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Abstract. S-boxes are the most popular nonlinear building blocks used in symmetric-
key primitives. Both cryptographic properties and implementation cost of an S-box
are crucial for a good cipher design, especially for lightweight ones. This paper aims
to determine the exact minimum area of optimal 4-bit S-boxes (whose differential
uniform and linearity are both 4) under certain standard cell library. Firstly, we
evaluate the upper and lower bounds upon the minimum area of S-boxes, by proposing
a Prim-like greedy algorithm and utilizing properties of balanced Boolean functions
to construct bijective S-boxes. Secondly, an SAT-aided automatic search tool is
proposed that can simultaneously consider multiple cryptographic properties such as
the uniform, linearity, algebraic degree, and the implementation costs such as area,
and gate depth complexity. Thirdly, thanks to our tool, we manage to find the exact
minimum area for different types of 4-bit S-boxes.

The measurement in this paper uses the gate equivalent (GE) as standard unit under
UMC 180 nm library, all 2/3/4-input logic gates are taken into consideration. Our
results show that the minimum area of optimal 4-bit S-box is 11 GE and the depth
is 3. If we do not use the 4-input gates, this minimum area increases to 12 GE and
the depth in this case is 4, which is the same if we only use 2-input gates. If we
further require that the S-boxes should not have fixed points, the minimum area
continue increasing a bit to 12.33 GE while keeping the depth. Interestingly, the
same results are also obtained for non-optimal 4-bit bijective S-boxes as long as their
differential uniform U(S) < 16 and linearity £(S) < 8 (i.e., there is no non-trivial
linear structures) if only 2-input and 3-input gates are used. But the minimum area
reduce to 9 GE if 4-input gates are involved. More strictly, if we require the algebraic
degree of all coordinate functions of optimal S-boxes be 3, the minimum area is 14 GE
with fixed point and 14.33 GE without fixed point, and the depth increases sharply
to 8.

Besides determining the exact minimum area, our tool is also useful to search for a
better implementation of existing S-boxes. As a result, we find out an implementation
of Keccak’s 5-bit S-box with 17 GE. As a contrast, the designer’s original circuit has
an area of 23.33 GE, while the optimized result by Lu et al. achieves an area of 17.66
GE. Also, we find out the first optimized implementation of SKINNY’s 8-bit S-box
with 26.67 GE.
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1 Introduction

1.1 Background

The substitution box (S-box) is the most widely used building blocks in symmetric-key
primitives, including block ciphers, hash functions, authenticated encryptions and message
authenticated codes. Security of these primitives heavily depends on the cryptographic
properties of their S-boxes, such as the differential uniformity, linearity, algebraic degree, etc,
thus choosing an S-box with good cryptographic properties is crucial for cipher designers.
On the other hand, the rapid development of the Internet of Things (IoT) prefers ciphers
that can be easily deployed in resource-constrained devices, thus the implementation cost
of an S-box, such as the area and latency, needs to be as small as possible. To sum up, both
the cryptographic properties and implementation cost of S-boxes are important, especially
for lightweight ciphers.

There are two active research hotspots about S-boxes: constructing new S-boxes
and optimizing existing S-boxes. The former aims to construct an S-box with excellent
cryptographic properties but very small implementation cost, while the latter would like
to find the smallest implementation cost of an existing S-box. Both research hotspots are
challenging, especially for large S-boxes.

Previous effective methods available to construct S-boxes can be mainly classified into
3 types:

e Type 1: choose an S-box from equivalent categories;

e Type 2: construct an S-box by mathematical methods or special structures;

e Type 3: solve out an S-box by automatic tools.

The Type 1 method is only effective for constructing 4-bit S-boxes. In 2007, Leander
and Poschman [LP07] defined optimal 4-bit S-boxes according to their ability against
differential and linear attacks, and classified all optimal 4-bit S-boxes as 16 categories
up to the so-called CCZ equivalence. Many cipher directly uses 4-bit S-boxes from the
16 equivalent categories, such as Serpent [BAK98] and RECTANGLE [ZBL*15]. This
classification was further developed by Zhang et al. in [ZBRL15] to 183 categories. In the
new classification, Bad-input-Bad-output (BIBO) differential/linear patterns were taken
into consideration. Thanks to these classifications, it becomes easy to choose optimal 4-bit
S-boxes from different categories as the nonlinear building block of symmetric ciphers.
However, the implementation cost is not considered at all. In terms of Type 2 method,
combining affine transformations and the inverse function of a finite field to construct
S-boxes is a typical mathematical method, just like the S-box used in AES. For sake of
S-boxes with low implementation area, some special structures such as Feistel, MISTY,
Bridge [LW14, CDL15, TLZ23] as well as cellular automata [MPLJ19, GSPT 18] are also
widely used. However, these design strategies seriously depend on structures, so it is
difficult to reach the minimum area. The Type 3 method, i.e., solving out an S-box
by automatic tool, is an interesting and comprehensive method. In [LMC%22], Lu et
al. proposed an automatic search method based on SAT, which can simultaneously take
multiple cryptographic properties into consideration. However, algebraic degree, the very
important cryptographic property of S-box, is not covered in this method. Meanwhile,
the implementation cost is also not considered yet. Beside that, there are also some
explorations on constructing low-depth or low-latency S-boxes[Ras22, TLZ23].

Previous work on optimizing the implementations of existing S-boxes available are few.
Jean et al. [JPST17] proposed an automatic tool LIGHTER to search for the circuits
with small area for existing S-boxes. They use a graph-based meet-in-the-middle search
algorithm under the assumption that every instructions is invertible. Despite of the
efficiency and practical applicability for different S-boxes, it is infeasible to prove that their
implementation costs are optimal. In FSE 2016, Stoffelen regarded the problem of finding
an efficient implementation of a lightweight S-box as a SAT problem [Stol16]. With an
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SAT solver, the implementation of an S-box can be solved out with the smallest number
of gates. Based on Stoffelen’s work, Lu et al. [LWH"21] proposed an improved search
algorithm and try to find optimized implementations for existing S-boxes with the smallest
area under certain standard cell library. However, all previous methods aforementioned are
only effective on constructing 4-bit S-boxes and ineffective on larger S-boxes. For example,
Lu et al’s method failed to give an optimal implementation for the 5-bit KECCAK’s S-box.

To summarize, there still remain several questions awaiting for answers on designing
and optimizing implementation of S-boxes:

e Q1: What is the minimum area of all 4-bit S-boxes, if we would like to design new
S-boxes or optimize existing S-boxes under certain standard cell library?

e Q2: How to optimize the implementation for existing n-bit (n > 5) S-boxes with
smaller area?

¢ Q3: How to consider area and depth complexity of an S-box simultaneously when
designing new S-boxes and optimizing existing S-boxes?

e Q4: How to cover the requirement on algebraic degree in the automatic search for
S-boxes?

In this paper, we aim to propose an improved automatic search method based on SAT
to answer these questions.

1.2 Contributions

Since the area cost of different logic gates depends on the technology library, we use the
gate equivalent (GE) as the standard unit under the UMC 180nm standard cell library
shown in Table 5 to measure and compare the area of S-boxes. The main contributions
are briefly summarized as follows:

Propose Prim-like greedy algorithm and properties on balanced Boolean
functions to tighten the upper bound and lower bound of the minimum area
of S-boxes. Inspired by Prim algorithm in Graph Theory, we transform the process to
find the minimum area of S-boxes into a minimum spanning tree problem under some
conditions. As an application, to construct an optimal 4-bit S-box, the upper bound of
minimum area is 12 GE (8 logic gates) by only using 2-input (or plus 3-input) gates, or 11
GE (6 logic gates) by using 2-input, 3-input and 4-input gates. To find the lower bound of
the minimum area of S-boxes, we proposed some properties on balanced Boolean functions,
which are helpful to speed up the search process. As a result, we found that it needs at
least 9 GE to construct a bijective S-box with U(S) < 16 and £(S) < 8 by only using
2-input and 3-input gates. These findings are useful to shrink the possible range of the
minimum area of S-box.

Improve the automatic search model for S-boxes in [LMC™'22] via adding
constraints on algebraic degree. Algebraic degree is an important cryptographic
property of S-boxes. It can be found from the ANFs of S-box’s coordinate functions.
However, constructing ANF of a Boolean function is difficult by the truth table in SAT
model. In this paper, we overcome this problem by the transformation from SoP expression
of Boolean function to ANF expression. Therefore, it becomes able to express every
coefficient in ANF and add constraints on algebraic degree within the SAT model.

Improve the automatic search method for optimizing implementation of
existing S-boxes in [LWH'21] via some acceleration techniques and adding
constraints on depth complexity. By utilizing the order-independence of inputs for 2-
input and 3-input logic gates, as well as bit-permutation equivalence of S-boxes, the search
space can be significantly reduced. Beside that, the requirement on depth complexity can
be added into our improved model. As a result, we can search out better implementation
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Table 1: Comparison of the minimum area cost of optimal 4-bit S-Boxes and a few
higher-bit S-boxes.

Area (GE)
S-bax Size # Gate Basis LIGHTER Stoffelen et al. ~ Lu et al. Ours
[JPST17] [Sto16] [LWH*21] 0
LBLOCK Sy 4 10 {G1,G2} 16.33 23.00 16.33 16.33
PICCOLO 4 8 {G1.G2} 13.00 16.66 13.00 13.00
SKINNY-64 4 8 {G1,G2} 13.33 16.33 13.33 13.33
{G1,G2} 18.33 25.66 18.00 18.00
RECTANGLE 4 11 {G1,Go. Gs, G} 17.33 17.33
Ours 4 8 {G1,Ga} - - - 12.00
Ours 4 6 {gl,g2,g37g4} - - - 11.00
KECCAK 5 13 {G1, G2} 1766 17.00
SKINNY-128 | 8 16 {G1,G2} - - - 26.67

of 5-bit S-box used in KECCAK with smaller area. Meanwhile, we give the optimizing
implementation of 8-bit S-box used in SKINNY with smaller area for the first time. The
results are summarized in Table 1.

