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Abstract. Beyne and Rijmen proposed in 2022 a systematic and generic framework
to study the fixed-key probability of differential characteristics. One of the main
challenges for implementing this framework is the ability to efficiently handle very
large quasidifferential transition matrices (QDTMs) for big (e.g. 8-bit) S-boxes. Our
first contribution is a new MILP model capable of efficiently representing such
matrices, by exploiting the inherent block structure of these objects. We then propose
two extensions to the original framework. First, we demonstrate how to adapt the
framework to the related-key setting. Next, we present a novel approach to compute
the average expected probability of a differential characteristic that takes the key
schedule into account. This method, applicable to both linear and non-linear key
schedules, works in both the single-key and related-key settings. Furthermore, it
provides a faster way to verify the validity of characteristics compared to computing
the fixed-key probability. Using these extensions and our MILP model, we analyze
various (related-key) differential characteristics from the literature. First, we prove the
validity of several optimal related-key differential characteristics of AES. Next, we show
that this approach permits to obtain more precise results than methods relying on key
constraints for SKINNY. Finally, we examine the validity of a differential distinguisher
used in two differential meet-in-the-middle attacks on SKINNY-128, demonstrating
that its probability is significantly higher than initially estimated.
Keywords: differential cryptanalysis · quasidifferential trails · MILP · related keys
· SKINNY · AES

1 Introduction
Differential cryptanalysis is one of the most important and powerful cryptanalysis techniques
against block ciphers. This technique, introduced by Biham and Shamir in 1990 [BS91]
exploits input differences that propagate through the cipher to output differences with
high probability. Computing the probability of a differential is a very hard problem.
As the majority of the symmetric primitives are built by iterating a relatively simple
function, called the round function, a classical approach for estimating the probability of a
differential is to work with the so-called differential characteristics, that are sequences of
one-round differentials. As the probability of a differential is the sum of the probabilities
of all differential characteristics that it comprises, the probability of a differential can be
lower bounded by the probability of any of its characteristics.

Computing the probability of a differential characteristic, though less hard than
computing the probability of the whole differential, is still a very hard problem. For
this reason, this probability is usually estimated by multiplying the probabilities of
the one-round differentials composing the characteristic, by using the assumption that
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these one-round differentials are independent. In 1991, Lai, Massey and Murphy showed
that this independence hypothesis holds for the so-called Markov ciphers and gives for
these constructions the correct value for the keyed-average probability of the differential
characteristic [LMM91].

When mounting an attack against a concrete instance of a cipher, the quantity that
becomes important is the fixed-key probability of a differential or a differential characteristic.
This is of course very hard to estimate and in practice, to overcome this problem, what
has been used for years is the stochastic equivalence hypothesis [LMM91] that states that
the probability of the differential characteristic for any specific key is close to the average
probability of the characteristic across all keys.

The problem with both the independence and the stochastic equivalence hypothesis is
that they are known to fail for the majority of ciphers. For instance, Knudsen demonstrated
that the probability of the differential used to attack the DES in [BS91] varies significantly
depending on the key value [Knu93]. Similarly, Ankele and Kölbl [AK19], Heys [Hey20]
and Peyrin and Tan [PT22] provide several examples where the stochastic equivalence
hypothesis does not hold. The differential characteristics of the AES are also known to
behave differently depending on the key value. Notably, its designers showed that all
2-round characteristics of the AES, and most of its 4-round characteristics, are plateau
characteristics. This means that their probability can only take two values: 0 for almost
all keys and a fixed value p for the remaining ones [DR07].

The first complete and powerful framework for studying the fixed-key probability in
differential cryptanalysis was provided in 2022 by Beyne and Rijmen [BR22]. In this
work, the authors introduced the notions of quasidifferential transition matrices and
quasidifferential trails. A quasidifferential trail can be seen as a sequence of mask-difference
pairs that allows the propagation of probabilistic linear relations on the values satisfying
a differential characteristic. One of the central results in [BR22] is a formula involving
quasidifferential trails that can be used to exactly compute the probability of a differential
characteristic, without relying on any underlying hypotheses.

Some researchers, on the other hand, took a different approach to study the fixed-key
probability of differential characteristics. For example, Peyrin and Tan [PT22], whose
article was published slightly after the quasidifferential framework [BR22], use a more ad
hoc approach that consists in searching for specific key constraints for a given characteristic
and then to estimate the impact of each detected constraint on the probability. They
introduce several types of constraints in their work, namely (higher-order) linear and
nonlinear constraints. By designing a tool to detect these different constraints, they show
that most of the characteristics published in the literature for the lightweight ciphers
SKINNY and GIFT are valid for only a small proportion of the key space, and several among
them are not valid for any key.

At first glance, searching for key constraints may seem more intuitive, as it potentially
allows for better understanding of these constraints. However, this method has several
limitations. First, identifying such constraints can be a challenging and complex task.
Moreover, there is no guarantee that all constraints can be identified in this manner,
potentially leading to an erroneous partition of the key space for a given characteristic.

On the other hand, the quasidifferential framework is complete and allows for a precise
partitioning of this key space. Its main downside is that it can be computationally
intensive to calculate all quasidifferential trails for a given differential. This task is further
complicated by the size of the quasidifferential transition matrix, which is significantly
larger than a classical differential distribution table. These are the main reasons why
approaches based on identifying key constraints are often preferred.

However, we believe that the right approach to tackling this difficult problem is not
to bypass the quasidifferential framework but, on the contrary, to focus on efficiently
implementing and extending it. This is what we propose in this article.
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Our contributions In this work, we propose several extensions to the framework of
Beyne and Rijmen [BR22]. First, while this framework included a basic Satisfiability
Modulo Theories (SMT) tool for searching quasidifferential trails, one major challenge in
its implementation is handling large S-boxes, such as 8-bit S-boxes. Specifically, an 8-bit
S-box requires a quasidifferential transition matrix of size 216 × 216, which is extremely
difficult to model. Although several methods exist for modeling the Difference Distribution
Table (DDT) and related tables in constraint-programming tools [SHW+14b, AST+17,
BC20, SW23], they need a significant number of inequalities to represent 8-bit S-boxes
effectively.

Our first contribution addresses this challenge by introducing a novel Mixed Integer
Linear Programming (MILP) model that can efficiently handle 8-bit S-boxes while searching
for all quasidifferential trails corresponding to a given differential characteristic. As
demonstrated in Section 5, this model provides effective results for both SKINNY-128 and
AES.

Additionally, we present a theoretical extension to the framework of [BR22] that
incorporates the key schedule, particularly handling nonlinear key schedules. The original
work considers the round keys as parameters, allowing quasidifferential trails to compute
the probability of a differential characteristic as a function of the round key bits. While
it is possible to apply the exact probability formula to the key schedule afterwards, we
propose a novel approach that offers several advantages. In this approach, we treat the key
as part of the data within the original framework. This enables the computation of the
average probability of a differential characteristic over all pairs of messages, with round keys
generated from the master key via the key schedule. Although this method does not yield
an exact probability formula, it provides significant benefits. First, it is computationally
efficient, whereas computing the exact formula is often intractable. Second, it is the first
approach that permits to compute the expected differential probability of a differential
characteristic by taking the key schedule into account.

Using our MILP model we provide several applications of both the original quasidiffer-
ential framework and its extensions developped in this work. First, we applied our extended
framework on related-key characteristics on all three versions of AES and proved their valid-
ity. As a second application, we show that we are able to reproduce in a practical way most
of experiments on SKINNY-64 and SKINNY-128 conducted in [PT22] in the fixed-key model.
For some characteristics the results match while for some others we are able to detect more
key constraints. This not only demonstrates that the framework in [PT22] is less complete
than the one of [BR22] but also indicates that efficiently implementing the quasifferential
framework is the best solution for computing the fixed-key probability of differential char-
acteristics. Finally, we apply our extension of the quasidifferential framework to verify the
validity of the 114 688 differential characteristics used as part of a differential distinguisher
of two recent differential meet-in-middle attacks [BDD+23, AKM+24]. We show that a
non-negligible portion of these characteristics are invalid, however, the average probability
of the remaining characteristics is higher than expected and has as a consequence that
the overall probability of the differential is much higher than estimated by the authors of
these attacks. This permits to decrease the overall complexity of both attacks. Finally,
we provide several examples on toy ciphers with different key schedules and explain how
the key schedule influences the probability of a characteristic and why we believe that our
model can be used as an efficient tool by designers to help them choose a key schedule
that would strengthen the security of block ciphers against differential attacks.

The rest of the article is organized as follows. In Section 2, we recall the basics of
differential cryptanalysis and briefly introduce the framework of Beyne and Rijmen. In
Section 3 we introduce our extensions to this framework. Then, in Section 4 we describe
our new MILP model for implementing the framework of [BR22]. Finally, in Section 5 we
present our applications to SKINNY and AES.
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Our complete source code is available at:

https://gitlab.inria.fr/capsule/extensions-quasidifferential-framework/

2 Differential cryptanalysis and quasidifferential framework
2.1 Differential cryptanalysis
Differential cryptanalysis is a powerful attack technique against block ciphers and other
symmetric cryptographic primitives. Introduced in 1990 by Biham and Shamir [BS91], it
exploits the existence of high-probability differentials, which are defined as follows.

