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Abstract. This work presents an exact and compact formula for the probability of
rotation-xor differentials (RX-differentials) through modular addition, for arbitrary
rotation amounts, which has been a long-standing open problem. The formula comes
with a rigorous proof and is also verified by extensive experiments.
Our formula uncovers error in a recent work from 2022 proposing a formula for
rotation amounts bigger than 1. Surprisingly, it also affects correctness of the more
studied and used formula for the rotation amount equal to 1 (from TOSC 2016).
Specifically, it uncovers rare cases where the assumptions of this formula do not hold.
Correct formula for arbitrary rotations now opens up a larger search space where one
can often find better trails.
For applications, we propose automated mixed integer linear programming (MILP)
modeling techniques for searching optimal RX-trails based on our exact formula.
They are consequently applied to several ARX designs, including Salsa, Alzette and
a small-key variant of Speck, and yield many new RX-differential distinguishers,
some of them based on provably optimal trails. In order to showcase the relevance
of the RX-differential analysis, we also design Malzette, a 12-round Alzette-based
permutation with maliciously chosen constants, which has a practical RX-differential
distinguisher, while standard differential/linear security arguments suggest sufficient
security.
Keywords: Differential cryptanalysis · Rotational cryptanalysis · RX-differentials

1 Introduction
Rotational cryptanalysis is a cryptanalysis technique introduced in 2010 by Khovratovich
and Nikolic [KN10]. It mainly targeted ARX ciphers (based on addition, rotation, and
XOR of n-bit words), where one studies how a pair of plaintexts (x, x ≪ k) evolves
through a block cipher, where ≪ k denotes the cyclic left shift (rotation) by k bits. This
technique was later generalized by Ashur and Liu in 2016 [AL16] to consider Rotational-
XOR differences (RX-differences for short), where now one considers pairs of plaintexts
(x, (x ≪ k) ⊕∆) for some difference ∆. This led to the publication of an attack on a
reduced-round version of the Speck block cipher by Liu et al. [LWRA17] as well as a
rectangle-like attack on reduced-round Simon by Chen et al. [CZX+23]. In this paper, we
focus only on ARX ciphers and do not consider Simon-like (“AndRX”) ciphers. Due to
the nature of RX-differentials, the resulting distinguishers/attacks are usually in either
the weak-key model (i.e. valid only for a subset of keys) or in the related-key model (i.e.
where the attacker can also make encryption queries using a rotationally related key).
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Moreover, to the best of our knowledge, all previous RX-differential cryptanalysis
on ARX ciphers was done using rotation k = 1. The formula given in [AL16] is an
approximation of the probability of RX-differentials through the modular addition for the
case k = 1, the same for the attack on Speck [LWRA17], and finally the automatic tool
CASCADA [Ran22] also handles only this case. One exception would be [KNR10] which
does use a different value for k, however, it only focuses on pure rotational cryptanalysis
and not RX-cryptanalysis (i.e. it considers only differences ∆ = 0).

Finally, the authors of [HXW22] claim to provide an exact formula to compute the
probability of RX-differentials through the modular addition for k > 1. However, the
authors themselves reveal that their formula is not exact, as they provide experimental
results (see Figure A1 of [HXW22]) that show discrepancies with their theoretical formula
(the authors do not comment on this issue). We also performed experiments with their
formula and confirmed these discrepancies. In particular, it leads to claims that some
RX-differentials through modular addition have a nonzero probability, whereas we show
that these are impossible RX-differentials.

Our Contribution
(Validity criteria and probability formula) As our main contribution, we propose both a
simple validity criteria (whether an RX-differential has a zero probability or not) and an
exact closed formula for the probability of RX-differentials through the modular addition
used in ARX ciphers (addition modulo 2n for some n), which has been a long standing
open problem. The following theorem states our main result:

Theorem (Main). Let n, k be integers with 1 ≤ k < n and let α, β, ∆ ∈ Fn
2 . Write α =

αL′ ||αR′ , β = βL′ ||βR′ , ∆ = ∆L′ ||∆R′ ,where αL′ , βL′ , ∆L′ ∈ Fn−k
2 and αR′ , βR′ , ∆R′ ∈ Fk

2 .
Let us write ←−x for the left rotation of x by k bits. If there exists x, y ∈ Fn

2 satisfying

[(←−x ⊕ α) ⊞ (←−y ⊕ β)]⊕←−−−x ⊞ y = ∆ (1)

then, the probability of this equation over all x, y ∈ Fn
2 can be expressed as

Tn−k(αL′ , βL′ , ∆L′ , α0 ⊕ β0 ⊕∆0) × Tk(αR′ , βR′ , ∆R′ , αk ⊕ βk ⊕∆k)

where Tm(α, β, ∆, w) = 2−d−1 + 1α⊕β⊕∆∈{0...0,1...1} ×
(
(−1)w × 2−m−1)

and d is the number of indices i such that (αi, βi, ∆i) are not all equal (i.e. different from
(0,0,0) and (1,1,1)), excluding the MSB (i = m− 1).

For the special case k = 1, our formula uncovers cases where randomness/independence
assumptions of [AL16] do not hold. The correction factor ranges from 1/2 to 3/2, per
one modular addition transition. Several papers have built on the imprecise results, often
claiming optimal trails. Although these cases are rare and might not affect existing trails,
optimality claims need to be revisited. We provide a detailed analysis in Section 3.

We also close a related open problem and provide a way to efficiently compute the
probability of RX-differentials through the modular addition with a constant and the
probability of the standard differential through the modular addition with two different
constants. The latter can be useful more broadly, for example in differential cryptanalysis
of domain separation in symmetric ARX primitives.

(MILP modeling) We show how to model our new formulas with MILP constraints
in order to search for high-probability RX-differential trails. We illustrate it on several
targets, including Salsa, a small-key variant of Speck, and Alzette [BBdS+20a]. We report
many new distinguishers and discuss the results. In particular, we found many cases where
the rotation amount k > 1 leads to better distinguishers than k = 1, contradicting the
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previous belief and highlighting the importance of general RX-differential cryptanalysis.
However, we emphasize that we do not claim that rotations k > 1 are generally preferable
over k = 1: the extra rotation amounts simply open up a bigger search space which may in
principle contain better trails. Our modeling employs several advanced MILP techniques
which can be of general interest.

(Malicious permutation Malzette) We also design a proof-of-concept permutation
Malzette based on 12-round ARX-box Alzette [BBdS+20a] with maliciously chosen con-
stants, in spirit of previous works about “malicious cryptography” [AAE+14, AY15, Mor15].
This permutation inherits strong bounds against linear/differential cryptanalysis from
Alzette, while being susceptible to a practical RX-differential distinguisher. This em-
phasizes the importance of RX-differential cryptanalysis in the area of symmetric-key
designs.

The source code and supporting data of our experiments are publicly available at
https://github.com/cryptolu/RX-Differentials-Probability

Notations

Notations used in the rest of the paper are summarized in Table 1. Modular addition takes
precedence over the XOR, i.e., if we write a⊕ b ⊞ c, this is equivalent to a⊕ (b ⊞ c). In
SHL, the most significant bit is removed.

Table 1: Notations used in this work
Notation Definition

x = (xn−1, . . . , x0) n-bit Boolean vector, x0 is the least significant bit
0 . . . 0, 1 . . . 1 the all-zeroes and all-ones bit vectors

LSB Least significant bit
MSB Most significant bit
x ⊞ y Addition modulo 2n

x ∧ y Bitwise AND
x ∨ y Bitwise OR
x||y Concatenation of x and y
x Bitwise complement of x

wt(x) Hamming weight of x
SHL(x) Non-cyclic left shift of x by one bit
x ≪ k Cyclic shift to the left of x by k bits
x ≫ k Cyclic shift to the right of x by k bits
←−x Equivalent to x ≪ k where k is implicitly defined
−→x Equivalent to x ≫ k, the inverse of ←−x

x ≼ y xi ≤ yi for all i
1E Evaluates to 1 if the expression E is true, 0 otherwise
I The identity mapping

(I ⊕ SHL)(x) x⊕ SHL(x)
Prx,y[E] Probability of E over variables x, y

#X Cardinality of the set X

2 Exact Probability of RX-Differentials
The goal of this section is to give a closed formula to evaluate the probability of the
equation

(←−x ⊕ α) ⊞ (←−y ⊕ β) ⊕ ←−−−x ⊞ y = ∆ (2)

https://github.com/cryptolu/RX-Differentials-Probability
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where α, β, ∆ ∈ Fn
2 are fixed differences, and x, y ∈ Fn

2 are independent uniform random
variables. We will also use a shorthand

χ = α⊕ β ⊕∆

2.1 Lemmas from previous results
We start with two previous results about standard differentials over ⊞.

Lemma 1 ([LM01, Sch13]). Let α, β, ∆ ∈ Fn
2 be constants and x, y ∈ Fn

2 independent
uniformly random variables. Then,

Pr
x,y

[
(x⊕ α) ⊞ (y ⊕ β) ⊕ x ⊞ y = ∆

]
= 1(I⊕SHL)(χ)≼SHL((α⊕∆)∨(β⊕∆)) · 2− wt(SHL((α⊕∆)∨(β⊕∆)))

Equivalently, for a valid difference tuple (α, β, ∆), the probability is given by 2−d where
d is the amount of indices i such that (αi, βi, ∆i) are not all equal (i.e. different from 000
and 111) excluding the MSB (i.e. i < n− 1). Furthermore, for (α, β, ∆) to be valid, we
need at least to have χ0 = α0 ⊕ β0 ⊕∆0 = 0.

Lemma 2 ([AL16]). Let α, β, ∆ ∈ Fn
2 be constants and x, y ∈ Fn

2 independent uniformly
random variables. Then,

Pr
x,y

[
(x⊕ α) ⊞ (y ⊕ β) ⊕ x ⊞ y ⊞ 1 = ∆

]
= Pr

x,y

[
(x⊕ α) ⊞ (y ⊕ β) ⊞ 1 ⊕ x ⊞ y = ∆

]
=1(I⊕SHL)(χ)⊕1≼SHL((α⊕∆)∨(β⊕∆)) · 2− wt(SHL((α⊕∆)∨(β⊕∆)))

The difference from the previous lemma is the validity criteria, which in particular
requires χ0 = α0 ⊕ β0 ⊕∆0 = 1 instead, and the conditions for the other positions are the
same.

2.2 Decomposition of the problem
k n− k

x, y xL xR

←−x ,←−y xR xL

α, β, ∆ αL′ aR′

kn− k

Figure 1: Splitting of vectors. The
most significant bits are on the left,
the least significant bits are on the
right.

For words x, y ∈ Fn
2 , we denote x = xL||xR and

y = yL||yR with xL, yL ∈ Fk
2 and xR, yR ∈ Fn−k

2 .
Similarly, for differences α, β, ∆ ∈ Fn

2 , we write α =
αL′ ||αR′ (and respectively for β and ∆) where αL′ ∈
Fn−k

2 and αR′ ∈ Fk
2 .

Moreover, we denote by cR ∈ F2 the outgoing
carry of xR ⊞ yR, i.e. cR = 0 if xR + yR < 2n−k and
cR = 1 otherwise. Similarly, we denote by cL ∈ F2
the outgoing carry of (xL⊕αR′)⊞ (yL⊕βR′). Using
these notations, we can write

x ⊞ y = xL ⊞ yL ⊞ cR || xR ⊞ yR

(←−x ⊕ α) ⊞ (←−y ⊕ β) = (xR ⊕ αL′) ⊞ (yR ⊕ βL′) ⊞ cL || (xL ⊕ αR′) ⊞ (yL ⊕ βR′)

This means that the equation

(←−x ⊕ α) ⊞ (←−y ⊕ β) ⊕ ←−−−x ⊞ y = ∆ (3)

can be rewritten as a system of equations
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(xR ⊕ αL′) ⊞ (yR ⊕ βL′) ⊞ cL ⊕ xR ⊞ yR = ∆L′ (4c)
(xL ⊕ αR′) ⊞ (yL ⊕ βR′) ⊕ xL ⊞ yL ⊞ cR = ∆R′ (4d)
cR = 1xR+yR≥2n−k (4e)
cL = 1(xL⊕αR′ )+(yL⊕βR′ )≥2k (4f)

By taking Equations (4c), (4d) modulo 2 (or by Lemma 1 and Lemma 2), we can
deduce the only possible values of the carries cL, cR from the differences:

cL = (αL′ ⊕ βL′ ⊕∆L′)0 = αk ⊕ βk ⊕∆k = χk

cR = (αR′ ⊕ βR′ ⊕∆R′)0 = α0 ⊕ β0 ⊕∆0 = χ0

Furthermore, we can rewrite Equation (4d) to have the same structure as Equation (4c)
using the change of variables x̃L = xL⊕αR′ and ỹL = yL⊕βR′ . This leads to an equivalent
system 

(xR ⊕ αL′) ⊞ (yR ⊕ βL′) ⊞ χk ⊕ xR ⊞ yR = ∆L′

χ0 = 1xR+yR≥2n−k

(x̃L ⊕ αR′) ⊞ (ỹL ⊕ βR′) ⊞ χ0 ⊕ x̃L ⊞ ỹL = ∆R′

χk = 1x̃L+ỹL≥2k

Now, we use the fact that α, β, γ and thus χ are all fixed. Therefore, the system splits
into two independent parts of the following form (one on xR, yR and one on x̃L, ỹL), with
vectors over Fm

2 , m being k or n− k:{
(x⊕α) ⊞ (y ⊕ β) ⊞ (α0 ⊕ β0 ⊕∆0)⊕ x ⊞ y = ∆
1x+y≥2m = w

(5)

with two instantiations:

1. m = n− k, α = αL′ , β = βL′ , ∆ = ∆L′ , w = χ0.

2. m = k, α = αR′ , β = βR′ , ∆ = ∆R′ , w = χk.

Denote by Tm(α, β, ∆, w) the number of solutions to Equation (5). Note that Equation (5)
is essentially a generalization of Lemma 1 and Lemma 2 to a restriction of the output
carries of the counted solutions to the differential equation. We conclude with the following
proposition and we will focus on expressing Tm in the following sections.

Proposition 1. Let α, β, ∆ ∈ Fn
2 define an RX-differential with the notations from this

section. Then we have

Pr
x,y

[(←−x ⊕ α) ⊞ (←−y ⊕ β) ⊕ ←−−−x ⊞ y = ∆] =

Tn−k(αL′ , βL′ , ∆L′ , χ0) × Tk(αR′ , βR′ , ∆R′ , χk)

2.3 Validity criteria for RX-differentials
As a consequence of Proposition 1, we deduce the following theorem (criteria) for an
RX-differential to have nonzero probability.

Theorem 1. Let α, β, ∆ ∈ Fn
2 be fixed constants and u, v ∈ Fn

2 be defined as

u = (I ⊕ SHL)(α⊕ β ⊕∆)
v = SHL((α⊕∆) ∨ (β ⊕∆))
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Then, the equation
(←−x ⊕ α) ⊞ (←−y ⊕ β) ⊕ ←−−−x ⊞ y = ∆

has at least one solution (x, y) if and only if :

• u ≼ v when k = 0

• ui ≤ vi for all i ̸= 0, k when k ̸= 0

which means that the RX-propagation [(α, k), (β, k)] ⊞−→ (∆, k) is valid (has nonzero
probability) if and only if the above condition is satisfied. Overall, this is the same criterion
as in Lemma 1 but ignoring the bits of index 0 and k when k ̸= 0.

Proof. When k = 0, this is directly Lemma 1, so we consider only k > 0.
If the probability is nonzero (i.e. there is at least one solution), then there is at least

one solution to Equations (4c), (4d). Thus, in particular, from Lemmas 1 and 2, we have
the expected criteria. Note that the full-word SHL operation differs from two separate
k-bit and (n − k)-bit SHL operations by not removing the overflowing bit of the k-bit
output. However, this bit does not affect the condition as it is excluded from consideration
by the criteria i ̸= k.

For the other direction, assume that the above criteria hold. From Proposition 1, then
whatever the value of the XOR of the LSB of (αL′ , βL′ , ∆L′) (resp. of (αR′ , βR′ , ∆R′)), we
have a solution to Equation (4c) (resp. 4d). However, we still need to show that there is
always a solution that satisfies the corresponding condition on the output carry of x + y.

Let (xR, yR) and (xL, yL) be any such solution to 4c and 4d, respectively, and let
cR, cL be their respective outgoing carry. Let x′

R = xR ⊕ 10 . . . 0, i.e. xR but with
the MSB flipped, and y′

R, x′
L, y′

L dbe efined analogously. Consider the four following
tuples (xR, yR), (x′

R, yR), (xR, y′
R), (x′

R, y′
R). Then all four of these are also solutions to

4c. Indeed, in the modular addition, the MSB behaves linearly for differentials, because
x⊕ 10 . . . 0 = x ⊞ 10 . . . 0 and so this bit flip propagates through modular additions with
probability 1 (including the possible cL/cR carry addition). Since flipping the MSB is the
same as adding a 1-bit difference, all four of these are also solutions to 4c. Moreover, at
least one of the four tuples will be such that both MSBs are (0,0) (necessarily leading to
the outgoing carry being 0), and similarly, at least one of them will be such that both
MSBs are (1,1) (necessarily leading to the outgoing carry being 1). The same can be
applied to (xL, yL) with x′

L and y′
L.