Propose an automatic search model for S-boxes by considering multiple
cryptographic properties and implementation area and depth complexity simul-
taneously based on SAT. In theory, combining the models in [LMC™22] and [LWH™21]
and some slight changes makes it possible to find an S-box satisfying required cryptographic
properties and area cost. However, by experiments, we found that the combined model
could not be solved out for even 4-bit S-boxes when area cost is restricted as a lower value.
In other words, the direct combined model cannot be used to find the minimum area of
4-bit S-boxes. However, based on the first three contributions, we made our model be able
to solve the above problem. Specifically, by combining the improved models in the second
and third contributions, it is able to determine the minimum area between upper bound
and lower bound. Under the minimum area of S-boxes, we can further find the minimum
depth. As a result, we apply it on 4-bit S-boxes. If only 2-input and 3-input logic gates
are used to construct general bijective 4-bit S-boxes with U(S) < 16 and L(S) < 8, the
minimum area is 12 GE with fixed point, as well as 12.33 GE without fixed point. So
does optimal 4-bit S-boxes. Under each case above, the depth is at least 4. Furthermore,
the minimum area is 14 GE with fixed point, as well as 14.33 GE without fixed point to
construct optimal 4-bit S-boxes with all algebraic degree 3 of coordinate functions. Under
each case above, the depth is at least 8. If all logic gates including 4-input gates are used
to construct optimal 4-bit S-boxes, the minimum area is 11 GE without fixed point, now
the gate depth is at least 3. If all logic gates are involved to construct general bijective
4-bit S-boxes, the minimum area is 9 GE, and the gate depth is also at least 3. All results
are summarized in Table 2. All source codes of our tool and searched results are available
at https://github.com/Chenhao-Jia/Area-Optimized-Implementation-for-S-box.

2 Preliminaries

2.1 Notations

This subsection introduces notations and conceptions used in this paper. Some simple
notations are given in Table 3.

A Boolean function is a mapping from F5 to Fs, while a vectorial Boolean function is
a mapping from F3 to F5*:

($0,l‘17‘ . ’7$n—1)*_>(f0(170; Ty, 'axn—1>7 f1($0; X1, 'axn—l)v’ T fm—l(xlax%' . '73371—1))3

where each f;(zo,21, - ,2n—1) is a Boolean function. An S-box with n-bit input and
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Table 2: Results on the minimum area cost of three types of S-boxes under the basis

{G1,G2}, {G1,G2,G3} and {G1,G2,Gs3,G4}.

e [u) L5 e e O T i ™ Do
2 3 X v 8 12 GE 14 GE v 4
. . 2 3 v v 8 12.33 GE 145 GE v 4
3 3 X v 9 14 GE 165 GE v 8
(60,62} 3 3 v v 9 14.33 GE 17 GE v 8
2 3 X X 8 12 GE 14 GE v 4
6 -s 2 3 v X 8 12.33 GE 145 GE v 4
2 2 X X 8 12 GE 14 GE v 4
2 2 v X 8 12.33 GE 145 GE v 4
2 3 X v 8 12 GE 14 GE v 4
. . 2 3 v v 8 12.33 GE 145 GE v 4
3 3 X v 9 14 GE 165 GE v 8
3 3 v v 9 14.33 GE 17 GE v 8
{61, G2 G} 2 3 X X 8 12GE 14 GE v 4
6 -3 2 3 v X 8 12.33 GE 145 GE v 4
2 2 X X 8 12 GE 14 GE v 1
2 2 v X 8 12.33 GE 145 GE v 4
e T S S S T I
Table 3: Notations used in this paper.
Zn, The finite set {0,--- ,n — 1}.
Fy The finite field with only two elements {0, 1}.
Fy The n-dimensional vector space over Fa.
Dy Bitwise exclusive OR of x and y
alb AND of Boolean variable a and b which equals to ab.
aVvb OR of Boolean variable a and b which equals to ab + a + b.
—a NOT of Boolean variable a which equals to a + 1.
G1 The logic gate set with only 1 input, i.e. G = {NOT}.
Go The nonlinear logic gate set with 2 inputs, i.e. Go = {AND, NAND,OR, NOR}.
Gs The nonlinear logic gate set with 3 inputs, i.e. G3 = {AND3, NAND3,0OR3, NOR3}.
Gy The nonlinear logic gate set with 4 inputs, i.e. G4 = {MAOI1, MOAIl}.
gl The linear logic gate set except NOT, i.e. Gl = {XOR, X NOR}.
wit(u) The Hamming weight of u where v € F,u = (ug, - ,Up—1).
f@o, -+, zn1) A function mapping F3 to Fs, also called an n-variable Boolean function.
(x,y) The inner product of @ and b which equals to Z;;}} Z3Y;-
#{} The number of qualified set elements.

1 A Boolean variable is regard as a variable over Fs in this paper.
2 Unless otherwise specified, + and Z in this paper are operations over Fa.

m-bit output can be represented by such a vectorial Boolean function.

Boolean circuits are defined according to the logic gates they contain. For example,
a circuit might contain binary AND and OR gates and unary NOT gates. Each gate
corresponds to a small Boolean function that takes a fixed number of bits as input and
outputs a single bit. The most common gates used in a circuit are shown in Table 4. This
paper considers implementations of S-boxes only with these gates.

2.2 Main Cryptographic Properties for an S-Box

We will first give the definitions of an S-box related to differential cryptanalysis, linear
cryptanalysis and various forms of algebraic/cubic cryptanalysis.

Definition 1 (Differential Distribution Table(DDT)[BS90, BS93]). For a vectorial Boolean
function S : Fy* — F4, the DDT of S is a 2™ x 2" table whose rows correspond to the
input difference o to S and whose columns correspond to the output difference 8 of S.
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Table 4: Common logic gates and their corresponding expressions in standard cell library

Operation Function ‘ Operation Function

NAND (a,b) = =(aAb) | NAND3 (a,b,¢) = =(aAbAC)

NOR (a,b) = —(aVb) | NOR3 (a, bc)—>ﬂ(a\/b\/c)

AND (a,b) = (a A'b) AND3 (a,b,c) = (aANbAc)

OR (a,b) = (a VD) OR3 (a,b ¢) = (aVbVe)

NOT a— —a MAOI1 (a,b,¢,d) = =((aNb) V (=(cVd)))
XOR (a,b) — (a®b) | MOAI1 (a,b,c,d) = = ((aVb) A (=(cAd)))
XNOR (a,b) = —(a ®b)

The entry at index (o, ) is
ds(a, B) := #{z € F3'|S(z) @ S(x & a) = B} (1)

Definition 2 (Differential Uniformity[Nyb93]). The differential uniformity of an S-box
S F§* — Fy is defined as:

S) = 1) . 2
Uu(s) R L s(a, B) (2)

Definition 3 (Linear Approximation Table (LAT)[Mat93]). For a vectorial Boolean
function S : F§* — F3, the LAT of S is a 2™ x 2" table whose rows correspond to the
input mask a to S and whose columns correspond to the output mask 5 of S. The entry
at index (a, ) is

LATs(a, B) == [As(a, ) — 2"71. 3)

where Ag(a, 8) = #{z € FJ'|a- 2 & 5 - S(z) = 0}.
Definition 4 (Linearity[Mat93]). The linearity of an S-box S : FJ* — F7 is defined as:

L(S) := LAT. .
(S) aeJFg”r\I}{%i(,ﬂeF;J s(a, B)]

In [LP07], Leander and Poschmann defined the optimal 4-bit S-bozes as those S-boxes
that simultaneously achieve optimal differential uniformity and linearity:

Definition 5 (Optimal 4-bit S-boxes[LP07]). Let S : F3 — F3 be an S-box. If S fulfills
the following conditions, then it is called an optimal 4-bit S-box:

1. S is a bijection.

2. U(S) = 4.

3. L(S)=4.

Saarinen et al. put forward the definition of permutation-xor equivalence in [Saall].
The algebraic degree, linearity and uniformity are example properties of (vectorial) Boolean
functions that are invariant over any of these equivalences. Rasoolzadeh showed that
the latency complexity is invariant also under the extended bit permutation equivalence
[Ras22]. The definition of bit permutation equivalent is as follows:

Definition 6 (Bit permutation equivalent[ZBRL15]). Let P; and Py be two bit permutation
matrices. The S-box S’ defined by

§'(x) = RoS(Pi(x))

belongs to the permutation-xor equivalence set of S, S’ € PE(S).



598 How Small Can S-boxes Be?

Thus, the S-boxes within the same bit permutation equivalent class share the same
algebraic degree, uniformity, and linearity. Moreover, it is evident that the area and depth
complexity of the S-boxes within this class are also identical.

When applying to optimal 4-bit S-boxes, the following theorem formalized as follows.

Theorem 1. [LP07] Let S’ permutation equivalent to S. If S is an optimal 4-bit S-bo,
then S’ is an optimal 4-bit S-box as well.

In addition to the differential uniformity and linearity, another metric to determine the
security of an S-box is the algebraic degree.

Definition 7 (Algebraic Normal Form (ANF) of a Boolean function and its algebraic
degree [CP02, DS09]). A Boolean function f : F} — Fy can be uniquely represented by
an n-variate polynomial over Fy, named the algebraic normal form of f:

n—1
Uq
flxo,z1,.. . @) = E Qy H x;*, where a,, € .
uw€Fy =0

where z;, u; are the i-th bit of  and u, respectively, and z}* = x; when u; = 1 and 1 when
u; = 0. The algebraic degree deg(f) of function f is

deg(f) = gé%z;{wt(wm # 0}

Lemma 1 ([CCH10, LN97]). Let f be an n-variable balanced Boolean function. Then
algebraic degree of f is at most n — 1.

Definition 8 (Algebraic Degree of an S-box[LP07]). The algebraic degree of an S-box
S (an"' a‘rn—l) = (an"' 7f’m—1) is

deg(S) = max{deg (£}

2.3 Implementation of Boolean Functions

The area and latency are two primary metrics when measuring the hardware implementation
cost of an S-box. The area of an S-box is typically measured in terms of gate equivalent
(GE). In different libraries GEs of different gates are different. In this paper, we evaluate
the area of S-boxes under different standard cell librarys as shown in Table 5. It should be
noted that unless specified, we measure the area of S-boxes under UMC 180nm library.
Table 5 also provides the area of each gate in the respective libraries.

Table 5: GEs of mentioned gates in different libraries.

. ANDNAND XOR NAND3 XOR3
Library Gate OR NOR XNOR NOR3 XNOR3 NOT MAOI1 MOAIl

Area (GE)|1.33 1.00 3.00 1.33 4.67 0.67 267 2.00

UMC 180nm g ey g 9 4 14 2 8 6
Area (GE)[1.50 1.00 3.00 1.50 550 0.50 2.50  2.50
TSMC 65nm | p o | 6 4 12 6 22 2 10 10
Nameate 45 ATed (GE)| 133 100 2.00 133 400 0.67 2.67 200
angate Ratio | 4 3 9 4 12 2 - -

1 The ratio is measured in multiples of % GE as the reference unit.

It can be seen that, AND and OR gates, as well as XOR gates, have a larger GE plus
NOT than their inverse gates at UMC 180nm, so we do not take NOT gates into our
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consideration when pursuing GE minimization. We recall the definitions of Gate Count
Complezity and Gate Depth Complexity to measure the cost of implementing Boolean
functions as follows.