Definition 1 (Differential). Let F be a function over Fn
2 . A differential of F is a pair

of input and output differences (∆in, ∆out) ∈ Fn
2 × Fn

2 . The differential probability of
(∆in, ∆out) is defined as:

DPF (∆in, ∆out) := Prx [F (x) ⊕ F (x ⊕ ∆in) = ∆out] ,

where Px denotes the probability computed by averaging over all possible inputs x ∈ Fn
2 .

The attacker’s goal is to identify a high-probability differential for a target block
cipher E, which can be viewed as a family of permutations Ek, where each instance is
parameterized by a secret key k. However, since the key used to instantiate the block cipher
is unknown, cryptanalysts usually focus on estimating the so-called expected differential
probability (EDP), defined as the average probability of a differential (∆in, ∆out) across all
keys:

EDPE(∆in, ∆out) := Prx,k [Ek(x) ⊕ Ek(x ⊕ ∆in) = ∆out] ,

where Px,k represents the probability averaged over all possible inputs x and keys k.
After identifying a differential (∆in, ∆out) with a high expected differential probability,

the attacker uses it to distinguish a particular instance Ek from a random permutation,
by explicitly relying on the stochastic equivalence hypothesis [LMM91] that says that the
probability of the differential for a particular instance Ek is close to the average case:

EDPE(∆in, ∆out) ≈ DPEk
(∆in, ∆out).

As discused in the introduction, this hypothesis is known to fail in many cases as it
has been observed that the probability of the differential can significantly vary across
keys [Knu93, DR07, AK19, Hey20, PT22].

2.1.1 Differential characteristics

Estimating the exact probability of a differential (∆in, ∆out) after r rounds is a hard
problem. For this reason, it is common to exploit the iterative structure of block ciphers,
i.e., the fact that a block cipher instance can be written as Ek = Fr ◦ · · · ◦ F1, and compute
instead the probability of a differential characteristic:

Definition 2 (Differential Characteristic). A differential characteristic over Fr ◦ · · · ◦ F1
is an (r + 1)-tuple Q = (a1, . . . , ar+1) ∈ (Fn

2 )r+1 with differential probability:

DP(Q) := Pr
[

r∧
i=1

Fi(xi ⊕ ai) = Fi(xi) ⊕ ai+1

]
,

where x1 is uniformly random over Fn
2 and xi = Fi−1(xi−1) for i = 2, . . . , r.

https://gitlab.inria.fr/capsule/extensions-quasidifferential-framework/
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As for the case of differentials, cryptanalysts usually focus on estimating the expected
differential probability (EDP) of a differential characteristic that is defined as the probability
of the characteristic averaged on all keys.

The probability of a differential characteristic is usually computed by assuming the
one-round differentials composing a differential characteristic being independent, reducing
the overall computation to smaller computations of probabilities over a single round:

Pr
[

r∧
i=1

Fi(xi ⊕ ai) = Fi(xi) ⊕ ai+1

]
=

r∏
i=1

Pr
[
Fi(xi ⊕ ai) = Fi(xi) ⊕ ai+1

]
. (1)

In key-alternating ciphers, if the round keys are independent and uniformly distributed,
this round independence results from the addition to the state of a new round key at
the beginning of each round. However, this independence assumption is rarely satisfied
for block ciphers used in practice, for the simple reason that the round keys are usually
derived from the master key by using an algorithm called the key schedule. For this reason,
the round keys cannot be considered as independent.

Difference Distribution Table (DDT) To compute the probability of a differential
over one round in S-box-based designs, one typically relies on the so-called Difference
Distribution Table (DDT) of the cipher’s S-box. A DDT for an m-bit S-box S is a 2m × 2m

table. For an input difference a ∈ Fm
2 and an output difference b ∈ Fm

2 , the entry DDT[a][b]
records the number of solutions to the equation S(x) ⊕ S(x ⊕ a) = b.

Often, in differential attacks, the probability of the differential is approximated by the
probability of its dominant (i.e., highest-probability) differential characteristic. Indeed, for
a fixed key k, a pair of input values (x, x ⊕ ∆in) to the function Fr ◦ · · · ◦ F1 follows exactly
one differential characteristic. Consequently, if we denote by DT(∆in, ∆out) the set of
differential characteristics of the form (∆in = a1, a2, . . . , ∆r+1 = ∆out), it holds that:

DPF (∆in, ∆out) =
∑

Q∈DT(∆in,∆out)

DPF (Q),

which shows that the probability of a differential can be lower bounded by the probability
of any of its characteristics.

2.2 The framework of Beyne and Rijmen [BR22]
Beyne and Rijmen were the first to study in a systematic and generic way the probability
of differential characteristics in the fixed-key setting. We briefly introduce in this section
the central notions of their framework. We follow for this the notations of [BR22] as close
as possible. More details can be found in the original article.

To evaluate the fixed-key probability of a characteristic, one aims to track the probability
distribution of pairs through each step of the cipher while keeping track of key-related
conditions. More formally, this involves operations on distributions, i.e., functions from Fn

2
to R. The vector space of all such functions is denoted by R[Fn

2 ]. A basis for this space is
given by (δa)a∈Fn

2
, where δa(x) equals 1 if a = x and 0 otherwise. This basis is referred to

as the standard basis. Using the standard basis, Beyne and Rijmen introduce the concept
of transition matrix, defined as follows:

Definition 3 (Transition Matrix, [BR22]). Let F : Fn
2 → Fm

2 be a function. The
transition matrix of F is the coordinate representation of the unique linear operator
T F : R[Fn

2 ] → R[Fm
2 ], defined by:

δx 7→ δF (x) for all x ∈ Fn
2 .

The matrix is expressed with respect to the standard bases of R[Fn
2 ] and R[Fm

2 ].
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In the study of differential cryptanalysis, it is necessary to work with pairs, i.e., to
consider the space R[Fn

2 × Fn
2 ]. The standard basis for this space is given by

(
δ(a,b)

)
a,b∈Fn

2
,

where δ(a,b)(x, y) equals 1 if x = a and y = b, and 0 otherwise, for any (x, y) ∈ Fn
2 × Fn

2 .
The analogue of the transition matrix for pairs, for a function F : Fn

2 → Fm
2 , is

represented by T F ⊗ T F and is defined as:

(T F ⊗ T F )(y1,y2),(x1,x2) = T F
y1,x1

T F
y2,x2

= δy1(F (x1))δy2(F (x2)).

This corresponds to the representation of the linear operator δ(x,y) 7→ δ(F (x),F (y)) with
respect to the standard bases of R[Fn

2 × Fn
2 ] and R[Fm

2 × Fm
2 ].

However, the choice of basis must also be well-suited to facilitate tracking of key-related
operations, such as key addition in most cases. Consequently, [BR22] introduced the
concept of the quasidifferential basis.

Definition 4 (Quasidifferential Basis, [BR22]). Let n be a positive integer. For any
u, a ∈ Fn

2 , the function βu,a : Fn
2 × Fn

2 → R is defined as:

βu,a(x, y) = χu(x)δa(x + y),

where χu(x) = (−1)uT x. The set of all functions {βu,a | u, a ∈ Fn
2 } is called the quasidif-

ferential basis for R[Fn
2 × Fn

2 ]. This basis is orthogonal.

The quasidifferential basis is translation invariant, i.e., for all u, a, t ∈ Fn
2 , we have:

βu,a(x + t, y + t) = χu(t)βu,a(x, y).

A change-of-basis operator between the standard basis and the quasidifferential basis is
defined as Qn : R[Fn

2 × Fn
2 ] → R[Fn

2 × Fn
2 ], where:

(Qnf)(u, a) = ⟨βu,a, f⟩.

Using the properties of the quasidifferential basis, the value (Qnf)(u, a)/2n corresponds
to the coordinate of βu,a in the quasidifferential basis.

This change-of-basis operator is applied to T F ⊗ T F , resulting in the definition of
the quasidifferential transition matrix (QDTM). Its associated properties are listed in
Theorem 1.

Definition 5 (Quasidifferential Transition Matrix, [BR22]). Let n and m be positive
integers, and let F : Fn

2 → Fm
2 be a function. The quasidifferential transition matrix DF is

defined as the matrix representation of T F ⊗ T F with respect to the quasidifferential basis.
Specifically:

DF = Qm(T F ⊗ T F )Q−1
n .

Developing the expression of DF yields the following formula:

DF
(v,b),(u,a) = 1

2n

∑
x∈Fn

2
F (x+a)=F (x)+b

(−1)u⊺x+v⊺F (x) (2)

With Equation (2) one can prove the following quasidifferential transition matrix
properties:

Theorem 1 ([BR22]). Let n and m be positive integers and F : Fn
2 → Fm

2 a function. The
matrix DF has the following properties:

1. If F is a bijection, then DF is an orthogonal matrix.
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2. If F = (F1, . . . , Fm), then DF =
⊗m

i=1 DFi .

3. If F = F2 ◦ F1, then DF = DF1DF2 .

4. If F (x) = x + t for some t ∈ Fn
2 , then DF

(v,b),(u,a) = χv(t)δv(u)δb(a).