Thus, we always have at least one solution that leads to the outgoing carry being 0,
and one solution leading to the outgoing carry being 1, which means that there will always
be at least one solution satisfying the corresponding condition on 1x+y≥2m . Hence we
can conclude that if the criterion holds, then we always have at least one solution, i.e. a
nonzero probability.

2.4 Solving the subcase system
Returning back to computing the probability of RX-transition, we need to evaluate the
probability of a system of the form{

(x⊕ α) ⊞ (y ⊕ β) ⊞ (α0 ⊕ β0 ⊕∆0) ⊕ x ⊞ y = ∆
x + y op 2n

(6)

for both cases of the comparison op (either < or ≥).
Note that instead of directly computing the probability, we will instead count the

number of solutions, as it is slightly simpler (and we can easily derive the probability from



548 Exact Formula for RX-Differential Probability Through Modular Addition

the solution count). Moreover, we can focus on the case where op is <, since the two
cases sum up to the probability of the basic differential transition (given by Lemma 1 and
Lemma 2).

For α, β, ∆ ∈ Fn
2 , we will denote by XDSn(α, β, ∆) and XDS+

n (α, β, ∆) the sets

XDSn(α, β, ∆) = {(x, y) ∈ F2n
2 s.t. (x⊕ α) ⊞ (y ⊕ β) ⊕ x ⊞ y = ∆}

XDS+
n (α, β, ∆) = {(x, y) ∈ F2n

2 s.t. (x⊕ α) ⊞ (y ⊕ β) ⊞ 1 ⊕ x ⊞ y = ∆}

When α, β, ∆ are clear from the context, we will shorten it to simply XDSn and XDS+
n .

We also denote xdpn(α, β, ∆) = #XDSn(α, β, ∆)/22n (analogously xdp+
n = #XDS+

n /22n),
similarly shortened to xdpn (resp. xdp+

n ) when appropriate.
First, it turns out that we can easily deduce the size of XDS+

n if we can compute the
size of XDSn, as stated in the following proposition.

Proposition 2. With the above notations, and ᾱ = α⊕ 1 . . . 1 (and respectively for β̄ and
∆̄) we have

#XDS+
n (α, β, ∆) = #XDSn(ᾱ, β̄, ∆̄)

Proof. Using the identity X ⊞ Y ⊞ 1 = X̄ ⊞ Ȳ , we can write

XDS+
n (α, β, ∆) = {(x, y) ∈ F2n

2 s.t. (x⊕ α) ⊞ (y ⊕ β) ⊞ 1 ⊕ x ⊞ y = ∆}

= {(x, y) ∈ F2n
2 s.t. (x⊕ α) ⊞ (y ⊕ β) ⊕ x ⊞ y = ∆}

= {(x, y) ∈ F2n
2 s.t. (x⊕ ᾱ) ⊞ (y ⊕ β̄) ⊕ x ⊞ y = ∆}

= {(x, y) ∈ F2n
2 s.t. (x⊕ ᾱ) ⊞ (y ⊕ β̄) ⊕ x ⊞ y = ∆̄}

= XDSn(ᾱ, β̄, ∆̄)

As such, we can focus on only evaluating the number of solutions to the system{
(x⊕ α) ⊞ (y ⊕ β) ⊕ x ⊞ y = ∆
x + y < 2n

for some given α, β, ∆ ∈ Fn
2 , and deduce the other cases from that.

First, we begin with a core lemma that we will use repeatedly.

Lemma 3. Let α, β, ∆ ∈ Fn
2 be fixed valid differences, and let α′, β′, ∆′ ∈ F2 be so that

the differences α′||α, β′||β, ∆′||∆ are also valid. Then,

#XDSn+1(α′||α, β′||β, ∆′||∆) =
{

4×#XDSn(α, β, ∆) αn−1 = βn−1 = ∆n−1

2×#XDSn(α, β, ∆) otherwise

Proof. From Lemma 1, we know that xdpn(α, β, ∆) = 2−d where d is the amount of indices
i such that (αi, βi, ∆i) are not all equal, excluding the MSB (i.e., (αn−1, βn−1, ∆n−1)).
Thus when considering XDSn+1(α′||α, β′||β, ∆′||∆), we do not need to consider whether
or not (α′, β′, ∆′) are all equal, however, we do need to check (αn−1, βn−1, ∆n−1).

If (αn−1, βn−1, ∆n−1) are not all equal, we have xdpn+1(α′||α, β′||β, ∆′||∆) = 2−(d+1) =
1
2 xdpn(α, β, ∆). Thus we get

xdpn+1 = 1
2xdpn ⇔

#XDSn+1

22(n+1) = 1
2 ×

#XDSn

22n

⇔#XDSn+1 = 2×#XDSn
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Otherwise if αn−1 = βn−1 = ∆n−1, we have xdpn+1(α′||α, β′||β, ∆′||∆) = 2−d =
xdpn(α, β, ∆). Thus we get

xdpn+1 = xdpn ⇔
#XDSn+1

22(n+1) = #XDSn

22n

⇔#XDSn+1 = 4×#XDSn

The following three lemmas are also needed to prove the main result of this subsection.

Lemma 4. Let α, β, ∆ ∈ Fn
2 be fixed valid differences, and let α′, β′, ∆′ ∈ F2 be so that the

differences α′||α, β′||β, ∆′||∆ are also valid. Let x, y ∈ Fn
2 and x′, y′ ∈ F2 be any solution

to the corresponding differential equation on the n + 1 bits, that is,

[((x′||x)⊕ (α′||α)) ⊞ ((y′||y)⊕ (β′||β))]⊕ [(x′||x) ⊞ (y′||y)] = (∆′||∆)

Furthermore, let c ∈ F2 be the outgoing carry of x + y, that is, c = 0 when x + y < 2n and
c = 1 otherwise. Similarly, let c̄ ∈ F2 be the outgoing carry of (x ⊕ α) + (y ⊕ β). Then
α′ ⊕ β′ ⊕∆′ = c⊕ c̄.

Proof. We can split the differential equation between the MSB and the last n bits as

[((x′||x)⊕ (α′||α)) ⊞ ((y′||y)⊕ (β′||β))]⊕ [(x′||x) ⊞ (y′||y)] = (∆′||∆)

⇔

{
[(x⊕ α) ⊞ (y ⊕ β)]⊕ [x ⊞ y] = ∆
[(x′ ⊕ α′) ⊞ (y′ ⊕ β′) ⊞ c̄]⊕ [x′ ⊞ y′ ⊞ c] = ∆′

Note that the second equation is over one single bit, and as such, the modular addition is
equivalent to the XOR operation. Thus we get

[(x′ ⊕ α′) ⊞ (y′ ⊕ β′) ⊞ c̄]⊕ [x′ ⊞ y′ ⊞ c] = ∆′

⇔ [(x′ ⊕ α′)⊕ (y′ ⊕ β′)⊕ c̄]⊕ [x′ ⊕ y′ ⊕ c] = ∆′

⇔ α′ ⊕ β′ ⊕∆′ = c⊕ c̄

Lemma 5. Let α, β, ∆ ∈ Fn
2 be fixed valid differences, and let α′, β′, ∆′ ∈ F2 be so that

the differences α′||α, β′||β, ∆′||∆ are also valid. Then we cannot have

(αn−1, βn−1, ∆n−1) = (000) ∧ α′ ⊕ β′ ⊕∆′ = 1

nor
(αn−1, βn−1, ∆n−1) = (111) ∧ α′ ⊕ β′ ⊕∆′ = 0

Proof. Denote α̃ = α′||α, β̃ = β′||β and ∆̃ = ∆′||∆. Then by Lemma 1, since α̃, β̃, ∆̃ is a
valid differential, it must verify

(α̃⊕ β̃ ⊕ ∆̃)⊕ SHL(α̃⊕ β̃ ⊕ ∆̃) ≼ SHL((α̃⊕ ∆̃) ∨ (β̃ ⊕ ∆̃))

In particular, for the MSB, we must have

(α′ ⊕ β′ ⊕∆′)⊕ (αn−1 ⊕ βn−1 ⊕∆n−1) ≤ (αn−1 ⊕∆n−1) ∨ (βn−1 ⊕∆n−1)

If (αn−1, βn−1, ∆n−1) = (000), we have (αn−1 ⊕∆n−1)∨ (βn−1 ⊕∆n−1) = 0 and (αn−1 ⊕
βn−1 ⊕∆n−1) = 0, thus we need to have α′ ⊕ β′ ⊕∆′ ≼ 0 i.e. α′ ⊕ β′ ⊕∆′ = 0.

Similarly, if (αn−1, βn−1, ∆n−1) = (111), we have (αn−1 ⊕∆n−1) ∨ (βn−1 ⊕∆n−1) = 0
and (αn−1⊕βn−1⊕∆n−1) = 1, thus we need to have α′⊕β′⊕∆′⊕1 ≼ 0 i.e. α′⊕β′⊕∆′ =
1
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Lemma 6. Let α, β, ∆ ∈ Fn
2 be fixed valid differences. Moreover, let c ∈ F2 be the outgoing

carry of x + y, i.e. c = 0 when x + y < 2n and c = 1 otherwise. Similarly, let c̄ ∈ F2 be
the outgoing carry of (x⊕ α) + (y ⊕ β). Let A,B,B01,B10 be the sets defined as

A = {(x, y) ∈ XDSn s.t. c = c̄} B01 = {(x, y) ∈ XDSn s.t. c = 0 ∧ c̄ = 1}
B = {(x, y) ∈ XDSn s.t. c ̸= c̄} B10 = {(x, y) ∈ XDSn s.t. c = 1 ∧ c̄ = 0}

where B = B01 ∪ B10. Then:

• if (αn−1, βn−1, ∆n−1) are not all equal, we have #A = #B = 1
2 #XDSn and #B01 =

#B10 = 1
4 #XDSn

• if (αn−1, βn−1, ∆n−1) = 000, we have #A = #XDSn and #B = 0.

• if (αn−1, βn−1, ∆n−1) = 111, we have #A = 0, #B = #XDSn, and #B01 = #B10 =
1
2 #XDSn.

Proof. Let X0 and X1 be the two sets

X0 = XDSn+1(0||α, 0||β, 0||∆) X1 = XDSn+1(0||α, 0||β, 1||∆)

For any ((x′||x), (y′||y)) ∈ X0, by Lemma 4 we have c ⊕ c̄ = 0 ⊕ 0 ⊕ 0 = 0, and thus
X0 ⊆ F2

2 × A. Similarly, we also have X1 ⊆ F2
2 × B.

On the other hand, let (x, y) ∈ A. Then from Lemma 1 we can easily see that any
(x′, y′) ∈ F2

2 verifies the equation

[((x′||x)⊕ (0||α)) ⊞ ((y′||y)⊕ (0||β))]⊕ [(x′||x) ⊞ (y′||y)] = (∆′||∆)

where here ∆′ = c⊕c̄ = 0 by Lemma 4. Thus we have ((x′||x), (y′||y)) ∈ XDSn+1(0||α, 0||β, 0||∆) =
X0, and as such, F2

2 × A ⊆ X0 Again, similarly we also have F2
2 × B ⊆ X1. Thus, we can

conclude that F2
2 × A = X0 and F2

2 × B = X1.
Then by using Lemma 3:
• If (αn−1, βn−1, ∆n−1) ̸∈ {000, 111}, we have #X0 = 2 × #XDSn(α, β, ∆). Thus,

since #X0 = #(F2
2 × A) = 4×#A, we have #A = 1

2 XDSn(α, β, ∆). Similarly, we
also have #B = 1

2 XDSn(α, β, ∆). Moreover, by symmetry, for any (x, y) ∈ B01, we
have (x′, y′) = (x⊕ α, y ⊕ β) ∈ B10, thus #B01 = #B10 = 1

2 #B = 1
4 #XDSn.

• If (αn−1, βn−1, ∆n−1) = 000, then by Lemma 5 we have #B = 0. Since A and B
form a partition of XDSn, we thus have #A = #XDSn.

• Similarly, if (αn−1, βn−1, ∆n−1) = 111 then we have #A = 0 and thus #B = #XDSn.
Again by symmetry, B01 and B10 are of the same size, thus #B01 = #B10 = 1

2 #XDSn

Now we can finally prove the number of solutions to Equation (6) when c = 0. Denote

Rn(α, β, ∆) = #{(x, y) ∈ XDSn(α, β, ∆) s.t. x + y < 2n} (7)

then we have the following proposition
Proposition 3. Let α, β, ∆ ∈ Fn

2 be fixed valid differences, and let α′, β′, ∆′ ∈ F2 be
so that the differences α̃ = α′||α, β̃ = β′||β and ∆̃ = ∆′||∆ are also valid. Also denote
δn−1 = (αn−1, βn−1, ∆n−1) and χ′ = α′ ⊕ β′ ⊕ ∆′. Then Rn+1(α̃, β̃, ∆̃) verifies the
recurrence relation

Rn+1(α̃, β̃, ∆̃) =


2Rn(α, β, ∆) if δn−1 ̸∈ {000, 111} and χ = 0
#XDSn(α, β, ∆) if δn−1 ̸∈ {000, 111} and χ = 1
#XDSn(α, β, ∆) + 2Rn(α, β, ∆) if δn−1 = 000 and χ = 0
2×#XDSn(α, β, ∆) if δn−1 = 111 and χ = 1
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Moreover, we have

Rn(α, β, ∆) =
{

#XDSn(α,β,∆)
2 if α⊕ β ⊕∆ ̸= 0

#XDSn(α,β,∆)
2 + 2n−1 if α⊕ β ⊕∆ = 0

Proof. First, as shown in Lemma 5, we cannot have (δn−1 = 000 ∧ χ = 1) nor (δn−1 =
111∧χ = 0). Moreover, we also cannot have α⊕β⊕∆ = 1 . . . 1 from Lemma 1 as it would
be an invalid differential. We can show all of the proposition in a single induction proof.

The base case is easy to verify computationally, so we only focus on the induction step.
In the rest of this proof, for any given (x, y) ∈ F2n

2 , we denote c ∈ F2 the corresponding
outgoing carry of x + y, i.e. c = 0 when x + y < 2n and c = 1 otherwise and c̄ ∈ F2 the
outgoing carry of (x⊕α) + (y⊕β). Similarly, for any given (x′||x, y′||y) ∈ Fn+1

2 , we denote
c′ ∈ F2 the corresponding outgoing carry of x′||x+y′||y, i.e. c′ = 0 when x′||x+y′||y < 2n+1

and c′ = 1 otherwise. Our goal is to count how many (x′||x, y′||y) ∈ Fn+1
2 are there such

that c′ = 0 and (x′||x, y′||y) ∈ XDSn+1.
In general, we can observe the following (recall that c′ is the outgoing carry of 1-bit

addition x′ + y′ + c):

• If (x′, y′) = (1, 1), c′ is always 1 so no solution of that form exist.

• If (x′, y′) = (0, 0), c′ is always 0, so depending on the value of χ, we can use Lemma
6 to evaluate how many solutions we have of this form for (x, y).

• If (x′, y′) = (0, 1), we have c′ = c, so we will use Lemma 6 according to the value of
χ along with the additional constraint that c = 0.

• If (x′, y′) = (1, 0), by symmetry we have the same number of solutions as the previous
case, so we just multiply the previous solution count by 2.

