
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2025, No. 1, pp. 420–443. DOI:10.46586/tosc.v2025.i1.420-443

Significantly Improved Cryptanalysis of Salsa20
with Two-Round Criteria

Sabyasachi Dey1, Subhamoy Maitra2, Santanu Sarkar3 and Nitin Kumar
Sharma1

1 Department of Mathematics, Birla Institute of Technology and Science Pilani, Hyderabad,
Jawahar Nagar, Hyderabad 500078, India

sabya.ndp@gmail.com,sharmanitinkumar685@gmail.com
2 Applied Statistics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700108, India

subho@isical.ac.in
3 Department of Mathematics, Indian Institute of Technology Madras, Chennai 600 036, India

sarkar.santanu.bir@gmail.com

Abstract. Over the past decade and a half, cryptanalytic techniques for Salsa20 have
been increasingly refined, largely following the overarching concept of Probabilistically
Neutral Bits (PNBs) by Aumasson et al. (FSE 2008). In this paper, we present a
novel criterion for choosing key-IV pairs using certain 2-round criteria and connect
that with clever tweaks of existing techniques related to Probabilistically Independent
IV bits (earlier used for ARX ciphers, but not for Salsa20) and well-studied PNBs.
Through a detailed examination of the matrix after initial rounds of Salsa20, we
introduce the first-ever cryptanalysis of Salsa20 exceeding 8 rounds. Specifically,
Salsa20/8.5, consisting of 256 secret key bits, can be cryptanalyzed with a time
complexity of 2245.84 and data amounting to 299.47. Further, the sharpness of our
attack can be highlighted by showing that Salsa20/8 can be broken with time 2186.01

and data 299.73, which is a significant improvement over the best-known result of
Coutinho et al. (Journal of Cryptology, 2023, time 2217.14 and data 2113.14). Here, the
refinements related to backward biases for PNBs are also instrumental in achieving
the improvements. We also provide certain instances of how these ideas improve
the cryptanalysis on 128-bit versions. In the process, a few critical points are raised
on some existing state-of-the-art works in this direction, and in those cases, their
estimates of time and data are revisited to note the correct complexities, revising the
incorrect numbers.
Keywords: Salsa20 · Differential-Linear Cryptanalysis · Right Pair · Probabilisti-
cally Neutral Bits · Probabilistically Independent Bits

1 Introduction
Symmetric-key encryption plays a major role in the protection of data by encrypting it
using a secure key. Block and stream ciphers are the two main types of symmetric key
encryption algorithms. Daniel J. Bernstein designed two very well-known stream ciphers
and named them Salsa20 and ChaCha, following the names of Latin dances. Salsa20
[Ber08] was designed in 2005 and submitted to eSTREAM [eST], the ECRYPT Stream
Cipher Project, as a candidate. It was selected as an efficient software-suitable candidate.
This cipher is used in DNS implementations and messaging software like Viber and Discord.
The operating system Chromium uses the scrypt KDF, which is based on Salsa20. Some

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-09-01 Revised: 2024-11-22 Accepted: 2025-01-23 Published: 2025-03-07

https://doi.org/10.46586/tosc.v2025.i1.420-443
mailto:sabya.ndp@gmail.com, sharmanitinkumar685@gmail.com
mailto:subho@isical.ac.in
mailto:sarkar.santanu.bir@gmail.com
http://creativecommons.org/licenses/by/4.0/

Sabyasachi Dey, Subhamoy Maitra, Santanu Sarkar and Nitin Kumar Sharma 421

cryptographic functions like scrypt, scrypt-jane, and nim-csprng exploit Salsa20 in their
encryption algorithm. Many other applications of Salsa20 are mentioned in [Sal].

These two ciphers received a lot of interest from the cryptologic community immediately
after the designs were proposed. This underlines two points. One, the ciphers received
serious interest in being analyzed and are already used commercially. Two, it is becoming
more challenging day by day to obtain improved results, the basic idea of the attack being
the one presented in [AFK+08] long back. Surprisingly, while the attack complexity could
be reduced over the years, the bound of 8 rounds for Salsa20 could not be breached for
more than one and a half decades. In this paper, we could show the cryptanalysis for 8.5
rounds for the first time. The underlying technique being the same as in [AFK+08], as is
true for all the following works in this direction, we could put together several existing
techniques as well as introduce the idea of probabilistically independent IV bits to mount
the attack. For 8 rounds, our results show significant improvements over the existing
complexities in terms of time and data. In Table 1, the works [CPGV+22] and [CPV+23]
are marked ⋆. The ⋆ mark indicates that the data complexities stated in the referenced
papers require re-evaluation for accuracy. The re-evaluation of the data complexity is
thoroughly explained in Section 5. Recalculating the ⋆-marked complexities in Section 5 is
essential to highlight the extent of improvement achieved by our techniques clearly.

1.1 Cryptanalysis of Salsa20: A Brief History
Salsa20 is an ARX-based stream cipher that is mostly recommended for fast software
implementation. ARX comprises three operations: bitwise modular addition, bitwise
constant distance rotation, and bitwise XOR. Several authors provided different crypt-
analytic techniques on such ciphers based on these operations, and such cryptanalytic
efforts build confidence in such designs. Let us now explain in detail the history of such
observations. Needless to say, none of the observations breach the designs with the number
of recommended rounds. The efforts are to increase the rounds for which attacks are
possible and reduce the complexities.

1. First, the 256-bit key version of Salsa20/5 was analysed by Crowley in 2005 [Cro05].
The attack works with an input difference to obtain a bias after 3 rounds and works
2 rounds backward after guessing 160 relevant key bits with time complexity 2165.

2. In Indocrypt 2006, Fischer et al. [FMB+06] described an attack on Salsa20/6 with a
time complexity of 2177. This attack provides an input difference to generate a bias
after 4 rounds and works 2 rounds backward after guessing 160 relevant key bits.
In 2007, Tsunoo et al. [TSK+07] explained differential cryptanalysis on Salsa20/7
having a time complexity of 2184.

3. In FSE 2008, Aumasson et al. [AFK+08] presented the first cryptanalysis of the
256-bit key version of Salsa20/8 by exploiting the 4-round forward differential and
working 4 rounds in the backward direction. The time complexity for the attack
on Salsa20/8 is 2251. The authors provided a concept of Probabilistic Neutral Bits
(PNBs). The idea of PNBs has been widely used in cryptanalytic techniques since
then on Salsa20 and ChaCha. This paper is the most fundamental one, and this
broad idea is being exploited with different variations to date in all the cryptanalytic
results, including our present effort.

4. In 2012, Shi et al. [SZFW13] introduced the concept of Column Chaining Dis-
tinguisher (CCD), improving the attack on the 256-bit key version of Salsa20/R
(5 ≤ R ≤ 8). The authors reduced the time complexity of Salsa20/7 and Salsa20/8 to
2148 and 2250, respectively. In 2015, Maitra et al. [MPM15] improved cryptanalysis
against Salsa20/8 by reducing the time complexity to 2247.2.

422 Cryptanalysis of Salsa20

5. In 2015, Maitra [Mai15] introduced a new idea of choosing proper IVs corresponding
to the keys. This concept helps reduce the time complexity for Salsa20/8 to 2245.5.
This idea is being exploited with refinements in most of the recent attacks, as evident
from [DGSS22].

6. In 2016, Choudhuri et al. [CM16] proposed the idea of multi-bit key differentials
and provided an attack on Salsa20/R (5 ≤ R ≤ 8). For Salsa20/7 and Salsa20/8,
the authors could reduce the time complexities to 2137 and 2244.9, respectively. In
2017, Dey et al. [DS17] improved the attack techniques for Salsa20/8, reducing the
time complexity to 2243.7.

7. In Asiacrypt 2022, Coutinho et al. [CPGV+22] introduced a new technique called
Bidirectional Linear Expansions (BLE) to improve the attack on the Salsa20/7 and
Salsa20/8. This technique reduced the time complexity for Salsa20/7 and Salsa20/8
to 2137 and 2218, respectively. Later, Coutinho et al. [CPV+23] slightly improved
the result for Salsa20/7 and Salsa20/8. They could reduce the time complexities to
2125.16 and 2217.14, respectively. They also provided distinguishers for Salsa20/7 and
Salsa20/8 with time complexity 2108.98 and 2215.62 respectively.

8. Recently, in 2024, Dey et al. [DLS24] introduced the method for creating a differential
attack based on the linear combination of variables obtained from many differentials
and improved the attack against the Salsa20/8 by reducing the time complexity to
2240.62.

Let us now revisit the results for the 128-bit secret key. The initial cryptanalysis of
the 128-bit key version of Salsa20/5 was provided by Fischer et al. [FMB+06] in 2006.
The authors cryptanalysed Salsa20/5 with a time complexity of 281. In 2007, Tsunoo et
al. [TSK+07] provided key guessing results on Salsa20/6 and Salsa20/7. In FSE 2008,
Aumasson et al. [AFK+08] used the 4-round differential to provide an attack on the 128-bit
key version of Salsa20/7. The time complexity for this attack was 2111. In 2012, Shi et al.
[SZFW13] reduced the time complexity of Salsa20/7 to 2109. Later, in 2018, Deepthi et
al. [DS18] provided an attack on Salsa20/7 with a time complexity of 2107. In 2024, Dey
et al. [DLS24] reduced the time complexity of Salsa20/7 to 2102.82 and provided the first
ever attack on Salsa20/7.5 with time complexity 2124.22. Works in similar directions are
also explored on ChaCha, and many attack ideas mentioned for one cipher can also be
applied in the context of other ciphers by cryptanalysts. Table 1 provides an overview of
existing key-recovery attacks on the 128 and 256-bit key versions of Salsa20, along with
the improvements achieved through our techniques.

1.2 Organization & Contribution
This paper provides improved attacks on Salsa20, introducing several new ideas. Our
attack not only improves the existing ones in terms of time and data complexities but
also produces an attack on the 256-bit key version of Salsa20/8.5 for the first time. After
the attack on Salsa20/8 in 2008, this is the first time a partial round improvement in the
key-recovery attack could be produced against the 256-bit key version of Salsa20.

Understanding the attacks requires a detailed explanation of the cipher and is given in
Subsection 1.3. We try to deconstruct each small step carefully to identify new techniques.
Consequently, we explain the basic understanding of differential-linear cryptanalysis, de-
scribe the idea of a right key-IV pair, Probabilistically Neutral Bits (PNBs), and the
existing results related to PNBs in Section 2. These are the necessary background materials
to interweave the existing techniques with our novel findings in this paper. Let us now
enumerate the section-wise contributions of this paper.