5. If F is linear, then DF
(v,b),(u,a) = δu(F ⊺(v))δb(F (a)).

2.2.1 Quasidifferential trails and associated theorems

To analyze the propagation of probability distributions of pairs through an iterated function,
Beyne and Rijmen introduced the notion of quasidifferential trail, which is defined using
the quasidifferential transition matrix and its associated properties.

Definition 6 (Quasidifferential Trail, [BR22]). A quasidifferential trail for a function
F = Fr ◦ · · · ◦ F1 is a sequence (u1, a1), . . . , (ur+1, ar+1) of so-called mask-difference pairs.
The correlation of this quasidifferential trail is defined as

r∏
i=1

DFi

(ui+1,ai+1),(ui,ai)

A first observation is that a quasidifferential trail (0, a1), . . . , (0, ar+1) with zero
masks corresponds directly to a differential characteristic with intermediate differences
a1, . . . , ar+1. By Equation (2), the correlation of such a quasidifferential trail is given by:

r∏
i=1

DFi

(0,ai+1),(0,ai) =
r∏

i=1
Pr[Fi(x + ai) = Fi(x) + ai+1],

where x is uniformly random over Fn
2 . This expression matches then the formula given

in Equation (1) for computing the probability of a differential characteristic under the
independence hypothesis.

In the following, we present two key results related to quasidifferential trails that are
most relevant to our work.

Theorem 2 ([BR22]). Let F : Fn
2 → Fm

2 be a function such that F = Fr ◦ · · · ◦ F1.
The probability of a characteristic with differences a1, . . . , ar+1 is equal to the sum of the
correlations of all quasidifferential trails with the same intermediate differences:

Pr[
r∧

i=1
Fi(xi + ai) + Fi(xi) = ai+1] =

∑
u2,...,ur

r∏
i=1

DFi

(ui+1,ai+1),(ui,ai)

with u1 = ur+1 = 0, xi = Fi−1(xi−1) for i = 2, . . . , r and x1 uniform random on Fn
2 .

This important theorem implies that the fixed-key probability of a differential char-
acteristic can be computed exactly if all quasidifferential trails associated with it are
identified. Consequently, determining the fixed-key probability of a characteristic reduces
to the problem of developing efficient tools to find quasidifferential trails, or at least those
with high correlation, to obtain a good approximation of the fixed-key probability.

Remark: An important observation is that this theorem does not take directly into
account relations between the round keys. In order, to obtain a formula on the master
key one must replace the involved round key bits by an expression of the master key bits.
This can lead to non-negligible overhead in the fixed-key analysis, especially for non-linear
key schedules. We discuss this point in more details in Section 3.
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Theorem 3 ([BR22]). For a function F = Fr ◦ · · · ◦ F1 and a characteristic a1, . . . , ar+1
with correlation p (as a quasidifferential trail, i.e., with all masks set to 0), it holds that:

1. Let (u1, a1), . . . , (ur+1, ar+1) be a quasidifferential trail with correlation (−1)bp where
b ∈ {0, 1}. Let (v1, a1), . . . , (vr+1, ar+1) be a quasidifferential trail of correlation c.
Note that the intermediate differences are the same, only the masks change. Then the
correlation of the quasidifferential trail (u1 + v1, a1), . . . , (ur+1 + vr+1, ar+1) equals
(−1)bc. Formally we have,

r∏
i=1

DFi

(ui+1+vi+1,ai+1),(ui+vi,ai) = (−1)b
r∏

i=1
DFi

(vi+1,ai+1),(vi,ai)

2. Let T be the set of all quasidifferential trails having differences a1, . . . , ar+1 and
correlation ±p. If there exists D ⊆ T such that∑

d∈D

corr(d) = 0

then the characteristic has a probability equal to zero. Here, corr(d) denotes the
correlation of a trail d.

The second property highlights the interest of quasidifferential trails that share the
same absolute correlation as the corresponding differential characteristic. This property
can lead to impossibility results, as illustrated for example in [BN24], where Beyne
and Neyt analyzed the characteristic used in [BDBN23] to attack SPEEDY-7-192. They
identified a quasidifferential trail with a correlation equal to the negation of the differential
characteristic’s correlation for all keys. As a result, using Theorem 3.2, they demonstrated
that the characteristic has a probability of zero for every possible key, invalidating thus
the proposed attack against this instance of SPEEDY.

We provide next a simple example that demonstrates how the quasidifferential frame-
work is used in practice to compute the exact probability of a differential characteristic
and the way that key constraints appear.

Example 1. For this example we consider a tiny toy cipher composed of two applications
of a 4-bit S-box with a key addition between them. The S-box used is the one of SKINNY-64.
We propose a simple characteristic illustrated in Figure 1.

9 12 12 6

k

SB
2−3

SB
2−3

Figure 1: A differential characteristic on the toy cipher which has a priori a probability of
2−6 for all keys.

By looking at the quasidifferential transition matrix DS of this S-box and in particular
the two blocks of this matrix corresponding to the differential transitions 9 → 12 and
12 → 6 (the blocks are respectively given in Figure 9 and Figure 10 in Appendix A) one
can compute all the quasidifferential trails associated to this characteristic. An example of
such quasidifferential trail is given by this sequence of mask-difference pairs:

(0, 9) (1, 12) (1, 12) (0, 6)SB AK SB



Christina Boura, Patrick Derbez and Baptiste Germon 523

where the differences are colored in blue and the masks in red. The correlation of this trail
equals to:

DS
(1,12),(0,9) × χ1(k) × DS

(0,6),(1,12) = (−2−3) × (−1)kT (0,0,0,1) × (−2−3) = 2−6(−1)k0

where k = (k3k2k1k0)2 is the binary decomposition of k with the most significant bit being
k3.

Only 8 quasidifferential trails are associated to this characteristic and their correlations
sum up to this expression:

pk = 2−6 (
1 + (−1)k0 + (−1)k1 + (−1)k2+k3

+ (−1)k0+k1 + (−1)k0+k2+k3 + (−1)k1+k2+k3 + (−1)k0+k1+k2+k3
)

= 2−6((−1)k1 + 1)((−1)k0 + 1)((−1)k2+k3 + 1)

=
{

2−3 if k1 = k0 = 0 and k2 = k3

0 otherwise.

3 Extension: related-key setting and average probability
In this section, we present two extensions of the quasidifferential framework. First, we
demonstrate how the framework can be easily adapted to compute the exact probability of a
related-key differential characteristic. Next, recognizing that the exact probability formula
can be highly complex, we propose an alternative approach to utilize the quasidifferential
framework. This approach enables the computation of the expected average probability of
a differential characteristic for round keys generated by the key schedule.

3.1 Quasidifferentials in the related-key setting
The applicability of the quasidifferential framework in the context of related-key charac-
teristics is not straightforward. Indeed, the original framework proposed in [BR22] was
designed to analyze differential characteristics where both elements of a pair are encrypted
under the same key, meaning that the exactly same operations are applied to both elements.
However, in the case of related-key characteristics, the key addition is asymmetrical for
these two elements as the first undergoes an addition with some value t, while the other
one with some value t + c. To address this, we propose an extension of the framework to
account for operations that treat the elements of a pair in an asymmetrical manner.

Let F and G be two functions from Fn
2 to Fm

2 . Instead of considering T F ⊗ T F , we
analyze now the transition matrix T F ⊗ T G. Following the approach of Beyne and Rijmen,
we apply the change-of-basis operator Qn and derive a formula analogous to Equation (2):

D
F/G
(v,b),(u,a) = 1

2n

∑
x∈Fn

2
G(x+a)=F (x)+b

(−1)uT x+vT F (x) (3)

Then, Theorem 2 can be reformulated as:

Theorem 4. Let F, G : Fn
2 → Fm

2 be two functions such that F = Fr ◦ · · · ◦ F1 and
G = Gr ◦ · · · ◦ G1. Then,

Pr[
r∧

i=1
Gi(xi + ai) + Fi(xi) = ai+1] =

∑
u2,...,ur

r∏
i=1

D
Fi/Gi

(ui+1,ai+1),(ui,ai)

with u1 = ur+1 = 0, xi = Fi−1(xi−1) for i = 2, . . . , r and x1 uniform random on Fn
2 .
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This yields an exact formula for the probability of a related-key characteristic with
independent round keys.

Regarding the behavior of mask-difference pairs under key addition, we can apply
Equation (3) using the functions F : x 7→ x + t and G : x 7→ x + t + c, where t, c ∈ Fn

2 .
This yields the following expression for the correlation coefficient:

D
F/G
(v,b),(u,a) = χu(t)δu(v)δb(a + c)

Example 2. Consider the same toy cipher as in Example 1. Again, we propose a simple
related-key characteristic (see Figure 2) to illustrate the application of this extension. Here,
by applying our extended framework we obtain 4 quasidifferential trails, leading to the
following formula for the fixed-key probability:

pk = 2−6 (
1 + (−1)k1 + (−1)k2+k3 + (−1)k1+k2+k3

)
= 2−6 (

(−1)k1 + 1)(1 − (−1)k2+k3
)

=
{

2−4 if k1 = 0 and k3 ̸= k2

0 otherwise

which can be easily verified to be the exact distribution for this characteristic.