Thus, depending on the value of δn−1 and χ, we have the following.
If δn−1 ̸∈ {000, 111} and χ = 0 By Lemma 4, since χ = α′ ⊕ β′ ⊕∆′ = 0, we have

c = c̄. When (x′, y′) = (0, 0), we can take any (x, y) ∈ {(x, y) ∈ XDSn∧c = c̄}, thus #XDSn

2
solutions. When (x′, y′) = (0, 1), we can take any (x, y) ∈ {(x, y) ∈ XDSn ∧ c = c̄ = 0},
which by Lemma 6 is of size

#{(x, y) ∈ XDSn ∧ c = c̄ = 0}
=#{(x, y) ∈ XDSn ∧ c = 0} −#{(x, y) ∈ XDSn ∧ c = 0 ∧ c̄ = 1}

=Rn −
#XDSn

4
Thus in total the number of solutions over n + 1 bits is

Rn+1 = #XDSn

2 + 2×
(

Rn −
#XDSn

4

)
= 2Rn

If α ⊕ β ⊕ ∆ = 0, by induction, Rn = #XDSn

2 + 2n−1. Since δn−1 ̸∈ {000, 111}, by
Lemma 3 we know that #XDSn+1 = 2×#XDSn, thus we have

Rn+1 = 2Rn = 2
(

#XDSn

2 + 2n−1
)

= #XDSn+1

2 + 2n

as expected for the induction since here we would have α̃⊕ β̃ ⊕ ∆̃ = 0.
If α⊕ β ⊕∆ ̸= 0, by induction, Rn = #XDSn

2 . Again by Lemma 3, we get

Rn+1 = 2Rn = 2
(

#XDSn

2

)
= #XDSn+1

2



552 Exact Formula for RX-Differential Probability Through Modular Addition

as expected for the induction since here we would have α̃⊕ β̃ ⊕ ∆̃ ̸= 0.
If δn−1 ̸∈ {000, 111} and χ = 1 By Lemma 4, since χ = α′ ⊕ β′ ⊕∆′ = 1, we have

c ≠ c̄. When (x′, y′) = (0, 0), we can take any (x, y) ∈ {(x, y) ∈ XDSn∧c ≠ c̄}, thus #XDSn

2
solutions. When (x′, y′) = (0, 1), we can take any (x, y) ∈ {(x, y) ∈ XDSn ∧ c ≠ c̄∧ c = 0},
which by Lemma 6 is of size #XDSn

4 .
Thus in total the number of solutions over n + 1 bits is

Rn+1 = #XDSn

2 + 2×
(

#XDSn

4

)
= #XDSn

Moreover, since α′ ⊕ β′ ⊕∆′ = 1, we always have α̃⊕ β̃ ⊕ ∆̃ ̸= 0, so we only have one case
to consider. In addition, δn−1 ̸∈ {000, 111} so by Lemma 3, we have

Rn+1 = #XDSn = #XDSn+1

2
If δn−1 = 000 and χ = 0 By Lemma 4, since χ = α′ ⊕ β′ ⊕∆′ = 0, we have c = c̄.

When (x′, y′) = (0, 0), we can take any (x, y) ∈ {(x, y) ∈ XDSn ∧ c = c̄}, thus #XDSn

solutions. When (x′, y′) = (0, 1), we can take any (x, y) ∈ {(x, y) ∈ XDSn ∧ c = c̄ = 0},
which by Lemma 6 is of size

#{(x, y) ∈ XDSn ∧ c = c̄ = 0}
=#{(x, y) ∈ XDSn ∧ c = 0} −#{(x, y) ∈ XDSn ∧ c = 0 ∧ c̄ = 1}
=Rn − 0 (Because #B = 0 in Lemma 6)

Thus in total the number of solutions over n + 1 bits is Rn+1 = #XDSn + 2Rn.
If α⊕ β ⊕∆ = 0, by induction, Rn = #XDSn

2 + 2n−1. Moreover, since δn−1 = 000, by
Lemma 3 we know that #XDSn+1 = 4×#XDSn, thus we have

Rn+1 = #XDSn + 2Rn = 2#XDSn + 2n = #XDSn+1

2 + 2n

as expected for the induction since here we would have α̃⊕ β̃ ⊕ ∆̃ = 0.
If α⊕ β ⊕∆ ̸= 0, by induction, Rn = #XDSn

2 . Again by Lemma 3, we get

Rn+1 = #XDSn + 2Rn = #XDSn + 2
(

#XDSn

2

)
= 2#XDSn = #XDSn+1

2

as expected for the induction since here we would have α̃⊕ β̃ ⊕ ∆̃ ̸= 0.
If δn−1 = 111 and χ = 1 By Lemma 4, since χ = α′ ⊕ β′ ⊕∆′ = 1, we have c ̸= c̄.

When (x′, y′) = (0, 0), we can take any (x, y) ∈ {(x, y) ∈ XDSn ∧ c ≠ c̄}, thus #XDSn

solutions. When (x′, y′) = (0, 1), we can take any (x, y) ∈ {(x, y) ∈ XDSn ∧ c ≠ c̄∧ c = 0},
which by Lemma 6 is of size #XDSn

2 . Thus in total the number of solutions over n + 1 bits
is

Rn+1 = #XDSn + 2×
(

#XDSn

2

)
= 2×#XDSn

Moreover, since α′ ⊕ β′ ⊕∆′ = 1, we always have α̃⊕ β̃ ⊕ ∆̃ ̸= 0, so we only have one case
to consider. In addition, δn−1 = 111 so by Lemma 3, we have

Rn+1 = 2×#XDSn = #XDSn+1

2

Combining Proposition 2 and Proposition 3, we can deduce the following proposition
for R+

n (α, β, ∆) = #{(x, y) ∈ XDS+
n (α, β, ∆) s.t. x + y < 2n}.



Alex Biryukov, Baptiste Lambin and Aleksei Udovenko 553

Proposition 4. With the previous notations, we have

R+
n (α, β, ∆) =

{
#XDS+

n (α,β,∆)
2 if α⊕ β ⊕∆ ̸= 1 . . . 1

#XDS+
n (α,β,∆)
2 + 2n−1 if α⊕ β ⊕∆ = 1 . . . 1

Proof. This is straightforward from the previous propositions:

R+
n (α, β, ∆) = #{(x, y) ∈ XDS+

n (α, β, ∆) s.t. x + y < 2n}
= #{(x, y) ∈ XDSn(ᾱ, β̄, ∆̄) s.t. x + y < 2n}

=
{

#XDSn(ᾱ,β̄,∆̄)
2 if ᾱ⊕ β̄ ⊕ ∆̄ ̸= 0

#XDSn(ᾱ,β̄,∆̄)
2 + 2n−1 if ᾱ⊕ β̄ ⊕ ∆̄ = 0

=
{

#XDS+
n (α,β,∆)
2 if α⊕ β ⊕∆ ̸= 1 . . . 1

#XDS+
n (α,β,∆)
2 + 2n−1 if α⊕ β ⊕∆ = 1 . . . 1

2.5 Combining the results and the main theorem
Corollary 1. Let α, β, ∆ ∈ Fn

2 be valid differences such that either XDSn(α, β, ∆) or
XDS+

n (α, β, ∆) is not empty. Let d be the amount of indices i such that (αi, βi, ∆i) are not
all equal (i.e. different from 000 and 111) excluding the MSB. Then, in both cases we can
write Rn(α, β, ∆) (or R+

n (α, β, ∆) depending on which is nonzero) as a single expression

22n−d−1 + 1α⊕β⊕∆∈{0...0,1...1} × 2n−1

Proof. From Lemma 1, for a valid (α, β, ∆), we have #XDSn(α, β, ∆) = 22n−d. Similarly,
from Lemma 2, for a valid (α, β, ∆), we have #XDS+

n (α, β, ∆) = 22n−d. Moreover, as for
Proposition 1, if the differences are valid for XDSn, then we need to have α0⊕β0⊕∆0 = 0
(otherwise the probability/solution count will be 0 anyway). Thus, one can still write

Rn(α, β, ∆) = 22n−d−1 + 1α⊕β⊕∆∈{0...0,1...1} × 2n−1

for a valid difference since if we have α⊕β⊕∆ = 1 . . . 1 in this case, the probability/solution
count is going to be zero. Similarly, we can still write the same thing for R+

n (α, β, ∆) for
a valid difference since if we have α ⊕ β ⊕∆ = 0 . . . 0, the probability/solution count is
going to be zero.

Thus, combining all of these results, we can finally conclude with the following theorem
to evaluate the probability of

[(←−x ⊕ α) ⊞ (←−y ⊕ β)]⊕←−−−x ⊞ y = ∆

Theorem 2 (Main). For a valid differential (α, β, ∆) and with the notation introduced at
the beginning of this section, as well as χ = α⊕ β ⊕∆. We have that the probability of the
above equation to hold can be expressed as

T ′
k(αL′ , βL′ , ∆L′ , χ0)× T ′

n−k(αR′ , βR′ , ∆R′ , χk)

where
T ′

m(α, β, ∆, w) = 2−d−1 + 1α⊕β⊕∆∈{0...0,1...1} ×
(
(−1)w × 2−m−1)

(8)
where d is the number of indices i such that (αi, βi, ∆i) are not all equal (i.e. different
from 000 and 111) excluding the MSB.
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Proof. By Proposition 1, the statement of the theorem is equivalent to the claim that
Tm(α, β, ∆, w) from the proposition can be computed as T ′

m of Equation (8), assuming
that it is nonzero. From the definitions of Tm and Rm, R+

m, the fact that only one of the
latter two can be nonzero, and the assumption that the differential is valid, we can deduce
that

Tm(α, β, ∆, 0) = (Rm(α, β, ∆) + R+
m(α, β, ∆))/22m

which by Corollary 1 is equal to

2−d−1 + 1α⊕β⊕∆∈{0...0,1...1} × 2−m−1

As mentioned in the beginning of Subsection 2.4, the case Tm(α, β, ∆, 1) (corresponding to
the xdpm/xdp+

m conditioned on the output carry being equal to 1) can be computed as the
complement of Tm(α, β, ∆, 0) from the xdp or xdp+, both of which for valid transitions
are given by 2−d. It follows that

Tm(α, β, ∆, 1) = 2−d − Tm(α, β, ∆, 0) = 2−d−1 − 1α⊕β⊕∆∈{0...0,1...1} × 2−m−1

from where the expression T ′
m for Tm follows.

2.6 Exact probability of RX-differentials through constant addition
For completeness of the RX-trail searching framework, it is necessary to consider RX-
differential transitions through modular addition with a public constant. This amounts to
counting the number of solutions x ∈ Fn

2 to the equation

(←−x ⊕ δ) ⊞ a ⊕ ←−−−x ⊞ a = ∆ (9)

where δ, ∆, a ∈ Fn
2 are fixed.

As we shall see, the overlapping parts of the rotated constants vary depending on
whether k < n/2 or k > n/2. To avoid considering the two cases, we show that they are
equivalent up to an appropriate rotation of differences. The following proposition combined
with the fact that x ≫ k = x ≪ (n− k) allows us to focus only on the case k ≤ n/2.

Proposition 5. Let δ, ∆, a ∈ Fn
2 be fixed, together with the rotation amount k. Then, the

number of solutions x ∈ Fn
2 to each of the two following equations is equal (note that both

left/right rotations use the same k):

(←−x ⊕ δ) ⊞ a ⊕ ←−−−x ⊞ a = ∆

(−→x ⊕−→δ ) ⊞ a ⊕ −−−→x ⊞ a =
−→
∆

Proof. Solutions to the two equations are in bijection by x′ =←−x ⊕ δ, x =
−−−→
x′ ⊕ δ:

(
←−−−−−−→
x′ ⊕ δ ⊕ δ) ⊞ a ⊕

←−−−−−−−−−−−−−→
(x′ ⊕ δ) ⊞ a = ∆

⇔ x′ ⊞ a ⊕
←−−−−−−−−−−−−−→
(x′ ⊕ δ) ⊞ a = ∆

⇔
−−−→
x′ ⊞ a ⊕

−−−−−→
(x′ ⊕ δ) ⊞ a =

−→
∆

⇔
−−−→
x′ ⊞ a ⊕ (

−→
x′ ⊕

−→
δ ) ⊞ a =

−→
∆
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From now on, we assume 1 ≤ k ≤ n/2. Adapting the approach from Subsection 2.2,
let x = xL||xR with xL ∈ Fk

2 and xR ∈ Fn−k
2 , and let δ = δL′ ||δR′ , ∆ = ∆L′ ||∆R′ with

δL′ , ∆L′ ∈ Fn−k
2 and δR′ , ∆R′ ∈ Fk

2 . This partition is illustrated in Figure 2. Furthermore,
let a = aL||aM ||aR′ ∈ Fk

2 × Fn−2k
2 × Fk

2 . Then, we can rewrite Equation (9) as a system of
equations: 

[(xR ⊕ δL′) ⊞ (aL||aM ) ⊞ cR] ⊕ [xR ⊞ (aM ||aR′)] = ∆L′ (10c)
[(xL ⊕ δR′) ⊞ aR′ ] ⊕ [xL ⊞ aL ⊞ cL] = ∆R′ (10d)
cR = 0 if (xL ⊕ δR′) + aR′ < 2k, 1 otherwise (10e)
cL = 0 if xR + (aM ||aR′) < 2n−k, 1 otherwise (10f)

k n− k

x xL xR

←−x xR xL

a aL aM aR′

←−a aM aR′ aL

δ δL′ δR′

∆ ∆L′ ∆R′

kn− k

Figure 2: Splitting of the words in the equation
of the RX-differential through modular addition
with a constant. Parts involved in Equation (10c)
are shaded.

⊞

x

bc

y

⊞

x⊕ δ

a

y ⊕∆

⊕δ

⊕∆

Figure 3: Differential over modular
addition with two constants.

Observe that, as in the case of Proposition 1, by the linearity of the LSBs of the
addition, the only possible values for the carries cR, cL can be deduced solely from the
differences and constants:

cR = (δL′ ⊕ (aL||aM )⊕ aR′ ⊕∆L′)0 (11)
cL = (δR′ ⊕ aR′ ⊕ aL ⊕∆R′)0 (12)

Therefore, the system of equations above can be described by two independent systems
(one on xL and one on xR) of the following form, parameterized by a, b, δ, ∆ ∈ Fm

2 , c ∈ F2
(see Figure 3): {

(x⊕ δ) ⊞ a ⊕ x ⊞ b = ∆
c = 0 if x ⊞ b < 2n, 1 otherwise

(13)

where m = n−k, δ = δL′ , ∆ = ∆L′ , a = (aL||aM )⊞cR, b = aM ||aR′ , c = cL (using Eq. 11),
x = xR for Equation (10c), and m = k, δ = δR′ , ∆ = ∆R′ , a = aL ⊞ cL, b = aR′ , c = cR

(using Eq. 12), x = xL ⊕ δR′ for Equation (10d) (note that we substitute x = xL ⊕ δR′ to
match the carry expression from Equation (10e)).

The first equation is similar to the usual (non-rotational) differential transition through
modular addition with a constant, which was studied before in several works [Mac01,
ARS+20, ARS+22]. The differences with our problem are that the two constants added to x
and to x⊕δ may in principle be different (e.g., a = aL||aM , b = aM ||aR′ for Equation (10c)),
and we have a constraint on the output carry of one of the additions. This makes the
problem rather complicated. Note that even the restricted case considered in the previous
works does not have a known compact expression, only a recursive state-machine-based
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computation, which was nonetheless implemented in SMT solvers [ARS+20, ARS+22].
Finally, we remark that, based on our experiments, Equation (13) may have a number of
solutions that is not expressible as a sum or difference of two powers of two (in contrast to
the case of Corollary 1). We conclude that a general compact expression for the number of
solutions of such systems may not exist or may be more complex. However, it is possible to
efficiently compute this number by a general dynamic programming / state-machine-based
approach, which we describe below. This method is similar to the directed acyclic graph
approach from [MVCP10].

2.6.1 Computing probability of Equation (13)

Let us assume that n ≥ 1 is fixed, together with the vectors a, b, δ, ∆ ∈ Fn
2 . Define

c = c(x, b) = (cn, . . . , c0) to be the vector of carries in the addition x⊞b and c′ = (c′
n, . . . , c′

0)
to be the vector of carries in the addition (x⊕ δ) ⊞ a:

ci =
{

0 i = 0
maj(xi−1, bi−1, ci−1) 1 ≤ i ≤ n

(14)

c′
i =

{
0 i = 0
maj(xi−1 ⊕ δi−1, ai−1, c′

i−1) 1 ≤ i ≤ n
(15)

where maj : F3
2 → F2 is the majority function. Note that c = cn||[x ⊞ b ⊕ x⊕ b] with cn

equal to 1 if and only if x + b ≥ 2n, and, similarly, c′ = c′
n||(x⊕ δ)⊞ a ⊕ x⊕ δ⊕ a]. Using

this notation, the differential condition of Equation (13) becomes

δi ⊕∆i ⊕ ai ⊕ bi ⊕ ci ⊕ c′
i = 0 (16)

In order to compute the number of solutions to the system, we define intermediate counts
for each reduction of the equation to Fi

2. Note that the differential constraint affects the
intermediate counts for i ≤ n− 1, while for i = n there is no constraint. This is exactly
the same situation as in Lemma 1 and Lemma 2.

For C ∈ F2 define T C
i = T C

i (δ, ∆, a, b) as

T C
i =


1− C i = 0
#{x ∈ Fi

2 s.t. (x⊕ δ) ⊞ a ⊕ x ⊞ b = ∆, ci(x, b) = C,

ci(x, b)⊕ c′
i(x, b) = δi ⊕∆i ⊕ ai ⊕ bi} 1 ≤ i ≤ n− 1

#{x ∈ Fn
2 s.t. (x⊕ δ) ⊞ a ⊕ x ⊞ b = ∆, cn(x, b) = C} i = n

(17)

where (x⊕ δ) ⊞ a ⊕ x ⊞ b = ∆ is computed over Fi
2. Note that T 0

n and T 1
n correspond to

the number of solutions to Equation (13) for the cases c = 0 and c = 1 respectively.

Theorem 3. Let n ≥ 2 and 1 ≤ i ≤ n − 1. Then, the counts T 0
i , T 1

i satisfy the linear
recursion (

T 0
i

T 1
i

)
=

[
0 1
1 0

]bi−1

×Mρ ×
[
0 1
1 0

]bi−1

×
(

T 0
i−1

T 1
i−1

)
with Mρ ∈ Z2×2 given by

M000 =
[
2 1
0 1

]
M001 =

[
0 0
0 0

]
M010 =

[
1 1
0 0

]
M011 =

[
1 0
0 1

]
M100 =

[
2 0
0 0

]
M101 =

[
0 1
0 1

]
M110 =

[
1 1
0 0

]
M111 =

[
1 0
0 1

]
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and ρ ∈ F3
2 given by

ρ = (δi−1 ⊕ ai−1 ⊕ bi−1, ∆i−1 ⊕ δi−1, ∆i ⊕ δi ⊕ ai ⊕ bi ⊕ ai−1 ⊕ bi−1)

Furthermore, (
T 0

n

T 1
n

)
=

[
0 1
1 0

]bn−1

×
[
2 1
0 1

]
×

[
0 1
1 0

]bn−1

×
(

T 0
n−1

T 1
n−1

)
(18)

Proof. Fix i with 1 ≤ i ≤ n− 1. Let x′ = xi−1||x ∈ Fi
2 be a solution counted by T

ci(x′)
i .