Definition 9 (Gate Count Complexity[Stol6]). The gate count complexity of a Boolean
function is defined as the minimum number of logic gates required to implement this
function.

Even though different types of gates have different implementation (area) costs, this
definition is typically considered the first simplified estimation for the minimum area cost
for hardware implementation of a function.

In [Sto16], Stoffelen transformed the problem of searching for hardware and software
implementations of S-boxes into a Boolean satisfiability problem for solving. Compared to
heuristic algorithms, the model constructed by Stoffelen can be used to search for the min-
imum number of standard logic gates required for hardware and software implementation
of S-boxes, achieving the smallest possible number of standard logic gates used. However,
since different standard logic gates have different hardware implementation areas, a circuit
with the minimum number of standard logic gates does not necessarily have the minimum
area.

Definition 10 (Gate Depth Complexity[Sto16]). The depth of a circuit is defined as the
length of the longest paths from an input gate to an output gate.

In the case of the gate depth complexity, even though different types of gates have dif-
ferent implementation (delay) costs, this definition is usually considered the first estimation
for the minimum delay cost for hardware implementation of a function.

3 Tight Bounds on Minimum Area to Construct S-boxes

In this section, we first propose a Prim-like greedy algorithm to tighten the upper bound of
the minimum area to construct S-boxes with certain cryptographic properties in subsection
3.1. Then, by finding some properties on balanced Boolean functions, the lower bound of
minimum area to construct S-boxes is tightened in subsection 3.2.

3.1 Upper Bound of Minimum Area to Construct S-boxes under Certain
Cryptographic Properties

In this part, we concentrate on finding the upper bound on the minimum area for con-
structing a bijective S-box with differential uniform ¢ (S) and linearity £(S). Each S-box
coordinate function f;(x) is composed of a certain number of logic gates, and meanwhile,
different coordinate functions share some gates. To find the minimum area of an S-box is
to find the optimal circuit implementation with minimum gate area. Thus, we transform
the construction of an S-box into a minimum spanning tree problem under conditions with
the help of graph theory. The circuit implementation process of an S-box can be regarded
as a weighted diagraph, as shown in Figure 1.

In this diagraph, there are two sets: edge set F and vertex set V. Each edge ¢g; € F
means a logic gate, while the weight w; of g; means the are cost of this gate. The vertexes
(vi, viy1) on both sides of edge g; means the input/output states of corresponding logic
gate. It is worth noting that, there may be multiple inputs for a gate. To describe clearly,
the vertex v; in graph only denotes the input with longest depth. But, in actual search with
code, v; is stored as an expression g;(zo, i, ,Tn—1,v1, -+ ,v;—1). Finally, the output
(fo, -+, fm—1) of S is located in some vertexs. To find the minimum area of S-boxes under
certain differential uniform ¢/(S) and linearity £(S) is to find the minimum of Y | w; in
the diagraph to get special (fo,- - , fm—1) satisfies Lemma 2 and Lemma 3 as follows.
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Figure 1: Demo on Prim-like greedy Algorithm

Lemma 2 ([Ras22]). For an n-bit bijective S-box S = (fo, ..., fn—1) with linearity linearity
L(S), each of its component functions, namely («, S) with any o € FZ \{0}, is balanced
and has a linearity of at most L(S).

Using Lemma 2 makes it possible to filter out some of the possibilities, only by having
some of the coordinate functions. Precisely, assume that fy and f; are already chosen, then
without choosing other coordinate functions, we can check for balancedness and linearity
of fo® f1. If fo & f1 is balanced and has a linearity at most £, then we choose the third
coordinate function, f;. Again, we can check for balancedness and linearity of fy & fa,
f19 fa, and fo® f1 @ fo. Continuing in this way, after choosing the last coordinate function,
fn—1, we can check for balancedness and linearity of other 2" ! — 1 component functions.
If these 2"~ — 1 conditions are met, then we have a bijective S-box with linearity at most

L.

Lemma 3 ([Ras22]). For an n-bit S-box S = (fo, ..., fn—1) with differential uniform U(S),
the differential uniformity of sub-S-box S = (fo,...,fi) with i < n is upper bounded by
min{U(S) - 27171 any,

Lemma 3 can also be used to filter out coordinate functions that meet the differential
uniformity requirement for the sub-S-box S = (fo, f1,---, fi)-

Next, we illustrate the algorithm to find the minimum of Z?Zl w; meeting certain
differential uniform and linearity with the help of Lemma 2 and Lemma 3, which is shown
in Algorithm 1. Inspired by Prim algorithm in graph theory, we construct the coordinate
functions of an S-box one by one to achieve local optimization. At the very begin, we build
a pre-computation table T'[cost] to store all combinations of logic gates, indexing by area
cost as shown in Table 6. Please note that the combinations in this table are ordered by
the number of used gates.

In detail, to construct the first coordinate function fy, the steps are as follows.

o Step 1: Try the combination of logic gates from pre-computation T'[cost] successively
according to area cost. Assume the current combination of logic gates is Zy,, and
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Algorithm 1: Prim-like greedy Algorithm to achieve the locally minimum solution
for area cost.

© 0 N O A W N

e T = T =
R W N R O

15

16
17
18
19
20

21

22

Input: n, G,V
Output: Cost

| Z8 U VA
Vy = 0;

global Cost, Cost’
global iter = —1;

Function FindinglocalMinimumArea(n,G,V):

iter—+-+;

return

23 Cost — Cost'/3

for i =3,4,5... do

if count = 0 then

for k=1 to |i/3] do

if count = 0 then

for 4o, -, 9k—1 € G and Zf;é |g]| =i do

Viter — V;
for vg,...,v,_1 (n=2,3,4) € Vi do
L t; = gj(’Uo, R ,’Unfl)7 Viter  yriter {tj};
if {o € T ™I\ {0} (e, V,, Uty_1)} is balanced && L(V, U
tp—1) < L(S) then
if UV, Uti—1) < min{fu- 271 27} then
Ve Vuvier V, « V,Utg_q;
count + +;
if iter <n —1 then
L FindingLocalMinimumArea (n,G, V);

break

Table 6: Precomputed table for gate combinations.

cost(GE) combinations of logic gates # combinations
1/3x1 1%} 0
1/3 x 2 {NOT} 1
1/3 % 5 {NOT, NAND}, {NOT, NOR} 4

{NAND, NOT}, {NOR, NOT}
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the number of logic gates used in Zy, is |Zy,|:

. go g1 IITgo1-2 _ 4
Iy tvo —> 01— —— Vg, -1 = fo(To, "+, Tno1), (4)
where vg is the initial vertex, and V|Ty, -1 18 the final vertex.

o Step 2: Try possible inputs of gate gy from initial input set V = {xg, -+ ,2n_1},

possible inputs of gate g1 from V U {v1}, ..., possible inputs of gate 917511 from
Vu{vi,ve, vz, -2}

e Step 3: Check if Uz, -1 = fo(zo,- - ,xn—1) satisfies Lemma 2 and Lemma 3. If so,
continue to construct the next coordinate function. Otherwise, return back to Step 2
and Stepl.

. . - . Tsol—1
This process is shown in Figure 1(a). Now the area cost is lefg' w.

To construct the second coordinate function f; is slightly different with the process to
construct fo. The steps are as follows:

o Step 1: Try the combination of logic gates from the pre-computation table T[cost]
successively according to area cost. Assume the current combination of logic gates is
Zy,, and the number of logic gates used in Zy, is |Zy, |:

’ g‘I.fO‘ 9\1f0\+1
Ly v v, | VT |41 = Uy 4Ty, -1 = f1(To,  Tam1).

()

o Step 2: Choose initial vertex v{, from set V = {vg, vy, - ,’U‘Ifo‘,l} one by one.

o Step 3: Assume the current vy = v;, 0 < ¢ < |Zp | — 1. Try possible inputs of

gate gz, | from initial input set V = {zg, -+ ,Zn_1,v0, - ,v;}, possible inputs
of gate gz, |1 from V U {’U|If0|}, ..., possible inputs of gate gz, |+|z,,|-1 from
V U0z, | Vizg 1410 5 Vg [41Ts, -2

e Step 4: Check if O\Zy, | +1Zs, -1 = fi(xo, -+ ,x,—1) satisfies Lemma 2 and Lemma 3.

If so, continue to construct the next coordinate function. Otherwise, return back to
Step 3, Step 2 and Step 1.

. . - Tsol—1 Iy l-1
This Process is shown in Figure 1(b). Now the area cost ZL:%)‘ wi—l—ZLfOl ! Wiz, | 4i-

To construct the other coordinate functions fo,--- , fi,_1 sequentially is similar to the
process to construct f;. But the difference lies in that the initial vertex set V and the

input set ¥V would be changed and larger. The process is shown in Figure 1(c)(d). In the

. IZso 1+ Tgy [+ 41T,y [ =1
end, the total area cost is Y, g ' W

Application to 4-bit S-boxes. We apply Algorithm 1 on 4-bit S-boxes with both
differential uniformity and linearity as 4. By using different sets of logic gates, we get
different upper bound of minimum area of 4-bit S-boxes under UMC 180nm library. When
we only use 2-input logic gates from Gs, the minimum area of S-boxes we found is 12 GE,
composed of 8 logic gates. When we use 2-input and 3-input logic gates from {Gs, G5},
the minimum area of S-boxes we found is 12 GE, composed of 8 logic gates. When we
use 2-input, 3-input and 4-input logic gates from {Ga, G3, G4} together, the minimum area
of S-boxes we found is 11 GE, composed of 6 logic gates. The results are summarized in
Table 7.
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Table 7: Upper bound of minimum area of optimal 4-bit S-boxes under UMC 180nm
library

Uus) | L(S) basis #logic gate | area (GE)
4 1 Gat 8 12
4 4 {92, Gs} 8 12
4 4 {G2, 3,04} 6 11

3.2 Lower Bound of Minimum Area to Construct Bijective S-boxes

In this part, we try to seek the lower bound of the minimum area to construct a bijective
S-box based on the balanced property of Boolean functions. By default, the algebraic
degree of each coordinate function of the S-box should be no less than 2.