9 12 13 7

1

SB
2−3

k SB
2−3

Figure 2: Related-key characteristic on our toy cipher.

An important remark about this extension is that it provides an exact formula for a
related-key characteristic when making abstraction of the key-schedule. In the case of a
linear key schedule, while the round keys are uniform, they are not independent. However,
it is straightforward to reverse the key schedule to derive constraints on the master key.
For a non-linear key schedule, the round keys are neither independent nor uniform. While
the dependency issue can be addressed by reversing the key schedule, by using for example
the algebraic normal form of the S-box, the non-uniformity cannot be easily accounted for.
This limitation motivated us to propose a new extension of the quasidifferential framework.
This extension aims to compute the EDP of a characteristic by directly incorporating
the constraints of the key schedule. The details of this new approach are presented in
Section 3.2.

3.2 Quantifying the EDP of single-key and related-key characteristics
In this section, we propose an approach to compute the EDP of a differential characteristic
in both the single-key and related-key models by treating the key as data within the
quasidifferential framework. While determining the exact probability of a differential
characteristic as a function of the master key is theoretically appealing and should be done
whenever possible, it is often infeasible due to the inherent complexity of the problem.
Computing the exact probability requires evaluating the entire cluster of associated
quasidifferential trails, which can be intractable due to the very high number of trails and
the difficulty of enumerating them.

Furthermore, restricting the computation to quasidifferential trails with correlations
above a fixed threshold can lead to inconsistencies, such as formulas yielding negative
probabilities for certain keys. Additionally, the fixed-key probability of a differential
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characteristic typically results in a complex formula involving many key bits, making
practical estimation unmanageable. Finally, cryptanalysts are generally more concerned
with assessing the validity of a differential rather than obtaining a detailed breakdown
of its probability. One practical approach is to verify the validity of a large number of
characteristics and justify their diversity to ensure coverage of the entire key space.

To address these challenges, we propose a method to efficiently evaluate both the validity
and average probability of a characteristic without relying on exact formulas. Notably,
this method is particularly well-suited for related-key characteristics, even when the key
schedule is non-linear, and it is simpler to apply than the original framework based on
independent round keys. Our method builds on an extension of the framework introduced
in [BR22], treating the key as data. In the following, we first provide a theoretical
explanation of this extension and then validate it using a toy cipher. Applications of this
extension are presented in Section 5.

3.2.1 Extension of [BR22]’s framework

When studying a related-key characteristic, one needs to take into account the constraints
on the key that arise from the key schedule in addition with the constraints on the data
path. Then, it is required to check that those constraints are compatible. Here, we chose to
view this by considering the related-key characteristic as a single characteristic on both the
state-update function and the key schedule. Accordingly, we now consider quasidifferential
trails on both the plaintext and the key. More formally, an operation F on the data path
is now seen as:

F : Fn
2 × Fm

2 → Fn
2 × Fm

2

(x, k) 7→ (F (x), k)

Using Theorem 1, for a function F = (F, idFm
2

), it holds that:

DF
(v1||v2,b1||b2),(u1||u2,a1||a2) = (DF ⊗ D

idFm
2 )(v1||v2,b1||b2),(u1||u2,a1||a2)

= DF
(v1,b1),(u1,a1)δv2(u2)δb2(a2)

where ∥ denotes the concatenation. Other operations involving only the key (i.e., key
schedule’s operations) are treated the same way. Consequently, the quasidifferential trail
on the data path and the one on the key path do not interact with each other for operations
on only one of the inputs. Let now see how masks are affected during the key addition,
given by the following operation:

G : Fn
2 × Fn

2 → Fn
2 × Fn

2

(x, k) 7→ (x + k, k)

The correlation coefficient associated to this operation can be computed using Proposition 1.

Proposition 1. Let n be a positive integer.
For any vx, vk, bx, bk, ux, uk, ax, ak ∈ Fn

2 it holds that:

DG
(vx∥vk,bx∥bk),(ux∥uk,ax∥ak) = δbx

(ax + ak)δbk
(ak)δvx

(ux)δvk
(ux + uk)

Proof. G is a linear mapping thus we can apply Theorem 1.5 with GT (x, k) :− (x, x + k):

DG
(vx∥vk,bx∥bk),(ux∥uk,ax∥ak)

= δ(bx,bk)(G(ax, ak))δ(ux,uk)(GT (vx, vk))
= δbx(ax + ak)δbk

(ak)δux(vx)δuk
(vx + vk)
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It is important to note that no information about the key is present in this formula,
meaning the fixed-key information is entirely lost. However, we can still apply Theorem 2
and obtain the exact formula for the EDP of a characteristic:
Theorem 5. Let E = Fr ◦ · · · ◦ F1 and let Q =

(
(a1

x, a1
k), . . . , (ar+1

x , ar+1
k )

)
represent

a related-key differential characteristic over E. Here, (a1
x, . . . ar+1

x ) and (a1
k, . . . , ar+1

k )
correspond to the differential characteristics on the plaintext and key, respectively. If
a1

k = · · · = ar+1
k = 0, then Q is a characteristic in the single-key model. Then,

EDP (Q) :− Pr
[

r∧
i=1

Fi

(
(xi, ki) + (ai

x, ai
k)

)
+ Fi(xi, ki) = (ai+1

x , ai+1
k )

]

=
∑

u2
x,...,ur

x

u2
k,...,ur

k

r∏
i=1

DFi

((ui+1
x ,ui+1

k
),(ai+1

x ,ai+1
k

)),((ui
x,ui

k
),(ai

x,ai
k

))

where (u1
x, u1

k) = (ur+1
x , ur+1

k ) = (0, 0), (xi, ki) = Fi−1(xi−1, ki−1) for i = 2, . . . , r and
(x1, k1) uniform random on Fn

2 × Fn
2 .

This theorem is a corollary of Theorem 2 and simply states that the EDP of a
characteristic can be computed by identifying the associated quasidifferential trails when
considering both the plaintext and the key as data. This probability will be zero if the
characteristic is impossible and non-zero otherwise, with potential variations in the average
probability. We illustrate our new method in Example 3.
Example 3. Again, we consider our toy cipher and add an S-box in the key schedule. We
use two characteristics shown in Figure 3. The left one is possible for some keys and the
right one is impossible for all keys.

9 12 13 7

11 1
k0 k1

SB
2−3

SB
2−3

SB
2−2

(a) Possible characteristic

9 12 6 7

5 10
k0 k1

SB
2−3

SB
2−3

SBSB
2−2

(b) Impossible characteristic

Figure 3: Two related-key characteristics on our toy cipher

The possible characteristic corresponds to the one used in Example 2 except that a
differential transition was added before the key addition. In the fixed-key setting, the
extended framework outputs that the possible values for k1 are {4, 5, 8, 9} as already
discussed in Example 2. In addition, the possible values for k1 by looking only at the
differential transition 11 → 1 are {8, 9, 12, 13}. Thus the probability to draw a valid key is
2−3 and the probability that a plaintext passes through the characteristic knowing that a
valid key was drawn is 2−4 leading to an average probability of 2−7. Here, we can find this
by hand but on a real cipher with multiple S-boxes and linear operations it represents a
real challenge. Using our method, we find two quasidifferential trails, one has all its masks
equal to zero and the other is represented in Figure 4. Each of them has a correlation
equal to 2−8, and summing them results in the correct average probability.

Now, if we look at the other characteristic the possible values of k1 in a fixed-key setting
would be {2, 4, 8, 14} but the possible values that pass through the differential transition
5 → 10 are {5, 7, 13, 15} which explains the impossibility. Again, our model outputs two
quasidifferential trails one having the opposite correlation of the other yielding an average
probability equal to zero.
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SB

SB

SB9
0

12
2

13
2

7
0

11
0 k0

1
2 k1

1
0

Figure 4: Quasidifferential trail associated to the valid characteristic. Differences are in
blue and masks in red

What is particularly powerful about this use of the quasidifferential framework is that,
for the first time, we can compute the average probability of a differential characteristic
for round keys generated by a key schedule. This approach eliminates the need to assume
that the round keys are independent, significantly broadening the applicability of the
framework.

An important question is whether it is easier to compute the average probability or
the fixed-key probability of a differential characteristic. In all our experiments, computing
the average probability consistently proved to be faster. This is because the number of
trails involved was always smaller, and the corresponding model completed more quickly.
We attribute this to the formula in Proposition 1, specifically the terms δbx

(ax + ak) and
δvk

(ux + uk) which impose strong constraints between the masks on the data path and
those on the key path.

Moreover, key schedules are often relatively simple functions with few or no non-linear
components, resulting in a limited number of possible masks on the key path. This, in
turn, reduces the potential masks on the data path. Intuitively, each quasidifferential trail
captures a variation in the probability of the characteristic. When the key is included in
the trail, a quasidifferential trail explains a global variation in the probability, applicable
across all keys. In contrast, in the fixed-key setting, the variation is local and applies only
to a subset of keys. Consequently, it is unsurprising that fewer quasidifferential trails are
required to compute the average probability than the fixed-key probability.

To illustrate our claims we detail an example of a single-key characteristic on which we
apply three different key schedules. Each choice of key schedule has a different impact on
the probability of the characteristic. We compare the findings of our extended extension
with a fixed-key approach to illustrate how this extension could be used in order to design
a strong key schedule.