Sabyasachi Dey, Subhamoy Maitra, Santanu Sarkar and Nitin Kumar Sharma 423

Table 1: Comparison of Our Attack Complexities With the Existing Attacks on Salsa20.
(⋆ mark indicates the attack is invalid because data complexity is greater than 296)

Key/Round Time Data Ref.
2111 221 [AFK+08]
2109 219 [SZFW13]

128/7 2107 224 [DS18]
2102.82 228.77 [DLS24]
298.25 286.67 Subsection 4.3
2124.22 223.06 [DLS24]

128/7.5 2111.47 294.16 Subsection 4.4
2251 231 [AFK+08]
2250 231 [SZFW13]

2247.2 231 [MPM15]
2245.5 231 [Mai15]

256/8 2244.9 296 [CM16]
2243.7 - [DS17]
2240.62 227.56 [DLS24]
2218 2114 [CPGV+22]⋆

2217.14 2113.14 [CPV+23]⋆

2186.01 299.73 Subsection 4.1
256/8.5 2245.84 299.47 Subsection 4.2

• In Section 3, we propose two ideas that improve the state-of-the-art attack parameters
against Salsa20. The first idea (Subsection 3.1) introduces a criterion in the 2nd
round to improve the bias. The second idea (Subsection 3.2) introduces the idea of
the probabilistically independent IV bits, which ensures that sufficient data can be
generated to execute the attack using the first idea.

• The key-recovery attacks on 256-bit key version of Salsa20/8 and Salsa20/8.5 and
128-bit key version of Salsa20/7 and Salsa20/7.5 are mentioned in Section 4. For the
256-bit key version of Salsa20/8, our proposed time complexity value is 2186.01, which
improves the previous result [CPV+23] by a significant margin of more than 231. If
we take note of the invalidity of the attack in [CPV+23] due to the data limit as
explained in Section 5, the margin is even better. We would like to reiterate that, for
the first time after around two decades of research, we could identify cryptanalysis
of Salsa20 for more than 8 rounds. We also significantly improve the complexities
for the 128-bit key version of Salsa20/7 and Salsa20/7.5.

• Section 5 comprises the critical analyses of data complexity calculation for a few
previous attacks on Salsa20 and consequently shows that some attacks are not
achievable as claimed.

Finally, we conclude this paper in Section 6.

424 Cryptanalysis of Salsa20

Table 2: Table of Notations.
Notation Meaning

X The state matrix of the cipher consisting of 16 words
X(0) Initial state matrix
X(r) State matrix after r rounds

X
(r)
i [j] Value of j-th bit of the i-th word of X(r)

∆X
(r)
i [j] XOR difference at the j-th bit of the i-th word of states X(r) and X ′(r)

Salsa20/R Salsa20 reduced to R rounds.
ID Input Difference position
OD Output Difference position
ϵd Bias obtained after r rounds in forward direction
X̃ State matrix in which significant key bits have fixed values
α Parameter for finding significance level in hypothesis testing
ϵa Bias obtained after (R − r) rounds in backward direction

vi[j] Value of j-th bit of the i-th word of IV v
HW Hamming weight of the difference matrix X ⊕ X ′

(k, v) Key-IV pair

1.3 Description of Salsa20

Salsa20 works on sixteen 32-bit words represented in the form of a 4 × 4 matrix. The
cipher has two versions each, having keys of sizes 128 and 256 bits. The 256-bit key version
of the cipher takes 8 key words (k0, k1, . . . , k7), 4 constants words (c0, c1, c2, c3), 2 words
of nonce (v0, v1) and 2 counter words (v2, v3) as input and generates a 512-bit output.
In this paper, for simplicity, the nonces and counter words are considered as IVs. The
constants words (c0, c1, c2, c3) are slightly different for 128-bit and 256-bit key versions of
cipher. The four constants for the 256-bit key structure are

c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574.

For the 128-bit key structure, the key words (k0, k1, . . . , k7) are defined as ki+4 = ki, ∀ 0 ≤
i ≤ 3. There is a slight change in the constants for the 128-bit key structure. The four
constants for the 128-bit key structure are

c0 = 0x61707865, c1 = 0x3120646e, c2 = 0x79622d36, c3 = 0x6b206574.

The keywords (k0, k1, . . . , k7) are arranged in all the rows of the matrix. Nonces (v0, v1)
and counter words (v2, v3) are positioned in the second and third rows respectively. The
constants words (c0, c1, c2, c3) are placed along the diagonals. Based on the discussion
above, the initial state matrix looks as follows:

X =

X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 X10 X11

X12 X13 X14 X15

 =

c0 k0 k1 k2

k3 c1 v0 v1

v2 v3 c2 k4

k5 k6 k7 c3

 .

The round function is a nonlinear operation consisting of ARX operation viz.: addition
modulo 232 (⊞), left cyclic rotation operation (≪), and XOR operation between the bits
(⊕). In this round function, the vector (a, b, c, d) transforms into a vector (a′, b′, c′, d′) as
shown below:

Sabyasachi Dey, Subhamoy Maitra, Santanu Sarkar and Nitin Kumar Sharma 425

b′ = b ⊕ ((a ⊞ d) ≪ 7),
c′ = c ⊕ ((b′ ⊞ a) ≪ 9),
d′ = d ⊕ ((c′ ⊞ b′) ≪ 13),
a′ = a ⊕ ((d′ ⊞ c′) ≪ 18).

(1)

This function described in Equation 1 is known as the quarter round function. For
an initial state matrix X(0), after applying the round function r times, we obtain a
state matrix X(r). For odd rounds, the round function acts along the columns of the
matrix and is called the column-round function. The four columns are (X0, X4, X8, X12),
(X5, X9, X13, X1), (X10, X14, X2, X6) and (X15, X3, X7, X11). For even rounds, the round
function acts along the rows of the matrix and is called the row-round function. The four
rows are (X0, X1, X2, X3), (X5, X6, X7, X4), (X10, X11, X8, X9) and (X15, X12, X13, X14).
The keystream block Z is obtained by the addition of matrices X(0) and X(r) as shown:

Z = X(0) ⊞ X(r),

where X(0) is the initial state and X(r) is the state after r rounds of X.

Half of quarter round:

We define a half-round by applying the first two operations of the quarter-round functions
on each row/column, i.e.,

b′ = b ⊕ ((a ⊞ d) ≪ 7),
c′ = c ⊕ ((b′ ⊞ a) ≪ 9).

(2)

After implementing Equation 2, only 8 words in the state matrix are updated. The
elements b and c of the vector are transformed to b′ and c′. The updated words are
underlined in the right-side matrix shown below:

Salsa20/8 −→ Salsa20/8.5

X

(8)
0 X

(8)
1 X

(8)
2 X

(8)
3

X
(8)
4 X

(8)
5 X

(8)
6 X

(8)
7

X
(8)
8 X

(8)
9 X

(8)
10 X

(8)
11

X
(8)
12 X

(8)
13 X

(8)
14 X

(8)
15

 −→

X

(8.5)
0 X

(8.5)
1 X

(8.5)
2 X

(8.5)
3

X
(8.5)
4 X

(8.5)
5 X

(8.5)
6 X

(8.5)
7

X
(8.5)
8 X

(8.5)
9 X

(8.5)
10 X

(8.5)
11

X
(8.5)
12 X

(8.5)
13 X

(8.5)
14 X

(8.5)
15

 .

Xu et al. [XXTQ24] introduced attacks on the 7.25 and 7.5⊕-round versions of ChaCha,
where updates are limited to only 8 words of the cipher state (same as our case). The 7.5⊕-round
version of ChaCha adopts four addition operations over the existing 7.25-round version. In earlier
work on Salsa20 and ChaCha, such partial-round attacks have proven advantageous in extending
the analysis to full-round attacks later. Moreover, we have observed that there is a possibility to
provide an attack on Salsa20/8.75.

2 Existing Cryptanalytic Techniques
In this section, we discuss some existing cryptanalytic techniques that will be used while we build
our attacks. Our novel ideas are mentioned in Section 3, which will be connected with these
known techniques to mount more efficient attacks.

426 Cryptanalysis of Salsa20

2.1 Differential-Linear Cryptanalysis
The two main attack techniques against symmetric ciphers are differential and linear cryptanalysis.
Biham and Shamir [BS91] introduced the concept of differential cryptanalysis against DES in
1990. Differential cryptanalysis on DES analyzes how chosen differences in plaintext pairs create
predictable differences in the resulting ciphertext pairs. By carefully selecting these plaintext pairs
and tracking how their differences change through each round, especially through the S-boxes, the
attacker can identify patterns that suggest possible encryption key values. In 1992, Matsui [MY93]
introduced linear cryptanalysis against FEAL. Using the technique, the attacker constructs one
or more linear relation(s) between plaintext, ciphertext, and key bits in this XOR (⊕) operation.
In 1994, Langford and Hellman [LH94] combined the differential and linear attack techniques and
introduced the concept of differential-linear cryptanalysis. This technique was first applied to
DES (a block cipher) but was later successfully extended to cryptanalyse stream ciphers. In this
technique, the cipher E is split into two subciphers, E1 and E2. The subcipher E1 is exploited
for the differential cryptanalysis, whereas E2 is considered for the linear approximation.

Let us now recall the differential-linear cryptanalysis on Salsa20. Let X be the initial state
matrix and X ′ be the state matrix different from X only at a single bit (ID). Here, Xi[j] denotes
the j-th bit of the i-th word of the matrix X. After employing the difference at the initial
stage, we observe the output difference after r rounds. The difference observed is denoted as
∆X

(r)
p [q] = X

(r)
p [q] ⊕ X

′(r)
p [q]. The q-th bit of the p-th word, for which the probability of output

difference ∆X
(r)
p [q] = 0 is high, is considered an output difference position (OD). The probability

is given as 1
2 (1 + ϵd), where ϵd denotes the output-difference bias, also known as forward bias.

After noting the r-round output difference, we have to find a linear relationship between the
output differential from r rounds of the cipher to R rounds. The bias for linear approximation is
given by the notation ϵl. Since the linear relation is observed for X and X ′, the differential-linear
bias for R rounds is expressed as ϵd · ϵ2

l .

2.2 Searching for a Right Pair
In [Mai15], Maitra explained that if a particular value of words in the difference column is chosen,
one may obtain a better forward bias ϵd. To maximize ϵd, the attacker carefully chooses the
difference column words so that the propagation of differences after the one-quarter round is
controlled and results in a fixed number of differences. This precise selection ensures the desired
level of influence on the differential propagation. Let the fixed value of differences after the
one-quarter round be h. Instead of choosing any random IV, we can locate a higher bias if we
choose specific IVs for which the number of differences after the first quarter round is exactly h.