Note that x must be counted by T
ci−1(x)
x (here, we use the fact that the condition in the

definition of T C
i is equivalent to the differential equation described in Equation (16)).

We first show that, for each x, the distribution of such extensions x′ (across T 0
i , T 1

i

and outside of both) is determined solely by ci−1(x) and fixed values bi−1 and ρ as defined
in the theorem. First, note that ci can be computed directly using Equation (14) from
xi−1, bi−1 and ci−1. The differential constraint (Equation (16)) can be rewritten using
ρ = (ρ0, ρ1, ρ2) as

c′
i = ci ⊕ ρ2 ⊕ ai−1 ⊕ bi−1 = ci ⊕ ρ2 ⊕ ρ0 ⊕ δi−1

On the other hand, it must equal its definition from Equation (15):

c′
i = maj(xi−1 ⊕ δi−1, ai−1, c′

i−1)
= maj(xi−1 ⊕ δi−1, ρ0 ⊕ bi−1 ⊕ δi−1, ci−1 ⊕ ai−1 ⊕ bi−1 ⊕ δi−1 ⊕∆i−1)
= maj(xi−1 ⊕ δi−1, ρ0 ⊕ bi−1 ⊕ δi−1, ci−1 ⊕ ρ0 ⊕ ρ1 ⊕ δi−1)
= δi−1 ⊕maj(xi−1, ρ0 ⊕ bi−1, ρ0 ⊕ ρ1 ⊕ ci−1)

where we used (in order) definition of Ti−1, definition of ρ, and the fact that maj(y+111) =
1 + maj(y) for all y ∈ F3

2. By combining the two expressions of c′
i, we get an equivalent to

the differential constraint

ci ⊕ ρ0 ⊕ ρ2 = maj(xi−1, ρ0 ⊕ bi−1, ρ0 ⊕ ρ1 ⊕ ci−1) (19)

which shows the claim about the distribution (over both values of xi−1 ∈ F2).
We now prove the effect of bi−1 on the transition matrix. It is easy to see that, in the

theorem’s statement, the swap matrices present when bi−1 = 1 simply flip the input and
the output carries ci−1 and ci. To prove this, observe that the condition in Equation (19)
when bi−1 = 1 is equivalent to the same condition with bi−1 = 0 and ci, ci−1, xi−1 flipped
(again using the aforementioned property of maj). Note that flipping xi−1 does not change
the distribution.

The transition of the counts T 0
i−1, T 1

i−1 into T 0
i , T 1

i can be compactly described by the
matrices Mρ, which are defined and directly computed as

Mρ;y,z = #{xi−1 ∈ F2 s.t. Eq. 19 holds with bi−1 = 0, ci−1 = z, ci = y} (20)

Finally, for the expression of T 0
n , T 1

n , the only difference is the absence of the differential
condition, which means that we have to count both ρ = (ρ0, ρ1, 0) and ρ = (ρ0, ρ1, 1)
(note that for i = n we still have well-defined ρ0 and ρ1), since this corresponds to the
partitioning of the set of all possible extensions x′ according to possible “next” difference
bits (i.e., at index n). This can also be seen by considering the two possible values of ∆i.

Then, it is left to observe by computation that Myz0 +Myz1 =
[
2 1
0 1

]
for all y, z ∈ F2.

This theorem can be of independent interest, since it describes the differential transition
through modular addition with two different constants. For example, it may be useful in
differential cryptanalysis of modular addition with different domain separation constants.
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Summary of the method to compute the probability of RX-differential through constant
addition We now summarize how to compute the probability of Equation (9). First,
if k > n/2, then, by Proposition 5, we can replace the parameters by δ′ = δ ≫ k,
∆′ = ∆ ≫ k, and k′ = n− k, without changing the number of solutions. Then, compute
the carries cR, cL from differences using Equations (11), (12). Count the number of solutions
to each of the two subsystems of the form given in Equation (13) using Theorem 3. Finally,
multiply the two numbers of solutions and divide by 2n to compute the desired probability.
We implemented and extensively verified this approach in practice.

2.7 Experimental verification
In order to ensure the correctness of our theorems, we have performed extensive computa-
tional verifications.

For our main result, Theorem 2 (and the validity criteria Theorem 1), we performed
the following tests:

1. For all 2 ≤ n ≤ 8, all rotational amounts 1 ≤ k ≤ n − 1, all 22n possible input
differences, we computed the precise distribution of output differences by enumerating
all 22n possible inputs and computing the corresponding output differences. For every
differential (α, β) → δ, we verified whether validity criteria correctly tell if it has
zero or nonzero matching inputs. For every differential with at least one matching
input, we verified that the number (divided by 22n) matches the theorem’s claim.
This requires 24n time per (n, k) pair.

2. For all 2 ≤ n ≤ 12, all rotational amounts 1 ≤ k ≤ n− 1, we sampled 100 random
input differences and performed the same verification as in the first step (for all
output differences).

For the same ranges of parameters (exhaustive for n ≤ 8 and random samples for n ≤ 12)
and using similar methods, we tested formulas for XDS/XDS+ (Lemma 1, Lemma 2) and for
Rn/R+

n (Proposition 3, Proposition 4). Furthermore, for these parameters, we verified that
Theorem 3 matches the definition in (17), as well as the complete method for computing
the exact probability of an RX-differential through constant addition (summarized at the
end of Subsection 2.6) matches direct exhaustive probability computation.

Finally, for each 2 ≤ n ≤ 30, we chose 1 000 000 random valid n-bit differential
transitions and verified Proposition 2, Lemma 3, Lemma 4, Lemma 5, based on theoretical
definitions. These experiments also support our intermediate statements, which are of
independent interest.

3 Impact of the Correction on the Previous Formula
In this section, we study the difference between the previous approximate formula for the
RX-probability [AL16] for the rotation k = 1. The case of [HXW22] for the rotations
k > 1 will be studied in the applications section. We study the first case in detail due to
several papers building upon this result [LWRA17, RLA17, XLSL19, Ran22]. As we show,
the error factor for some transitions ranges from 1/2 to 3/2, that is, the correct transition
probability may be twice lower or 50% larger than claimed.

First, we reproduce the original theorem behind RX-differential transitions through
modular addition for rotation k = 1.
Theorem 4 ([AL16], under assumptions). Let n ≥ 2 be an integer and fix k = 1. With
the same notation as in Theorem 2, let

χ = α⊕ β ⊕∆ = (χL′ ||χR′) ∈ (Fn−1
2 × Fn

2 )
ν = (α⊕ β) ∨ (α⊕∆) = (νL′ ||νR′) ∈ (Fn−1

2 × Fn
2 ).
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Then,

Pr
x,y∈Fn

2

[←−−−
x ⊞ y ⊕ (←−x ⊕ α) ⊞ (←−y ⊕ β) = ∆

]
= 1(I⊕SHL)(χL′ )⊕1≼SHL(νL′ ) · 2− wt(SHL(νL′ )) · 2−3

+ 1(I⊕SHL)(χL′ )≼SHL(νL′ ) · 2− wt(SHL(νL′ )) · 2−1.415

Here, SHL operates on (n− 1)-bit words, so that the most significant bit is removed.

Remark 1. We set a1 = b1 = ∆1 = 0 to avoid redundancy and a2 = α, b2 = β, ∆2 = ∆ in
the original notation of [AL16].

Although the authors of [AL16] write “Our goal is to estimate the transition probability”
before the theorem, and approximate the probabilities of outgoing carries by 1/2 “for large
n”, we will show that for certain RX-differential transitions the error in the probability
can reach a factor of 2, which certainly requires a more precise statement. However,
surprisingly, outside of this class of transitions, the theorem yields exact values despite
using approximations.

Theorem 5. Theorem 4 holds exactly when χL′ /∈ {0 . . . 0, 1 . . . 1}. Furthermore, in the
remaining cases, the correct probability can be obtained by multiplying the probability from
Theorem 4 by the factor

1 + (−1)χ02d+1−n

which ranges between its extreme values 1/2 (when χ0 = 1 and d = n− 2) and 3/2 (when
χ0 = 0 and d = n− 2).

Proof. Consider Theorem 2 with k = 1. It is easy to see that the factor Tk is equal to
1/2+(−1)χ1×2−2, which is equal to 1/4 and 3/4, respectively, for the cases χ1 = 1 or χ1 = 0.
The factor Tn−k is equal to 2−d−1 with d = wt(SHL(νL′)), whenever χL′ /∈ {0 . . . 0, 1 . . . , 1}.
We obtain the correct probabilities 2−d−3 and 2−d−3 · 3 for the cases χ1 = 1 and χ1 = 0,
respectively. Since the least significant bit of SHL(νL′) is equal to 0, these cases correspond
precisely to the two indicators in the expression of Theorem 4, and thus the two theorems
agree.

We now study the effect of the missing term when χL′ ∈ {0 . . . 0, 1 . . . , 1}. Dividing the
correct probability from Theorem 2 by the probability from Theorem 4 yields the ratio
between the correct Tn−k and Tn−k with the missing second term, equal to

2−d−1 + (−1)χ02−(n−1)−1

2−d−1 = 1 + (−1)χ02d+1−n

as claimed. When d takes its maximum value n−2 (which does not contradict the condition
on χL′ or χ0), we get the values 1/2 or 3/2.

Remark 2. The incorrect probabilities with maximal correction factor are exactly equal to
2−n−1, i.e., they are the least probable transitions. The correction factor decreases to 1 as
the probability increases.
Remark 3. To our understanding, the issue in the statement of [AL16] comes from the
fact that, despite considering the 4 cases of the incoming carries into the two chunks and
estimating their probabilities (similarly to our Subsection 2.2), the authors computed the
differential transition probabilities directly, without conditioning the outgoing carries. In
other words, they do not consider the equations Equation (4e) and Equation (4f) in the
equation system that decomposes the problem. In the case of balanced outgoing carries,
only half of the counted solutions to the classic differential equations would satisfy the
outgoing carry constraint, which is what we observe.
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Remark 4. The discrepancy can also be seen from running the original theorem verification
script referenced in [AL16]1. Note that the script only counts experimentally the number
of solutions for fixed input/output differences. By setting a1 = b1 = ∆1 = 0 (redundant
differences) and a2 = 0x2556 ≪ 7, b2 = 0x0b21, ∆2 = 0x2e76, the program outputs
1 523 712 = 220.54 values (probability 220.54−32 = 2−11.46), which could not be output by
their theorem (it has either an integral weight or a fractional part −0.415).

Example 1. Let n = 16, k = 1. Consider the RX-differential transition

α = 1110000000010011

β = 0001001110100001

∆ = 0000110001001101

χ = 1111111111111111

ν = 1111111111111110

We have d = wt(SHL(νL′)) = n− 2 = 14. Theorem 4 claims probability 2−d · 2−3 = 2−17,
while the correct probability by Theorem 2 is equal to (2−d−1 − 2−n) · 1/4 = 2−18.
Exhaustive verification confirms 232−18 = 214 solutions.

We now explore the question of how many RX-differential transitions are affected by
the error.

Proposition 6. Let n > k = 1. There exist at least 16 · 3n−2 valid RX-differential
transitions for which the correction factor from Theorem 5 is equal to 1/2 (and the same
amount when it is equal to 3/2).

Proof. Fix χL′ = 0 . . . 0 ∈ Fn−1
2 and νL′ equal to 1 in all positions except maybe the most

significant bit. Then, the validity criteria are satisfied and the correction factor applies.
We show how to construct at least 8 · 3n−2 transitions that fit this constraint. For each
position i, 1 ≤ i ≤ n − 2, the triple (αi, βi, ∆i) must sum to 0 and not all three must
be equal. Exactly the 3 permutations of (0, 1, 1) satisfy the constraints. For the most
significant bit i = n− 1 we do not have the constraint on νn−1 (but χn−1 still must be
0), adding another solution (0, 0, 0). Finally, observe that any assignment to (α0, β0, ∆)
is valid and only affects the value of χ0 that, in turn, affects the sign of the term (4
assignments per each sign). We obtain 4× 3n−2 × 4 assignments. The case of χL′ = 1 . . . 1
is fully symmetric and double the number of constructed transitions.

Remark 5. This proposition covers the least probable transitions (with d = n−2), but there
are many other affected transitions (with χL′ ∈ {0 . . . 0, 1 . . . 1}). As mentioned above, the
correction factor tends to 1 as d decreases and the transition probability increases.

We conclude that Ω(3n) out of 8n transitions are affected, which is an exponentially
large number but also still an exponentially small fraction of all transitions. The following
proposition completes the comparison by counting all valid RX-differential transitions.

Proposition 7. The number of valid RX-differential transitions for n > k ≥ 1 is equal to
64× 7n−2.

Proof. The proof is based on the validity criteria Theorem 1 and induction on the i for
i-bit suffixes of differences, 1 ≤ i ≤ n. We will maintain two counters (ci,0, ci,1), one for
the number of valid i-bit suffixes with νi−1 = 0 (all 3 bits are equal) and one for the case
νi−1 = 1 (not all 3 bits equal).

1http://homes.esat.kuleuven.be/~tashur/Rotational_Cryptanalysis_in_the_Presence_of_
Constants.zip

http://homes.esat.kuleuven.be/~tashur/Rotational_Cryptanalysis_in_the_Presence_of_Constants.zip
http://homes.esat.kuleuven.be/~tashur/Rotational_Cryptanalysis_in_the_Presence_of_Constants.zip
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(base case) For i = 1, all suffixes are valid and we have 2 and 6 transitions, respectively,
for the two values of νi−1.

(induction i → i + 1 ≤ k) We now study how the valid suffixes of length i can be
extended to length i + 1. Note that due to the use of SHL in the criteria, νi−1 determines
whether there will be any restriction in position i (length i + 1)). The restriction consists
in one XOR condition on the sum of the most significant bits at position i, meaning that
it exactly halves the number of possible candidates, both for cases, independently of νi

(for both cases of νi the XOR condition halves the number of candidates). Thus, each
of the ci,0-counted suffixes contributes 1 and 3 to counters ci+1,0, ci+1,1 respectively, and
each of the ci,1-counted suffixes contributes 2 and 6 to counters ci+1,0, ci+1,1 respectively:(

ci+1,0
ci+1,1

)
=

[
1 3
2 6

]
×

(
ci,0
ci,1

)
(21)

(induction i = k → i = k + 1) This case is similar to the base case since there are no
constraints. We get ck+1,0 = 2(ck,0 + ck,1) and ck+1,0 = 6(ck,0 + ck,1).

(induction i > k → i + 1) This case is the same as the induction i→ i + 1 ≤ k.
Observe that the ratio ci,1 = 3ci,0 is maintained both through the base step and through

the induction steps. Furthermore, the sum of the two counters starts at 8 in the base step,
and is multiplied by 7 in the induction cases excluding i = k → i = k + 1, in which case it
is multiplied by 8. It follows that the final count is equal to 8 · 8 · 7n−2.

As a result of independent interest, we obtain an average probability of a valid RX-
differential transition.
Corollary 2. Let n ≥ 2 and let (α, β, ∆) ∈ Fn

2 be an RX-differential transition through
modular addition chosen uniformly at random among all valid (nonzero probability) transi-
tions. Then, the expected probability of the chosen transition is equal to

49
64 ·

(
4
7

)n

Proof. For each pair of input differences (α, β), the sum of the probabilities of transitions
(α, β, δ) over all valid output differences δ is equal to 1. Therefore, the sum of probabilities
of all valid transitions is equal to the total number of input differences, which is 22n. It
follows that the average probability is 22n divided by the number of valid transitions,
which is 64 · 7n−2, which can be written as in the statement.

Example 2. The average trail probability for n = 16 is equal to 2−13.3 and for n = 32 is
equal to 2−26.22.

Impact on published results After a quick search we did not find any published RX-
differential trail that is noticeably affected by the error. Low-probability transitions are
unlikely to have the difference XOR equal to all-zeros or all-ones, while high-probability
sparse transitions might hit the all-zero differences’ XOR but would not have noticeable
correction (2d+1−n being very small).

On the other hand, all published searches for optimal trails based on the theorem from
[AL16] can no longer be claimed to be optimal, since they might be missing a better trail
affected by the correction.

Experimental verification We verified experimentally the claims in this section. For small
values of n ≤ 12, the experimental (exhaustive) number of solutions to the RX-differential
equation always matches our theorem and is related to the output of the theorem of [AL16]
exactly as Theorem 5 predicts. We also verified the construction in Proposition 6 for the
same values of n, and the values in Proposition 7, Corollary 2 are verified for n ≤ 9. All
verification programs are provided in the code repository.
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4 MILP-based Search for RX-trails
Automated search for cryptanalytic attacks is a very active branch of research. In this
section, we show that our probability formula from Theorem 2 can be modeled by a compact
MILP (Mixed Integer Linear Programming) system. This allows efficient automated search
for best RX-differential trails, for any rotation amount k.

4.1 MILP model for the validity criteria (Theorem 1)
Theorem 1 allows us to characterize in which cases the modular addition of an RX-
difference (α, k) with an RX-difference (β, k) propagates with a nonzero probability to an
RX-difference (∆, k). The goal now is to be able to describe this characterization using
linear inequalities in order to fit them into an MILP model. We denote by z = XOR(x, y)
the process of modeling the relation z = x ⊕ y, which can be done in 4 inequalities as
shown in Proposition 11 in Appendix I.