Firstly, we propose some properties to real how to construct balanced Boolean functions
implemented by logic gates with 2 or 3 inputs.

Property 1. If f is an n-variables Boolean function with algebraic degree I(I > 2) obtained
by logic gate g, i.e. f:V %t = f(V ={xo,---,2,_1}), where g is a logic gate involved
in this paper except G1 UGy (i.e. g € (GIUGa UGs)), then f(zg, - ,z,—1) is not balanced.

Proof. Suppose that f(zo, - ,2z,—1) is a balanced Boolean function obtained by logic
gate g in (Gl U Ga U Gs).

Case 1. The gate g is in Gl. Obviously, the Boolean function expression of gate g
would be g(z;, ;) = x; + x; or g(z;,z;) = x; + x; + 1. Thus, deg(f) = deg(g) = 1 which
contradicts the algebraic degree of f being greater than or equal to 2.

Case 2. The gate g is not in Gl. According to the expressions of the logic gates given
in Table 4, we have Boolean function expressions of gate g2 in Go and gate ¢* in G5 as
shown in Equation 6 and 7 respectively.

g2(xi,xj) :xi.’bj+)\1(l‘i+xj)+)\o7 (6)
g (x, zj, o) = TxjT + N (@iz; + Tz + T2 + T+ 5 + TE) + Ao, (7)

where )¢ and \; are constants with values of 0 or 1 and z;,z;,z; € Fao. Obviously,
g*(xi,x;) is a binary Boolean function about variables z; and z;, and its leading term is
z;xj, i.e. deg(g®(w;, x;)) = 2. According to Lemma 1, g*(x;,z;) is not a balanced Boolean
function. Similarly, g3(x;, xj, xy) is also not a balanced Boolean function. Thus, whether
g =g? or g= g3, g is unbalanced.

Therefore, f(xg,- -+ ,x,—1) with algebraic degree I(I > 2) obtained by logic gate g is

not a balanced Boolean function. O
Property 2. The function f(zg, - ,2Z,—1) is an n-variable balanced Boolean function
with algebraic degree I(I > 2) obtained by the composite use of logic gates go and g1, i.e.
V2t Iy = f(V=A{xg, - ,xn_1}) , where go and g; are logic gates involved in

this paper except G UGy and the output ¢y of gg is an input of gy, if and only if gy is a
nonlinear gate and g; is a linear gate.

Proof. Denote ty and t; as the outputs of gy and g; respectively. There are four cases
below.

Case 1. The gate gg and g1 are both in Gl. Obviously, the Boolean function expression
of gate g would be ¢1(t9) = to + 1 or gi1(to, z;) = to + x; or g1(to,x;) = to +x; + 1. By
the proof of Property 1, we have deg(f) = deg(g1) = deg(tg) = 1 which contradicts the
algebraic degree of f being greater than or equal to 2.

Case 2. The gate go is in Gl and g1 is in GoUGs. It is clear that tg = go(zs, z;) = zi+2;
or tg = go(zi,xj) = x; +2; + 1 and Pr(ty =0) = % Depending on the number of inputs
to g1, there are two subcases.
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Subcase 1. The gate g1 is in Go. According to Equation 6, we have

M+Dzi+X+ X to=1

t1 = ¢%(to, z5) = toxi + M (to + ) + Ao =
! g (0 ) 0 1( 0 ) 0 {Alxi‘i_)\o t() :0

Since the value of ¢y is determined by two input variables, whether there is a dependency
between t; and z;, we have 0 < Pr(z; = u|typ = v) < 1 where u,v € {0,1}. Thus

PT’(tl = 0) :PT'(tO = ].) . P?"(()\l + ].)ZL'Z + )\1 + )\0 = 0)
+ P’I“(to = 0) . P’I“()\la?,' + Ao = O)
1Pr(z; =0t =1)4+% A =0,X=0

_ %F’T(.ﬁz = 1‘t0 = 1) )\1 = 0,)\0 =1 (8)
1Pr(z; =0ty = 0) AM=1,X=0
%+%P7‘(Ilil|t():0) )\1:1,)\0:1

1
#5-
Subcase 2. The gate g1 is in G3. According to Equation 6, we have

t1 = g3(t0,$i,$j) = toxil‘j + /\1(t0$i + tol‘j +zx; + to+x; + a:j) + Ao
_Jtoxi + AM(to+x)+ Ao x = T 9)
)\1 + )\0 xX; 7é Zj.
Thus
P’I"(tl = 0) ZPT(Z‘i = a:j) . Pr(toxi + )\1(t0 + a:i) + Ao = O)
+ P’I“(Q?i =+ a)‘j) - P?“()\l 4+ Ao = 0)

_ %P’I‘(toxi + /\1(to +x;) + X = 0]z; = J)j) + % AM+X=0
%P’I‘(tofﬁi + /\1(150 + l‘z) + )\0 = 0|1‘1 = J?j) )\1 + /\0 7é 0

(10)

Similar to Subcase 1, the value of ¢y is determined by two input variables, thus we can
obtain that 0 < Pr(tox; + Ai(to + i) + Ao = 0|z; = ;) < 1 whether there is a dependency
between tg and z;. Therefore,

Pr(t, = 0) # ~. (11)

| —

By Equation 8 and 11, we have Pr(t; = 0) # % when the gate go is in Gl and ¢; is in
G2 UGs. Since f(xzg, - ,2n) = t1, f is not a balanced Boolean function when the gate go
is in Gl and ¢; is in Go U G3.

Case 3. The gate gy and g1 are both in Go U Gs. Obviously, by the proof of Property
1, Pr(to =0) # % Depending on the number of inputs to g;, there are two subcases.

Subcase 1. The gate g7 is in Go. According to Equation 6, we have

(/\1+1)t0+)\1+>\0 ;=1

t1 = 275,.131‘ =tox; + M (to +x;) + Ao =
! g (O ) 0 1( 0 ) 0 {Alt(]-l-)\o xX; :0

Note that, whether there is a dependency between to and x;, we have 0 < Pr(ty = u|z; =
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v) < 1 where u,v € 0,1. Thus,
P’I”(tl :O) :Pr(xzzl)Pr(()\1+1)t0+)\1+/\020)
—I—P’I“(Z‘i = 0) . P’I“(/\lto + Ao = 0)
IPT'(t() :0\301 = 1)+% AM=0,2=0

2

_ %P?‘(to =1lz; =1) AM=0, =1 (12)
%P?“(to = 0‘1‘1 = 0) )\1 = 1,)\0 =0
L 4iPr(tg=1z;=0) M =1X=1

1
73
Subcase 2. The gate g1 is in G3. According to Equation 7, we have
t, = g3(t07xi7xj) = toxix; + Al(toxi +tor; +xixy; +to + x5 + (Ej) + Ao
~Jtomi Mo+ 3) + N =25 (13)
A1+ Ao T; # Tj.
Thus,
P'I’(tl = 0) :Pr(xl = (Ej) . P’I"(toifi + )\1(t0 + {EZ) + )\0 = 0)
+PT’(£ZE1 #IJ)PT(Al%*)\O:O)

_ %Pr(toxl+/\1(to+l’z)+)\o :O|ZL'Z :1'])4*% )\1+)\0 :0
%P’r‘(toxi-l-)\l(to-i-l'i)—l—)\o :0|{L‘1 :{,Cj) A1+ Ao 750

(14)

About the value of Pr(toz; + A1(to + ;) + Ao = 0|x; = ), we can obtain that it is greater
than 0 and less than 1 by the former case. Therefore,

Pr(n=0)# 3. (15)

By Equation 8 and 15, we have Pr(t; = 0) # & when the gate go and g; are both in
G2 U Gs. Since f(xg,- -+ ,x,) = t1, f is not a balanced Boolean function when the gate go
and g1 are both in G U G3.

Case 4. The gate gg is in Go U Gs and g1 is in Gl. There does exist some gg and ¢,
such that f is balanced, e.g.,

to = go(zs, xj) = wixj, t1 = g1(to, zx) = to + i, (16)
flxo, -+ yxn_1) = t1 = g1(to, xx) = to + T = ziz; + Tk,
where 0 < 4,5,k <n,i# j,i # k and j # k. Obviously,
1

Pr(f=0)=Pr(t1 =0) = Pr(zx = 0)-Pr(z;z; = 0)+Pr(z = 0)-(1-Pr(z;z; =0)) = 3

Thus, f is indeed a balanced Boolean function.
In sum, f is balanced Boolean function if and only if g¢ is a nonlinear gate and ¢, is a
linear gate. O

From the above properties, according to the cost of logic gates in Table 5, it takes at
least 3 GE to achieve a balanced Boolean function with an algebraic degree of at least 2.
We define "continuous composite use of logic gates" as the case that the output of the
previous gate is the input of the next gate like a chain. Then we propose the following

property.
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Property 3. Let f(zg, - ,Zn—1) is an n-variable Boolean function with algebraic degree

I(I > 2) obtained by g and gy, i.e. f:V EN LN tmi1 = f(V ={xo, -+ ,xn_1}), where
g is some continuous composite use of logic gates except G1 U Gy, g1 is a nonlinear logic
gate with 2 inputs, and the output ¢, of g is an input of g;. If ¢,, is the first balanced
output among the outputs of the logic gates used in ¢, then f is not a balanced Boolean
function.

Proof. Since t,, reaches an balanced state, we have Pr(t,, =0) = % Since the gate ¢g; is
in Gs, according to Equation 6, we have

M4+Dts+A1+ X2 tn=1

t = 0% (tm,ts) = tmts + M (tm +ts) + Ao =
m+1 g(m s) mls 1(m ) 0 {Alts‘f')\o =0

where ¢4 is one of the outputs of the logic gates used in g or directly belongs to V. And

Pr(tme1 =0) =Pr(ty, =1)- Pr((A 4+ L)ts + A1 + Ao =0)
+ Pr(ty, =0) - Pr(Aits + Ao =0)
Pr(ts =0t =1)+% A =0,A=0
LPr(ts =1ty =1) A =0 =1
LPr(ts = 0[t,, =0) M =1,2=0
T4+ iPr(ts=1t,m=0) A =1X=1

When ¢, is one of the outputs of the logic gates used in g, Pr(ts = 0) # % Since g is
some continuous composite use of logic gates, t,, can be regarded as the output of ¢ as an
input through the continuous composite use of logic gates. On the other hand,

Pr(ty, =u) = Pr(ts = 0,t,, = u) + Pr(ts = 1,t,,, = u)

= Pr(tm = ul|ts = 0)Pr(ts = 0) + Pr(tym, = ults = 1)Pr(ts; =1) = -,u =0, 1.
(18)
If Pr(ts = 0,tm, = u) = 0, then Pr(t,, =u) = Pr(t, = ul|ts = 1)Pr(ts = 1) < Pr(ts =
1) < i, which is in contradiction with Pr(t, = 0) = 3. Thus, Pr(t, = 0,t,, = u) # 0.
Similarly, Pr(ts = 1,t,, = u) # 0. Therefore, 0 < Pr(ts = 0,t, = u) < 1 and
0 < Pr(ts; = 1,tym = u) < 1. Furthermore, 0 < Pr(t; = ult,, = v) < 1 where u,v € 0, 1.
According to Equation 17, we have Pr(t,,4+1) # % Then we have f is not a balanced
function.
When t, € V, then the case become Case 2. in Property 2 and we have f is not a
balanced function.