Let us consider the initial states (X, X ⊕ ∆in) such that PrX∈Fn
2

[E1(X) ⊕ E1(X ⊕ ∆in) =
∆m] = p, where p is the probability of obtaining a right pair when the initial states are chosen at
random. The probability for the key is PrXi∈Fn

2
[E1(Xi) ⊕ E1(Xi ⊕ ∆in) = ∆m] = p ≈ 1

2 , i.e., to
find a right pair we have to evaluate p−1 iterations. We have improved this idea of obtaining a
right pair by adding some extra conditions, as mentioned in Subsection 3.1.

2.3 General Idea of Probabilistic Neutral Bits
Aumasson et al. [AFK+08] proposed a technique to divide the key bits into two categories:
Probabilistically Neutral Bits (PNBs) and Significant bits. PNBs have a low probability of
influencing the output difference bit. Therefore, if out of 256 bits, m bits are significant, and
the remaining (256 − m) are probabilistically neutral, we can guess only 2m values to find the m
significant key bits first.

Consider X as the initial state matrix, with X ′ being a state matrix obtained by introducing
an input difference (ID). Upon executing the algorithm on X and X ′ for r rounds, we observe
the difference between the two state matrices at a single bit. This difference is represented as
∆X

(r)
p [q] and termed the output difference (OD). The bias obtained after r rounds is denoted as

ϵd. Upon completing R rounds, we obtain the final states X(R) and X ′(R) respectively. These
states are then added with the respective initial states X and X ′ to generate the keystream blocks
Z and Z′, respectively.

Now concentrate on a specific key bit, say ki, out of the total key bits (128 or 256). After
changing the value of ki in the initial states X and X ′, we obtain the new altered states as X̄ and

Sabyasachi Dey, Subhamoy Maitra, Santanu Sarkar and Nitin Kumar Sharma 427

X̄ ′. We obtain the matrices Z − X̄ and Z′ − X̄ ′ by applying the reverse round function (R − r)
times. These two matrices are denoted by M̄ and M̄ ′. The key bit ki will be considered a PNB if
the probability of an event ∆M̄p[q] = ∆X

(r)
p [q] is high. The bias of this event is denoted by γi,

also known as the neutrality measure. In [AFK+08], to construct the PNB set, the authors have
used a threshold value γ such that a key bit ki for which γi ≥ γ is regarded as probabilistically
neutral. Once we have the PNBs, during the actual attack, the attacker assigns random values in
the PNBs, guesses the significant bits only, and runs the algorithm backward. When the guess
of significant bits is correct, it shows a high bias, which acts as an alarm to identify the correct
guess. For a detailed explanation of this process, one may go through [AFK+08] or [Mai15].

3 Our Proposed Ideas for Cryptanalysis
In [BLT20, Mai15], the authors used the idea of minimizing the difference propagation in the
first round in order to improve the bias in the distinguisher. This idea was simple and effective
because, in the first round, the columns were updated independently. Therefore, random values
in the three other columns do not affect the validity of a right pair. While it is natural that
minimizing the difference propagation would improve the bias, using this idea in the second round
is infeasible because the row-round (followed by the column-round) mixes up the entire matrix.
Therefore, a state with minimum difference can be disturbed by any change of bit. So, throughout
an attack, such a state can not be maintained. For this reason, improving the bias further by
imposing a criterion in the second round has been challenging since 2016.

In this context, we introduce two ideas in Subsection 3.1 and Subsection 3.2 here in order to
improve the distinguisher. In the first one, by analyzing the design and the difference propagation,
we introduce a small criterion in the second round, which increases the bias significantly. The second
idea is regarding probabilistically independent IVs, which is a refinement of an idea proposed in
[BLT20] against Chaskey and assures that a sufficient number of IVs can be generated without
disturbing the right pair. Thus, an idea from the cryptanalysis of a different cipher is brought in
here for cryptanalysing Salsa20.

3.1 Introducing a 2-round criterion for Finding a Right Pair by Struc-
tural Analysis of Difference Propagation

In this technique, we modify the criterion for a key-IV pair to be a right pair. In the attack
against Salsa20 in [CPV+23], the authors put the input difference at the 31-st bit of X7 and
observed the difference after 5 rounds at X4[7]. To estimate the bias, they expressed X

(5)
4 [7] as a

linear combination of 3 bits, X
(4)
0 [0], X

(4)
4 [7], X

(4)
12 [0]. Keeping the previously existing condition of

four differences after the first round, we introduce one more condition in the second round. In the
second round, the first operation in the last row is

X
(2)
12 = X

(1)
12 ⊕

(
(X(1)

14 ⊞ X
(1)
15) ≪ 7

)
.

Note that X15 contains two differences after the first round (as shown in Figure 1). Following
the operation mentioned above, these differences automatically arrive at X

(2)
12 .

Whether these differences would propagate to the adjacent bits is probabilistic. In Figure 1,
the terms ∆C[31] and ∆C[18] are the differences generated at the carry bits during the addition
X

(1)
14 ⊞ X

(1)
15 . ∆C[i] = 0 implies that there is no carry difference. Now, whether ∆C[18] is 0 or 1

depends on the value of X14[17]. In order to minimize the difference propagation, we want to
make both ∆C[18] and ∆C[31] zero. This would result in only two difference bits in X

(2)
12 . So, we

are interested in only those states where the propagation does not occur. Therefore, the criterion
for a key-IV pair to be a right pair in our attack is to satisfy both of the following criteria:

1. Exactly 4 differences after the first round, i.e., HW (X(1) ⊕ X ′(1)) = 4.

2. Exactly 2 differences in X12 after 2 rounds, i.e., HW (X(2)
12 ⊕ X

′(2)
12) = 2.

A comparison of the biases for all the 32 bits of X12 for the 1-round criterion [CPV+23] and
the 2-round criterion (this paper) is given in Figure 2. The bias is represented by the intensity of

428 Cryptanalysis of Salsa20

∆C[18]∆C[31]

X
(1)
14 : = [31] [30] · · · [18] [17] [0]· · ·

X
(1)
15 : = [31] [30] · · · [18] [17] [0]· · ·

⊞

Sum: = · · · · · · · · · · · · · · ·

Figure 1: Difference Propagation in the Addition Operation X
(1)
14 ⊞ X

(1)
15 .

the black color in the box, where full white represents the bias value 1 and full black represents
the bias value −1. One can observe that in the older approach (above), from the 24-th bit, the
bias gradually becomes less significant as we move towards the left. Bit 25 has a zero bias, and
bits on its left have decreasing biases. Further, in bit 6, the bias is 0, and the bias for bit 7 is 1.
In our approach (bottom), the difference is at exactly 2 bits, i.e., the biases are −1 at bits 24 and
5, and in the rest of the bits, the bias is +1.

24

24

5

5

Figure 2: Biases of 32 bits of X12 For Both 1-Round (Top) and 2-Round Criterion
(Bottom).

This difference of biases between the 1-round criterion and 2-round criterion propagates to
other words as the algorithm continues. We find out the bias of ∆Xp[q] of all 32 bits of each of
the words of the 4-th column, (i.e., q ∈ {0, 1, . . . 31}, p ∈ {12, 13, 14, 15}) both for the existing
1-round criterion of [CPV+23] and 2-round criterion given by us after completion of 1st and 2nd
round respectively. In Figure 3, for each of those words, we provide a side-by-side comparison of
the average bias of all 32 bits of that word between the existing 1-round criterion of [CPV+23]
and 2-round criterion of us to show the improvement on introducing the 2-round criterion. The
output difference is observed at the linear combination of 3 bits. Imposing these two conditions,
we observe significant improvement in the forward biases.

Significance of the 2-round Criteria in Estimation of Bias
In [CPV+23, Computational Result 2 Section 4.2], Coutinho et al. estimated the bias ϵd of
∆X

(4)
0 [0] ⊕ ∆X

(4)
4 [7] ⊕ ∆X

(4)
12 [0] to be 2−42.01. However, they mentioned, “In our tests, the

observed correlation was always higher than predicted. Therefore, our attack using this correlation
is probably better than what we report in this paper". To identify the accurate bias, we need to
experiment over a larger sample, which is computationally infeasible. This is why achieving a
good estimation using some theoretical approach is important. In this context, our analysis of
the 2-round condition is significant for two reasons. Firstly, this gives a significantly improved
bias, estimated to be 2−33.75. Secondly, based on this finding, we can also estimate the bias for
the 1-round condition, which is 2−35.75. This is also significantly better than the estimation of

Sabyasachi Dey, Subhamoy Maitra, Santanu Sarkar and Nitin Kumar Sharma 429

12 13 14 15

0.2

0.4

0.6

0.8

1
Bi

as
No condition

1-round criterion
2-round criterion

Figure 3: Comparison of average biases over all the 32 bits for each word X
(2)
12 , X

(2)
13 , X

(2)
14 ,

X
(2)
15 for no condition, 1-round criterion [CPV+23] and 2-round criterion.

[CPV+23].
The individual correlation values for the three OD positions ∆X

(4)
0 [0], ∆X

(4)
4 [7] and ∆X

(4)
12 [0]

were obtained by Coutinho et al. [CPV+23] by implementing the 1-round criteria. Using our 2-
round criteria, we provide the correlation/bias values for ϵd in these three OD positions. In Table 3,
we provide the comparison of the “bias for the 1-round criterion of examining the difference before
the completion of the first round” against the “bias obtained for the 2-round criterion of checking
the differences before the completion of the first and second rounds. We can use the Piling-Up
Lemma to estimate the bias value for the OD position X

(5)
4 [7] = ∆X

(4)
4 [7] ⊕ ∆X

(4)
12 [0] ⊕ ∆X

(4)
0 [0].