To model the propagation through the modular addition, one could simply unroll the
whole expression of Theorem 1, which leads to a lot of inequalities and extra variables.
Instead, consider the following boolean function f : F6

2 → F2

f(x1, x2, x3, x4, x5, x6) =


1 if (x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6)

≤ ((x4 ⊕ x6) ∨ (x5 ⊕ x6))
0 otherwise,

then we want to guarantee that for 1 ≤ i < n, f(αi, βi, ∆i, αi−1, βi−1, ∆i−1) = 1. We
notice that f evaluates to 0 in only the eight following points

(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (1, 1, 1, 0, 0, 0),
(0, 1, 1, 1, 1, 1), (1, 0, 1, 1, 1, 1), (1, 1, 0, 1, 1, 1), (0, 0, 0, 1, 1, 1)

thus we can model f(x1, x2, x3, x4, x5, x6) = 1 with a set of 8 inequalities (each removing
one point) with standard MILP modeling techniques (see Proposition 13 in Appendix I).
We denote this system by f(x1, x2, x3, x4, x5, x6), and thus we can model the propagation
of RX-differences as follows.
Proposition 8. Let α, β, ∆ ∈ Fn

2 , 0 ≤ k < n and a, b, δ be vectors of n binary variables
modeling α, β, and ∆, respectively. Then, we can model the relation [(α, k), (β, k)] ⊞−→ (δ, k)
with the set of inequalities{

δ0 = XOR(a0, b0)
f(ai, bi, δi, ai−1, bi−1, δi−1) 1 ≤ i < n

If k > 0, the first constraint and the constraint for i = k are omitted.
When the weight of the differential is still needed (see Section 5), we can still use

only 8 inequalities per bit, although of a more complicated shape and larger coeffi-
cients. These 8 inequalities were found using the tool from [Udo21], we denote them
by g(x1, x2, x3, x4, x5, x6, x7) and for completeness they are given in Proposition 14 in
Appendix I. This improves the state-of-the-art of 13 inequalities per bit from [FWG+16].
Proposition 9. Let α, β, ∆, η ∈ Fn

2 , 0 ≤ k < n and a, b, δ, η be vectors of n bi-
nary variables modeling α, β, ∆ and η, respectively. Then we can model the relations
[(α, k), (β, k)] ⊞−→ (δ, k) and η = SHL((α⊕ β) ∨ (α⊕ δ) with the set of inequalities

δ0 = XOR(a0, b0)
η0 = 0
g(ai, bi, δi, ai−1, bi−1, δi−1, ηi) 1 ≤ i < n
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Proof. By computation, it can be checked that g(ai, bi, δi, ai−1, bi−1, δi−1, ηi) ⊆ {0, 1}7

holds if and only if ηi matches the definition of ηi (i.e. ηi = 0 if and only if ai−1 = bi−1 =
δi−1) and ai ⊕ bi ⊕ δi = ai−1 ⊕ bi−1 ⊕ δi−1 whenever ηi = 0.

4.2 MILP model for the Tn function
First, recall the expression for Tn:

Tn(α, β, ∆, v) = 2−d−1 + 1α⊕β⊕∆∈{0...0,1...1} ×
(
(−1)v × 2−n−1)

where α, β, ∆ ∈ Fn
2 , v ∈ F2 and d = wt(SHL((α ⊕ β) ∨ (α ⊕ ∆)). In the MILP model,

α, β, ∆ are represented as vectors of binary variables, v is a binary variable, and the Tn

output is represented by a real variable w = − log2 Tn(α, β, ∆, v). We also introduce the
following auxiliary variables:

• binary vector χ = α⊕ β ⊕∆ ∈ Fn
2 ;

• binary variable a = 1α⊕β⊕∆∈{0...0,1...1} = 1χ∈{0...0,1...1} ∈ F2;

• binary vector η = SHL((α⊕ β) ∨ (α⊕∆);

• integer variable d =
∑n−1

i=0 ηi;

• real variables ℓ0 = log2 (1 + 2−n−d), ℓ1 = log2 (1− 2−n−d);

• real variable ℓ = vℓ1 + (1− v)ℓ0.

Then, the weight w can be expressed as

w = − log2 Tn(α, β, ∆, v) (22)
= − log2 (2−d−1 + a(−1)v2−n−1) (23)
= d + 1− log2 (1 + a(−1)v2−n+d) (24)
= d + 1− a log2 (1 + (−1)v2−n+d)) (25)
= d + 1− aℓ. (26)

Finally, since a is binary, the multiplication can be rewritten using a big-M multiplexing
system: {

w − aM ≤ d + 1 ≤ w + aM

w − (1− a)M ≤ d + 1− ℓ ≤ w + (1− a)M

where M is a sufficiently large constant (e.g., M = 2n suffices). This system of inequalities
is equivalent to w = d + 1 when a = 0 and w = d + 1− ℓ when a = 1. Thus, it is sufficient
for modeling the variables d, a and ℓ.

Model for an “all-equal” variable Let x1, . . . , xm, y be binary variables. The goal is
to model the constraint “y = 1 if and only if x1 = . . . = xm”, which we denote by
eq(x1, . . . , xm, y). In particular, this is needed to compute the variable d in the Lipmaa-
Moriai theorem and in our expression Tn. This case only requires m = 3 and was already
solved in [FWG+16], although combined with the validity criteria (requiring 13 inequalities).
However, we also need the case of a larger m to model the a variable. More precisely, we
need m = n− k or m = k for rotational cryptanalysis. We propose a generic model with 4
inequalities valid for any number of variables m.
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Proposition 10. Let x1, . . . , xm, y be binary variables. The set of solutions to the following
system is precisely characterized by “y = 1 if and only if x1 = . . . = xm“:

(x1 + . . . + xm−1)− (m− 1)xm + (m− 1)(1− y) ≥ 0
−(x1 + . . . + xm−1) + (m− 1)xm + (m− 1)(1− y) ≥ 0
x1 + . . . + xm + y ≥ 1
−(x1 + . . . + xm) + y ≥ −m + 1

Proof. The first two inequalities are trivially satisfied when y = 0, and are equivalent to
(x1 + . . . + xm−1) = (m− 1)xm when y = 1, which is only possible when x1 = . . . = xm.
In other words, they model the implication y = 1 ⇒ x1 = . . . = xm. Similarly, the last
two inequalities model the implication y = 0 ⇒ 1 ≤ x1 + . . . + xm ≤ m− 1.

Model for η and d This variables are standard in modeling the differential transi-
tions through modular addition, as they appear in the Lipmaa-Moriai theorem [LM01].
Equivalently, these can be modeled by n− 1 constraints

{eq(αi, βi, ∆i, 1− ηi)}0≤i≤n−2 ∧ d = η0 + . . . + ηn−1

Model for χ and a The vector χ can be modeled as the element-wise XOR of 3 vectors
by standard techniques using 8 inequalities (see Proposition 12), and the variable a is
characterized by eq(χ0, . . . , χn−1, a).

Model for the logarithms The logarithm function can be modeled using a so-called
piecewise-linear function constraint (PWL), which essentially allows a lookup-table-style
constraint for an integer variable with small domain. For all values of d ∈ {0, . . . , n− 1},
we precompute ℓ0(d) = log2 (1 + 2−n−d) and ℓ1(d) = log2 (1− 2−n−d), and these tables
form the PWL. Note that these functions are convex which may potentially improve
model performance2. Finally, the variable ℓ can be modeled using a big-M multiplexing
constraint: {

ℓ− vM ≤ ℓ0 ≤ ℓ + vM

ℓ− (1− v)M ≤ ℓ1 ≤ ℓ + (1− v)M

which is equivalent to ℓ = ℓ0 when v = 0 and ℓ = ℓ1 when v = 1.

The case n = 1 When n = 1, everything is a lot simpler and we do not need a PWL
constraint. Indeed in that case, we always have a = 1 and d = 0, and thus we always have
w = 1− ℓ. By precomputing ℓ0 = log2 (1 + 2−n) and ℓ1 = log2 (1− 2−n), we can use the
same kind of multiplexing constraint as in the previous paragraph to have w = 1 − ℓ0
when v = 0 and w = 1− ℓ1 when v = 1.

5 Applications
We modeled several ciphers using the sets of inequalities from the previous section and
ran these experiments for different values of the rotation k. Note that in our experiments,
solving these models was quite slow even when using a 96-core server. As a result, we
made the following two changes.

Before actually searching for the best trail (in terms of probability), we first solve a
heuristic model where instead of maximizing the probability (i.e. minimizing − log(p)), we

2See https://www.gurobi.com/documentation/current/refman/objectives.html#subsubsection:
PiecewiseObj

https://www.gurobi.com/documentation/current/refman/objectives.html#subsubsection:PiecewiseObj
https://www.gurobi.com/documentation/current/refman/objectives.html#subsubsection:PiecewiseObj
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minimize the total number of "not-all-equal" (NEQ) variables in the RX-differentials over
modular additions. Indeed, if we look at the formula for the Tn function from Theorem
2, we can observe that it is essentially equal to 2−d−1 with a small deviation, where d
is the number of bits that are "not-all-equal" in the RX-differential over the modular
addition. What we are essentially doing here is just approximating the probability of
each RX-differential propagation through the modular addition only using this quantity
d and ignoring the other terms. This results in a much simpler model to compute the
objective, and we use that to quickly obtain a "reasonably" good initial trail. Note that
we do not need to completely optimize this heuristic model, as (contrary to what one
could expect), minimizing this quantity doesn’t necessarily lead to a trail with the best
probability. However, this allows use to get a solution that can be used as a starting point
for the complete model (whose goal is now to find a trail with the best probability), and
in practice, in the same amount of time, the heuristic model gave us higher quality (i.e.
better probability) solutions than solving the complete model from scratch.

Armed with this heuristic model to find a good starting point for the second model,
we expected this to be enough to solve the complete model to optimality. Unfortunately,
the complete model is still (in most cases) rather hard to solve to optimality and we had
to limit how much time we spent on each case so that we are able to give results with
multiple parameters (in particular, multiple values of k). In case of Alzette, we decided to
limit it to 1 hour for the heuristic model (which was surprisingly efficient to get decent
solutions already) and then 2 additional hours for the complete model to try to improve
the probability to something better than what the heuristic model found. For the first
constant c0 and all 16 rotations we allowed 4 hours for the complete model. For other
targets (such as Speck and Salsa) we used 5 + 55 minutes split. Note that we are quite
limited in time due to the large number of instances to be solved: for example, for Alzette
we consider 128 different instances (8 constants × 16 rotation amounts).

For an example of an evolution of bounds with respect to time, see Figure 4 depicting
the case of Alzettec0 and k = 6. Here, the best known solution d = 29 was obtained after
only 4 minutes of search, and spending 1 more hour did not improve the NEQ heuristic
(only slightly improved the lower bound). Although for a few instances the improvements
happened near the end of the time limit, we could not afford to spend more time on all
constants due to the large number of instances. All the corresponding evolution graphs
are available in the code repository.
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Figure 4: Evolution of lower (blue) and upper (red) bounds on the NEQ-weight of the
trail, on Alzettec0 with rotation k = 6. Left: first 500 seconds, right: 1 hour. Crosses
denote new integer lower bounds.
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Verifying validity In all our experiments, we also searched for a pair of plaintext that
would verify the trail, so that we are at least sure that the trail is not actually impossible.
To do so, we followed the same idea as [SRB21], creating an MILP model that models
the transformation of the two plaintexts, with the added constraints that they need to
follow the trail resulting from the previous model. For Alzette and Speck, we only did this
verification at the end of the probability optimization and it found a pair of plaintexts
most of the time. For Salsa, we had to perform more modifications due to the specific
structure of trails for Salsa, see Section 5.2.

5.1 Alzette
Alzette is a 64-bit ARX-based S-box proposed by Beierle et al. [BBdS+20a] and part of the
SPARKLE [BBdS+20b] permutation. We recall the structure of the Alzette permutations in
Appendix A.

Due to its large size, one cannot expect to compute the usual properties of an S-box
like the DDT in reasonable time, and the authors explicitly welcome tools to examine its
specific properties. Alzette depends on a 32-bit constant, each constant defining a new
permutation, and we focused on the eight constants carefully chosen by the designers,
which are the ones used in SPARKLE. The resulting permutation when using constant c is
denoted Alzettec.

In [HXW22], the authors give an (erroneous) formula to compute the probability of
RX-differentials through the modular addition and gave some results on Alzette. In
particular, they claimed to have found a 4-round trail over Alzettec0 with c0 = 0xb7e15162
with probability 2−37.66, with the input/output differences being

(0x0841fa08, 0x0420f900)→ (0xdc33f048, 0xbfee1412)

and without giving the intermediate values for the trail. Using our MILP modeling we were
able to find (at least) one trail matching this input/output, and evaluating the probability
of this trail with [HXW22] formula leads to a probability of 2−37.50 (thus it might not be
this exact trail they found, although it has a slightly higher probability already). However,
when evaluating the probability of this trail with our (correct) formula, the probability
ends up being 2−36.66.

Moreover, in [HXW22, Tab.3], the authors gave the best probability they found over 4
rounds for Alzettec0 with k ∈ {1, 8, 15, 16}. In Table 11 (Appendix D), we give the best
trails we were able to find for every value of k and in particular, we can observe that
we found trails with much better probabilities than claimed in [HXW22]. We give the
comparison for k ∈ {1, 8, 15, 16} in Table 2. Note that for our trails, the probability shown
here was the best one we could find in a few hours of calculations, but was not proven to be
optimal by the solver. The table also reports the experimental probability of distinguishers.
These numbers can differ from trail probabilities due to dependence of consecutive rounds,
clustering effect (small, see below), and measurement error (also expected to be small).
Thus, any strong discrepancy has to come from the rounds’ inter-dependence. Overall, we
give the results for the best trails we were able to find for each of the 8 specified constants
for Alzette and for every value of k between 1 and 16 (half the word size) in Table 11
through 18 in Appendix D.

On the clustering effect During our experimental verifications, we computed both the
probability of the differential (input and output RX-difference match) and the probability
of the trail (all intermediate RX-differences match). Among all experimental verifications,
we observed a very small clustering effect (i.e., encryption pairs satisfying the input/output
RX-difference but not all of the intermediate ones). For the cases given in Table 2, we
observed no clustering for the trails given for k = 1 and k = 8; for k = 15 we found 46
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encryption pairs following the trail and 2 encryption pairs only satisfying the differential;
for k = 16 we found 293 and 9 pairs respectively. For the latter two cases, we have
the experimental differential probability 2−36.42 and 2−33.76 versus the experimental trail
probability 2−36.48 and 2−33.81. Technical details and verification logs are available in the
supporting code of this work.

Table 2: Comparison of the probability of the best trail found by [HXW22] and our work,
for Alzettec0 with k ∈ {1, 8, 15, 16}. The values given are the negated base-2 logarithms
of the probabilities. The last column refers to the 4-round distingusher experimental
probability over 242 pairs.

k [HXW22] Ours (trail) Ours (exper.)
1 37.66 33.66 35.26
8 46.98 40.00 38.30
15 43.00 37.00 36.42
16 44.00 34.00 33.76

An example with k ̸= 1 being stronger For five out of eight constants, the best trails
among those we found are given for k ̸= 1. This shows that rotation amounts k ̸= 1 often
provide superior trails compared to k = 1. In particular, for the constant c7 = 0xc2b3293d,
the best trails we found for Alzettec7 have probability 2−37.66 for k = 1 and probability
2−32.44 for k = 2 (best over all k). The CASCADA tool [Ran22, RR22] also found the
trail for k = 1 within 5 hours on a single core and claims that its optimal3.

We performed experimental verification of the aforementioned trail and observed
probabilities 2−32.79 for the case of k = 2 and 2−37.83 for the case of k = 1 (over 242

encrypted pairs each), matching well the trail probability. On the other hand, we also
observed cases in which the experimental probability decreased due to dependencies
between rounds. The involved trails, together with reproducible verification code and logs,
are provided in the supporting code.

5.2 Salsa
Salsa [Ber08b] is a stream cipher that is the precursor to Chacha [Ber08a]. It has an
internal state of 512 bits, split into 16 32-bit words which are organized in a 4× 4 array.
This internal state is updated through the use of the so-called "Quarter Round" function
QR(a, b, c, d) defined as described in Appendix B.

Note that the initial state has four constant words, placed on the diagonal of the state.
This means that the first round is quite special, as one word in each QR function will be
fixed to a constant. Due to this, as well as to the large state, we decided to focus only on
the first round. By doing so, each QR function in the first round is independent, and we
can focus on each one by one.

Note that since we have this constant word, searching for trails becomes a bit more
complicated. First, we need to ensure that the constant word is actually used to build the
trail. However due to the complexity of modeling the modular addition with a constant
(see Section 2.6) we did not model the modular addition with a constant as such. Instead,
we fixed the RX-difference to the appropriate difference for this constant. For example,
for the first QR function, the first word is fixed to the constant 0x61707865, thus in the
model for the first QR function, we fix the RX-difference of the first word of the input
to 0x61707865⊕ (0x61707865 ≪ k) depending on the rotation offset k considered. Note

3The performance of CASCADA varied significantly for different Alzette constants: for some constants
it takes 20 minutes to find the optimal trail, for some constants it didn’t find the best trail after a full day
of computations.
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that this results in a search space that is bigger than it should be for trails, so the resulting
probabilities are only an estimation of the actual probability.