Example 4. In this example, we study a cipher composed of 3 successive applications of
the AES S-box with a key addition between every S-box. This single-key characteristic is
given in Figure 5. Let k0 and k1 denote the two round keys used in the characteristic. We
apply our model on three different key schedules: the first one is described by k1 = k0, the
second one by k1 = SB(k0) and the last one by k1 = SB′(k0) where SB denotes the AES
S-box and SB′ corresponds to the S-box of SKINNY-128.

9c bd bd 19 19 b7

k0 k1

SB
2−6

SB
2−6

SB
2−6

Figure 5: Single-key characteristic on our toy cipher having an estimated probability of
2−18. The differences are given in hexadecimal notation

First, we conducted a fixed-key analysis of this characteristic. We exhausted all the
associated quasidifferential trails resulting in 2048 trails. We then derived a fixed-key
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expression for each key schedule by reversing it using the algebraic normal form of the
two different S-boxes. Finally, we evaluated the three expressions for all possible values
of the key bits involved in the expression. For the first key schedule, two valid keys are
found with an associated probability of 2−15 each. The second key schedule created an
incompatibility in the characteristic thus no valid key was found. Lastly, when replacing
in the key schedule the S-box of the AES by the one of SKINNY-128 the characteristic was
possible for one key with a probability of 2−15. We then applied our extension on this
characteristic with the three different key schedules and it yielded the correct average
probability i.e., respectively 2−14, 0 and 2−15. It is important to remark that our model
identified fewer trails compared to the fixed-key model, with 16, 1875, and 785 trails for the
three respective key schedules. We also stress the fact that here the fixed-key expression
was only involving a few key bits. On a real cipher with more rounds and linear operations
this expression can quickly become unusable with too many bits involved. On the other
hand, we believe that the extension that we proposed can scale for more complex study
cases as we show in Section 5.1.

4 Implementation of the quasidifferential framework
To effectively apply the quasidifferential framework in practice, an efficient implementation
is essential. In this work, we introduce a novel Mixed Integer Linear Programming
(MILP) model to achieve this. As we will discuss shortly, the key challenge for an efficient
implementation lies in finding a compact modelization of the QDTM, minimizing the
number of inequalities required. The focus of this section is to demonstrate how to achieve
such a compact representation of the QDTM. Additional details on the choices we made
to accelerate the global model can be found in Section 5 and specifically in Section 5.2
where we discuss several applications of the framework to the SKINNY block cipher.

4.1 Modeling quasidifferential trails
Theorem 2 states that, to evaluate the fixed-key probability of a given differential charac-
teristic, one can search for all quasidifferential trails with the same intermediate differences,
and sum their correlations. This problem is very similar to that of finding high-probability
differential characteristics and can thus be approached, at least from a theoretical point of
view, in a similar manner.

The propagation rules that a quasidifferential trail must satisfy are detailed in Theorem 1.
For a linear layer L, incorporating the constraints into the MILP model is straightforward:
in a transition from (u, a) to (v, b) through L, the associated correlation coefficient is
non-zero if and only if b = L(a) and LT (v) = u. However, for a nonlinear operation S,
there is no direct expression for DS . The challenge lies in identifying a set of inequalities
that are satisfied exclusively by valid transitions over the QDTM.

This problem is analogous to modeling a Difference Distribution Table (DDT) or
any other cryptographic table and has been extensively studied, with various methods
proposed [SHW+14b, SHW+14a, AST+17, BC20, Sun21]. When applied to DDTs, the
most effective of these methods enable modeling differential transitions for S-boxes of up
to 8 bits, which is sufficient for most applications.

However, modeling the non-zero coefficients of the S-box’s QDTM is a significantly
more challenging problem, primarily due to the size of QDTM tables. Indeed, for an n-bit
S-box, the corresponding QDTM is comparable in size to the DDT of a 2n-bit S-box.
This is because each non-zero coefficient QDTM(b∥v),(a∥u) represents a possible transition
(u, a) → (v, b) for u, a, v, b ∈ Fn

2 . If we represent each possible transition by (b∥v∥a∥u), the
set of these transitions can be viewed as a subset of F4n

2 . In comparison, the set of possible
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transitions in the DDT can be viewed as a subset of only F2n
2 , as differential transitions to

be modeled are of the form a → b, where a, b ∈ Fn
2 .

Therefore, for QDTMs, we need a method that takes an arbitrary subset of F4n
2 as

input and returns a set of linear inequalities that describe this subset. Existing methods
proposed in the literature for modeling transitions in the DDT are efficient only for subsets
up to F16

2 , which corresponds to 8-bit S-boxes. However, modeling the QDTM of these
same S-boxes would require working with subsets of F32

2 , which makes a direct application
of these methods impractical.

Our main contribution in this part is to propose a straightforward and practical
approach for computing a set of inequalities corresponding to the non-zero coefficients of a
QDTM for large, notably 8-bit, S-boxes.

4.2 QDTM modeling
4.2.1 Exploiting QDTM’s structure

The QDTM matrix is highly structured: it consists of 2n × 2n blocks of size 2n × 2n. Each
block corresponds to a specific differential transition, so when a differential transition is
impossible, the entire block is composed of zeros; otherwise, there exist some non-zero
coefficients in the block. The main idea behind this approach is that, since we already
know the differential trail, we only need mask variables in our model, and we can apply the
correct constraints only to these variables. Note that this approach was already integrated
in the original SMT model of [BR22]. More formally, this means we do not need to find
inequalities in F4n

2 that describe Pb,a = {(b∥v∥a∥u) | u, v ∈ Fn
2 , QDTM(b∥v),(a∥u) ≠ 0}; but

only need inequalities in F2n
2 that describe Pb,a = {(v∥u) | u, v ∈ Fn

2 , QDTM(b∥v),(a∥u) ≠ 0}
for any given a, b ∈ Fn

2 .
In the following, we represent a transition (u, a) → (v, b), where u, a, v, b ∈ Fn

2 , by
(b∥v∥a∥u) = (b0, . . . , bn−1, v0, . . . , vn−1, a0, . . . , an−1, u0, . . . , un−1), following the conven-
tion that x0 is the MSB of x. Our approach consists of two main steps: first, we map a
block within F4n

2 into F2n
2 ; second, we use state-of-the-art methods to find a minimal set

of inequalities describing the possible transitions in F2n
2 . We will first describe these steps

in Sections 4.2.2 and 4.2.3 and then illustrate the method with a detailed example (see
Example 5).

4.2.2 Embedding in F2n
2

This step is straightforward. We begin with an initial set

Pb,a = {(b∥v∥a∥u) | u, v ∈ Fn
2 , QDTM(b∥v),(a∥u) ̸= 0} ⊆ F4n

2

and trivially transform it into

Pb,a = {(v∥u) | u, v ∈ Fn
2 , QDTM(b∥v),(a∥u) ̸= 0} ⊆ F2n

2 .

This new set retains the structure of the original set but can be efficiently modeled with a
relatively small number of inequalities, using state-of-the-art methods as described in the
following section.

4.2.3 Modeling techniques for an arbitrary subset in F2n
2

For efficiency reasons, one wants to minimize the number of constraints in a MILP model.
Indeed, when the number of constraints is reduced by one or more orders of magnitude,
the MILP solver can find an optimal solution much faster. This is why several techniques
have been developed to produce a small subset of inequalities that describe a given subset
of F2n

2 . Initially, [SHW+14b] and [SHW+14a] proposed two different approaches, but these
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could not be applied to 8-bit S-boxes. The first approach that could be effectively applied
to 8-bit S-boxes was introduced in [AST+17]. Later, several different methods applicable
to large S-boxes were proposed in [BC20]. Given their success in significantly reducing the
number of inequalities for modeling the S-boxes of ciphers such as AES and SKINNY-128,
two ciphers central to our study, we opted to integrate these methods into our model.

Using these method, we can efficiently find a compact set of inequalities that describe
Pb,a for a, b ∈ Fn

2 where n ≤ 8. For instance, in the case of the 4-bit S-box of SKINNY-64,
there are 97 possible transitions, and we computed a set of inequalities for each block in the
QDTM corresponding to a possible transition. The average number of inequalities across
these sets is 17.18, with a maximum of 128 inequalities, and 90% of the sets contain fewer
than 32 inequalities. For SKINNY-128 that uses a 8-bit S-box, during all our applications
we only needed to model 136 blocks among the 11 469 non-zero blocks of the QDTM,
which by itself justifies our approach. The average number of inequalities is 350.51, with a
maximum of 4578 inequalities, a minimum of 7 inequalities and 85% of the sets contains
less than 115 inequalities. This clearly shows that it is possible to obtain a practical
modeling of the QDTM, despite of what one could have though at first glance. To evaluate
the generality of our approach, we conducted an experiment to model all nonzero blocks
of the QDTM. The process took approximately 10 hours on our server, utilizing up to 128
threads. Every transition with a probability greater than 2−5 can be modeled with at most
1088 inequalities, though most require significantly fewer. Overall, 90% of all transitions
can be modeled using at most 1024 inequalities. Still, it is important to reinforce the
fact that the efficiency of this modeling depends on the underlying technique used to
generate the inequalities for a single block. Recent works, such as [LS22], have improved
the modelizations of [BC20], suggesting the possibility of a more efficient implementation
of the quasidifferential framework. In this work, since we focus solely on fixed differential
transitions, we deal exclusively with inequalities over 2n bits involving mask variables.
Consequently, there is no need to convert these inequalities into inequalities over 4n bits
that would describe Pa,b. Such a conversion would be relevant in a more comprehensive
model where the goal is to search for high-probability differential transitions, treating both
differences and masks as variables. However, as this extension lies beyond the scope of this
work, we only provide the method to translate inequalities describing Pb,a into inequalities
describing Pa,b in Appendix B, for completeness.