Table 3: Comparison of Previous and New Biases Due to the Change in the Condition of
Searching for a Right Pair.

i OD Bias (ϵd)
1-round criterion 2-round criterion

1 ∆X
(4)
0 [0] 0.00000159/ 2−19.26 0.0000053/2−17.52

2 ∆X
(4)
4 [7] 0.00085/2−10.21 0.00105/2−9.9

3 ∆X
(4)
12 [0] 0.000167/2−12.54 0.00035/2−11.48

Bias 2−42.01 2−38.90

To provide a better estimation of these biases mentioned in Table 3, we obtain the bias of
(∆X

(4)
4 [7] ⊕ ∆X

(4)
12 [0] = 0) and observe the improvement in the overall bias value ϵd. Note that

Coutinho et al. [CPV+23] mentioned that the correlation values are probably better than what
was claimed in their work. We have found the bias values computationally for both 1-round
criteria and 2-round criteria, as shown below:

Table 4: Comparison of Bias Value for ∆X
(4)
4 [7] ⊕ ∆X

(4)
12 [0] Using Piling Up Lemma and

Experiment

Conditions ∆X
(4)
4 [7] ⊕ ∆X

(4)
12 [0]

Piling Up Lemma Experiment
1-round criterion 0.00000014195/2−22.74 0.0000060/2−17.34

2-round criterion 0.00000003675/2−24.69 0.000013/2−16.23

Since Salsa20 and ChaCha have similar design algorithms, we also studied some recent works
on ChaCha in the context of obtaining improved results. Very recently, in TOSC24, Xu et al.

430 Cryptanalysis of Salsa20

[XXTQ24] provided an improvement in the bias for ChaCha by implementing the differential-
linear hull effect on certain existing works on ChaCha. Similarly, we analyzed the work of
[CPGV+22, CPV+23] on Salsa20 and improve the biases for the OD positions ∆X

(4)
0 [0], ∆X

(4)
4 [7]

and ∆X
(4)
12 [0] by providing a better estimation to calculate the bias of ∆X

(4)
4 [7] ⊕ ∆X

(4)
12 [0] = 0.

In Table 4, we provide the improvement bias for ∆X
(4)
4 [7] ⊕ ∆X

(4)
12 [0] = 0 over the existing results,

and hence using our techniques, we can improve the complexity values of the work [CPV+23].
We find the bias of (∆X

(4)
4 [7] ⊕ ∆X

(4)
12 [0] = 0) and ∆X

(4)
0 [0] separately by experiment. We

use 241 random keys for this and achieved the biases 1.3 × 10−5 ≈ 2−16.23 and 0.0000053 ≈
2−17.52 respectively. The source code for obtaining the forward bias for ∆X

(4)
4 [7] ⊕ ∆X

(4)
12 [0] is

provided in the GitHub link [Sha24]. Then we use the piling-up lemma to estimate the bias of
(∆X

(4)
4 [7] ⊕ ∆X

(4)
12 [0] = 0) ⊕ ∆X

(4)
0 [0], leading to an estimated ϵd of 2−33.75. This is around 28.25

times higher than the bias in [CPV+23].

Careful Revision of p

The probability of achieving a right pair in the previous approach was 1
2 . Since the restriction has

been stronger in this attack, it reduces the probability of certain events. Usually, the probability
that a difference would propagate to the next bit is 1

2 , as mentioned in [DDSM22]. Since we have
a difference at two bits, an extra fraction of (1

2)2 is multiplied by the value of p, making it 1
8 .

Hence, the value of p−1 changes from 2 to 8. Though this increases the complexity values by some
margin, because of the significant increase in the value of ϵd, the overall complexity of the attack
is reduced by a good margin, which will be shown in Section 4.

Better Estimation of the Bias ϵd for 1-Round Criteria

As explained above, the final bias value ϵd = 2−33.75 is obtained through the evaluation of the
bias for (∆X

(4)
4 [7] ⊕ ∆X

(4)
12 [0] = 0). Then, we proceed by combining its value with the bias of

∆X
(4)
0 [0] by using Pilling-up Lemma. After evaluating the bias value, we note that the same

mentioned in [CPV+23] can be improved through our analysis. The bias value is only for an
event with probability 1

4 times what we consider in [CPV+23]. Hence the attack considered in
[CPV+23] is bias value can be at least ϵd = 1

4 × 2−33.75 = 2−35.75.

3.2 Probabilistically Independent IV Bits
As we introduce a new criterion in X12 on the second round to form a right pair, by the existing
approach, the attacker can change only 64 IV bits (X8 and X9), i.e., the upper bound of N now
becomes 264 only. To overcome this bound of data complexity of the attack, we introduce the
idea of probabilistically independent IV bits. This idea is a tweak of an idea used in [BLT20] in
order to produce an attack against Chaskey. We refined it based on our requirement for analyzing
Salsa20.

For any IV v, let us denote by v̂ the IV achieved by flipping vi[j]. Consider a right pair
(k, v). If we note that (k, v̂) is also a right pair with high probability, then we refer to vi[j] as
a probabilistically independent bit. To identify such bits, we assign a threshold probability β
(in the similar line of threshold probability in the case of PNBs). Now, for any IV bit vi[j], we
compute the conditional probability Pr [(k, v̂) is right pair | (k, v) is right pair] by experimenting
over a large number of randomly chosen keys and IV’s. In our case, the number of randomly
chosen keys and IVs is 217. We call this probability the “measure of independence.” If the measure
of independence is higher than the threshold β, we consider vi[j] as a probabilistically independent
IV bit.

A formal definition is written as follows, and the detailed procedure is given in Algorithm 1.

Definition 1. For a given threshold β, an IV bit vi[j] is probabilistically independent if
Pr [(k, v̂) is right pair | (k, v) is right pair] > β, where v̂ is achieved by flipping the bit vi[j]
of v.

Sabyasachi Dey, Subhamoy Maitra, Santanu Sarkar and Nitin Kumar Sharma 431

Algorithm 1: Algorithm to Find Probabilistically Independent IV bits.
Input: β: A threshold probability, LOOP : the number of iterations to be

performed.
for each IV bit vi[j] do

countvi[j] = 0.
for loop = 1 to LOOP do

while true do
take a random matrix X.
prepare X ′ by putting the difference at the 31-st bit of the 7-th word.
compute X(1), X ′(1), X(2), X ′(2).
if (HW (∆X(1)) = 4 and HW (∆X

(2)
12) = 2) then

break
end

end
Prepare X̂, X̂ ′ by complementing vi[j] in X and X ′.
compute ˆX(1), ˆX ′(1), ˆX(2), ˆX ′(2).
if (HW (∆ ˆX(1)) = 4 and HW (∆ ˆ

X
(2)
12) = 2) then

increase counter countvi[j].
end

end
if countvi[j]

LOOP > β then
include vi[j] in the set.

end
end

Modifying the Attack Procedure

During the data collection phase of the attack (keystream generation), for any IV, the attacker
generates different IV’s by changing the values of the probabilistically independent bits. For an IV
v, which forms a right pair with a key k, if we randomly change the values of the probabilistically
independent bits and produce a new IV ṽ, the probability that ṽ forms a right pair with the same
key k is high. If there are n probabilistically independent IV bits, the attacker can generate 2n

possible IVs, thus 2n possible keystreams. This improves the restriction on the upper bound of
N . Experimentally, we find out the probability Pr [(k, ṽ) is right pair | (k, v) is right pair]. Let
us call this probability p1. Therefore, if we generate N different keystreams by changing the
probabilistically independent IV bits out of N (k, v) pairs, p1 × N will form the right pair, the
remaining (1 − p1) × N will not. Therefore, for these (1 − p1) × N pairs, we do not expect any bias.
On average, out of N pair of matrices,

[
p1 × N(1+ϵ)

2 + (1 − p1) × N
2

]
= N

2 (1 + p1 · ϵ) will satisfy
the desired output difference. This results in a change in the formulation of data complexity value
mentioned in previous works [CPV+23].

We have written the program on the toy version (introduced in [DGM23]) in order to verify
the validity of the formula. Out of 220 experiments, we detected the correct key with 100% success.
The experiment took less than 5 min to complete. Hence, we have experimentally verified the
formula of N (Equation 4) for the toy version, and it is valid. The source code for this experiment
is given in the GitHub link [Sha24].

3.3 Estimation of Attack Complexity
Here, we estimate the complexity values of the complete attack. The explanation here is not new,
but we must refer to it clearly for two reasons.

• To explain the achievements of our approach in terms of complexity (as in Section 4).
• To critically revisit certain complexity calculations of existing research papers in Section 5.

432 Cryptanalysis of Salsa20

First, one tries to discover the values of the significant key bits. In the initial states X and
X ′, we fix guessed values in those. The new initial state matrices obtained are X̃ and X̃ ′. The
state matrices M̃ and M̃ ′ are then obtained by applying the reverse round function to Z − X̃ and
Z′ − X̃ ′.

A bias ϵa is observed for the event (∆M̃p[q] = ∆X
(r)
p [q]). If the value of ϵa is high, then the

estimated values of significant key bits are accurate. The bias ϵa is known as backward bias. The
steps to carry out the attack are as follows:

1. For each guessed key, N pairs of keystream blocks are gathered.

2. Using the N pairs, we calculate the bias of the differential output for each significant key
bit.

3. The PNBs are then identified by performing an exhaustive search for all remaining keys.

There is only one correct guess for the significant key out of 2m possible guesses. We define a null
and an alternative hypothesis as follows:

H0 : The selected guess is incorrect. H1 : The selected variable is correct.
It is clear that 2m − 1 guesses satisfy H0, but only one guess satisfies H1. The possible errors

in this testing of the hypothesis are given as:

1. Error of Non-detection: The chosen variable in this case is correct but not detected. The
probability of this event is PreND .

2. Error of False Alarm: In this case, a variable that causes significant bias is selected
incorrectly. The occurrence has a probability of PreF A .

Let X0 be the normal distribution if the null hypothesis H0 is true. The mean and standard
deviation for the X0 distribution are: µ0 = N

2 and σ0 =
√

N
2 .

Similarly, X1 is the normal distribution if the alternative hypothesis H1 is true. The mean
and standard deviation for the distribution X1 are denoted by µ1 and σ1 respectively and are
given by:

µ1 = N

2 (1 + ϵaϵd) and σ1 =
√

σX =
√

N

4 (1 + ϵaϵd) · (1 − ϵaϵd).