In sum, f is not balanced. O

N

Application on 4-bit S-boxes. From [LP07], it is known that the optimal 4-bit
S-boxes can be derived from 16 representative S-boxes of CCZ equivalence through affine
equivalence. By applying affine transformations to the coordinate functions of these 16
optimal S-boxes, it is observed that each coordinate function of an optimal 4-bit S-box
must contain quadratic terms. Therefore, it is evident that a structure where g1, i.e.

f:vie, tme1 = f(V = {zo, - ,2n—1}) ( g1 is a linear component) cannot
construct a second balanced Boolean function where t,, is the first balanced Boolean
function with algebraic degree I(I > 2). This is because either ¢,,+; lacks quadratic terms
or ty, + tmt1 lacks quadratic terms. Property 1 and 3 shows that the second balanced
Boolean function cannot be obtained by adding only one nonlinear gate with 2 inputs.
What’s more, we found that only adding one nonlinear gate with 3 inputs or only adding
two nonlinear gates (with 2 or 3 inputs) cannot reach the second balanced Boolean function
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when the cost of g does not exceed 3 GE. And if only using nonlinear gates, two balanced
Boolean functions cannot be obtained under the combined gates with a cost not exceeding
5 GE.

Thus, the optimal way to construct a second coordinate function is that if and only if
go is a nonlinear gate and g¢; is a linear gate in f: V Iyt L b1 EEN tmye = f(V =
{zo,- -+ ,x3}) where Pr(t,, = 0) = % and the cost of g is 3 GE. From the perspective
of area optimization, constructing two balanced Boolean functions requires at least 2
nonlinear gates and 2 linear gates. On this basis, constructing the other two coordinate
functions requires at least 2 additional nonlinear gates. Using this combination of gates
as a constraint in the model described in Section 4, we found that no such 4-bit S-box
exists. Therefore, constructing a 4-bit S-box requires at least one more gate or replacing
one of the nonlinear gates with a linear gate. The minimum area for 4 nonlinear gates
and 2 linear gates was found to be 8 GE. Adding at least one more gate or replace one
nonlinear gate results in a total minimum area of 9 GE. Hence, we roughly tightened the
lower bound for the minimum area construct a 4-bit S-box to be 9 GE if only 2-input and
3-input logic gates are used.

4 Improved Automatic Search Model Considering Multi-
ple Cryptographic Properties and Implementation Cost
Simultaneously

Using the Prim-Like greedy algorithm, we explore the upper bound of the minimum area
for an S-box under specific cryptographic properties, as well as study the lower bound of
the area for bijective S-boxes in Section 3. In order to further determine the minimum area
for an S-box with given cryptographic properties, we first propose an improved automatic
search method to construct S-boxes under certain cryptographic properties in Section 4.1.
Then we propose an improved optimization method for S-boxes in Section 4.2. Finally in
Section 4.3, we combine these two models above which can take multiple cryptographic
properties and area, gate depth into consideration simultaneously.

4.1 Improved Automatic Search Method to Construct S-boxes under
Certain Cryptographic Properties

4.1.1 Original model in [LMC*22]

In [LMCT'22], Lu et al. constructed the STP-based automatic S-box search by first
determining the constraints of the S-boxes cryptographic properties in the CVC language
format, including differential uniform U(.S), linearty £(5), frequency of U(S) and L(.S),
bijectivity, fix point and so on. According to Definition 1 ~ 4, U(S) and £(S) in this
model are constrained as follows:

55(0[, 6)
As(a,B) — 2"

To obtain dg(a, 8) and As(a, 3), we need to traverse the constraints across the entire
DDT and LAT under (a, §):

Uu(s),

<
< £(9).

L if S(x®a)=S(a)®p,
0, others.
1, ifa-z®dp-Sx)=0,
0, others.

IsTrueppr(a, 8,x) = {

IsTruepar (e, 8, 2) = {
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Then, ds(a, 8) and Ag(a, B) are constructed as follows:

271

6S(avﬁ) = Z ISTI'HGDDT(047671'),
=0
27 -1

As(a, B) = Z IsTruepar(a, 8, ).

z=0

For the constraints of other cryptographic properties of an S-box, please refer to [LMCT22].

4.1.2 Improved model by considering algebraic degree

Lu et al’s method can consider many cryptographic properties, but unfortunately, it fails
to cover the algebraic degree of an S-box which is also a significant cryptographic property.
An S-box’s algebraic degree can be get from the ANF expression of the S-box’s coordinate
functions. However, it is difficult to construct ANF in the SAT model. In this part, we
give a method to add the constraints about the algebraic degree into the SAT model via
SoP expression of Boolean function.

The definition of SoP expression for Boolean function is defined as follows:

Definition 11 (SoP expression for Boolean function [Sas12]). Assume f(z): Fy — Fy is
a Boolean function, then its SoP expression is:

fl@) =\ (f(u) - gu(2)), (19)

where g, (z) is the Minterm Boolean function defined as follows:

nt lLr=u
gu(%“):g(ﬂfj+uj+1)= {ny#u’ (20)

where © = (g, 21, ..., Zn—1) and u = (ug, U1, ..., Up_1)-

From Definition 11, it is easy to find that there are 2™ different Minterm Boolean
function g, (x) according to the value of u. Each Minterm g¢,(z) = 1 only when z = w.
This means that only one of 2" items f(u) - g,(x) in Equation (19) will be 1 for given
x, while other items are all zero. As a result, the SoP expression of f(x) can be directly

transformed as
@) =3 f(w) - gula): (21)

Actually, the SoP expression cannot be directly used to constrain the algebraic degree,
we need to convert the SoP expression in Equation (21) into the ANF expression. It is
achieved by combining Definition 11 and Equations (20) (21) as follows:

fl) ="\ fu)-gulx)

u€Fy
n—1
=2 ) TG +u+1).
u€ly j=0
= ST () S (o) (1) (14 i) )
u€Fy veFD
= 3 () X atapat )
u€Fy vEFD

= (Y flw)-afuy) o zua -+ (D flu)-af) as+ (Y f(u)-af),

u€Fy u€lFy u€Fy



Chenhao Jia, Tingting Cui, Qing Ling, Yan He, Kai Hu, Yu Sun and Meiqin Wang 609

where a = (14 o)™ - (1 +ug)" -+ (1 +ul" 7).

Until now, all coefficients in ANF of f( ), which are Y f(u) - adn_q, > f(u) -
n_q, <o+, . f(u) - af, can be expressed into SAT model since all o (v € F%) can
be pre-computed. If we require the algebraic degree of f(x) at least d, then at least one
coefficient {wt(v) >d | > f(u)-a¥} is not zero. In other word,

Zwt(v)>d(f(u) U)
Zwt(v):d(f(u) )
Actually an S-box: F% — F can be regarded as a vectorial Boolean function (fo(x), - -,

fn—1(x)). To set the algebraic degree of an S-box as d is to set the algebraic degree of at
least one coorinate function as d.

(1) (22)

Algorithm 2: Improved automatic search model for n-bit S-boxes under certain
cryptographic properties.
Input: U(S), L(S), deg(S) = d, pre-computed «[u][v]
Output: CVC-based search model.
1 for in < 0 to 2" — 1 do
2 for out < 0 to 2" — 1 do
3 for v < 0 to 2" — 1 do
4 ASSERT(IF yi®"@...@y'®" = yv@..-y? | @ out THEN
IsTrueppr(in,out,v) = 1 ELSE IsTrueppr(in, out,v) = 0);
5 ASSERT(IF in-v=out-yjQ..-Qy>_| THEN
IsTruep a7 (in, out,v) = 1 ELSE IsTruep a7 (in, out,v) = 0);

ASSERT (6glin][out] = 22 . IbTrueDDT(m out,v));

ASSERT (Aglin][out] = Z Y IsTruep a7 (in, out, v));
ASSERT (6s[in][out] < L{(S))
ASSERT(2"! — L(S) < Aglin][out] < 2"~1 + £(S));

© 0 N o

10 for X <~ 0to 2" —1do

11 r0@Qx1@Q- .- Qx,_1 = X;

12 ASSERT(X # yf@yX@-..@yX |); // without fixed point

13 for Z+— X+1to2"—-1do

14 L ASSERT(yf@-...@yX | #yf@-..-@yZ ,); //bijective S-box

15 // Constrain the algebraic degree of an S-box to be d.
16 ASSERT(L725 Y0 5" Cuswy=a(¥i - alullv]) > 1);

u=0

17 forz(—Oton—ldo
18 | ASSERT(S5_5" S sy>al - afullv]) = 0);

For example, assume the algebraic degree of one coordinate function f of a 4-bit
S-box to be 3. In the ANF of f(z), we only need to focus on the coefficients of the
cubic monomials, i.e., the coefficients of xgxi1x2, ToT1Z3, ToT2T3, T1x2x3, Which are
ZueF; flu)aty, Zung flu)ats, Euemg f(u)ady and Zung f(u)a¥ respectively. Since
for an n-bit Boolean function, each ANF expression of g,(z) can be computed. By
expanding all g, (z), we obtain all of a¥y, oYy, al;, a¥, which are shown in Table 8.