Moreover, because of this constant, finding a pair of matching plaintexts for a given
trail turned out to be very unreliable if we only did this verification after optimizing the
probability, as many trails end up being invalid. To counter that, we implemented the
search for a pair of matching plaintexts each time a trail was found by the solver. This is
made possible by the Callback functionality of the Gurobi solver, which allows the user
to execute some code during the solving process without interrupting it. Thus each time
the solver found a candidate trail during the optimization process, we ran the search for
a matching pair of plaintexts. If no such pair exists, we deem this trail invalid and add
constraints (called Lazy Constraints in Gurobi) to indicate to the solver that this solution
was in fact, not a valid solution. This does slow down the solving process significantly but
means that the resulting trails and probabilities are likely to be much more accurate. We
give the results for each QR in Table 7 through 10 in Appendix C.

In the end, since the QR functions of the first round are independent, we can easily
derive the probability of the best trail we can obtain for each k based on the best trails we
found for each quarter round by simply multiplying the probabilities (i.e. summing the
logs). While not all the best trails we found were proven to be optimal, we still also have
lower bounds on the best possible value for the log of the probability. This results in the
probabilities and respective lower bounds given in Table 3, and we can observe that the
best probability is obtained with k = 8.

Table 3: Best trails we found on the first round of Salsa, as well as the best lower bounds
proven by the solver.

k bestLB -log2(prob) k bestLB -log2(prob)
1 99.5563 112.6405 9 101.6015 108.8935
2 100.5827 114.5341 10 104.1313 116.9068
3 107.6998 116.7500 11 106.0595 110.9481
4 100.9024 105.4544 12 108.4113 118.9285
5 102.3382 116.4515 13 100.7455 109.9718
6 107.4087 116.6232 14 100.0059 113.9945
7 109.5945 112.6569 15 104.8363 113.9892
8 95.4763 103.7891 16 104.4756 119.9856

5.3 Speck
The Speck family of block ciphers was designed by the NSA for lightweight software
applications [BSS+15]. It can be parameterized by n, the word size, and m the number of
key words, leading to Speck2n/mn with block size 2n and key size mn. We searched for
good trail for up to 6 rounds on Speck and, as it is a block cipher, the resulting trails are in
the related-key model, where we allow RX-differences both in the plaintext and in the key.

Due to the nature of Speck as a block cipher, when searching for trails over r rounds,
we can exploit results on r′ < r rounds to help the solver find solutions and/or prove lower
bounds. Indeed, assume that we found some lower bounds for r′ rounds (either for the
heuristic on the number of not-all-equal bits, or on the actual search for the probability),
then we can derive Matsui-like bounds for any r′ consecutive rounds within those r rounds.
This means that if we got a lower bound br′ for r′ rounds, we can add the constraints

r′∑
j=1

oi+j ≤ br′ for i ∈ {1, . . . , r − r′}
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where oi is the quantity we are optimizing on for one round (i.e. for the heuristic, the
number of not-all-equal bits in one round, and for the probability, the overall probability
within one round).

This means that we first fix k, then iterate on the number of rounds so that we are
able to exploit earlier results for the same k.

Unfortunately, due to complexity of the key schedule (and the increased state size),
we were able to search for trails only for Speck32/32 for up to 6 rounds and for every
k ∈ {1, . . . , 8}, as well as for Speck48/48 for up to 6 rounds for every k ∈ {1, . . . , 9}. Note
that these two parameter sets were not listed in the [BSS+15] paper due to small key size,
but they are defined by the general structure (e.g., 16-bit words with a 2-word key). Due
to the time limitations, we were not able to have results on Speck48/48 for k ∈ {10, 11, 12}
nor for bigger variants of Speck. The probability for the best trail found for each case is
given in Table 19 through 28 in Appendix E and F.

5.4 Observations on the results
Overall, our experiments showcase several interesting behaviors. We have clear evidence
that the choice of the rotation k to build the RX-differences is not as clear cut as it seemed
to be in previous works. Indeed, we have several examples where k > 1 gives better
results, and there doesn’t seem to be a clear rule on the evolution of the best trails when
k changes. Moreover, the heuristic of only minimizing the number of not-all-equal bits
seemed surprisingly efficient. In a lot of cases, the probability optimization did not go
much further than the best trail that the heuristic was able to find, although we did make
the choice of limiting the total time for each experiment so that we would be able to have
results for every value of k. Thus using this heuristic as a simpler, relatively quick way to
get a good trail for a given cipher seems to be a good idea.

5.5 Comparison with previous trail search techniques and distinguishers
Overall, our modeling is not always fast performing. Due to the main focus of the
paper, its advantages are correctness/precision and applicability to rotation amounts
k ≥ 2. Application of advanced modeling strategies (e.g., ones similar to [LWRA17]) and
alternative modeling frameworks (SMT/SAT/CP) is out of scope of this work. Nonetheless,
we provide a brief comparison with previous work.
Remark 6. We remind that, as shown in Section 3, existing search models even for the
rotation k = 1 can not claim optimality since both expressions used inside models and
expressions used to compute the probability of the trail are not correct for a class of
transitions.

Alzette We implemented Alzette in the CASCADA tool [RR22], which implements the
technique from [LWRA17]. The tool does not support parallelized search so it was run
on a single core of an i7-1185G7 3.00GHz CPU. It managed to find an “optimal” trail
(with respect to the previous formula and a precision level) for all eight 4-round Alzette
instances. However, the performance varied extremely depending on the constant and the
weight of the best trail. Comparison with our results for k = 1 and best over all k is given
in Table 4.

Speck As mentioned in Subsection 5.3, we only managed to search for related-key trails
in reduced versions of Speck (32/32 and 48/48) and only for a small number of rounds (up
to 6). Furthermore, in these cases, the best found trails were with rotation amount k = 1.
Thus, we can not directly compare our results to those of [LWRA17], who managed to
search for related-key RX-trails in versions ranging from Speck-32/64 (12 rounds) up to
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Table 4: Comparison of the trail search using the CASCADA tool [RR22] (modeling
technique from [LWRA17]), [HXW22] and our work, for all Alzetteci

instances. Optimals
(as claimed by the respective tool) are in bold. “wt” (weight) stands for negative base-2
logarithm of the probability. † The first tool/technique does not use the exact formula and
therefore its actual optimality is not guaranteed. Times for our results reported are based
on time when the solution was found, per single k (full search was limited to 5 hours for
i = 0 and 3 hours for 1 ≤ i ≤ 7).

[RR22, LWRA17] †

(k = 1)
This work
(k = 1)

This work
(k > 1)

[HXW22]
(k = 1)

[HXW22]
(k > 1)

ci wt time wt time wt time wt wt
c0 33.66 14 min 33.66 9 min 33.93 1.2 hr 37.66 43.00
c1 31.66 15 min 31.66 80 min 33.01 16 min 38.66 -
c2 37.66 17 hr 37.66 1 hr 34.00 12 min 52.66 -
c3 38.66 2.1 hr 38.66 7 min 32.75 1.8 hr 45.66 -
c4 35.66 18 min 35.66 5 min 33.00 37 min 45.66 -
c5 32.66 9 min 33.66 40 min 30.89 13 min 44.66 -
c6 30.66 2 min 30.66 10 min 32.97 60 min 40.66 -
c7 37.66 4.7 hr 37.66 46 min 32.45 5 s 49.66 -

Speck-128/256 (13 rounds). Adaptation of their search strategies and SMT frameworks to
our formula is left as an open question.

6 Malzette: A Malicious Alzette-based Permutation
In this section, we illustrate the importance of RX-differential analysis with rotation k > 1
by designing a 12-round Alzette-based permutation with maliciously chosen dense constants,
such that there exists a strong RX-differential trail allowing practical distinguisher for the
permutation, whereas standard arguments against differential/linear cryptanalysis are still
reassuring.

6.1 Design procedure
We fix k = 3 to showcase our probability formula: lower k leads to lower probabilities,
while odd k leads to better “obfuscation” of constants (see below). First, we generate a
list of high-probability RX-differentials through modular addition with d = 0 in the 3-bit
parts αR′ , βR′ , ∆R′ of the differences and d ∈ {0, 1} in the 29-bit parts αL′ , βL′ , ∆L′ of
the differences. We keep only those differentials that have reasonably balanced numbers
of 0s and 1s, e.g. here is an RX-transition (α, β, ∆) with d = 1 in the 29-bit part with
probability 2−2.83:

α = 00000000000000011111111111111100

β = 10000000000000011111111111111000

∆ = 10000000000000111111111111111100

The second step is to find a chain of such differentials with high total probability and
random-looking intermediate constants. While standard Alzette only XORs a constant on
the left branch, this is insufficient for our purposes. Indeed, there is no linear diffusion on
the left branch of Alzette, which essentially would force us to use the same transition in
every round. Instead, we extend the constant addition to the both branches, and change
the constant after every round.



Alex Biryukov, Baptiste Lambin and Aleksei Udovenko 571

Let (α, β, ∆) and (α′, β′, ∆′) be RX-differentials transitions through modular addition
in rounds i− 1 and i of Alzette respectively. By propagating them through the linear layer,
we obtain conditions on the constants (cL, cR) added between the two rounds:

cL ⊕←−cL = ∆⊕ α′

cR ⊕←−cR = (β′ ≫ ri)⊕ (β ≫ ri−1)⊕ (∆ ≫ si−1)

Note that the linear map c 7→ c ⊕ ←−c is 2-to-1 whenever gcd(k, n) = 1, i.e., k is odd.
Therefore, we have high chances to find preimages cL, cR satisfying the above equations.
Furthermore, this inversion helps with obfuscation of constants, since the vectors cL ⊕←−cL

and cR ⊕←−cR in our case typically consist of a few runs of ones and zeroes, the property
which is destroyed by the inversion of c 7→ c⊕←−c .

Using these tools, we can find high probability RX-trails using randomized recursive
search. In addition, we pose constraints on the constants, such as not having a runs of 3
or more digits in the hexadecimal representations, not containing the zero hexadecimal
digit, and not repeating the constants across rounds.

6.2 Resulting Malicious Permutations
We propose two instances of permutations, Malzette1 and Malzette2, based on 3-wise
iteration of Alzette (with its usual rotation amounts) with full-state malicious constants
XORed after every ARX round. The designers of Alzette claim that such 12-round Alzette
has no differential trails of probability 2−54 or better, which is in fact only a lower bound:
the exact optimal trail probability is not known. For the correlation of linear trails, the
lower bound is known only for 8 rounds, and which is 2−17 (yielding 2−19 or even lower for
12 rounds, lower bounding a distinguisher complexity by 238). It is reasonable to expect the
actual optimal trails to have very low probability/correlation, since their weights typically
grow very fast with the number of rounds. The difficulty of finding such trails adds to
the hardness of mounting a standard attack on such a permutation. On the other hand,
our instances have RX-differential trails over full 12 rounds with probabilities 2−24.86 and
2−29.41 respectively. The former has sparse and structured constants, while the latter has
sufficiently random-looking dense constants, both sets given in Table 5. Note that the
last round’s constants do not affect the security and were chosen completely at random.
Of course, the constants reveal their structure after applying the map c 7→ c⊕ (c ≪ 3),
namely, the long runs of ones and zeroes, which makes such a trapdoor detectable by a
specific test.

We now provide full RX-differential trails and matching inputs. Denote Malzettei,
i ∈ {1, 2} by Fi : (F32

2 )2 → (F32
2 )2 and set the rotation amount k = 3. Then, there exists

an RX-differential trail (δL, δR) → (∆L, ∆R) through Fi, satisfied by an input (xL, xR).
That is,

(yL, yR) = Fi(xL, xR)
(←−yL ⊕∆L,←−yR ⊕∆R) = Fi(←−xL ⊕ δL,←−xR ⊕ δR)

For Malzette1, the differential and the satisfying input are given by

(δL, δR) = 7ffffff8 : 3ffffffe

(∆L, ∆R) = b989d417 : 0347a2a9

(xL, xR) = 618e890e : 37326dd5

For Malzette2, the differential and the satisfying input is given by

(δL, δR) = 7fff0003 : ffffc001

(∆L, ∆R) = dd2bc54b : 078b106c

(xL, xR) = 3759c889 : 0bd01faa
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Table 5: Round constants (in hexadecimal) used in malicious Malzette instances and the
associated trapdoor RX-trail probabilities.

Malzette1 Malzette2
Round Constants log2(prob) Constants log2(prob)

1 00000000:4e381c1c -2.19 1c71c924:249cad47 -2.83
2 2aaaaaaa:36dbe492 -2.19 49249c71:1249871c -1.83
3 7fffffff:1236db6c -1.83 6db6c71c:5b127ffe -3.19
4 55555555:0763638e -1.83 38e39249:152ad249 -1.83
5 2aaaaaaa:1b6d4949 -2.19 638e36db:649cad55 -2.83
6 55555555:638ef1c7 -1.83 1c71c7ff:471c9492 -1.83
7 00000000:47638e39 -2.19 36db6d55:63f1c71d -2.83
8 2aaaaaaa:5236b6db -2.19 471c7249:36a4ff1c -2.19
9 55555555:4e381c1c -1.83 4924938e:5b6c8e47 -3.19
10 7fffffff:638eb1c7 -2.19 2aab6db6:71c736db -1.83
11 7fffffff:47638e39 -2.19 6db638e3:55b9c71d -2.83
12 3f2bb31e:b6c004cc -2.19 fb3d2330:b6da4b61 -2.19

Total -24.86 -29.41

More satisfying inputs can be found easily. The full trails are given in Table 6.

Table 6: RX-differential (k = 3) trails for malicious Malzette instances. (α, β, δ) denote the
input and output RX-differences of the modular addition in the respective round. The cor-
responding full 12-round RX-differentials are 7ffffff8:3ffffffe→ b989d417:0347a2a9
and 7fff0003:ffffc001 → dd2bc54b:078b106c respectively.

Malzette1 Malzette2
Round (α, β, δ) log2(pr.) (α, β, δ) log2(pr.)

1 7ffffff8:7ffffffc:fffffffc -2.19 7fff0003:ffff8003:7fff8007 -2.83
2 fffffffc:7ffffffc:7ffffff8 -2.19 80000003:00000003:80000007 -1.83
3 00000003:80000003:80000007 -1.83 80007ffc:80007ffc:0000fff8 -3.19
4 00000003:80000003:80000007 -1.83 00000007:80000003:80000003 -1.83
5 7ffffff8:7ffffffc:fffffffc -2.19 7fff0003:7fff8003:ffff8007 -2.83
6 80000007:80000003:00000003 -1.83 80000007:00000003:80000003 -1.83
7 fffffffc:7ffffffc:7ffffff8 -2.19 7ffff804:7ffff000:fffff804 -2.83
8 7ffffff8:7ffffffc:fffffffc -2.19 7ffffff8:7ffffffc:fffffffc -2.19
9 80000007:80000003:00000003 -1.83 80001fff:00000ffb:80000ffb -3.19
10 fffffffc:7ffffffc:7ffffff8 -2.19 80000007:80000003:00000003 -1.83
11 fffffffc:7ffffffc:7ffffff8 -2.19 7ff00004:fff80000:7ff80004 -2.83
12 fffffffc:7ffffffc:7ffffff8 -2.19 7ffffffc:7ffffff8:fffffffc -2.19

Total -24.86 -29.41

Experimental verification We have also verified the distinguishers experimentally and
provide the valid pairs of inputs. In the experimental verification, on encryption of 240

random pairs (per each of the two versions), we hit 33 522 and 854 correct pairs, which
correspond to probabilities 2−24.97 and 2−30.26 respectively. This supports our trail analysis,
although the second variant seems to have slightly lower probability (by less than a factor
of 2), which must have happened due to dependency of rounds. Finally, we remark that
all of these differential matches followed the full trails precisely (whenever input/output
differences were satisfied). In other words, we did not observe any clustering effect at all.
The probable explanation is the special structure of the trapdoored trail, which does not
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allow deviations.
Remark 7. Although we described a permutation, it is easy to convert the design into a block
cipher and the permutation distinguishers into a related-key RX-differential distinguisher,
and add some rounds for a key recovery. This should suffice as a proof-of-concept of
importance of RX-differential analysis.
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A Specification of the Alzette permutations
The permutation for Alzette is built as four consecutive rounds, where the round function
fc(x, y, r, s) is defined as the procedure

x← x ⊞ (y ≫ r)
y ← y ⊕ (x ≫ s)
x← x⊕ c

The rotation offsets r and s differ between each round, but the same constant c is used in
all four. In the end, for a given constant c, the permutation of (x, y) ∈ F2n

2 is defined by
the procedure

fc(x, y, 31, 24)
fc(x, y, 17, 17)
fc(x, y, 0, 31)
fc(x, y, 24, 16)

The resulting permutation when using constant c is denoted Alzettec. The following eight
randomly chosen constants are provided by the designers:

(c0, . . . , c7) = (0xb7e15162, 0xbf715880, 0x38b4da56, 0x324e7738,

0xbb1185eb, 0x4f7c7b57, 0xcfbfa1c8, 0xc2b3293d).
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B Specification of the Salsa permutation
The permutation used in Salsa is built using the "Quarter Round" function QR(a, b, c, d)
defined by the procedure

b← b⊕ ((a ⊞ d) ≪ 7)
c← c⊕ ((b ⊞ a) ≪ 9)
d← d⊕ ((c ⊞ b) ≪ 13)
a← a⊕ ((d ⊞ c) ≪ 18)

This function is then applied to each column (on odd rounds) or each row (on even rounds)
depending on the round index.