Using the Neyman-Pearson lemma, for PreF A = 2−α and PreND = 1.3 × 10−3, required N
samples to achieve a bound on these probabilities is

N ≈
(√

α log 4 + 3
√

1 − ϵ2
aϵd

2

ϵaϵd

)2

. (3)

In [CPV+23], the formula of N given in Equation 3 is used to compute the data complexity
value. In Subsection 3.2, we explain the concept of probabilistically independent IV bits and
the probability p1 and their impact on the number of key-IV pair satisfying the condition of
becoming a right pair. Consequently, we observe that the ϵd in mean and standard deviation of
X1 distribution should be replaced by p1 · ϵd. Thus, the formula of N given in Equation 3 becomes

N ≈

(√
α log 4 + 3

√
1 − ϵ2

a · (p1 · ϵd)2

ϵa · (p1 · ϵd)

)2

. (4)

The time complexity of the attack is given by the equation

C = 2m ×
(
N + 2(256−m)P reF A

)
+ 2256−m = 2m · N + 2256−α + 2256−m. (5)

For a right pair-based attack mentioned in Subsection 2.2, the final data complexity value will
become p−1 × N . Similarly, the final time complexity formula will be:

p−1 × C = p−1 ×
(
2m · N + 2256−α + 2256−m

)
. (6)

Sabyasachi Dey, Subhamoy Maitra, Santanu Sarkar and Nitin Kumar Sharma 433

3.4 Divide-and-Conquer Approach & Revised Complexity Calculation
Recently, [Dey24] proposed a new technique to reduce the number of operations to observe the
differential-linear correlation obtained using the PNB-based approach. We use the same technique
in our context, as explained.

If the output difference is observed at a linear combination of multiple bits, OD1, OD2, · · · ,
ODk, then at first, the PNB set is constructed by the usual approach for the linear combination of
OD bits. Then, for each of the ODi’s, a separate PNB set is constructed by adding extra PNBs
corresponding to ODi only. Therefore, for each ODi, we have a set P NBODi . Now, during the
actual attack, for each of the ODi, we do as follows:

• From Z, Z′, we compute Z − X̄, Z′ − X̄ ′, where X̄, X̄ ′ are constructed by assigning random
values at P NBODi .

• Then, after applying the reverse round function, we find out the difference at ODi bits.

• For each of N pairs of Z, Z′, we perform this process and store the difference in the form of
N -tuple.

• Then, after guessing the significant key, we find its projection gODi on the significant
bits corresponding to ODi (called Si). For example, suppose (1,2,3,4) is a vector in a
4-dimensional space XYZW, then the projection of this vector on the XYZ-plane is (1,2,3).

• For each ODi(1 ≤ i ≤ k), we obtain the correlation value denoted by ϵi.

We collect the corresponding N -tuple. We find the XOR of the N -tuple corresponding to
each ODi. Then, by finding the Hamming weight of the XOR, we determine whether the guess is
correct. This technique results in modification in the formulation of N . Hence, the modification
of our proposed formula of N is

N ≈

(√
α log 4 + 3

√
1 − (p1 · ϵ)2

(p1 · ϵ)

)2

. (7)

Here ϵ denotes the product of the correlation values ϵd, ϵa and ϵi’s i.e., ϵ = ϵd × ϵa ·
k∏

i=1
ϵi.

The modified time complexity value is given as:

C =
k∑

i=1

2mi · N + 2m · N · k − 1
210 · (R − r) + 2256−α + 2256−m. (8)

Here, mi denotes the cardinality of the set Si (set of significant bits), and k is the number of
output difference positions ODi’s of the OD position. The value (R − r) denotes the number of
reverse rounds in the computation. To compute the final data and time complexity values, N and
C will be multiplied by p−1.

4 Applying Our Techniques to Cryptanalyse Salsa20
In this section, we discuss how the ideas of Subsection 3.1 and Subsection 3.2 can produce
improved cryptanalysis against 128 and 256-bit versions of Salsa20. In each of the attacks
we use the same ID − OD pair X

(0)
7 [31] → X

(5)
4 [7]. Using the 2-round criterion proposed in

Subsection 3.1, we achieve the forward bias ϵd = 2−33.75. By applying linear approximation over
the OD bit X

(5)
4 [7], we obtain the OD position ∆X

(6)
4 [7] ⊕ ∆X

(6)
7 [26] ⊕ ∆X

(6)
6 [26] ⊕ ∆X

(6)
6 [25] in

the 6-th round with correlation value ϵl = 2−1. Hence the correlation value for the ID − OD pair
X

(0)
7 [31] → (∆X

(6)
4 [7] ⊕ ∆X

(6)
7 [26] ⊕ ∆X

(6)
6 [26] ⊕ ∆X

(6)
6 [25]) is ϵd ∗ ϵ2

l = 2−35.75.
To provide the key-recovery attack on 256-bit key version of Salsa20/8 and Salsa20/8.5 and

128-bit key version of Salsa20/7.5, this 6-round differential-linear distinguisher (ID − OD pair)
is used by implementing the divide and conquer approach and obtaining the data and time
complexity using Equation 7 and Equation 8 respectively. For the attack against the 128-bit key
version of Salsa20/7, we use the Equation 4 to compute the data complexity value.

434 Cryptanalysis of Salsa20

Table 5: No. of IV bits of Salsa20 in Different Ranges for the ‘measure of independence’.

Range = 1 0.99 - 1.0 0.98 - 0.99 0.97 - 0.98 0.95 - 0.97 0.90 - 0.95 Below 0.90
No. of
IV bits 68 13 9 2 2 6 28

In Table 5, we present the number of probabilistically independent IVs with their measure
of independence in different ranges, which we achieve through Algorithm 1 mentioned in Sub-
section 3.2. For this right pair, we find out 98 probabilistically independent IV bits. The table
shows that there are 68 bits for which the measure of independence is 1, i.e., changing the values
of any of these bits of an IV will form a right pair with the same key, which forms a right pair
with the initial IV. Moreover, there are 13 bits with measures higher than 0.99. This result shows
that our approach generates much more IV’s than the previously existing approach.

Figure 4: Graph of the Distribution of “measure of independence” for 128 IV Bit Positions.

In Figure 4, for each of the 128 IV bits, we show the measure of independence by the height
of the corresponding bar. The numbers 0 − 31, 32 − 63, 64 − 95, and 96 − 127 represent the bits
corresponding to the words X6, X7, X8 and X9 respectively.

4.1 Attack on 256-Bit Key Version of Salsa20/8
To provide an attack on Salsa20/8, we use the 6-round (ID − OD pair X

(0)
7 [31] → (∆X

(6)
4 [7] ⊕

∆X
(6)
7 [26] ⊕ ∆X

(6)
6 [26] ⊕ ∆X

(6)
6 [25])) and obtain 160 PNBs by keeping the bias limit γ to 0.3.

The backward bias ϵa for these 160 PNBs is 0.0039. The source code for the backward bias is in
the GitHub link [Sha24]. The PNB set of 160 bits is mentioned below:

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 36, 37, 38, 39, 40, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 100, 103,
104, 105, 106, 107, 108, 109, 110, 115, 116, 117, 118, 119, 120, 121, 122, 128, 129, 139, 140,
141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 159, 160, 161, 162, 163,
164, 165, 166, 167, 168, 174, 175, 176, 177, 178, 179, 180, 181, 182, 186, 187, 188, 192, 193,
194, 195, 199, 200, 204, 205, 206, 207, 208, 209, 213, 218, 224, 225, 226, 231, 232, 233, 237,
238, 239, 240, 245, 249, 250, 251, 255.

To find the probabilistically independent IV bits, we use the idea mentioned in Subsection 3.2.
Assigning a threshold of 0.91, we achieve 98 bits. Therefore, N should be less than 298. For these
98 bits, we achieve p1 = 0.85. Subsection 3.1 provides a detailed explanation of the criterion for
finding a right pair, which reduces the forward bias value. Further, the ideas of Subsection 3.1

Sabyasachi Dey, Subhamoy Maitra, Santanu Sarkar and Nitin Kumar Sharma 435

and Subsection 3.2 are used similarly to improve the time complexity for the 256-bit key version
of Salsa20/8.5 and 128-bit key version of Salsa20/7 and Salsa20/7.5.

We use the procedure of assigning values to PNBs as explained in [DGSS23, Section V]. We
have mentioned in Subsection 3.1 that the probability of achieving a right pair is 1

8 , and hence the
data and time complexity will be multiplied by a factor of 23. In recent work, [Dey24] introduced
a new technique, the Divide-and-Conquer Approach, in which the PNBs are obtained individually
for all ODi positions of the OD position.

Applying the technique in the context of Salsa20, we obtained PNBs (PNB Sets for Salsa20/8)
for all the 4 ODi positions of the OD position (∆X

(6)
4 [7] ⊕ ∆X

(6)
7 [26] ⊕ ∆X

(6)
6 [26] ⊕ ∆X

(6)
6 [25]).

The number of PNBs for OD bits (∆X
(6)
4 [7], ∆X

(6)
7 [26], ∆X

(6)
6 [26] and ∆X

(6)
6 [25] are 40, 53,

56 and 61 respectively. Hence, the memory required for the key-recovery attack is 256. The
correlation values ϵi’s for the 4 ODi positions are 0.893, 0.945, 0.918, and 0.833, respectively.

Therefore the correlation value for the attack on Salsa20/8 is ϵ = 2−35.75 × 0.0039 · 0.893 ·
0.945 · 0.918 · 0.833 = 2−44.38.

For ϵ = 2−44.38, p1 = 0.85 and α = 79, we obtain N = 296.73 using Equation 7,
keeping k = 4, R − r = 8 − 6 = 2 and on substituting the value of N in Equation 8
we get C = 2183.01. The final data and time complexity is p−1 × 296.73 = 299.73

and p−1 × 2183.01 = 2186.01, respectively, keeping p = 1
8 .

4.2 Attack on 256-Bit Key Version of Salsa20/8.5
By Salsa20/8.5, we mean all column operations in round number 9 considering the first two
operations (half) of the quarter round function of Salsa20 as mentioned in Equation 2. We use the
same set of probabilistically independent IVs as in the attack on Salsa20/8.5, hence p1 = 0.85.

For the ID − OD pair X
(0)
7 [31] → (∆X

(6)
4 [7] ⊕ ∆X

(6)
7 [26] ⊕ ∆X

(6)
6 [26] ⊕ ∆X

(6)
6 [25]), we have

obtained 100 PNBs. The PNB set is mentioned below. The backward bias obtained for these 100
PNBs uses the procedure of assigning values to PNBs and is given ϵa = 0.0034. The source code
for obtaining the backward bias is given in the GitHub link [Sha24].

4, 5, 6, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 36, 37, 38, 39, 40, 41, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 93, 94, 95, 111, 115,
116, 117, 118, 128, 129, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,
153, 154, 159, 160, 161, 162, 163, 164, 165, 166, 167, 174, 175, 176, 177, 178, 179, 192, 193,
194, 199, 204, 205, 206, 207, 218, 233, 237, 238, 239, 245, 255.

Using the Divide-and-Conquer Approach mentioned in Subsection 3.4, we also obtained
PNB for all 4 ODi positions (PNB Sets for Salsa20/8.5) of the OD position. Hence, the
memory required for the key-recovery attack is 2102. The correlation values ϵi’s for the 4
ODi positions are 0.818, 0.869, 0.811, and 0.816, respectively. We computed the value ϵ =
2−35.75 × 0.0034 · 0.818 · 0.869 · 0.811 · 0.816 = 2−45.03 as explained in Subsection 3.4.