Finally, we constrain the algebraic degree of one coordinate function of an S-box to be
3, that is:

Y faty+ Y flwais+ Y fluaf; + Y flu)ay = 1. (23)

u€Fy u€Fy u€lFy u€Fy
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Table 8: Coefficient of each cubic monomial in the ANF expansion of g, (z) for a 4-bit
Boolean function.

wofgu(x) [0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15
al, 1 010101010 1 0 1 0 1 0
ol 1100110011 0 0 1 1 0 0
ol 1111000011 1 1 0 0 0 0
al 11111111000 0 0 0 0 0

Combining the new findings on algebraic degree and original model in [LMC™*22], we
propose an improved automatic search model based on SAT, which is shown in Algorithm
2.

4.2 Improved Optimization Implementation Method for Given S-boxes
4.2.1 Original model in [LWH21]

The model proposed in [LWHT21], built upon the Gate Count Complexity model from
[Stol6], optimizes the area cost of an S-box by assigning a weight to each gate corresponding
to its area. This approach enables to calculate the minimum area for a given S-box and
support 4-input gates. Assume there are k£ gates in total, the expressions for four possible
inputs of the i-th (i =0,1,...,k — 1) gate can be written as:

qai :a6‘$0+"'+a%_1'In—lJFail't0+"'+a%+i,1‘ti—1,
q4i+1 :b%)'x0+"'+b271'xn71+b21't()+"'+b2+i—1 -ti,h (24)
Q4Z+2 :C%)'$O+"'+C%71'-Tnfl‘i‘czl'tO"‘""‘l‘C}n_A,_i_l'tifla

Qriys =di ot di_ap A tg i, i

where z; (i =0,1,...,n— 1) denotes the i-th input bit of S-box, and ¢; (i =0,1,...,k—1)
denotes the output bit of the i-th gate.

Each input bit of the i-th gate comes either from one input bit of S-box or one output
bit from any preceding gate. Thus, in each expression for q4;, G4i+1, G4i+2, Gai+3, only one
coefficient is 1, other coefficients are all 0, i.e. that is

Yt el =1,

n+i—1 14

! b =1,
2= b (25)
Zj:() C;— :1a

n+i—1 34
Sty hdi =1

Within the search model, we can collect constraints between the inputs and output of
every logic gate under {Gy, G2, G3, G4} using the following formula:

t; :ﬂé “q4i * Qai41 " Gai42 * Gai4+3 + 58 Q45 * Gai+1 ° Gait2 T+ ﬂé “q4i * Qai41 " Gai43+
ﬁé “ai42 * Qai43 T 58 *Qai42 + 58 “Qaivs + B qui - Qait1 - Qaivat
B+ qui - Qaitr + B - Qai - Qaivz + B - Qi1 - Quive + B - i + By - Qa1+ (26)
B5 - quirs + B5 - qui + B% - Qa1 + B5 - Qaive + B - Qi - Qi+
BE - qui + BE - quivr + BE - qui + B,
where the coefficients (3§, 88, . . ., 52) determine the type of the i-th gate and its area. The
corresponding relationship between (3§, 83, ..., %) and logic gates is shown in Table 9.

In the end, each of n output bits y; (¢ =0,1,...,n — 1) of S-box also comes either from
one input bit of S-box or one output bit from any preceding gate. Thus, the expression for
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Table 9: Corresponding relationship between the values of (3}, 81, ..., 3%) and logic gates
in [LWHT21].

Logic Gates | 35 _BL_Ps P By B. B, PBi | Cost/GE
NOT 0o 0 0 O o0 o0 1 1 0.67
XOR o o o0 o o 1 o0 O 3.00
XNOR 0o 0 0 O o0 1 o0 1 3.00
NOT 0 0 0 0 0 1 1 1 0.67
AND 0o 0 0 O 1 0 0 O 1.33
NAND o 0 0 O 1 0 0 1 1.00
OR 0 0o 0 o0 1 1 0 0 1.33
NOR o 0 0 o0 1 1 0 1 1.00
AND3 0o 1 0 O O O 0 O 1.33
NAND3 o 1 0 O O 0 0 1 1.67
OR3 o 1 1 0 O 0 0 O 1.33
NOR3 o 1 1 0 0 0 0 1 1.67
XOR3 o 0 0 1 O O 0 O 4.67
XNOR3 0o 0 0 1 0 0 0 1 4.67
MAOI1 1 0 0 0 0O 0 o0 O 2.67
MOAI1 1 0o o o o0 o0 o0 1 2.00
each y; can be written as:
n :ag’0‘$0+"'+af£1'l’n—1+aﬁ’0't0+"'+ai£k_1’tk—lv
n _ alg’l cxo+ o+ aﬁfl X1+ aicl,l tog e+ aﬁf-il-k—l 1,
(27)
Yno1 = alg’nfl cxo 4+ aﬁ’ffl CTpo1 + aﬁ’”*l cto+ -+ aiflg—ll 1.

Similar to add constraints on coefficients as that in Equation (25), here we can describe
the constraints on output bits as well.

Additionally, the constraints on area should be added into the model. since all logic
gates are multiples of 0.33 GE, the proportion of area for different logical gates is used to
measure the area in our model for the sake of simplicity and convenience. For example,
the area of AND in the model is set to be 4, since its actual area is 4 times of 0.33GE. By
summing up the area of all k logic gates and ensuring it is no more than the target area
Costiarger, we can find the optimized implementation for a given S-box under such target
area. Furthermore, by gradually reducing the target area, we can find the minimum-area
implementation for a given S-box. The corresponding constraints in the model are as
follows.

ASSERT( Cost = BVPLUS(g[8@8%@...@pY), ..., g[8k t@pr—ta. .apk~1)));
ASSERT( BVLE( Cost,Costiarget) );

where ¢([3@3i@...Q@}3%)) is a pre-computed array that stores the area of each logic gate
according to the value of (3§, 8%,...,3%).

4.2.2 Improved model on reducing the search space

Most standard cell libraries include 2-input gates in G and 3-input gates in Gs. The logical
representation of these gates are shown in Table 3. Via observing the logic gates, we find
that the output of each 2-input/3-input gates cannot be affected by the order of inputs
which is summarized in Observation 1.



612 How Small Can S-boxes Be?

Observation 1. For any n-input gate g € G, (n =2,3) and g(zo,...,Tn-1): Fy — F3,
we have

g(xoy ...y xn_1) = g(P(xo,. .., Tn-1)),

where P(xo,...,xn—1) denotes any simple permutation on Fy.

With Observation 1, it is able to add constraints on the order of inputs for each
2-input/3-input logic gate in the model as follows:

aplladll e i > BB [y
BB Wi > cblletl] b

By such constraints, the search space can be reduced at least 50% on inputs of every gate.
Since MAOI1 and MOAI1 gates in G4 do not comply with Observation 1, these two gates
must be restricted in the SAT model when applying this acceleration technique.

Besides that, since two S-boxes within the same bit permutation equivalent class share
the same cryptographic properties and implementation area, it is no need to distinguish
the order of output bits when searching a new S-box. Similar to shrink the search space on
each logic gate, we can add constraints on the order of (yo,y1,...,Yn—1) to further reduce
the search space just as follows :

k,0
Ul ||an+k 1 > ao ||a || ||an+k 1

k1
Ul ||an+k 1 > ao ||a || ||a’n+k 1

k,n—1

kn—2 kn—2
ag” a7 'Ha’n+k71'

k,n—2 knm—1, kn—1
agyy =, > aon [lay™ |-
By adding these n — 1 constraints, we need only search through one of the n! possible
output orders. As a result, the search space is reduced to ! of the original search space.

4.2.3 Improved model by constraining on gate depth complexity

The automatic model in [LWH™21] can only be used to optimize the area of a given S-box,
but it cannot be used to optimize the gate depth of a given S-box. In this part, we propose
a technique to take the gate depth into our model.

To describe the gate depth in the model, we set new variables D; in the model. Firstly,
we set D;,0 < i < n to represent the depth of the i-th input bit position of S-box. Of
course, we have

Doy = Dy

-=D,_1=0.

Secondly, we set D;,+;,0 < i to represent the depth of the i-th gate used in the model.
According to Equation (24) and (25), each input bit of the i-th gate comes from one
input bit of S-box or one output bit of preceding gates. That means the depth of the i-th
gate increases by 1 compared to the largest depth of related preceding gates or input bit
positions.

For 2-input gates, we have

0 < gi@pi@..@pBi < 0600001101,
n+z 1 i n+i— 1 (28)
Dy = maX{Z a; - Djv Zg 0 - D }+ L.
For 3-input gates, we have
0000001101 < Bi@pi@...@3% < 0601100001,
n+z 1 i n+z 144 n+z 1 z (29)
Dy = max{} ;_ Dy, Y50y b Dy, 305 -D;} +1.
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For 4-input gates, we have

0610000000 < Bi@Bi@...Q4%,
Dn-‘,—z _ maX{Zn-H 1 1- D]7 Zn—i—z 1 bz D], Zn-{—z 1 l Dw Zn+z 1 dz Dj} + 1.
(30)
These three cases above could be involved into the model with if statement.
Combining the techniques on shrink of the search space in Section 4.2.2 and description
of gate depth in Section 4.2.3, as well as the original model in [LMC™22], we propose an
improved automatic optimization model based on SAT, which is shown in Algorithm 3.
This algorithm can optimize the area and gate depth of a given S-box, when the number
of required gates k and implementation area Costiqrqer are fixed. At the very beginning,
we need to pre-store all ordered combination of gates satisfying £ gates and Costiarget
area into the array P[] and pre-store the area of each logic gate according to the value of
Bs@BIQ...@}BL in g[]. By running codes corresponding to Algorithm 3, we can get a CVC
file. With the help of solver such as STP, an optimized implementation result could be
solved out, or no solution. As we indeed do not know how many gates and what is the
minimum area for a given S-box, we have to first try all possible cases of area from more
to less, then try all possible cases of #gates under each fixed area from more to less.

4.3 Improved Automatic Method to Search New S-boxes

In this part, thanks to the improved automatic search method in Section 4.1 and improved
optimization implementation method in Section 4.2, we propose an automatic method to
search new S-boxes which can consider the cryptographic properties, implementation area
and gate depth simultaneously.

In detail, by combining Algorithm 2 and Algorithm 3, it is able to search optimization
implementation when the number of gates and total area are given. As we indeed do not
know how many gates and what is the required area to construct minimum-area S-boxes,
we have to first try all possible cases of area from more to less, then try all possible cases
of #gates under each fixed area from more to less. The workload of traversal is enormous.
To solve this problem, we can use the work in Section 3 to obtain the tight upper bound
and lower bound of minimum area to construct S-boxes at the very beginning. At last, by
utilizing the constraints on gate depth proposed in Section 4.2.3, it is able to optimize the
gate depth under the minimum area.