We now provide an example to illustrate the above described approach using a small
block-by-block matrix.

Example 5. Consider the following matrix representing a set of possible transitions:

M =


0 1 0 0
1 0 0 0
1 1 0 1
1 0 0 0


Here, possible transitions are indicated by a ‘1’ in the matrix. The set of such transitions

is therefore {1, 4, 8, 9, 11, 12}, where each transition is indexed by 4i + j, with i as the
row index and j as the column index, starting from zero. Suppose we want to model the
bottom-left 2 × 2 block, displayed in bold for clarity.

Step 1: The possible transitions within the selected block are {8, 9, 12}, i.e.,

P1,0 = {(1, 0, 0, 0), (1, 0, 0, 1), (1, 1, 0, 0)} ⊆ F4
2

and P1,0 = {(0, 0), (0, 1), (1, 0)} ⊆ F2
2.
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Step 2: The inequality −xv
0 − xu

0 + 1 ≥ 0 is false only for (xv
0∥xu

0 ) = (1, 1).

Step 3 (Optional, see Appendix B): Given b = 1 and a = 0, we use Proposition B.2 to
convert the inequality, resulting in

−2(1 − xb
0) − xv

0 − 2xa
0 − xu

0 + 1 ≥ 0 ⇐⇒ 2xb
0 − xv

0 − 2xa
0 − xu

0 − 1 ≥ 0.

The reader can verify that the only elements in F4
2 satisfying this inequality are those in

the set {8, 9, 12} = Pb,a.

With this approach, the problem of modeling an n-bit QDTM, i.e., modeling an
arbitrary subspace of F4n

2 is reduced to modeling an arbitrary subspace in F2n
2 for all

non-zero blocks (or only for those blocks of interest in a specific problem).
Using this method, we can construct a model for any block cipher with an S-box of up

to 8 bits. We applied our model to both versions of SKINNY, and we discuss the results
obtained, along with a comparison to other works, in Section 5.2.

5 Applications
In this section, we detail the different applications of our extended framework. First we
applied it to related-key characteristics on the AES and confirmed the average probability
computed previously only under the Markov assumption. Next, in Section 5.2, we focus
on SKINNY for which we conducted a fixed-key analysis of several characteristics (in
both single-key and related-key model) and compared it to Peyrin and Tan’s framework.
Notably, we found a new constraint on a characteristic that was not detected in [PT22]
therefore proving that the quasidifferential framework is more complete. We also applied
the extension presented in Section 3.2 and compare it to the fixed-key approach. Finally,
we applied the same extension to a differential presented in [BDD+23] and analysed
the average probability of this differential, improving the complexity of two differential
meet-in-the-middle attacks associated to it.

5.1 Related-key differential characteristics on AES

At first sight, it is not clear what kind of patterns in a related-key characteristic lead to
an impossibility on the AES especially if the impossibility is due to the key schedule. Thus,
we begin this section by giving an example of such impossible related-key characteristic
on AES-128 which was successfully detected by our model. In order to explain this key
constraint we use the two sets XDDT and YDDT , that respectively correspond to the set
of input values and output values of a given differential transition through an S-box S:

XDDT (∆in, ∆out) :− {a | a ∈ Fn
2 , S(a) ⊕ S(a ⊕ ∆in) = ∆out}

YDDT (∆in, ∆out) :− {S(a) | a ∈ Fn
2 , S(a) ⊕ S(a ⊕ ∆in) = ∆out}

Example 6. In this example, we detail one related-key characteristic on two rounds of
the AES that is impossible due to the key schedule. This characteristic is illustrated in
Figure 6.

First, the possible values for the sole active cell after the MixColumns operation
(denoted x) correspond precisely to the outputs of the MixColumns transformation applied
to all columns consisting of valid outputs from the first S-box layer. In other words:

x ∈ MC
({

(x0, x1, x2, x3)|xi ∈ YDDT (ai, bi)
})
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Figure 6: Impossible related-key characteristic on AES-128 with:
(a0, a1, a2, a3, b0, b1, b2, b3) = (0x94, 0x1c, 0x45, 0xd6, 0x41, 0xff, 0xd, 0x95)
and (c, d, e, f, g, h) = (0x6, 0xc, 0x26, 0x20, 0xd4, 0x9d) in hexadecimal notation.

Secondly, x ⊕ k must be a valid input for the transition through the second S-box layer.
Meaning that:

x ⊕ k = y, y ∈ XDDT (f, g)

Through enumeration, the possible values of k are reduced to just 128. However, k must
also be a valid input for the transition c → d through the S-box in the key schedule.
This requirement is incompatible with the constraints arising from the plaintext, thereby
creating an impossibility. Our model successfully identified this incompatibility using only
two trails, whose correlations summed to zero.

In practice, cryptanalysts search for high-probability characteristics. Patterns such as
the one described in Example 6 are unlikely to result in such characteristics. Typically,
high-probability related-key characteristics would be such that the differences on the key
“desactivate” most of the active S-boxes in the data path. This condition is not met in our
example, where f is non-zero. In other words, optimal related-key characteristics on the AES
are really sparse. This is, we believe, the reason why we did not detect any impossibilities
on any of the optimal related-key characteristics provided in the literature that we analysed.
Indeed, in order to evaluate our new technique for computing the EDP of a differential
characteristic while accounting for the key schedule, as well as to assess the efficiency of
our model for 8-bit S-boxes we accurately calculated the average expected probability of
several related-key differential characteristics of all three variants of the AES. Specifically,
we analyzed the differential characteristics presented in [BKN09], [FJP13], and [GLMS18].
For each of these characteristics, it took only a few minutes to compute their average
expected probability with subkeys generated by the key schedule. As a result, we conclude
that the differential probabilities computed under the Markov assumption match the
corresponding expected differential probabilities. This result is significant because, to the
best of our knowledge, it is the first time that the validity of these characteristics has been
verified when taking the key schedule into account.

5.2 SKINNY
We then applied our model to several differential characteristics previously analyzed in
[PT22]. Specifically, for SKINNY-64, we selected Tables 5, 6, 7, and 8 from [DDH+21]
and Table 4 from [PT22]. For SKINNY-128, we used Tables 9 and 10 from [DDH+21] and
Table 11 from [AST+17]. Most of those characteristics are in the related-key model, the
application of the quasidifferential framework in this model is discussed in Section 3.

Recall that we refer to the correlation of the quasidifferential trails with all masks
being zero by the term optimal correlation and we point out that the optimal correlation
is the greatest correlation (in absolute value) possible for any quasidifferential trail for
the same associated differential characteristic. Indeed, from Equation (2) it follows that
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for any u, a, v, b ∈ Fn
2 , DF

(v,b),(u,a) ≤ DF
(0,b),(0,a). We detail the different modelings that we

implemented and explain the improvements that each of them brought.

5.2.1 Finding optimal quasidifferential trails

Initially, we focused on quasidifferential trails with optimal correlation to determine what
could be achieved using only these trails and Theorem 3.2. Another motivation for this
approach was the difficulty of enumerating and analyzing all quasidifferential trails for
a given differential characteristic on SKINNY in most of our case studies. First, when
there is a large number of quasidifferential trails, the model becomes slow and may fail
to terminate within a reasonable time. Second, after the model terminates, we sum the
correlations of all the quasidifferential trails identified, resulting in a multivariate expression
dependent on specific bits of the key. Evaluating this expression for every possible key
bit combination, to check when the probability is zero, requires exponential time in the
number of key bits involved. This motivated us to restrict the model to search only for
optimal quasidifferential trails.

To efficiently find these trails, we introduced the following constraint into the model:
if an S-box is inactive in the differential trail, it should also be inactive for the masks.
This is based on the observation that DSB

(v,0),(u,0) < DSB
(0,0),(0,0) for any (u, v) ∈ Fn

2 where
(u, v) ̸= (0, 0). Thus, if the masks are non-zero when the difference is zero, the correlation
of the quasidifferential trail will be strictly lower than the optimal correlation.

Another optimization for finding optimal trails involves modifying the Quasidifferential
Transition Matrix (QDTM) model for each block (corresponding to a differential transition
a → b) to retain only masks satisfying DSB

(v,b),(u,a) = DSB
(0,b),(0,a). Specifically, instead of

modeling the set
Pb,a = {(b∥v∥a∥u) | u, v ∈ Fn

2 , DSB
(v,b),(u,a) ̸= 0},

we model the subset

P ′
b,a = {(b∥v∥a∥u) | u, v ∈ Fn

2 , DSB
(v,b),(u,a) = DSB

(0,b),(0,a)}.