For ϵ = 2−45.03, α = 17 and p1 = 0.85, using Equation 7 we obtain N = 296.47.
Substituting k = 4, R − r = 8.5 − 6 = 2.5 in Equation 8, the time complexity
is 2242.84. The final data and time complexity is p−1 × 296.47 = 299.47 and
p−1 × 2242.84 = 2245.84, respectively for p = 2−3.

4.3 Attack on 128-Bit Key Version of Salsa20/7
The Divide-and-Conquer Approach mentioned in Subsection 3.4, in the context of a 256-key bit
version of Salsa20, can be applicable in the case of a 128-key bit version. Here, in the case of
Salsa20/7 with 128-key bit, we only see a slight improvement over the previous attack [DLS24].
Thus, we use the attack model that uses two Input-Output pairs mentioned in Algorithm 2 in
[DGSS22] and conclude that corresponding to the Salsa20 cipher for each and every reduced
round version, there are different ways to get the optimized value of the time complexity.

436 Cryptanalysis of Salsa20

In this procedure, two ID − OD pairs are used to improve the time complexity. The two
ID − OD pairs used in this attack are

ID1 −OD1 : X
(0)
7 [31]−X

(5)
4 [7], ID2 −OD2 : X

(0)
7 [0]−(X(5)

9 [0]⊕X
(5)
1 [13]⊕X

(5)
13 [0]).

1. The first ID − OD pair for this attack procedure is X
(0)
7 [31] → X

(5)
4 [7] with forward bias

ϵd = 2−33.75. Applying the PNB algorithm, we have obtained 117 PNBs by keeping the
bias limit γ to 0.10. The PNB set is mentioned below.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 103, 104, 105, 106, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125, 126, 127.

Hence, the remaining 11 bits are significant bits.

Significant Bits: 29, 30, 43, 44, 45, 79, 80, 102, 107, 108, 114. Count = 11.

The backward bias ϵa for these 117 PNBs is 0.045. For α = 39 and p1 = 0.85, we obtain
N1 = 283.67 using Equation 4. The source code for obtaining the backward bias is given in
the GitHub link [Sha24].

2. The second ID − OD pair for this attack procedure is X
(0)
7 [0] → (X(5)

9 [0]⊕X
(5)
1 [13]⊕X

(5)
13 [0])

with forward bias ϵd = 0.116754. Restricting the bias limit to 0.12, we obtained 56 PNBs
as given below.

0, 1, 13, 14, 15, 16, 19, 20, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 44, 57, 58, 62,
63, 64, 76, 77, 78, 84, 85, 86, 87, 88, 89, 90, 91, 92, 96, 97, 101, 102, 107, 113, 114,
115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127.

The backward bias ϵa for these 56 PNBs is 0.0016. The source code for obtaining the
backward bias for these 56 PNBs is given in the GitHub link [Sha24].
For α = 29 and p1 = 0.85, we obtain N2 = 231.68 using Equation 4. In this case, we have 72
bits as significant bits. The set of significant bits is mentioned below.

Significant Bits: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 21, 22, 23, 24, 25, 26, 28,
29, 30, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 60, 61, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 83, 93, 94, 95, 98, 99, 100, 102, 103,
104, 105, 106, 108, 109, 110, 111, 112. Count = 72.

In both sets, we have 10 elements in common. Hence, using Algorithm 2 from [DGSS22], we
have m1 = 11 and m2 = 62.

From [DGSS22, Section 9.2.2], the formula for data complexity is p−1 × (N1 + N2), and the
time complexity for this attack procedure is p−1 × (2m1 · N1 + 2m2 · N2) + 2128−(m1+m2), where p
is the probability of getting a right pair. The value of p is 2−3.

The final data complexity is p−1 × (283.67 + 231.68) = 23 × (283.67 + 231.68) = 286.67

and time complexity is p−1 × (211 · 283.67 + 262 · 231.68) + 2128−(11+62) = 23 × (294.67 +
293.68) + 255 = 298.25.

4.4 Attack on 128-Bit Key Version of Salsa20/7.5
The ID − OD pair for this attack procedure is X

(0)
7 [31] → (∆X

(6)
4 [7] ⊕ ∆X

(6)
7 [26] ⊕ ∆X

(6)
6 [26] ⊕

∆X
(6)
6 [25]). The forward bias is ϵd ∗ ϵ2

l = 2−35.75. Applying the PNB algorithm, we have obtained
the 107 PNBs listed below.

Sabyasachi Dey, Subhamoy Maitra, Santanu Sarkar and Nitin Kumar Sharma 437

0, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 109, 110, 111, 112, 115, 116,
117, 118, 119, 121, 122, 123, 124, 125, 126, 127.

The backward bias ϵa for these 107 PNBs is 0.014. The backward bias source code is given in
the GitHub link [Sha24]. The divide-and-conquer Approach mentioned in Subsection 3.4 can also
be incorporated for the 128-bit Key version. Hence, the time complexity formula for the 128-bit
Key version is given by

k∑
i=1

2mi · N + 2m · N · k − 1
210 · (R − r) + 2128−α + 2128−m. (9)

The number of PNB bits is obtained for all 4 ODi positions (See PNB Set for Salsa20/7.5) of
the OD position. Hence, the value of mi corresponding to each ODi position is considered, and
the correlation value is given by ϵ = 2−35.75 × 0.014 · 0.877 · 1 · 1 · 1 = 2−42.09.

Substituting, ϵ = 2−42.09, α = 31 and p1 = 0.85, we obtain N = 291.16 using
Equation 7 and on substituting value of N , k = 4 and R − r = 7.5 − 6 = 1.5
in Equation 9 we get C = 2108.47. The final data and time complexity is
p−1 × 291.16 = 294.16 and p−1 × 2108.47 = 2111.47, respectively, where p = 2−3.

5 Critically Revisiting a Few Existing Attacks in Terms of
Complexities

In Asiacrypt 2022 [CPGV+22] and Journal of Cryptology [CPV+23], Coutinho et al. proposed an
attack on Salsa20 in which they provided a significant improvement in complexity by approximately
223 against the 256-bit key version of Salsa20/8 over the previous attack [DLS24]. The authors have
introduced a new technique called Bidirectional Linear Expansions (BLE). Using the Bidirectional
Linear Expansions technique, they have a single-bit differential of 5 rounds. ID − OD pair for
this attack procedure is X

(0)
7 [31] → X

(5)
4 [7] with forward bias ϵd ≈ 2−42.01.

Primarily, there are two main issues that we address as the limitations in their contributions.
The first pertains to the claimed complexity of the attack on Salsa20/8, which we find incorrect
based on the data and time complexity calculation formula provided in the paper. The second
issue concerns the data complexity of several attacks, which exceeds the upper limit for a valid
attack according to their technique. In the following two subsections, we analyze these limitations
in detail.

5.1 Analyzing the Time Complexity Calculation of [CPV+23]
In the attack of [CPV+23], the authors produced an attack on the 256-bit key version of Salsa20/8
with time complexity 2217.14, which was a major improvement over the previously existing attack.
This attack used 152 PNBs, producing a backward bias ϵa = 0.000305. The authors used
Equation 5 in their attack (as mentioned in [CPV+23, Subsection 5.2.4]) to compute the time
complexity and claimed to achieve the time complexity for α = 14. However, we can see that for
α = 14, the term 2256−α alone is 2242, which makes the time complexity significantly higher than
their claim. Further, in the following result, we show that for the given ϵd and the same set of
PNBs as in [CPV+23], whichever value of α is used, the time complexity can never go below 2219.

Result 1. With forward bias ϵd ≈ 2−42.01, backward bias ϵa = 0.000305 for 152 PNBs and p = 1
2 ,

for any α, the time complexity of the key-recovery attack cannot be less than 2219.

Proof. For 152 PNBs, m = 104. Suppose, if possible, the time complexity is less than 2219.
Then, from Equation 6 we have p−1 ×

(
2mN + 2256−α

)
< 2219. Substituting p−1 = 2, we

438 Cryptanalysis of Salsa20

obtain two inequalities 2256−α < 2218 and 2mN < 2218. From the first inequality, we have
α > 38. From the second inequality, putting m = 104, we have N < 2114, which implies

α <

(
(257×ϵaϵd)−3

√
1−ϵ2

aϵd
2

√
log 4

)2

= 34.54. Thus, we arrive at a contradiction, which implies that no

such value of α exists for which the time complexity is less than 2219. ■

5.2 Invalidity of the Attacks Due to High Data Complexity
The attacks proposed in [CPV+23] are based on right key-IV pairs, which have been discussed in
Subsection 2.2. In this attack procedure, an IV is fixed in the ID column, and the remaining
IV’s are varied to generate the keystream. Therefore, in this approach, for a fixed key, at most
296 possible keystreams can be generated because the attacker cannot change the IV of the input
difference column. This has been mentioned in [CPV+23, Section 5.2.1] as quoted below:

“The QRF of Salsa20 is independently applied to each column in the first round.
Therefore, when the output difference of one QRF is restricted, the input of the
other three QR functions is trivially independent of the output difference. It implies
that we have 96 independent bits and can easily amplify the probability of the
differential-linear distinguisher."

Therefore, according to their approach, for a valid/feasible attack, the condition N ≤ 296, i.e.,
data complexity p−1 × N ≤ p−1 × 296 must hold. Any key-recovery attack where the required
data is higher than this limit is infeasible. In [CPV+23], we find that all the key-recovery attacks
against Salsa20 have crossed this limit of data complexity. Similarly, the authors of [CPV+23]
also proposed several distinguishing attacks on Salsa20/7 and Salsa20/8. By the same argument
as above, the data should be less than 297, which is not followed by the proposed attacks. Our
claim has been confirmed by one of the authors of [CPV+23]. Table 6, lists all the key-recovery
and distinguishing attacks against Salsa20.

Table 6: Attacks on Salsa20 for 256-Bit Key That are Invalid as the Data Complexity
Exceeds the Maximum Limit.