5 Results

5.1 Results on the Minimum Area Cost of 4-bit S-boxes

In this section, we apply the tight bounds on minimum area of S-boxes in Section 3 and
the automatic search method in Section 4 to seek the minimum area of 4-bit S-boxes under
three different basis: {G1,G2}, {G1,G2,G3}, and {G1,G2,G3,G4}. In detail, three types of
S-boxes are taken into consideration, including the optimal 4-bit S-boxes, the optimal
4-bit S-boxes with algebraic degree of 3 for all coordinate functions, as well as the general
4-bit S-boxes with algebraic degree of at least 2 for all coordinate functions. Generally,
the algebraic degree of every coordinate function of an S-box should not be 1, or it will
lead to nonzero linear approximation pattern with probability 1. Thus, we do not care the
S-boxes with algebraic degree of 1 for some coordinate functions.

Minimum area cost of the optimal 4-bit S-boxes. Firstly, we seek the minimum
area of optimal 4-bit S-boxes under UMC 180nm library. As a result, we find out that
the minimum area of optimal 4-bit S-boxes under the basis {G1,G2} and {G1, G2, G5} is
12 GE with fixed point as well as 12.33 GE without fixed point while the minimum gate
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Algorithm 3: Improved optimization model for a given S-box under given number
of gates and area.

Input: an n-bit S-box, number of gates k, target area cost Costiarget,
pre-computed array g[], pre-computed array P|].
Output: A CVC-based model.

1 for X «+0to2"—1do

2 | zfazfa@...azX ;| = X;

3 fori<+ 0tok—1do

s ASSERT(qf = Y17 a%-a¥ + YT dl,, - tY);

5 ASSERT (¢, = 25— Olb; T +E§ Bbim £5);

6 ASSERT(q = Y12y ¢ aX + X2t ch s - £5);

7 ASSERT(qf 5 = Y0—g d} - af + 302 édiw ok

8 B ASSERT(t;( = B0 a4 A Qg Qs T + B7); // by Equation (26)

9 fori< 0ton—1do

10 | | ASSERT(yY = Y lal . aX 4 S i X)),

11 for i<+ 0 tok—1do
12 | ASSERT(X 17 ai = 1);
13 | ASSERT( ”“ 1b1=1),
14 | ASSERT( "“ Yl =1);
15 | ASSERT( "“ 1dl—1)

16 forz(—O ton—ldo
17 | ASSERT(Y) ) 'ab’ =1);

Y

)

18 forz <+ 0 tok — 1 do

19 LASSERT(af)Ha’iH lag iy > BplIb3I1 - - 1165 4i1)5

20 | ASSERT(b||bi]|---[|b% ;> cillci -+ |lei ;1)

21 forz<+-0ton — 2 do

2 | ASSERT(ag"||ay"|| - llayi—y > ag™ a7 |-+ llaniily)s

23 fort<+-0ton —1do

24 | ASSERT(D; = 0);

25 fort <+ 0tok—1do

26 ASSERT(D,H_i =1+

max{zn—i-z 1 i Dg, Zn—i—z 1 bl Dg, Zn—i—z 1 z D_], En—i—z 1 d7' Dj});

28 forz(—Otok—ldo

2 Pli] = ,33@,31'@ ces @ﬂf, // [,Bé@ﬂi@ e @,3;] records the types of

gates from the 0-th gate to the (k — 1)-th gate.

27

©

so ASSERT( Cost =Y\~ g|fapia ... @pi));
31 ASSERT( Cost = Costiarget);
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Figure 2: Implementation circuit of an optimal 4-bit S-box with minimum area of 12 GE
and gate depth of 4 under the basis {G1, G2}
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Figure 3: Implementation of the optimal 4-bit S-box whose minimum area is 11 GE and
gate depth is 3 under the basis {Gy, G, G3, G4}
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depth under 12 GE is 4. By analyzing, all these optimal S-boxes with minimum area need
at least 8 gates, including 4 NAND/NOR gates and 4 XNOR gates. Totally, we find out
over 20000 optimal S-boxes with 12 GE, which can be further divided into some classes
according to bit permutation equivalence. An instance of the optimal S-boxes with 12 GE
is shown as follows and its implementation circuit is shown in Figure 2.

S(z) = {0x0, Oxb, 0xf, 0x5, 0x3, Oxa, Oxe, 0x6, 0x9, 0x2, Oxd, 0x7, Oxc, 0x4, 0x8, 0x1}

Secondly, we seek the minimum area of optimal 4-bit S-boxes under the basis {G1, G2, G3,
G4}. By using the Prim-like greedy algorithm in Section 3.1, we find a tight upper bound
on the minimum area of optimal S-boxes as 11 GE. After that, we use the automatic
search model in Section 4.3 to search optimal S-boxes under the constraint of area no
more than 11 GE. In the end, we find that the minimum area of optimal 4-bit S-boxes is
exactly 11 GE including 6 gates while the minimum depth under the S-box of 11 GE is 3.
Surprisingly, the founded S-box has no fixed point. An instance of the optimal S-boxes
with 11 GE is shown as follows and its implementation circuit is shown in Figure 3.

S(z) = {0x7, 0x2, 0xd, Oxb, 0x6, Oxa, Oxc, 0x3, 0x1, 0x0, 0x9, 0x8, 0x4, Oxe, Oxf, 0x5}

Minimum area cost of the optimal 4-bit S-boxes with algebraic degree of 3
for all coordinate functions. According to Definition 8, the algebraic degree of optimal
4-bit S-boxes is exactly 3. It means the algebraic degree of at least one coordinate function
for a given S-box should be 3. In other words, the algebraic degree of some coordinate
functions can be 2. In this part, we care the optimal 4-bit S-boxes with algebraic degree of
3 for all coordinate functions. Intuitively, this type of S-boxes has better cryptographic
properties, but needs more area cost. We search the minimum area for this type of S-boxes
under the basis {G1,G2} and {G, G2, G3}, respectively. As a result, we find out that the
minimum area of such type of S-boxes is 14 GE with fixed point as well as 14.33 GE without
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Figure 4: Implementation circuit of an optimal 4-bit S-box with algebraic degree of 3 for
all coordinate functions under the basis {G1,G2}. (Its area is 14 GE and gate depth is 8.)
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Figure 5: Implementation circuit of a general 4-bit S-box with minimum area of 9 GE
and gate depth of 3 under the basis {Gy, Ga, G3,G4}.

fixed point while the minimum gate depth under 14 GE or 14.33 GE is 8. An example of
the optimal 4-bit S-box with 14 GE is shown as follows, while its implementation circuit is
shown in Figure 4.

S(x) = {0x1, 0x2, Oxa, 0x7, Oxc, 0x5, 0x8, 0x0, 0xf, Oxe, 0x6, 0x9, 0xd, 0x4, Oxb, 0x3}

Unfortunately, it is unable to determine the minimum area of the optimal S-boxes with
algebraic degree of 3 for all coordinate functions under the basis {G1, Ga, G3, G4}, because
the search space is too large to solve out in time.

Minimum area cost of the general S-boxes with algebraic degree of at least
2 for all coordinate functions. In this part, we expand the search scope to general
S-boxes with algebraic degree of at least 2 for all coordinate functions, i.e., U(S) < 16
and £(S) < 8. It means no obvious weaknesses on differential uniformity and linearity.
Intuitively, this type of S-boxes has worse cryptographic properties, intuitively one might
assume that they require less area cost than the optimal 4-bit S-boxes. As a result, we
find out that the minimum area of this type of S-boxes is also 12 GE with fixed point
and 12.33 GE without fixed point under the basis {G;,G2} and {G1, G2, G3}, which are
the same as the minimum area of optimal 4-bit S-boxes. Besides, when 4-input gates are
involved, we find out the minimum area is 9 GE, which is shown in Figure 5.

5.2 Improved Optimized Implementation on KECCAK and SKINNY-
128’s S-boxes

In this part, we propose the improved optimized implementation on 5-bit S-box used in
KECCAK cipher and 8-bit S-box used in SKINNY cipher by using the improved automatic
optimization method in Section 4.2. The two S-boxes are provided in Appendix A.

Until now, the best previous optimized implementation of KECCAK’s S-box was given
by Lu et al. in [LWH'21]. It needs 17.66 GE. In this paper, we find out the minimum
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Figure 6: Optimized implementation circuit of KECCAK’s S-box with minimum area of
17 GE.

area cost of KECCAK’s S-box is exactly 17 GE in terms of the theoretical GE of the UMC
180nm library. Figure 6 shows the optimal implementation circuit of KECCAK’s S-box
with minimum area of 17 GE.

By using our improved optimization method, we propose the optimized implementation
of SKINNY-128’s S-box for the first time. It needs 26.67 GE, which is smaller than
29.33 GE calculated according to the circuit in its design document. Figure 7 shows the
optimized implementation circuit of SKINNY’s S-box with area of 26.67 GE.

Remark. There are mainly four methods to optimize the implementation area of a given
S-box or search new S-box with smaller area, including Lighter in [JPST17], Stoffelen’s
method in [Stol6], Lu et al’s method in [LWH"21] and our method in this paper. The
first three methods can only be used to optimize the area of a given S-box, they cannot be
used to find new S-boxes with small area. In detail, Lighter and Stoffelen’s method can
only optimize the S-boxes with size of no more than 4 bits, while Lu et al’s method can
roughly optimize 5-bit S-box such as Keccak’s S-box. Our method in this paper cannot
only be used to search new S-boxes with small area, but also can be used to optimize large
S-boxes, even 8-bit ones. Because of the acceleration techniques in Section 4.2, the search
space is significantly reduced so that our method can achieve a more accurate optimization
for large S-boxes. Thus, we search the optimization implementation of KECCAK’s S-box
better than Lu et al’s result, while propose the first optimized implementation result for
SKINNY-128’s S-box. Since the search complexity increases as the number of logic gates
grows, our method has been limited to optimize the lightweight large S-boxes. Besides
KECCAK’s and SKINNY-128’s S-boxes, we also optimize other lightweight S-boxes such
as the one used in Ascon cipher, but no better results are found.