Using this approach, we were able to identify all quasidifferential trails with optimal
correlation for each differential trail analyzed.

After finding these quasidifferential trails, we sum their correlations and evaluate
the resulting expression. If the expression equals zero for specific round key bit values,
Theorem 3.2 guarantees that the fixed-key probability of the characteristic is zero. We
then reverse the key schedule to detect additional incompatibilities.

At this stage, we obtained results for both SKINNY-64 and SKINNY-128. For some
characteristics we did not find same results as in [PT22]. In fact, for all those characteristics
our first model was always detecting fewer constraints than [PT22]. This means that some
key constraints were not solely explained by optimal quasidifferential trails and that it
is required to consider trails with a lower correlation to explain those constraints. An
example of such a constraint along with its explanation is given in Section 5.2.3.

5.2.2 Considering sub-optimal quasidifferential trails

In order to grasp more constraints we modeled all the coefficients of the QDTM instead of
only the ones that granted optimal correlation. Besides, we tried different approaches to
further restrict the model. First we added an upper bound on the number of reactivated S-
boxes, where a reactivated S-box is an S-box that is active for masks while the corresponding
S-box is inactive for differences. That way, we found more trails, some of them having
sub-optimal correlation, and by using Theorem 2 we obtain a better approximation of the
fixed-key probability and the associated key space. Notably, on the 5-round differential
presented in Table 4 of [PT22] we were able to exhaust all quasidifferential trails and
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we obtained the same key distribution as Peyrin and Tan, thus showing that anything
that is detected by Peyrin and Tan’s framework is also detected by Beyne and Rijmen’s
framework. We could also find the exact same results on the remaining characteristics of
SKINNY-64. However, when applying this model on SKINNY-128 for some characteristics
controlling the number of reactivated S-boxes was insufficient.

The limitation of our first approach was mainly due to the fact that setting an upper
bound on reactivated S-boxes is not accurate enough and the model has no control over
the quality (in terms of correlations) of the solutions that it finds. Thus, we decided to
incorporate the computation of the absolute value of the correlation directly into the model.
Before, discussing how we modified the model we describe an approach that was used for
characteristics on which our approach is based. In 2017, Abdelkhalek et al. introduced a
method to add the computation of the probability of a differential directly into a MILP
model that searched for high-probability characteristics. The method consisted in dividing
the DDT into several sub-DDTs depending on the value of the coefficients.

Definition 7 (pb-DDT, [AST+17]). For a given S-box and its DDT, if the probability of
entries in the DDT is pb, the corresponding entry of the pb-DDT is 1. Otherwise, entries
of the pb-DDT are 0.

The DDT can then be expressed as a weighted sum of pb-DDTs, with a set of inequalities
computed for each pb-DDT. The approach for a single S-box is as follows: a binary variable
Qpb is introduced for each possible probability in the DDT. This variable determines
whether the set of inequalities corresponding to pb is active. Additionally, a constraint is
imposed to ensure that only one set of inequalities can be active at a time. The base-2
logarithm of the probability for a single S-box is then calculated as:∑

pb

log2(pb) × Qpb.

This technique can clearly be extended to compute correlations for quasidifferential
trails, which is precisely what we implemented. Specifically, we computed several sets of
inequalities, each corresponding to different correlation values of coefficients, for every
block of the QDTM that needed to be modeled. This allowed us to set a lower bound on
the correlation for the quasidifferential trails we aimed to identify. However, even with this
feature, we were unable to obtain convincing results for the characteristics listed in Tables 9
and 10 of [DDH+21]. While our model completes its computations within a few hours, the
evaluated probability expression yields negative values for certain combinations of key bits,
indicating that our lower bound on correlation was overly restrictive. Relaxing this bound
would allow the discovery of additional trails to compensate for these negative values.
Unfortunately, when we attempted to relax the bound, the model required significantly
more time and produced an overwhelming number of trails, making the results impractical
to process.

The problem of finding non-zero correlation quasidifferential trails for a given differential
characteristic intuitively appears similar to exhausting a cluster of characteristics for a
given differential. However, there is a fundamental difference between these two problems.
While stopping the exploration of a cluster of differential characteristics below a specified
probability threshold has no significant drawbacks, stopping the search for quasidifferential
trails at a certain correlation bound can result in an incomplete or inaccurate formula.
This issue is intrinsic to quasidifferential trails and not specific to our model.

In Section 6.2 of [BR22], Beyne and Rijmen argue that lower-correlation trails are
unlikely to significantly affect the overall probability and, if they do, the effect is limited
to a small subset of keys. Our experiments clearly show that this assumption does not
hold for some characteristics. Identifying a criterion for quasidifferential trails that ensures
a reliable formula remains an open problem.
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Figure 7: 3-round differential characteristic on SKINNY-64

This challenge underscores the need for the analysis we conducted using our new
extension presented in Section 5.2.4. Through this approach, we achieved convincing
results for both SKINNY-64 and SKINNY-128.

5.2.3 Finding more key dependencies

Furthermore, when running our model on a reduced version of the 7-round characteristic
presented in Table 5 of [DDH+21], we found new constraints that were not detected by
Peyrin and Tan’s framework. Indeed, we ran Peyrin and Tan’s tool on this characteristic
restricted to 3 rounds and it detected only one linear constraint which reduced the key
space to 25% and the probability was said to be 2−30 for all valid keys. However, when
using our tool we found that the key space was only 18.75% and the probability was 2−29

for one third of valid keys and 2−30 for the rest. In order to verify the validity of our
results we drew 1000 keys among keys having a claimed probability of 2−29 and tried on
232 pairs to see how many among them were valid. We found a mean of 7.998 pairs which
corroborates the claimed probability and therefore shows that the approach of [PT22] is
less complete than the framework in [BR22].

Next, we detail this constraint and explain why it wasn’t detected in [PT22]. The
characteristic is illustrated in Figure 7. Cells that are inactive and not interesting in the
differential trail are left empty, active but not interesting ones are in grey and in different
colors the ones that lead to the new constraint. Looking at the cells (0,3) and (3,3) after
the first MixColumns, it follows that:{

t = x ⊕ y ⊕ (z ⊕ tk0
0,3),

w = y ⊕ (z ⊕ tk0
0,3).

where tk0
0,3 is the first round tweakey cell at position (0,3), x, y ∈ YDDT (4, 2), z ∈

YDDT (0, 0), t ∈ XDDT (0, 0) and w ∈ XDDT (2, 1). Thus, t = x ⊕ w and by enumerat-
ing, t ∈ {0, 2, 8, 10}. Then, if we look at the cell (3,3) after the second MixColumns we
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have:
v = (SB(t) ⊕ tk1

0,3) ⊕ u.

where tk1
0,3 is the second round tweakey cell at position (0,3), u ∈ YDDT (2, 1) and

v ∈ XDDT (1, 8). From, the first round we know that SB(t) is constrained so the possible
values for tk1

0,3 are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13} with twice more solutions for the values
{8, 9, 12, 13}. This explains why one third of the valid keys has a probability of 2−29

instead of 2−30 and why one sixteenth of the keys has a zero probability. The reason why
Peyrin and Tan’s framework didn’t detect this constraint is due to the fact that z is not
constrained so their algorithm considered that the value of t is also not constrained, which
doesn’t take into account the possibility that this variable may vanish when combined
with some other cell.

5.2.4 Computing the expected average probability

Finally, to evaluate the validity of the differential characteristics on SKINNY-128 that
we could not satisfactorily analyze using a fixed-key approach, we applied the extension
described in Section 3.2 to compute the expected average probability of these charac-
teristics. For these cases, our model identified significantly fewer trails than expected
given the complexity of the problem. However, we did not find any additional impossible
characteristics compared to [PT22]. In Table 1 we provide a summary of the obtained
results and compare them to the results of [PT22]. Our model efficiently detected the
same impossible characteristics and for the first time, we are able to obtain an accurate
estimation of the average probability, even for SKINNY-128 characteristics. Also, note that
for some characteristics the average probability is higher than expected. For example, in
the characteristic for SKINNY-128-256, the probability of transitioning through an S-box
in round 6 is twice as high when it is known that the pair successfully transitioned through
the previous S-box layer.

Table 1: Analysis of SKINNY Characteristics. Stated prob. refers to the probability provided
by the respective authors. Average prob. represents the probability averaged over all
plaintexts and keys, computed using our extension, with the number of trails found by our
model shown in parentheses. Key space refers to the proportion of valid keys estimated
by [PT22]. Prob. range indicates the estimated probability (or range of probabilities) for
valid keys, as per [PT22]. Values marked with (E) were estimated experimentally.

SKINNY Rounds Stated
prob.

Average
prob.