Round Reference Attack Type Data Maximum
Limit

Journal Of Cryptology [CPV+23] Key-Recovery 2104.97

7 Asiacrypt [CPGV+22] Distinguishing 2109 297

Journal Of Cryptology[CPV+23] 2108.96

Asiacrypt [CPGV+22] Key-Recovery 2114

8 Journal Of Cryptology [CPV+23] 2213.14 297

Asiacrypt[CPGV+22] Distinguishing 2216

Journal Of Cryptology [CPV+23] 2215.62

Correction in the Bias
In the key-recovery attack on Salsa20/8 [CPV+23] with forward bias ϵd ≈ 2−42.01 , we observe
that the backward bias value ϵa for 152 PNBs is 0.00305 instead of 0.000305. So, we calculate the
data and time complexity for the given ϵd and the same set of PNBs. Substituting the values in
Equation 3, we observe that whatever the value of α, the value of N will never be less than or
equal to 296. Hence, the data complexity value can never go below 297 for the given values of ϵd

and ϵa for the given set of PNBs.

Re-Evaluating the Attack Complexity of [CPV+23]
By suitable modification of the PNB set, we can make the attack feasible. Given that this
condition is satisfied, we find out that for the attack methodology of [CPV+23], the best attack
can be obtained for 117 PNBs, achieved by the threshold γ = 0.64. For these 117 PNBs, we

Sabyasachi Dey, Subhamoy Maitra, Santanu Sarkar and Nitin Kumar Sharma 439

obtain the backward bias ϵa = 0.139 ≈ 2−2.84. Using Equation 3 and Equation 5, for α = 24, the
values of N and C for a key-recovery attack on Salsa20/8 are computed to be 295.97 and 2235.15,
respectively. Hence, the final data and time complexity for a key-recovery attack on Salsa20/8
are given as p−1 × 295.97 = 296.97 and p−1 × 2235.15 = 2236.15, respectively. It indicates this is the
least possible complexity for a feasible attack using the approach of [CPV+23]. Increasing the
number of PNBs to 118, we obtain the value of backward bias ϵa = 0.121 ≈ 2−3.04; however, to
restrict the value of N below 296, the value of α should be less than 16, which would make the
time complexity equal to 2240, but it was claimed to be 2217.14 in [CPV+23].

As we mentioned in Table 4, the bias of (∆X
(4)
4 [7] ⊕ ∆X

(4)
12 [0] = 0) for the 1-round condition

is 0.0000060 = 2−17.35. Therefore, the overall bias 2−36.61 after applying Piling-up Lemma on
∆X

(4)
4 [7] ⊕ ∆X

(4)
12 [0] = 0 and ∆X

(4)
0 [0] = 0. Using this experimental bias computed for the

1-round condition, we observe that the attack of [CPV+23] remains invalid (N > 296) if the rest
of the parameters remain the same, as mentioned in [CPV+23, Section 4.2]. To provide a valid
attack on Salsa20/8 i.e., for (N <= 296) with bias ϵd = 2−36.61, the obtained complexity is 2238.2,
keeping α = 18.8 and N = 295.9.

Also, as we mentioned, the bias ϵa was incorrectly measured in the attack on Salsa20/8
mentioned by [CPGV+22, CPV+23]. Fixing these mistakes, we performed the recalculation with
the correct value of ϵa = 0.00305 and obtained N = 2105.77, time = 2209.84. Compared to this,
our improvement is of 223.

In Section 5, we have shown that the attack against Salsa20/8 mentioned in [CPV+23] is
invalid due to incorrect time complexity computation and the data complexity exceeding the
upper limit. Hence, in our work, we have provided a huge improvement of more than 254 over
[DLS24] for the attack against the 256-bit key version of Salsa20/8.

6 Conclusion
In this paper, we have introduced several interesting directions in the cryptanalysis of Salsa20.
Initially, the concept of identifying a right pair was restricted to the first round alone. However, we
have successfully extended this approach to the second round. This extension serves as a foundation
for pursuing distinguishers across additional rounds, as the added conditions enhance the biases,
paving the way for more advanced cryptanalytic efforts. Secondly, the idea of probabilistically
independent bits has also been used for the first time against Salsa20, and this idea can be
exploited in the future if any stronger criterion for the right pair can be explored. These ideas
are not only restricted to Salsa20 but can also be used for other ciphers with similar design
principles. With these techniques, we have successfully cryptanalyzed Salsa20 for more than
8 rounds for the first time. The sharpness of our technique is also underlined by the ability
to cryptanalyze Salsa20/8 with significantly improved time and data complexities compared to
existing methods. Further improvement in the PNB technique can help us provide an attack
against Salsa20/9, though we have checked that this may not be achieved immediately with the
existing techniques. Finally, we would like to point out that complexity calculations should be
executed more disciplined in literature, as we obtain several calculations that are not properly
executed in certain state-of-the-art publications.

Acknowledgments
The authors like to thank the anonymous reviewers for their detailed comments that improved
the editorial as well as technical presentation of the paper. Subhamoy Maitra acknowledges the
funding support provided by the “Information Security Education and Awareness (ISEA) Project
phase - III, Cluster - Cryptography, initiatives of MeitY, Grant No. F.No. L-14017/1/2022-HRD".

References
[AFK+08] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and Chris-

tian Rechberger. New features of latin dances: Analysis of Salsa, ChaCha, and

440 Cryptanalysis of Salsa20

Rumba. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of LNCS, pages 470–488.
Springer, Heidelberg, February 2008. doi:10.1007/978-3-540-71039-4_30.

[Ber08] Daniel J. Bernstein. The Salsa20 Family of Stream Ciphers. In Matthew Robshaw
and Olivier Billet, editors, New Stream Cipher Designs: The eSTREAM Finalists,
volume 4986, pages 84–97. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
URL: https://doi.org/10.1007/978-3-540-68351-3_8.

[BLT20] Christof Beierle, Gregor Leander, and Yosuke Todo. Improved Differential-Linear
Attacks with Applications to ARX Ciphers. In CRYPTO(3), volume 12172 of
Lecture Notes in Computer Science, pages 329–358. Springer, 2020. URL: https:
//doi.org/10.1007/978-3-030-56877-1_12.

[BS91] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In
Alfred J. Menezes and Scott A. Vanstone, editors, Advances in Cryptology-CRYPTO’
90, volume 537, pages 2–21, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.
URL: https://doi.org/10.1007/3-540-38424-3_1.

[CM16] Arka Rai Choudhuri and Subhamoy Maitra. Significantly improved multi-bit dif-
ferentials for reduced round salsa and ChaCha. Cryptology ePrint Archive, Report
2016/1034, 2016. https://eprint.iacr.org/2016/1034.

[CPGV+22] Murilo Coutinho, Iago Passos, Juan C. Grados Vásquez, Fábio L. L. de Mendonça,
Rafael Timteo de Sousa, and Fábio Borges. Latin Dances Reloaded: Improved
Cryptanalysis Against Salsa and ChaCha, and the Proposal of Forró. In Shweta
Agrawal and Dongdai Lin, editors, Advances in Cryptology – ASIACRYPT 2022,
pages 256–286, Cham, 2022. Springer Nature Switzerland. URL: https://doi.org/
10.1007/978-3-031-22963-3_9.

[CPV+23] Murilo Coutinho, Iago Passos, Juan Vásquez, Santanu Sarkar, Fábio Lucio Mendonça,
Rafael Sousa, and Fábio Borges. Latin Dances Reloaded: Improved Cryptanalysis
Against Salsa and ChaCha, and the Proposal of Forró. Journal of Cryptology, 36,
2023. URL: https://doi.org/10.1007/s00145-023-09455-5.

[Cro05] Paul Crowley. Truncated differential cryptanalysis of five rounds of Salsa20. Cryptol-
ogy ePrint Archive, Paper 2005/375, 2005. URL: https://eprint.iacr.org/2005/
375.

[DDSM22] Sabyasachi Dey, Chandan Dey, Santanu Sarkar, and Willi Meier. Revisiting Crypt-
analysis on ChaCha From Crypto 2020 and Eurocrypt 2021. IEEE Transactions on
Information Theory, 68(9):6114–6133, 2022. URL: https://doi.org/10.1109/TIT.
2022.3171865.

[Dey24] Sabyasachi Dey. Advancing the idea of probabilistic neutral bits: first key recovery
attack on 7.5 round chacha. IEEE Transactions on Information Theory, 2024. URL:
https://doi.org/10.1109/TIT.2024.3389874.

[DGM23] Sabyasachi Dey, Hirendra Kumar Garai, and Subhamoy Maitra. Cryptanalysis of
Reduced Round ChaCha- New Attack and Deeper Analysis. Cryptology ePrint
Archive, Paper 2023/134, 2023. URL: https://eprint.iacr.org/2023/134.

[DGSS22] Sabyasachi Dey, Hirendra Kumar Garai, Santanu Sarkar, and Nitin Kumar Sharma.
Revamped Differential-Linear Cryptanalysis on Reduced Round ChaCha. In Orr
Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology EUROCRYPT
2022, pages 86–114, Cham, 2022. Springer International Publishing. URL: https:
//doi.org/10.1007/978-3-031-07082-2_4.

[DGSS23] Sabyasachi Dey, Hirendra Kumar Garai, Santanu Sarkar, and Nitin Kumar Sharma.
Enhanced Differential-Linear Attacks on Reduced Round ChaCha. IEEE Transac-
tions on Information Theory, 69(8):5318–5336, 2023. URL: https://doi.org/10.
1109/TIT.2023.3269790.

[DLS24] Sabyasachi Dey, Gregor Leander, and Nitin Kumar Sharma. Improved key recovery
attacks on reduced-round Salsa20. Designs, Codes and Cryptography, November
2024. URL: https://doi.org/10.1007/s10623-024-01522-7.

https://doi.org/10.1007/978-3-540-71039-4_30
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-030-56877-1_12
https://doi.org/10.1007/978-3-030-56877-1_12
https://doi.org/10.1007/3-540-38424-3_1
https://eprint.iacr.org/2016/1034
https://doi.org/10.1007/978-3-031-22963-3_9
https://doi.org/10.1007/978-3-031-22963-3_9
https://doi.org/10.1007/s00145-023-09455-5
https://eprint.iacr.org/2005/375
https://eprint.iacr.org/2005/375
https://doi.org/10.1109/TIT.2022.3171865
https://doi.org/10.1109/TIT.2022.3171865
https://doi.org/10.1109/TIT.2024.3389874
https://eprint.iacr.org/2023/134
https://doi.org/10.1007/978-3-031-07082-2_4
https://doi.org/10.1007/978-3-031-07082-2_4
https://doi.org/10.1109/TIT.2023.3269790
https://doi.org/10.1109/TIT.2023.3269790
https://doi.org/10.1007/s10623-024-01522-7

Sabyasachi Dey, Subhamoy Maitra, Santanu Sarkar and Nitin Kumar Sharma 441

[DS17] Sabyasachi Dey and Santanu Sarkar. Improved analysis for reduced round Salsa and
Chacha. Discrete Applied Mathematics, 227:58–69, 2017. URL: https://doi.org/
10.1016/j.dam.2017.04.034.

