which breaks the
preimage resistance of the large function Haraka-512/256, and the collision resistance of
both Haraka-256/256 and Haraka-512/256. Our preimage attack finds a valid input in
about 2192 computations, while our collision attack finds colliding messages from a small
subspace in about 216 function evaluations. The attacks rely on symmetric states that are
preserved for several steps of the inner permutation which are not destroyed due to highly
structured round constants. We note that these attacks can easily be thwarted by using
different round constants without affecting the software efficiency of the designs.
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A 5-Collisions in Haraka

Table 2: Examples of 5-collisions for Haraka. The five strongly symmetric messages Mi

are constructed by the concatenation mn
i of n equal 32-bit blocks mi, and they all produce

the same strongly symmetric value h(Mi) described in the last column. We have n = 8 for
h = Haraka-256/256 and n = 16 for h = Haraka-512/256.

m1 m2 m3 m4 m5 h(mn
i )

0b1bdced 0a0ef844 0964701e 0387c94b 016549d0 04db0fe0
08b9de4f 06f38a45 052f752a 04c3e89d 026232c4 139bf2ce
0eeed09b 0c086017 0779efa9 04b5ddef 02922ab3 1652a79c
0da38dc7 0b9204e6 0b6fd895 065ba81d 02b95866 1b6fdcb2
0bf82512 0956b85e 02f62f91 00bb53d3 0062841c 24569de0
0eea626b 0bc42c33 0697f466 054846e5 04568d19 2667df18
0bdd2fdc 0a8738e0 053d935f 03f60e70 01ab7946 27dbb0b7
08a74a16 03e50376 029dc641 01410df7 003a9ff6 3a2d117d
0e8e613b 0d1ffc8d 0bbee25a 09e2d933 0204e5a5 4124e4fa
0ada449b 0a22394c 09c30d48 064d2b2d 0515afc9 41a94ca8
0d3d43b7 0a9b9633 093c2e0d 07a00cc3 05389fc4 478ba06e
0ff0ed1e 0f9d64c6 0e5c1620 092f106a 06565ea7 50d7dec3
0c52acee 0c20e041 0a89e1f8 07278c95 00dfea66 518e9672
0eaf780d 0a5268e0 02e59fb4 01d2c9d0 01806b17 59b65309
0ef0fa28 0cf30920 0b9f5486 055dae46 03bb1cf8 72afced6
0d015142 0c95c29e 09a827fd 05962873 03dece6a 739e2600
0f32a906 0d5ed761 0bae83c2 0aef5f7f 032e9da3 7d9a3a76
0cd26dcd 06e53d53 0596b253 0516918e 00d8d609 833d2572
0fb50b4b 0dd1849d 0a015abb 07769307 020b1e46 8bf474de
0e479f28 0bd4cf82 067c41b5 010d5eee 00d20d14 8f85488f
0faa8dfe 0cba2273 08059f27 07897bf5 064adf44 947c915d
0e58e47d 0bf25d39 09213d54 05ee5bf0 028d5d64 96ae6849
0f5579e2 0f4459b9 0f1e4a6c 0d11d8ac 04aec011 9979b3b0
0e465eb8 0844dcfd 07b59704 03f9ce67 027ea25e ad2448ab
0bb8afd5 0ab837f3 05a9c72e 054721b3 041233a6 d306dc1a
0ea32558 0b0a3a0f 0ab943c2 05077deb 00772f11 ebec4664
0af64a8e 092df02b 0706d013 061cd4d3 04190c3b efa32c4f
0524b410 05219e31 048509f3 025ff2e1 008d4a14 f0971607
0f91659a 0b098ab1 05b13941 04060205 034aaecc f3bc0541
0efcb18e 0bf347de 041fd72d 03e9787b 037682d8 f8fea34e
0f93bbda 0db0455e 0a6a0dec 09a8d1da 090467a1 f9c8fbd7
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