5.3 Discussion

Extension to different cell libraries. Though the main results of this paper are
obtained by using the GE as the standard unit under the UMC 180nm standard cell library
to measure and compare the areas of S-boxes, our tool can be easily generalized to other
libraries. With different technological libraries, we need to re-calculate the unit of GEs
and model the corresponding GE values of different gates. The remaining model keep
unchanged. Indeed, the cost GEs of one S-box might differ under different cell libraries. We
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Figure 7: Optimized implementation circuit of SKINNY-128’s S-box with the area of 26.67
GE.

conduct the experiments under the TSMC 65nm Library. The minimum area of optimal
4-bit S-boxes is 14 GE under the basis {G1,G2} or {G1,G2,G3} , while 13.5 GE under the
basis {G1,G2,G3,Ga}. The minimum area of optimal 4-bit S-boxes with algebraic degree
of 3 for all coordinate functions is 16.5 GE under the basis {G1, G2} or {G1,G2,G3}. The
minimum area of optimal 4-bit S-boxes with algebraic degree of at least 2 for all coordinate
functions is 14 GE under the basis {G1, G2} or {G1,G2,G3}. Although the minimum area
of an S-box varies under different libraries, the minimum-area S-boxes under the UMC
180nm library are the minimum-area ones under the TSMC 65nm library as well. Note
that there are more minimum-area S-boxes under the TSMC 65nm library, because the
area of both MAOI1 and MOAI1 gates are identical in this library. In a short, under any
certain cell library, our model can solve out the minimum area of 4-bit optimal S-boxes
and obtain their logic circuit implementation.

Extension to other “special gates”. Our method is generic that can represent all
the gates listed by Lighter. Equation (26) provides a general formula for the relationship
between the inputs and outputs of all the logic gates within this model under the UMC
180nm Library. In this formula, (5o, 81, ..., 87) controls the type of logic gate, which is
provided in Table 9. and the cascaded values of §; contains some redundancy. Thus, the
formula for the input-output relationship of logic gates provided in this paper can represent
more gates, such as the ANDN and ORN gates from the TSMC 65nm library, which
can be represented as [y@p;@--- @QB3; = 0600001010 and By@B,@ - - - @QB7 = 0600001011
respectively. What’s more, for more “special gates” which may existed in other cell libraries,
users can introduce new variables 5;(i > 7)to involve them in the model.

Practical synthesis results. We synthesized the current S-boxes used in PICCOLO,
SKINNY, RECTANGLE, LBLOCK and KECCAK under the Nangate 45nm library and
the TSMC 65nm library respectively. Besides, we synthesized the optimal 4-bit S-box
obtained in this paper, as shown in Figure 3. We compared three synthesis methods in
total. The first method is based on the lookup table (LUT), where the mapping table of the
S-box will be automatically optimized into a circuit implementation with a relatively small
area by synthesizers. The second method is using the optimized tool in Lighter [JPST17],
which is currently one of the most effective tools for area-optimized synthesis of small
S-boxes. We use the optimized S-box implementations achieved by [JPST17] to synthesise
again both in TSMC 65nm library and Nangate 45nm library. The third method is based
on the improved automatic search model in this paper. We used the model in Section 4
to obtain an optimized implementation of the S-boxes and, where possible, achieve the
optimal implementation. The resulting logic circuit was synthesized and compared with
the previous two methods. The synthesis results are summarized in Table 10.
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Table 10: The synthesis results of different S-boxes under the Nangate 45nm library and
TSMC 65nm library. The columns of “LUT” contains the synthesis areas of LUTs for
different libraries. The columns of “Light” means the circuits that are synthesized are
from the Light tool. The “Synthesis” and “Theory” in the “This paper” columns mean
the circuits are from our SAT tool, where the area values of “Theory” is calculated by us
according to the numbers of gates in the corresponding libraries.

Sb ‘ Nangate 45nm library TSMC 65nm library
-box
This This
LUT  LIGHTER 15 paper LUT  LIGHTER 1S paper
Synthesis Theory Synthesis ~ Theory
PICCOLO 13.832um?  9.576um?  9.576um? - 35.04um?  26.88um?  24.96um? -
17.33GE 12.00GE 12.00GE 12.00GE 18.25GE 14.00GE 13.00GE  14.00GE
SKINNY-64 14.364um?  9.576um? 9.576um?> - 36.48um? 24.96pum?  24.96um? -
18.00GE 12.00GE 12.00GE 12.00GE 19.00GE 13.00GE 13.00GE  14.00GE
RECTANGLE 18.088um?  15.428um?  14.896m? - 48.00um?  36.48um?  36.00um? -
22.67GE 19.33GE 18.67GE 18.00GE 25.00GE 19.00GE 18.75GE  21.50GE
LBLOCK S 15.162um?  12.768um?  12.768um? - 36.96um> 34.08um?  31.20um? -
0 19.00GE 16.00GE 16.00GE 16.33GE 19.25GE 17.50GE 16.25GE  19.50GE
KECCAK 13.832um? - 13.566m> - 35.04pm? - 35.52um? -
17.33GE - 17.00GE 17.00GE 18.25GE - 18.50GE  19.00GE
SKINNY-128 T4.746m> - 18.088um? - 180.48um? - 50.88m? -
93.67GE - 22.67GE  24.00GE 94.00GE - 26.50GE  28.00GE
Sbox in Fie.3 - - - - 29.761m? - 22.081m? -
-box in Fig.
8 - - - - 15.50GE - 11.50GE  13.50GE

From Table 10, we can see that the synthesis results obtained by Lighter and our
method are both better than those obtained using the LUT-based method. A more detailed
comparison shows that for the current 4-bit S-boxes, the synthesis area obtained by our
method is no larger than the results achieved by Lighter. Moreover, our method yields
better results than Lighter for some cases, such as the result of RECTANGLE’s S-box in
both libraries, and results for the S-boxes of PICCOLO and LBlock Sy under the TSMC
65nm library. Additionally, we synthesized the optimized circuits of the KECCAK’s S-box
and SKINNY-128’s S-box. Notably, the synthesis implementation of the SKINNY-128’s
S-box obtained using our method shows significant improvement compared to the circuit
optimized by LUT-based method. Finally, we synthesized the optimal 4-bit S-box shown
in Figure 3. In the TSMC 65nm library, which provides MOAI1 and MAOI1 gates, we
achieved a circuit implementation area of 11.5 GE. This is smaller than the area of the
existing lightweight optimal 4-bit S-boxes.

6 Conclusion

In this paper, we propose an improved automatic search method to obtain the minimum
area of optimal 4-bit S-boxes under certain technological library. Besides that, we study
the minimum area of other 4-bit S-boxes with differential cryptographic properties, as
well as propose the optimizing implementation of the existing S-boxes such as KECCAK’s
5-bit S-box and SKINNY’s 8-bit S-box with smaller area. To measure and compare the
area cost, we use the gate equivalent (GE) as standard unit under UMC 180 nm library
which has 2/3/4-input logic gates. Of course, our automatic search method is also effective
under other technique libraries and can be used to find better optimizing implementation
of other existing S-boxes. However, this method can only determine the minimum area
of 4-bit S-boxes and cannot optimize the implementation of complex 8-bit S-boxes yet.
In the future work, it may be possible to significantly shrink the search space via some
techniques based on graph theory and cryptographic theory.
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A Appendix

The S-boxes used in KECCAK and SKINNY-128 are shown as follows:

Skeccak (x) ={0x00, 0x09, 0x12, 0xOb, 0x05, 0xOc, 0x16, 0xOf,
0x0a, 0x03, 0x18, 0x01, 0x0d, 0x04, Oxle, 0x07,
0x14, 0x15, 0x06, 0x17, O0x11, 0x10, 0x02, 0x13,
Oxla, Ox1b, 0x08, 0x19, 0x1d, Oxlc, OxOe, Oxif }

Sskinny () = {

0x65,0x4c,0x6a,0x42,0x4b,0x63,0x43,0x6b,0x55,0x75,0xba,0x7a,0x53,0x73,0x5b,0x7Db,
0x35,0x8c,0x3a,0x81,0x89,0x33,0x80,0x3b,0x95,0x25,0x98,0x2a,0x90,0x23,0x99,0x2b,
0xeb,0xcc,0xe8,0xc1,0xc9,0xe0,0xc0,0xe9,0xd5,0xf5,0xd8,0x£f8,0xd0,0xf0,0xd9,0xf9,
0xab,0x1c,0xa8,0x12,0x1b,0xa0,0x13,0xa9,0x05,0xb5,0x0a,0xb8,0x03,0xb0,0x0b,0xb9,
0x32,0x88,0x3c,0x85,0x8d,0x34,0x84,0x3d,0x91,0x22,0x9c,0x2c,0x94,0x24,0x9d,0x2d,
0x62,0x4a,0x6¢c,0x45,0x4d,0x64,0x44,0x6d,0x52,0x72,0x5¢c,0x7c,0x54,0x74,0x5d,0x7d,
Oxal,0x1la,0xac,0x15,0x1d,0xa4,0x14,0xad,0x02,0xb1,0x0c,0xbc,0x04,0xb4,0x0d,0xbd,
Oxel,0xc8,0xec,0xch,0xcd,Oxe4,0xc4,0xed,0xd1,0xf1,0xdc,0xfc,0xd4,0xf4,0xdd,0xfd,
0x36,0x8e,0x38,0x82,0x8b,0x30,0x83,0x39,0x96,0x26,0x9a,0x28,0x93,0x20,0x9b, 0x29,
0x66,0x4e,0x68,0x41,0x49,0x60,0x40,0x69,0x56,0x76,0x58,0x78,0x50,0x70,0x59,0x79,
0xa6,0x1e,0xaa,0x11,0x19,0xa3,0x10,0xab,0x06,0xb6,0x08,0xba,0x00,0xb3,0x09,0xbb,
Oxe6,0xce,0xea,0xc2,0xcb,0xe3,0xc3,0xeb,0xd6,0xf6,0xda,0xfa,0xd3,0xf3,0xdb,0xfb,
0x31,0x8a,0x3e,0x86,0x8f,0x37,0x87,0x3f,0x92,0x21,0x9e,0x2e,0x97,0x27,0x9f ,0x2f,
0x61,0x48,0x6e,0x46,0x4f,0x67,0x47,0x6f,0x51,0x71,0x5e,0x7e,0x57,0x77,0x5f,0x7f,
0xa2,0x18,0xae,0x16,0x1f,0xa7,0x17,0xaf,0x01,0xb2,0x0e,0xbe,0x07,0xb7,0x0f,0xbf,
Oxe2,0xca,0xee,OxcG,Oxcf,Oxe?,Oxc?,Oxef,Oxd2,0xf2,0xde,Oxfe,Oxd?,Oxf?,Oxdf,Oxff}.
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