[DS18] Kakumani K. C. Deepthi and Kunwar Singh. Cryptanalysis of Salsa and ChaCha:
Revisited. In Jiankun Hu, Ibrahim Khalil, Zahir Tari, and Sheng Wen, editors, Mobile
Networks and Management, pages 324–338, Cham, 2018. Springer International
Publishing. URL: https://doi.org/10.1007/978-3-319-90775-8_26.

[eST] ECRYPT. eSTREAM. the ECRYPT Stream Cipher Project. URL: https://www.
ecrypt.eu.org/stream/.

[FMB+06] Simon Fischer, Willi Meier, Côme Berbain, Jean-François Biasse, and M. J. B.
Robshaw. Non-randomness in eSTREAM Candidates Salsa20 and TSC-4. In
Rana Barua and Tanja Lange, editors, Progress in Cryptology - INDOCRYPT
2006, pages 2–16, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. URL:
https://doi.org/10.1007/11941378_2.

[LH94] Susan K. Langford and Martin E. Hellman. Differential-linear cryptanalysis. In
Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 17–25. Springer,
Heidelberg, August 1994. doi:10.1007/3-540-48658-5_3.

[Mai15] Subhamoy Maitra. Chosen IV cryptanalysis on reduced round ChaCha and Salsa.
Cryptology ePrint Archive, Report 2015/698, 2015. https://eprint.iacr.org/
2015/698.

[MPM15] Subhamoy Maitra, Goutam Paul, and Willi Meier. Salsa20 Cryptanalysis: New
Moves and Revisiting Old Styles. Cryptology ePrint Archive, Paper 2015/217, 2015.
URL: https://eprint.iacr.org/2015/217.

[MY93] Mitsuru Matsui and Atsuhiro Yamagishi. A New Method for Known Plaintext
Attack of FEAL Cipher. In Rainer A. Rueppel, editor, Advances in Cryptology —
EUROCRYPT’ 92, pages 81–91, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.
URL: https://doi.org/10.1007/3-540-47555-9_7.

[Sal] SalsaApp. SalsaApplications. URL: https://ianix.com/pub/salsa20-deployment.
html.

[Sha24] Nitin Kumar Sharma. Cryptanlysis of Salsa20. GitHub Repository, 2024. URL:
https://github.com/SharmaNitinKumar/FSE.

[SZFW13] Zhenqing Shi, Bin Zhang, Dengguo Feng, and Wenling Wu. Improved key recovery
attacks on reduced-round Salsa20 and ChaCha. In Taekyoung Kwon, Mun-Kyu
Lee, and Daesung Kwon, editors, ICISC 12, volume 7839 of LNCS, pages 337–351.
Springer, Heidelberg, November 2013. doi:10.1007/978-3-642-37682-5_24.

[TSK+07] Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Tomoyasu Suzaki, and Hiroki
Nakashima. Differential cryptanalysis of Salsa20/8. Workshop Record of SASC,
page volume 28, 2007. URL: http://www.ecrypt.eu.org/stream/papersdir/2007/
010.pdf.

[XXTQ24] Zhichao Xu, Hong Xu, Lin Tan, and Wenfeng Qi. Differential-Linear Cryptanalysis
of Reduced Round ChaCha. IACR Transactions on Symmetric Cryptology, 2024:166–
189, 06 2024. URL: https://doi.org/10.46586/tosc.v2024.i2.166-189.

https://doi.org/10.1016/j.dam.2017.04.034
https://doi.org/10.1016/j.dam.2017.04.034
https://doi.org/10.1007/978-3-319-90775-8_26
https://www.ecrypt.eu.org/stream/
https://www.ecrypt.eu.org/stream/
https://doi.org/10.1007/11941378_2
https://doi.org/10.1007/3-540-48658-5_3
https://eprint.iacr.org/2015/698
https://eprint.iacr.org/2015/698
https://eprint.iacr.org/2015/217
https://doi.org/10.1007/3-540-47555-9_7
https://ianix.com/pub/salsa20-deployment.html
https://ianix.com/pub/salsa20-deployment.html
https://github.com/SharmaNitinKumar/FSE
https://doi.org/10.1007/978-3-642-37682-5_24
http://www.ecrypt.eu.org/stream/papersdir/2007/010.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/010.pdf
https://doi.org/10.46586/tosc.v2024.i2.166-189

442 Cryptanalysis of Salsa20

A PNB SETS
A.1 PNB Sets for 256-bit Key Version
A.1.1 PNB Sets for Salsa20/8

For each ODi

OD1 (X(6)
4 [7]) {0, 1, 2, 3, 33, 34, 35, 46, 47, 48, 49, 78, 79, 80, 81, 96, 97, 124, 125, 126,

127, 138, 155, 156, 157, 158, 189, 190, 191, 219, 220, 221, 222, 223, 234, 235, 236, 252,
253, 254.}
Count = 40, Bias = 0.893.

OD2 (X(6)
7 [26]) {42, 43, 44, 45, 46, 47, 48, 49, 81, 101, 102, 112, 113, 114, 169, 170, 171,

172, 173, 182, 183, 184, 185, 189, 190, 191, 196, 197, 198, 201, 202, 203, 209, 210, 211,
212, 214, 215, 223, 226, 227, 228, 229, 230, 234, 235, 236, 241, 242, 243, 244, 246, 247.}
Count = 53, Bias = 0.945.

OD3 (X(6)
6 [26]) {33, 34, 35, 97, 98, 99, 101, 102, 130, 131, 132, 133, 134, 135, 136, 137,

138, 155, 156, 157, 158, 169, 170, 171, 172, 173, 182, 183, 184, 196, 197, 198, 201, 202,
203, 209, 210, 211, 212, 214, 215, 216, 226, 227, 228, 229, 241, 242, 243, 244, 246, 247,
248, 252, 253, 254.}
Count = 56, Bias = 0.918.

OD4 (X(6)
6 [25]) {3, 33, 34, 35, 49, 81, 96, 97, 98, 99, 101, 102, 114, 130, 131, 132, 133,

134, 135, 136, 137, 138, 155, 156, 157, 158, 169, 170, 171, 172, 173, 182, 183, 191, 196,
197, 198, 201, 202, 203, 209, 210, 211, 212, 214, 215, 223, 226, 227, 228, 236, 241, 242,
243, 244, 246, 247, 248, 252, 253, 254.}
Count = 61, Bias = 0.833.

A.1.2 PNB Sets for Salsa20/8.5

For each ODi

OD1 (X(6)
4 [7]) {0,1, 2, 26, 27, 28, 29, 30, 32, 33, 34, 35, 46, 47, 48, 49, 81, 82, 83, 84, 119,

120, 121, 122, 123, 124, 125, 126, 127, 138, 155, 156, 157, 158, 186, 187, 188, 189, 190,
191, 219, 220, 221, 222, 223, 231, 232, 234, 249, 250, 251, 252, 253, 254.}
Count = 54, Bias = 0.818.

OD2 (X(6)
7 [26]) {42, 43, 44, 45, 46, 47, 48, 49, 91, 92, 100, 101, 102, 103, 104, 105, 106,

107, 108, 109, 110, 112, 113, 168, 169, 170, 171, 172, 173, 189, 190, 191, 195, 196, 197,
198, 200, 201, 202, 203, 208, 209, 210, 211, 212, 213, 223, 224, 225, 226, 227, 228, 229,
230, 231, 232, 234, 235, 236, 240, 241, 242.}
Count = 62, Bias = 0.869.

OD3 (X(6)
6 [26]) {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 26, 27, 28, 29, 30, 32, 33, 34, 35, 97,

98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 119, 120, 155, 156, 157, 158, 172, 173, 195,
196, 197, 198, 200, 201, 202, 203, 208, 209, 210, 211, 212, 213, 214, 215, 240, 241, 242,
243, 244, 246, 247, 248, 249, 250, 251, 252, 253, 254.}
Count = 68, Bias = 0.811.

OD4 (X(6)
6 [25]) {3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 26, 27, 28, 32, 33, 34, 35, 49, 92, 96,

97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 114, 119, 138, 155, 156, 157, 158, 171, 172,
173, 191, 195, 196, 197, 198, 200, 201, 202, 203, 208, 209, 210, 211, 212, 213, 223, 236,
240, 241, 242, 243, 244, 246, 247, 248, 249, 250, 251, 252.}
Count = 70, Bias = 0.816.

Sabyasachi Dey, Subhamoy Maitra, Santanu Sarkar and Nitin Kumar Sharma 443

A.2 PNB Set for 128-bit Key Version
PNB Set for Salsa20/7.5

For each ODi

OD1 (X(6)
4 [7]) {28, 29, 30, 80, 108.} Count = 5, Bias = 0.877.

OD2 (X(6)
7 [26]) {1, 2, 3, 4, 42, 43, 44, 45, 100, 101, 102, 108, 113, 114, 120.}

Count = 15, Bias = 1.

OD3 (X(6)
6 [26]) {4, 8, 9, 45, 80, 120.} Count = 6, Bias = 1.

OD4 (X(6)
6 [25]) {3, 4, 8, 9, 44, 45, 80, 114, 120.} Count = 9, Bias = 1.

	Introduction
	Cryptanalysis of Salsa20: A Brief History
	Organization & Contribution
	Description of Salsa20

	Existing Cryptanalytic Techniques
	Differential-Linear Cryptanalysis
	Searching for a Right Pair
	General Idea of Probabilistic Neutral Bits

	Our Proposed Ideas for Cryptanalysis
	Introducing a 2-round criterion for Finding a Right Pair by Structural Analysis of Difference Propagation
	Probabilistically Independent IV Bits
	Estimation of Attack Complexity
	Divide-and-Conquer Approach & Revised Complexity Calculation

	Applying Our Techniques to Cryptanalyse Salsa20
	Attack on 256-Bit Key Version of Salsa20/8
	Attack on 256-Bit Key Version of Salsa20/8.5
	Attack on 128-Bit Key Version of Salsa20/7
	Attack on 128-Bit Key Version of Salsa20/7.5

	Critically Revisiting a Few Existing Attacks in Terms of Complexities
	Analyzing the Time Complexity Calculation of JOC
	Invalidity of the Attacks Due to High Data Complexity

	Conclusion
	PNB SETS
	PNB Sets for 256-bit Key Version
	PNB Set for 128-bit Key Version