C Results on Salsa

Table 7: Best solution found in 1h (for each k) for Salsa’s first QR. Optimals in bold.
NEQ optimization Probability optimization

k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 23 23 35 24 29.6601 29.6601
2 28 28 34.7123 28 34.7123 34.7123
3 27 27 35.8528 27 34.3382 34.3382
4 22 22 30.0177 22 29.5031 29.5031
5 22 22 29.9112 22 29.5714 29.5714
6 26 26 33.9109 26 33.9109 33.9109
7 28 28 35.9832 28 35.8024 35.8024
8 16 16 23.9888 16 23.9663 23.9663
9 20 20 28 20 28 28
10 21 21 29 21 29 29
11 26 26 33.993 26 33.9863 33.9873
12 25 25 32.9877 25 32.9657 32.9657
13 26 26 34.0004 26 33.9717 33.9717
14 22 22 29.9999 22 29.9957 29.9957
15 27 27 35 27 34 34.9943
16 24 24 32.0013 24 31.9925 31.9943
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Table 8: Best solution found in 1h (for each k) for Salsa’s second QR. Optimals in bold.
NEQ optimization Probability optimization

k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 21 5 26.6601 21 20.8261 26.6601
2 18 5 24.7123 18 16.743 24.4493
3 17 5 24.8528 17 20.7964 24.4902
4 13 5 20.5727 13 19.9877 19.9877
5 18 6 26.093 18 20.8095 26.093
6 17 5 24.9105 17 19.5046 24.9105
7 14 5 21.944 14 21.944 21.944
8 17 5 24.972 17 20.8401 24.8845
9 15 5 22.9916 15 19.9761 22.9608
10 19 6 26.9887 19 21.4414 26.9083
11 14 6 21.9979 14 21.415 21.9965
12 19 5 27 19 22.4012 27
13 15 5 23.0007 15 21.5869 23.0005
14 18 5 25.9988 18 20.3224 25.9988
15 16 5 24.0001 16 19.7989 24
16 20 6 28 20 21.6438 27.9999

Table 9: Best solution found in 1h (for each k) for Salsa’s third QR. Optimals in bold.
NEQ optimization Probability optimization

k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 21 5 28.2451 22 20.41 27.6602
2 17 5 26.6601 17 19.6781 25.9232
3 20 5 27.6601 20 21.2449 26.6013
4 17 5 25.5715 17 19.9332 24.4852
5 22 5 29.7807 22 20.9115 29.7413
6 17 5 24.9105 17 21.0579 24.8665
7 17 5 24.9888 17 21.9264 24.9888
8 17 5 24.9775 17 20.7091 24.9775
9 18 5 26.0113 18 21.6674 25.9747
10 20 5 28 20 20.6914 28
11 17 5 24.9986 16 19.6939 24
12 18 6 25.9982 18 20.0798 25.9982
13 17 17 25.0002 17 17.1869 24.9996
14 24 5 31.9999 21 20.6885 29
15 16 5 24.0003 16 20.0425 24
16 20 6 27.9989 20 20.2327 27.9971
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Table 10: Best solution found in 1h (for each k) for Salsa’s fourth QR. Optimals in bold.
NEQ optimization Probability optimization

k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 23 23 28.6601 23 28.6601 28.6601
2 23 23 30.7712 23 29.4493 29.4493
3 24 24 31.3203 24 31.3203 31.3203
4 23 23 31.5715 23 31.4784 31.4784
5 23 23 31.2843 23 31.0458 31.0458
6 25 25 33.0284 25 32.9353 32.9353
7 22 22 30.034 22 29.9217 29.9217
8 22 22 30 22 29.9608 29.9608
9 24 24 31.9831 24 31.958 31.958
10 25 25 33.024 25 32.9985 32.9985
11 23 23 31 23 30.9643 30.9643
12 25 25 33 25 32.9646 32.9646
13 20 20 28.0014 20 28 28
14 21 21 29.0004 21 28.9993 29
15 23 23 30.9986 23 30.9949 30.9949
16 24 24 31.9999 24 30.6066 31.9943

D Results on Alzette
For completeness, we provide search results for Alzette for all constants proposed by
the designers (used in the Sparkle permutations). The structure of Alzette is recalled in
Appendix A. As usual, “wt” refers to the negated base-2 logarithm of the probability. For
the constant c0, the time limits were set to 1 hour (NEQ heuristic) and 4 hours (exact
probability). For the other constants, the time limits were set respectively to 1 and 2
hours.
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Table 11: Best solution found in 5h (for each k) for Alzette with the constant c0 =
0xb7e15162. Best probability/NEQ heuristic per column is underlined.

NEQ optimization Probability optimization
k nb NEQ best LB wt nb NEQ best LB wt
1 27 21 35.83 28 32.04 33.66
2 28 22 34.71 28 33.03 34.71
3 31 24 38.85 31 31.08 38.80
4 30 22 37.83 29 32.76 36.74
5 32 23 39.91 32 32.51 39.87
6 29 23 37.07 29 33.02 37.00
7 26 21 33.98 26 31.77 33.93
8 32 26 40.02 32 33.84 40.00
9 29 22 36.99 29 33.13 36.90
10 31 24 39.01 31 34.20 38.98
11 31 25 39.00 31 34.09 39.00
12 28 20 36.00 28 29.98 36.00
13 31 24 38.99 31 32.11 38.99
14 30 21 38.00 30 32.17 38.00
15 29 21 37.00 29 32.67 37.00
16 26 15 34.00 26 33.32 34.00

Table 12: Best solution found in 3h (for each k) for Alzette with the constant c1 =
0xbf715880. Best probability/NEQ heuristic per column is underlined.

NEQ optimization Probability optimization
k nb NEQ best LB wt nb NEQ best LB wt
1 26 21 31.66 26 29.47 31.66
2 28 20 34.71 28 31.98 34.71
3 28 25 35.75 28 32.66 35.66
4 27 21 34.18 27 32.73 34.10
5 30 26 37.96 30 31.55 37.87
6 31 20 38.96 31 30.66 38.96
7 30 17 38.03 27 30.14 35.00
8 27 25 34.98 27 32.38 34.96
9 26 18 34.01 25 30.29 33.01
10 30 22 37.99 30 32.11 37.99
11 34 23 42.00 34 33.28 42.00
12 31 23 39.00 31 33.76 39.00
13 32 21 40.00 28 31.58 36.00
14 36 23 44.00 36 33.81 43.99
15 32 22 40.00 27 32.13 35.00
16 30 13 38.00 30 30.78 38.00
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Table 13: Best solution found in 3h (for each k) for Alzette with the constant c2 =
0x38b4da56. Best probability/NEQ heuristic per column is underlined.

NEQ optimization Probability optimization
k nb NEQ best LB wt nb NEQ best LB wt
1 32 20 39.25 32 32.44 37.66
2 31 23 38.45 31 31.37 38.45
3 28 19 35.32 28 29.65 35.32
4 27 24 35.02 27 31.51 35.02
5 28 21 35.87 28 31.66 35.87
6 28 19 35.91 28 30.26 35.79
7 32 22 39.90 31 31.06 38.81
8 30 21 37.95 30 30.97 37.95
9 26 18 34.00 26 29.63 34.00
10 31 21 38.97 31 31.03 38.97
11 33 22 41.00 32 32.05 40.00
12 31 21 39.00 29 30.64 37.00
13 27 21 35.00 27 28.19 35.00
14 28 20 36.00 28 30.57 36.00
15 29 19 37.00 29 31.50 37.00
16 26 24 34.00 26 32.16 34.00

Table 14: Best solution found in 3h (for each k) for Alzette with the constant c3 =
0x324e7738. Best probability/NEQ heuristic per column is underlined.

NEQ optimization Probability optimization
k nb NEQ best LB wt nb NEQ best LB wt
1 33 25 38.66 33 33.16 38.66
2 31 23 37.71 31 28.77 37.71
3 26 19 33.34 26 30.63 32.75
4 29 24 37.01 29 31.46 36.68
5 29 16 37.19 27 28.03 34.33
6 31 21 38.89 31 31.79 38.89
7 34 22 41.98 31 32.48 38.90
8 29 19 36.99 27 30.89 34.99
9 28 21 35.97 28 30.43 35.97
10 28 22 36.00 28 31.50 36.00
11 32 22 40.00 32 30.40 40.00
12 31 20 39.00 27 29.87 35.00
13 31 21 39.00 28 32.79 36.00
14 28 18 36.00 28 31.01 36.00
15 29 19 37.00 29 30.44 37.00
16 33 26 41.00 33 35.01 41.00



Alex Biryukov, Baptiste Lambin and Aleksei Udovenko 581

Table 15: Best solution found in 3h (for each k) for Alzette with the constant c4 =
0xbb1185eb. Best probability/NEQ heuristic per column is underlined. † indicates that
no plaintext pair was found for the resulting trail.

NEQ optimization Probability optimization
k nb NEQ best LB wt nb NEQ best LB wt
1 29 25 37.83 30 33.36 35.66
2 34 21 42.19 34 30.63 41.45
3 33 25 40.34 33 34.38 40.34
4 29 21 36.92 29 30.64 36.60
5 27 20 34.91 27 30.16 34.91
6 28 18 35.85 28 29.72 35.85
7 28 22 35.97 28 33.00 35.97
8 31 24 38.99 31 33.32 38.96
9 30 23 38.00 29 32.33 36.99
10 25 23 33.00 25 31.55 33.00
11 32 21 40.00 29 31.14 37.00
12 32 24 40.00 32 33.04 40.00
13 33 22 41.00 33 31.16 40.99
14 36 25 44.00 36 34.31 44.00
15 30 20 38.00 29 31.25 37.00
16 33 14 41.00 31 31.60 39.00†

Table 16: Best solution found in 3h (for each k) for Alzette with the constant c5 =
0x4f7c7b57. Best probability/NEQ heuristic per column is underlined. † indicates that
no plaintext pair was found for the resulting trail.

NEQ optimization Probability optimization
k nb NEQ best LB wt nb NEQ best LB wt
1 28 21 35.25 28 30.47 33.66
2 28 22 34.71 28 32.04 34.71
3 30 20 38.08 30 32.05 36.92
4 29 24 36.83 29 33.00 36.66
5 27 25 34.87 27 31.75 34.87
6 30 21 37.80 30 32.63 37.80
7 23 21 31.01 23 30.62 30.89†
8 29 23 36.97 29 32.23 36.92
9 34 25 42.00 31 33.39 39.01
10 32 23 40.01 32 33.04 39.99
11 34 23 42.00 34 33.80 42.00
12 23 17 31.00 23 29.13 31.00
13 28 21 36.00 28 30.97 35.98
14 29 25 37.00 29 32.66 37.00
15 33 22 41.00 31 32.22 39.00
16 33 16 41.00 32 32.59 40.00
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Table 17: Best solution found in 3h (for each k) for Alzette with the constant c6 =
0xcfbfa1c8. Best probability/NEQ heuristic per column is underlined.

NEQ optimization Probability optimization
k nb NEQ best LB wt nb NEQ best LB wt
1 25 23 30.66 25 30.50 30.66
2 29 21 35.71 29 30.23 35.71
3 30 26 38.02 29 33.08 36.19
4 31 22 38.94 31 32.77 38.57
5 28 27 35.87 28 32.52 35.74
6 27 20 34.98 27 30.86 34.79
7 29 20 37.06 29 30.47 37.01
8 25 19 32.99 25 30.85 32.97
9 28 20 35.99 28 29.40 35.98
10 28 21 36.00 28 31.46 35.99
11 34 23 42.00 34 32.94 41.99
12 36 26 44.00 36 34.08 44.00
13 28 19 36.00 28 30.72 36.00
14 34 21 42.00 31 33.12 39.00
15 27 20 35.00 27 30.85 35.00
16 30 22 38.00 30 29.23 38.00

Table 18: Best solution found in 3h (for each k) for Alzette with the constant c7 =
0xc2b3293d. Best probability/NEQ heuristic per column is underlined.

NEQ optimization Probability optimization
k nb NEQ best LB wt nb NEQ best LB wt
1 31 24 39.83 32 31.48 37.66
2 25 20 32.45 25 29.89 32.45
3 30 23 36.60 30 33.95 36.60
4 30 21 38.20 30 33.19 37.66
5 31 23 38.70 31 32.26 38.62
6 34 23 42.00 34 32.61 41.91
7 34 20 41.99 29 31.77 37.01
8 28 18 35.98 28 29.87 35.98
9 29 23 36.99 29 33.37 36.98
10 26 19 33.99 26 29.12 33.97
11 32 22 40.00 31 30.37 38.99
12 25 20 33.00 25 28.95 33.00
13 32 22 40.00 32 32.02 39.99
14 27 21 35.00 27 32.37 35.00
15 30 23 38.00 30 31.99 38.00
16 32 16 40.00 32 30.93 40.00
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E Results on Speck32/32
Since large state and complex key schedule slow down MILP model optimization signif-
icantly, for illustration purposes, we applied the 2-word key schedule of Speck (32-bit
key) to the 32-bit version (Speck specification does not use it for 32/48/64-bit block sizes
because of the small key size).

Table 19: Best solution found in 1h (for each k) for Speck32/32 over 2 rounds. Optimals
in bold.

NEQ optimization Probability optimization
k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 0 0 4.245 0 4.24458 4.24458
2 0 0 5.0339 0 5.03365 5.03365
3 0 0 5.4897 0 5.4897 5.4897
4 0 0 5.7366 0 5.73655 5.73655
5 0 0 5.8647 0 5.8647 5.8647
6 0 0 5.9287 0 5.92867 5.92867
7 0 0 5.9579 0 5.95787 5.95787
8 0 0 5.9662 0 5.96625 5.96625

Table 20: Best solution found in 1h (for each k) for Speck32/32 over 3 rounds. Optimals
in bold.

NEQ optimization Probability optimization
k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 0 0 7.0751 0 7.07497 7.07497
2 0 0 8.3899 0 8.38992 8.38992
3 0 0 9.1495 0 9.14949 9.14949
4 0 0 9.5609 0 9.56092 9.56092
5 0 0 9.7745 0 9.77451 9.77451
6 0 0 9.8811 0 9.88112 9.88112
7 0 0 9.9298 0 9.92979 9.92979
8 0 0 9.9437 0 9.94375 9.94375
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Table 21: Best solution found in 1h (for each k) for Speck32/32 over 4 rounds. Optimals
in bold.

NEQ optimization Probability optimization
k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 3 3 17.4898 3 14.9046 14.9046
2 5 5 21.8035 5 21.8035 21.8035
3 6 6 24.2396 6 23.8246 23.8246
4 6 6 25.3798 6 25.3797 25.3797
5 6 6 25.6646 6 25.6646 25.6646
6 3 3 19.9269 3 19.879 19.879
7 5 5 22.9498 5 22.8767 22.8767
8 4 4 21.8988 4 21.8988 21.8988

Table 22: Best solution found in 1h (for each k) for Speck32/32 over 5 rounds. Optimals
in bold.

NEQ optimization Probability optimization
k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 10 5 32.3197 10 32.3183 32.3183
2 11 6 35.1609 11 35.1577 35.1577
3 17 7 49.6868 16 36.0789 45.6151
4 16 7 47.4163 16 39.3567 47.053
5 14 6 43.8708 13 42.6489 42.6489
6 13 6 42.7863 11 38.7913 38.7913
7 12 6 41.9813 13 39.7992 39.7992
8 10 5 35.8431 10 35.8431 35.8431

Table 23: Best solution found in 1h (for each k) for Speck32/32 over 6 rounds. Optimals
in bold. † indicates that no plaintext pair was found for the resulting trail.

NEQ optimization Probability optimization
k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 16 5 47.1505 16 37.7968 46.148
2 22 6 62.8049 21 40.1124 61.3688†

3 37 8 91.0227 26 38.4284 71.2579†

4 26 7 71.9424 26 39.9844 69.4866†

5 29 8 78.1388 24 39.7644 66.7442†

6 20 6 58.8804 20 38.9773 57.4848†

7 16 7 52.8763 16 38.0515 52.7888†

8 18 6 53.8655 18 34.887 53.8655
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F Results on Speck48/48

Table 24: Best solution found in 1h (for each k) for Speck48/48 over 2 rounds. Optimals
in bold.

NEQ optimization Probability optimization
k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 0 0 4.2451 0 4.24508 4.24508
2 0 0 5.0342 0 5.03421 5.03421
3 0 0 5.4902 0 5.49022 5.49022
4 0 0 5.7376 0 5.7376 5.7376
5 0 0 5.8668 0 5.8668 5.8668
6 0 0 5.9329 0 5.93288 5.93288
7 0 0 5.9663 0 5.96629 5.96629
8 0 0 5.9831 0 5.98306 5.98306
9 0 0 5.9914 0 5.99142 5.99142

Table 25: Best solution found in 1h (for each k) for Speck48/48 over 3 rounds. Optimals
in bold.

NEQ optimization Probability optimization
k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 0 0 7.0752 0 7.07503 7.07503
2 0 0 8.3903 0 8.39036 8.39036
3 0 0 9.1504 0 9.15037 9.15037
4 0 0 9.5627 0 9.56267 9.56267
5 0 0 9.778 0 9.77802 9.77802
6 0 0 9.8881 0 9.88813 9.88813
7 0 0 9.9438 0 9.94381 9.94381
8 0 0 9.9718 0 9.97177 9.97177
9 0 0 9.9857 0 9.9857 9.9857
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Table 26: Best solution found in 1h (for each k) for Speck48/48 over 4 rounds. Optimals
in bold.