[PT22] Source
Key Space Prob. Range

64-64
7 2−52 2−52 (1) 2−6 2−46 Table 5 [DDH+21]
10 2−46 0 (8) 0 Table 6 [DDH+21]

64-128
13 2−55 2−55 (1) 2−4 2−51 Table 7 [DDH+21]
5 2−44 2−44 (4) Not given 2−39 − 2−35.415 Table 4 [PT22]

64-192 15 2−54 2−54 (1) 2−6.19 2−48 − 2−47 Table 8 [DDH+21]

128-128
13 2−123 0 (16) 0 Table 11 [AST+17]
14 2−120 2−119.05 (44) 2−7.66 2−122.39 − 2−106.88 (E) Table 9 [DDH+21]

128-256 16 2−127.66 2−126.41 (26) 2−6.11 2−133.80 − 2−112.15(E) Table 10 [DDH+21]

5.3 Probability of the differential used in [BDD+23] and [AKM+24]
In [BDD+23], Boura et al. introduced a novel cryptanalysis technique called the Differential
Meet-in-the-Middle attack. This method combines a differential distinguisher with a meet-
in-the-middle procedure to construct pairs that satisfy both the input and output conditions
of a differential characteristic. Using this technique, they presented the first attack on
SKINNY-128-384 reduced to 25 rounds in the single-key model.
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Their attack relies on the truncated differential characteristic illustrated in Figure 8.
Specifically, they demonstrated that by fixing the differences of the active bytes to 0x32
at the input and 0x64 at the output, the probability of the differential exceeds 2−116.5.
An improvement of this attack, relying on the same differential, was later proposed by
Ahmadian et al. in [AKM+24].

The complexity of both attacks directly depends on the probability of this differential.
Therefore, an accurate evaluation of this probability is essential for reliably estimating
the complexity of these attacks. In [BDD+23], the authors identified a significant number
of differential characteristics with the same input and output differences that exhibit
sufficiently high probabilities. Specifically, they found 2048 characteristics with probability
2−131, 10 240 with 2−132, 28 672 with 2−133, and 73 728 with 2−134.

Figure 8: Truncated differential trail of the attack on 25-round SKINNY-128-384 [BDD+23]

The probabilities of all these characteristics were computed using the classical Markov
(independence) assumption. However, given recent works, notably [PT22] suggesting that
many differential characteristics for SKINNY may be invalid, we considered it important to
verify the validity of the characteristics underlying the attacks of [BDD+23] and [AKM+24].
To this end, we calculated the average probability of the 114 688 differential characteristics
using our extended quasidifferential framework (described in Section 3.2). This computation
was performed on a 128-core server (using only 32 of them) and required 18 hours to
complete.

Our analysis revealed that a non-negligible portion of the characteristics are indeed
invalid— 63 488 characteristics to be precise. Surprisingly, however, the probabilities of the
remaining valid characteristics turned out to be higher than previously estimated. As a
result, we demonstrate that the overall probability of the differential is higher than 2−113.6.
Hence, the actual time complexities of both attacks given in [BDD+23] and [AKM+24] are
improved by a factor 22.9, while both their data and memory complexities are decreased
by a factor 21.4.

6 Conclusion
In this work, we proposed several extensions to the quasidifferential framework, along with
an efficient MILP model capable of effectively handling ciphers with 8-bit S-boxes. Among
our contributions, we consider the most significant to be the adaptation of the framework
to compute the expected differential probability of a characteristic while accounting for
the key schedule. This allowed us to verify, in a very short time, the validity of thousands
of characteristics on SKINNY-128. Using this method, we also demonstrated that the
expected differential probability of all known optimal characteristics for all variants of the
AES remains the same, whether the round keys are considered independent or derived from
the key schedule. The ability of our approach to efficiently incorporate the key schedule
in these computations provide block cipher designers with a practical tool for selecting a
key or tweakey schedule that maximizes the cipher’s resistance to (related-key) differential
attacks.
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A Quasidifferential transition matrix blocks
We provide here the two blocks of the Quasidifferential Transition Matrix (QDTM) for
the S-box of SKINNY, which are necessary to follow the computations in the toy cipher
examples. The two coefficients involved in the computation are highlighted in bold and
marked in red for clarity.

2−3 ×



u

1 0 −1 0 −1 0 1 0 0 −1 0 1 0 1 0 −1
−1 0 1 0 1 0 −1 0 0 1 0 −1 0 −1 0 1
−1 0 1 0 1 0 −1 0 0 1 0 −1 0 −1 0 1

1 0 −1 0 −1 0 1 0 0 −1 0 1 0 1 0 −1
0 −1 0 1 0 1 0 −1 1 0 −1 0 −1 0 1 0
0 1 0 −1 0 −1 0 1 −1 0 1 0 1 0 −1 0
0 1 0 −1 0 −1 0 1 −1 0 1 0 1 0 −1 0
0 −1 0 1 0 1 0 −1 1 0 −1 0 −1 0 1 0 v

0 1 0 −1 0 −1 0 1 −1 0 1 0 1 0 −1 0
0 −1 0 1 0 1 0 −1 1 0 −1 0 −1 0 1 0
0 −1 0 1 0 1 0 −1 1 0 −1 0 −1 0 1 0
0 1 0 −1 0 −1 0 1 −1 0 1 0 1 0 −1 0

−1 0 1 0 1 0 −1 0 0 1 0 −1 0 −1 0 1
1 0 −1 0 −1 0 1 0 0 −1 0 1 0 1 0 −1
1 0 −1 0 −1 0 1 0 0 −1 0 1 0 1 0 −1

−1 0 1 0 1 0 −1 0 0 1 0 −1 0 −1 0 1


.

Figure 9: DS
(v,12),(u,9) for u, v ∈ F4

2

B Converting inequalities to describe Pa,b

This appendix is related to Section 4.2.3. More precisely, we describe here the method to
transform inequalities describing the set Pb,a to inequalities describing the set Pb,a.

We suppose that we have obtained a set Ia,b of inequalities in 2n variables, which are
only satisfied by elements of Pb,a within F2n

2 . Our goal is to convert these inequalities into
ones defined in 4n variables, such that they are satisfied only by elements of Pb,a. This is
precisely the purpose of Proposition 2.

Proposition 2. Let cv
0xv

0 + · · ·+cv
n−1xv

n−1 +cu
0 xu

0 + · · ·+cu
n−1xu

n−1 +d ≥ 0 be an inequality
over F2n

2 satisfied by a set P ⊆ F2n
2 . Let a, b ∈ Fn

2 and M = 1 + d +
∑

i|cv
i

>0

cv
i +

∑
i|cu

i
>0

cu
i . It

holds that the inequality:

−M

n−1∑
i=0

xb
i + cv

0xv
0 + · · · + cv

n−1xv
n−1 − M

n−1∑
i=0

xa
i + cu

0 xu
0 + · · · + cu

n−1xu
n−1 + d ≥ 0

is only satisfied by the set {(b∥v∥a∥u) | (v∥u) ∈ P} where

xb
i =

{
xb

i if bi = 0
(1 − xb

i ) if bi = 1
and xa

i =
{

xa
i if ai = 0

(1 − xa
i ) if ai = 1
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2−3 ×



u

1 −1 −1 1 0 0 0 0 0 0 0 0 −1 1 1 −1
−1 1 1 −1 0 0 0 0 0 0 0 0 1 −1 −1 1

0 0 0 0 1 −1 −1 1 −1 1 1 −1 0 0 0 0
0 0 0 0 −1 1 1 −1 1 −1 −1 1 0 0 0 0
0 0 0 0 −1 1 1 −1 1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 −1 1 −1 1 1 −1 0 0 0 0

−1 1 1 −1 0 0 0 0 0 0 0 0 1 −1 −1 1
1 −1 −1 1 0 0 0 0 0 0 0 0 −1 1 1 −1

−1 1 1 −1 0 0 0 0 0 0 0 0 1 −1 −1 1 v

1 −1 −1 1 0 0 0 0 0 0 0 0 −1 1 1 −1
0 0 0 0 −1 1 1 −1 1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 −1 1 −1 1 1 −1 0 0 0 0
0 0 0 0 1 −1 −1 1 −1 1 1 −1 0 0 0 0
0 0 0 0 −1 1 1 −1 1 −1 −1 1 0 0 0 0
1 −1 −1 1 0 0 0 0 0 0 0 0 −1 1 1 −1

−1 1 1 −1 0 0 0 0 0 0 0 0 1 −1 −1 1


Figure 10: DS

(v,6),(u,12) for u, v ∈ F4
2

Proof. Let x = (xb
0, . . . , xb

n−1, xv
0, . . . , xv

n−1, xa
0 , . . . , xa

n−1, xu
0 , . . . , xu

n−1) ∈ F4n
2 . Then

cv
0xv

0 + · · · + cv
n−1xv

n−1 + cu
0 xu

0 + · · · + cu
n−1xu

n−1 + d < M by definition of M . So if
there exists i ∈ {0, . . . , n − 1} such that xa

i = 1 or xb
i = 1, then the inequality cannot be

satisfied. However,

xb
i =

{
0 if bi = xb

i

1 if bi ̸= xb
i

and xa
i =

{
0 if ai = xa

i

1 if ai ̸= xa
i

Thus, the inequality can only be satisfied if xa
i = ai and xb

i = bi for all i ∈ {0, . . . , n − 1}
i.e., the set of solutions lies in {(b∥v∥a∥u) | u, v ∈ Fn

2 }. And when the condition is met,
the inequality turns into cv

0xv
0 + · · · + cv

n−1xv
n−1 + cu

0 xu
0 + · · · + cu

n−1xu
n−1 + d ≥ 0 which is

satisfied only by (u, v) ∈ P which concludes the proof.
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