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Abstract. The Pointer Authentication Code (PAC) feature in the Arm architecture
is used to enforce the Code Flow Integrity (CFI) of running programs. It does so
by generating a short MAC — called the PAC — of the return address and some
additional context information upon function entry, and checking it upon exit. An
attacker that wants to overwrite the stack with manipulated addresses now faces an
additional hurdle, as they now have to guess, forge, or reuse PAC values. PAC is
deployed on billions of devices as a first line of defense to harden system software
and complex programs against software exploitation.
The original version of the feature uses a 12-round version the QARMA-64 block cipher.
The output is then truncated to between 3 and 32 bits, in order to be inserted into
unused bits of 64-bit pointers. A later revision of the specification allows the use of
an 8-round version of QARMA-64. This reduction may introduce vulnerabilities such
as high-probability distinguishers, potentially enabling key recovery attacks. The
present paper explores this avenue.
A cryptanalysis of the PAC computation function entails restricting the inputs to
valid virtual addresses, meaning that certain most significant bits are fixed to zero,
and considering only the truncated output. Within these constraints, we present
practical attacks on various PAC configurations. These attacks, while not presenting
immediate threat to the PAC mechanism, show that some versions of the feature do
miss the security targets made for the original function. This offers new insights into
the practical security of constructing MAC from truncated block ciphers, expanding
on the mostly theoretical understanding of creating PRFs from truncated PRPs.
We note that the results do not affect the security of QARMA-64 when used with the
recommended number of rounds for general purpose applications.
Keywords: Tweakable Block Ciphers · Lightweight Cryptography · Pseudo-Random
Functions · Pseudo-Random Permutations

1 Introduction
The 2016 Additions to the Arm V8 architecture [Arm16] introduced the Pointer Authenti-
cation Code PAC feature [QPS17] to counter various exploits, including Return-Oriented
Programming (ROP) [RBSS12].
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Figure 1: PAC field in an ARM64 pointer.

ROP involves smashing the stack with addresses of gadgets, i.e., function epilogues
in the target software, together with some information that these gadgets may consume.
The gadgets are typically taken from a common library like libc [Des97]. Each return
instruction directly transfers control to the next gadget, thus creating a chain of gadgets,
which is a form of threaded code [Bel73]. Since most non-trivial software contains a
Turing-complete set of gadgets [Sha07], complex programs can be executed. Tools exist to
assist the implementation of an arbitrary program as a gadget chain, such as Q [SAB11],
ropc [pak13], PSHAPE [FBP+16], and ROPER [FZHJ17, Fra18].

PAC provides instructions to insert and verify short tags in reserved bits of pointers,
as shown in Figure 1. On A-profile CPUs, the size of the PAC field ranges from 3 to 31
bits, depending on factors such as Virtual Address (VA) space size and the use of some of
the reserved bits for other uses. On M-profile CPUs, a 32-bit PAC is stored separately.

These cryptographically computed tags depend on a secret key and a public value
representing the pointer’s context. While primarily used for enforcing CFI by protecting
function return address, the PAC can also protect v-tables, procedure linkage tables,
Objective-C method caches, computed gotos, and other pointers [App24]. This feature is
invoked continuously on billions of deployed devices to provide a first line of defense to
system software and to complex programs such as browsers. Therefore, its computation
must be very fast to avoid slowing down program execution. For this purpose, a new block
cipher called QARMA [Ava17] was designed, suggesting that the goal was to have a critical
path not exceeding 100 GE, i.e., four to five execution pipeline stages.1

The tag is computed by discarding some output bits of a lightweight Tweakable
Block Cipher (TBC) [LRW02]. A TBC is a block cipher that takes an additional public
input called the tweak, which is used together with the key to select the permutation
computed by the cipher. For a fixed tweak, a TBC acts as a permutation, while for a
fixed plaintext, the tweak-to-ciphertext mapping aims to be a Pseudo-Random Function
(PRF). When at least half the output bits are discarded, the result is indistinguishable
from a PRF [GG15, GGM18, GG21]. This can be seen as an instance of the Chop-MD
construction [CDMP05, Sec. 3.4]. For PAC, the pointer is the plaintext input and the
context is the tweak. It remains an open question to determine the conditions under which
such a construction yields a PRF over the combined plaintext-tweak space.