NEQ optimization Probability optimization
k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 3 3 17.4902 4 16.9053 16.9053
2 6 6 23.8054 6 22.8054 22.8054
3 5 5 22.8284 5 22.8284 22.8284
4 6 6 25.3927 6 24.3927 24.3927
5 6 6 25.7807 6 25.6905 25.6905
6 5 5 23.8436 5 23.8436 23.8436
7 4 4 21.9443 4 21.9217 21.9217
8 5 5 22.9718 5 22.9604 22.9604
9 5 5 23.9741 5 23.9741 23.9741

Table 27: Best solution found in 1h (for each k) for Speck48/48 over 5 rounds. Optimals
in bold.

NEQ optimization Probability optimization
k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 16 3 46.9052 12 32.031 37.3203
2 12 6 38.8986 12 29.2115 38.8985
3 46 5 109.2153 18 27.935 48.8284
4 39 6 95.7376 17 31.3449 49.2226
5 45 6 98.0041 20 31.0771 52.4737
6 27 5 71.0231 16 30.903 46.8914
7 31 4 75.1617 17 34.8509 48.8342
8 18 5 52.005 15 32.4578 45.9715
9 17 5 50.9659 17 30.3652 49.954

Table 28: Best solution found in 1h (for each k) for Speck48/48 over 6 rounds. Optimals
in bold. † indicates that no plaintext pair was found for the resulting trail.

NEQ optimization Probability optimization
k nb NEQ bestLB -log2(prob) nb NEQ bestLB -log2(prob)
1 50 4 117.9052 20 31.9818 57.7352
2 58 7 134.0162 30 36.3996 71.3134
3 54 6 125.1504 44 34.2616 101.091†

4 56 7 133.6069 38 36.0866 92.5626†

5 55 7 128.8478 36 36.5846 88.7425
6 63 6 147.9776 34 35.9255 87.1285
7 50 5 113.0005 29 34.6834 76.8324
8 45 6 104 28 40.7458 73.9549
9 55 6 131.9971 41 34.9591 94.9315†
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G Impossible RX-Differentials
In this section, we explore briefly the possibility of using our results (namely, Theorem 1)
for searching for impossible RX-differentials. Due to low effectiveness of this approach, it
was not included in the main body of the paper.

G.1 Search for Single-Key Impossible RX-Differentials
Unlike regular differentials, in RX-differential trails the key addition has an impact on the
trail. Indeed, for an input RX-difference (δ, k), the RX-difference after the addition (with
an XOR) of some round key k ∈ Fn

2 will be (δ⊕k⊕
←−
k , k). When looking for RX-differential

trails, this often results in only a certain subset of keys to allow for a specific trail, thus
resulting in a weak-key model. However, if we were able to find some RX-differentials that
are impossible for any key, then this would make RX-differentials useful in the context of
the single-key model.

We used MILP to model and search for impossible RX-differentials for any key, and
thus we also have to add constraints to model the key-schedule in value. These constraints
are very similar to the ones used to model the propagation of RX-differentials, and one
just has to be careful that the key addition must be done according to the propagation
rule given in the previous paragraph (see Proposition 15). Then, we search for impossible
RX-differentials where the weight of the input and output RX-difference is 1 (i.e. n2

differences). The main reason for this is that to exploit impossible differentials in an attack,
one usually needs a truncated impossible differential, i.e. a subspace of differences that
cannot propagate to another subspace of differences through the cipher. Thus, weight 1
differences are the minimum requirement to have any chance at finding such an impossible
truncated differential, hence our focus on those. This is inspired by a similar approach
from [ST17]. Note that there is a minimal number of rounds required for this idea to work.
Indeed, assume that the master key is of size m and that each round key is of size n, then
we need to consider at least r rounds such that rn > m, otherwise there are not enough
constraints on the key schedule and round keys.

We applied this search to the ciphers LEA [HLK+13], Speck [BSS+15] and XTEA [NW97],
most of them having several variants in key size and/or block size. Unfortunately, for
all of them, we were never able to find such impossible RX-differentials, even when only
considering input/output differences of weight 1, and the smallest amount of rounds
possible (e.g. only 3 rounds on Speck2n/2n). Thus for any input (resp. output) difference
∆ (resp. ∇), both of weight 1, we always found at least one key such that there exists an
RX-difference trail from ∆ to ∇.

G.2 Search for Related-Key Impossible RX-Differentials
Since our search in the single-key model was not successful, we shifted out focus to look for
related-key impossible RX-differentials. In this model, the attacker can query an encryption
oracle not only using the secret key K, but also using another key K ′ that is related to K
in some way (obviously without knowing either K or K ′, but still knowing the relation
between the two). In the context of RX-differentials, this means that the attacker can also
make queries using a key K ′ =←−K ⊕∆K for some ∆K that the attacker can choose. This
gives a lot more power to the attacker, but also expands the search space significantly.

We searched for such impossible RX-differentials in a related-key model on the
Speck32/32 and Speck64/64 block ciphers, with block and key size 32 and 64 bits respec-
tively. To make the search finish in a reasonable time, we only focused on RX-differences
in the key with weight 1, i.e. w(∆K) = 1.

For Speck32/32, again even with the smallest amount of rounds possible, no impossible
RX-differentials were found for any of the possible ∆K such that w(∆K) = 1. For
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Speck64/64, we found no impossible RX-differentials on 4 rounds with the same constraint
on ∆K , however on 3 rounds we got several of them. The list is too long to write down in
this paper, but to give an idea, the case where we found the highest amount of impossible
differentials was with k = 1, with ∆K

39 = 1 (and other bits at 0). In this case, we found
1112 pairs (∆,∇) of weight 1 input/output differentials that were impossible. For k = 2,
the case with the highest amount of such pairs to be impossible is also with ∆K

39 = 1,
leading to 920 impossible pairs. We also observed that as k increases, the number of
impossible weight 1 RX-differentials goes down, to even 0 (i.e. not weight (1,1) impossible
differentials) for k ≥ 13, see Table 29 in Appendix H.

Moreover, while we could not search for every combination to build an impossible trun-
cated RX-differential, we were still able to find an almost truncated impossible differential.
This means that the almost the whole set of differentials is impossible.

Indeed, take k = 1, with ∆K
39 = 1 (and other bits at 0), Sin = {32, 33, 35, 36} and

Sout = {15, 16, 19, 20}. Then for any input (resp. output) RX-differential ∆ (resp. ∇) such
that ∆i = 0 for i ̸∈ Sin (resp. ∇i = 0 for i ̸∈ Sout), (∆,∇) is an impossible RX-differential
over 3 rounds except for the case (∆,∇) = (0, 0). Note that this last case in non-trivial in
the case of RX-differentials, as an RX-difference of 0 does not mean that the plaintexts
are equal, but rather that ←−x = x′. Unfortunately, due to time constraints, we were not
able to explore the search space more for larger/better cases.

G.3 About the Alzette S-box
As mentioned in Section 5.1, Alzette is a 64-bit ARX-based S-box. Similarly to the
single-key case (which here would be more akin to a known-key case), we investigated the
existence of weight-(1,1) impossible RX-differentials, for each of these constants. For 4
of these constants, namely 0xb7e15162, 0x38b4da56, 0xbb1185eb and 0xc2b3293d, there
is no weight-(1,1) impossible RX-differentials. For the constant 0xbf715880, there are
only 2 weight-(1,1) impossible RX-differentials over all values of k, and these two are
obtained with k = 1. Similarly, for the constant 0x324e7738, there are only 3 weight-(1,1)
impossible RX-differentials, all obtained with k = 3.

Something more interesting happens with the constant 0xcfbfa1c8, where the only
case with impossible RX-differentials is k = 3. There are 6 such impossible RX-differentials,
and 4 of them lead to an interesting structure. These 4 are built with input difference ∆
such that the one bit set to 1 is ∆34, and the output difference is ∇ where the bit set to 1 is
∇i, i ∈ {12, 21, 37, 60}. We looked at the truncated RX-differential {34} → {12, 21, 37, 60},
which thus consists of 32 trails4, and out of them, 8 are impossible, which are the 4 weight-
(1,1) mentioned previously, as well as the 4 weight-(1,3) impossible RX-differentials that
can be built with this set of indices. While not resulting in a truncated differential per se,
it is interesting to observe that all RX-differentials of weight (1,1) and (1,3) are impossible,
while all the others are possible. Finally for the last studied constant 0x4f7c7b57, in
addition to 3 other impossible RX-differentials that do not seem to belong to any structure,
we found a similar structure as in the previous constant. Here for k = 7, if we look at the
truncated RX-differential {34, 35} → {12, 21, 37, 60}, so 64 trails in total, 16 of them are
impossible, and those are again exactly all the trails of weight (1,1) and (1,3).

H Results for Impossible RX-differentials on Speck64/64

4Recall that the case of a zero RX-difference in non-trivial compared to regular differentials, thus we
also need to examine all differentials 0 → ∇
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Table 29: Best cases of impossible RX-differentials over 3 rounds of Speck64/64 for each
value of γ. The "# of ∆K" column indicates how many weight-1 RX-differentials over
the key ∆K lead to at least one impossible RX-difference, the best case column indicates
which ∆K leads to the highest number of weight (1-1) impossible RX-differentials.

k # of ∆K Best Case k # of ∆K Best Case
1 64 1112 imp.diff. with ∆K

39 = 1 9 45 145 imp.diff. with ∆K
2

2 64 920 imp.diff. with ∆K
39 = 1 10 42 44 imp.diff. with ∆K

2
3 62 659 imp.diff. with ∆K

1 = 1 11 24 24 imp.diff. with ∆K
2

4 61 592 imp.diff. with ∆K
2 = 1 12 4 4 imp.diff. with ∆K

3
5 58 508 imp.diff. with ∆K

2 = 1 13 0 -
6 57 437 imp.diff. with ∆K

2 = 1 14 0 -
7 55 333 imp.diff. with ∆K

2 = 1 15 0 -
8 51 218 imp.diff. with ∆K

4 = 1 16 0 -

I Other MILP Propagation Rules

These are known from the previous works, but are given for completeness.

Proposition 11. Let x, y, z ∈ F2 with z = x⊕ y, and x, y, z be binary variables modeling
x, y and z respectively. Then we can model the relation z = x⊕y with the set of inequalities

z = XOR(x, y)⇔


x + y + (1− z) ≥ 1
x + (1− y) + z ≥ 1
(1− x) + y + z ≥ 1
(1− x) + (1− y) + (1− z) ≥ 1

Proposition 12. Let w, x, y, z ∈ F2 with z = x⊕ y⊕w, and w, x, y, z be binary variables
modeling w, x, y and z respectively. Then we can model the relation z = x⊕ y ⊕ w with
the set of inequalities

z = XOR(x, y, w)⇔



w + x + y + (1− z) ≥ 1
(1−w) + x + y + z ≥ 1
w + x + (1− y) + z ≥ 1
(1−w) + x + (1− y) + (1− z) ≥ 1
w + (1− x) + y + z ≥ 1
(1−w) + (1− x) + y + (1− z) ≥ 1
w + (1− x) + (1− y) + (1− z) ≥ 1
(1−w) + (1− x) + (1− y) + z ≥ 1

Proposition 13. Let α, β, ∆ ∈ Fn
2 , 0 ≤ k < n and a, b, δ be vectors of n binary variables

modeling α, β and ∆, respectively. Then we can model the relation [(α, k), (β, k)] ⊞−→ (δ, k)
with the set of inequalities

{
δ0 = XOR(a0, b0)
f(ai, bi, δi, ai−1, bi−1, δi−1) 1 ≤ i < n
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where f(x1, x2, x3, x4, x5, x6) if given by

(1− x1) + x2 + x3 + x4 + x5 + x6 ≥ 1
x1 + (1− x2) + x3 + x4 + x5 + x6 ≥ 1
x1 + x2 + (1− x3) + x4 + x5 + x6 ≥ 1

(1− x1) + (1− x2) + (1− x3) + x4 + x5 + x6 ≥ 1
x1 + (1− x2) + (1− x3) + (1− x4) + (1− x5) + (1− x6) ≥ 1
(1− x1) + x2 + (1− x3) + (1− x4) + (1− x5) + (1− x6) ≥ 1
(1− x1) + (1− x2) + x3 + (1− x4) + (1− x5) + (1− x6) ≥ 1

x1 + x2 + x3 + (1− x4) + (1− x5) + (1− x6) ≥ 1

If k > 0, the first constraint and the constraint for i = k are omitted.

Proposition 14. Let α, β, ∆, η ∈ Fn
2 , 0 ≤ k < n and a, b, δ, η be vectors of n bi-

nary variables modeling α, β, ∆ and η, respectively. Then we can model the relations
[(α, k), (β, k)] ⊞−→ (δ, k) and η = SHL((α⊕ β) ∨ (α⊕ δ) with the set of inequalities

δ0 = XOR(a0, b0)
η0 = 0
g(ai, bi, δi, ai−1, bi−1, δi−1, ηi) 1 ≤ i < n

where g(x1, x2, x3, x4, x5, x6, x7) ⊆ F7
2 is given by inequalities

2x1 − 2x2 − 2x3 + 6x4 − x5 − 7x6 + 8x7 ≥ −4
x1 − x2 + x3 + 4x4 + 4x5 + 4x6 − 3x7 ≥ 0
−x1 + x2 + x3 + 4x4 + 4x5 − 7x6 + 8x7 ≥ 0
−3x1 + 3x2 − 3x3 + x4 − 2x5 − 2x6 + 4x7 ≥ −6

3x1 + 3x2 + 3x3 − 2x4 + x5 − 2x6 + 4x7 ≥ 0
x1 + x2 − x3 − 3x4 − 3x5 + 7x6 + 7x7 ≥ 0
−x1 − x2 − x3 − 3x4 − 3x5 + 7x6 + 7x7 ≥ −2
−x1 − x2 + x3 − 4x4 − 4x5 − 4x6 − 3x7 ≥ −13

Proposition 15. Let (δ, γ) be an RX-differential over n bits, and for c ∈ Fn
2 , denote

⊕c(x) = x⊕ c. Then we have the following propagation, with probability 1

(δ, γ) ⊕c−→ (δ ⊕ c⊕←−c , γ)

Proof. Let (x, x′) be a pair with RX-difference (δ, γ), i.e. (x, x′) = (x,←−x ⊕ δ), and
(y, y′) = (x⊕ c, x′ ⊕ c). Then we obviously have y = x⊕ c along with

y′ = x′ ⊕ c

=←−x ⊕ δ ⊕ c

=←−−−y ⊕ c⊕ δ ⊕ c

=←−y ⊕←−c ⊕ δ ⊕ c

Thus (y, y′) = (y,←−y ⊕(←−c ⊕δ⊕c)) is a pair satisfying the RX-differential (δ⊕c⊕←−c , γ).

Hence the propagation (a, γ) ⊕c−→ (b, γ) for the addition with a constant c is easily
modeled with {

bi = XOR(ai, ci, c(i−γ) mod n) 0 ≤ i < n

Proposition 16. Let (δ1, γ) and (δ2, γ) be two RX-differential over n bits, and denote
⊕(x, y) = x⊕ y), then we have the following propagation, with probability 1

[(δ1, γ), (δ2, γ)] ⊕−→ (δ1 ⊕ δ2, γ)
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Proof. Let (x, x′) (resp. (y, y′)) be a pair with RX-difference (δ1, γ) (resp. (δ2, γ)) , i.e.
(x, x′) = (x,←−x ⊕ δ1) (resp. (y, y′) = (y,←−y ⊕ δ2)). Denote (z, z′) = (x⊕ y, x′ ⊕ y′). Then
we obviously have z = x⊕ y and

z′ = x′ ⊕ y′

=←−x ⊕ δ1 ⊕←−y ⊕ δ2

=←−−−x⊕ y ⊕ δ1 ⊕ δ2

=←−z ⊕ δ1 ⊕ δ2

Then (z, z′) = (z,←−z ⊕ (δ1 ⊕ δ2)) is a pair satisfying the RX-differential (δ1 ⊕ δ2, γ).

Hence the propagation [(a, γ), (b, γ)] ⊕−→ (δ, γ) for the XOR can be easily modeled with{
∆i = XOR(ai, bi) 0 ≤ i < n

Proposition 17. Let (δ, γ) be an RX-differential over n bits, and for 0 ≤ η < n, denote
≪η (x) = x ≪ η. Then we have the following propagation, with probability 1

(δ, γ) ≪η−→ (δ ≪ η, γ)

Proof. Let (x, x′) be a pair with RX-difference (δ, γ), i.e. (x, x′) = (x,←−x ⊕ δ), and
(y, y′) = (x ≪ η, x′ ≪ η). Then we obviously have y = x ≪ η along with

y′ = x′ ≪ η

= (←−x ⊕ δ) ≪ η

= (←−x ≪ η)⊕ (δ ≪ η)
=←−−−−x ≪ η ⊕ (δ ≪ η)
=←−y ⊕ (δ ≪ η)

Thus (y, y′) = (y,←−y ⊕ (δ ≪ η)) is a pair satisfying the RX-differential (δ ≪ η, γ).

Hence the propagation (a, γ) ≪η−→ (b, γ) for the cyclic rotation by η is easily modeled
with {

bi = a(i−η) mod n 0 ≤ i < n
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