In this paper, we refer to the process of discarding fixed output bits as “chopping” and
the resulting value as “chopped” instead of “truncating” and “truncated,” in order to avoid
confusion with truncation as understood in differential cryptanalysis. Additionally, we use
the verb “to clamp” to describe the action of forcing certain input bits to zero.

Several lightweight cryptographic primitives already existed when the PAC feature was
developed, including CLEFIA [SSA+07], KATAN [CDK09], KLEIN [GNL11], LED [GPPR11],
PRESENT [BKL+07], PRINCE [BCG+12], SIMON and SPECK [BSS+13], and MIDORI [BBI+15],
to name just a few. Some of these, suitably round-reduced, do have a critical path of around
100 GE. However, none of these ciphers is tweakable, and if generic methods to construct
TBCs from ordinary block ciphers [Rog04, LST12, ST13] are applied to them, the resulting
latency would at least double. A different approach, the TWEAKEY framework [JNP14],

1 With typical pipeline stage delays of 6-8 FO4 inverters plus 2-3 FO4 for latching [HBK+02], and
NAND to FO4 delay ratios at least 1.5 and rarely significantly exceeding 2.0 [GVG+17, PP20], critical
path usually ranges from 14 to 25 GE.



382 Differential Cryptanalysis of FEAT_PACQARMA3

K(0) K(1) K(2) K(3) K(4)

P S F = Rr G F = R
r

S C

T (0) T (1)

Figure 2: High-level structure of MANTIS, QARMA, and QARMAv2.

takes an existing design, mixes values derived from the tweak in each round, and suitably
increases the number of the latter. The TBCs Deoxys-BC, Joltik-BC, and Kiasu-BC are
examples of this design, but their latencies are still unsatisfactory, in particular because of
the use of MDS diffusion matrices. Some lightweight hash functions existing at the time,
such as SIPHASH [AB12], could not be used because they rely on modular additions with
long critical paths. These considerations justified the design of a new primitive.

The first lightweight primitive meeting the latency requirement was MANTIS [BJK+16,
Section 6]. QARMA followed shortly after, improving upon MANTIS by addressing weaknesses
like “copy-and-paste” characteristics due to a suboptimal diffusion layer, and a partitioning
of the state into four independent 32-bit paths through the three central rounds [DEKM16].2
Both ciphers, along with QARMA’s successor QARMAv2 [ABD+23], adopt an approach similar
to the TWEAKEY framework. They are reflection ciphers, i.e., of the form E = F−1 ◦G ◦ F
where F is an encryption function, and a G is called a reflector. Even in the cases where G
is an involution, E itself is not self-inverting due to key schedule changes between forward
and backward operations. As shown in Figure 2, these ciphers share a common structure.
The external rounds of F and F−1 — called half rounds due to their simplified S-Box only
structure — are separated out for clarity.

With PAC enabled, gadgets used in ROP attacks can verify tags but cannot generate
them, unless they are entire procedures. An adversary must therefore either: (a) guess
tags through trial and error; (b) reuse existing tagged pointers; (c) use code that generates
valid tags (a “signing gadget”); or (d) forge tags through cryptanalysis.

Let us have a look at these four attack strategies. Option (a) is unfeasible once the
gadget chains, or the tags themselves, are sufficiently long. Sometimes, short or single
gadget ROP chain exploits are possible, and if the tag space is sufficiently small, the tags
can be brute-forced by spawned processes. Therefore, there should be tests at compile
time, or on the compiled binaries, to prevent such short chains. Tagged pointer reuse
and the possibilities of signing gadgets are accepted risks [QPS17]. In this paper we are
concerned with the fourth and last of the attack strategies listed above: cryptanalysis.

The original PAC architecture uses the 12-round QARMA5-64, that achieves 100 GE
(as per [Ava17]) and provided generous security margins. This version of the feature is
known as FEAT_PACQARMA5 in the Arm ARM (Architecture Reference Manual) for both
A-profile [Arm24] and M-profile [Arm23]. However, in small cores with short pipelines,
the required four to five execute pipelines stages can create pipeline bubbles and reduce
performance. For this reason, a version of the feature called FEAT_PACQARMA3 was intro-
duced, based on the eight-round QARMA3-64, with a shorter critical path of 66 GE. This can
be computed in three stages, improving performance and power efficiency.

Such a heavily round-reduced version of the cipher may allow high probability dis-
tinguishers and thus expose the feature to practical cryptanalysis. Since memory read
gadgets are relatively common in software environments, even in the form of complete
procedures, we can assume that an adversary can read many signed pointers and mount
Known Plaintext Attacks (KPAs) (strictly speaking, Known Plaintext-and-Tweak Attacks).

Furthermore, Just-in-time (JIT) environments, such as JavaScript engines, allow
2 A 128-bit version for memory encryption is also defined, but it is out of scope for this paper.
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attackers to generate chosen signed pointers. The latter can be collected for later reuse or
for the purpose of mounting Chosen Plaintext Attacks (CPAs).

1.1 Security Claims, Security Model, and Goals
The security claims for MANTIS5-64 and QARMA5-64 are that the ciphers should offer “security
against practical attacks [... ] in the sense [... ] that no related-tweak attack should be
applicable with less than 230 chosen or 240 known text pairs.” It is debatable whether the
PAC function based on QARMA3-64 should be subjected to these criteria, but, since Arm
uses it for the A-profile as an alternative to QARMA5-64, we believe that holding to the same
security claim is justified.

We assume that the attacker has access to a “signing” oracle E that uses an unknown
key K for chosen inputs, such as a JIT environment combined with a memory read gadget.

Out goal is to minimize key recovery time while using at most 230 chosen plaintext-
tweak pairs. Since PAC aims to deter software exploitation, we consider attacks with time
complexity up to 264 to be breaks of the function. We also consider attacks requiring up to
280 operations as warnings, even though they may not be practical on commodity hardware.
This 280 threshold has historical precedent — it was once considered a practical limit for
cryptanalysis, as reflected in the use of 80-bit keys in Skipjack [NIS98] and of 160-bit SHA-1
digests [NIS95]. However, these security levels were soon deemed inufficient for long-term
use [LV01, Section 5]. Today’s Bitcoin network performs ≈ 295.2 SHA-256 operations
annually at a rate of 750 · 106 TH/s [Blo24], where one “H” involves two SHA-256 calls.
This demonstrates that 280 operations is achievable with significant parallel resources —
such as the brute force key search in our most expensive attacks. Therefore, while attacks
requiring between 264 and 280 operations may not lead to a quick break of the system,
advancements in cryptanalytic techniques could close the gap.

1.2 Our Contributions
We apply differential (and multiple differential) cryptanalysis to the PAC function based
on QARMA3 used in FEAT_PACQARMA3.

Our findings reveal that the function does not meet the security bounds for the
underlying cipher when pointer lengths are 48 bits or longer, with attacks using fewer than
230 chosen plaintexts and 264 encryptions. The 44-bit pointer version narrowly exceeds
these security bounds. While the versions for shorter pointers surpass both bounds, they
are susceptible to attacks using fewer than 280 encryptions. The 32-bit M-profile version
presents the strongest resistance to our analysis despite exposing more output bits, due to
its strict input constraints.

The complete results are summarized in Table 1 together with published cryptanalysis
of the unrestricted QARMA-64. To understand their relevance, note first that, currently, no
Arm cores implement 56-bit VA spaces. 36-bit and 40-bit VA spaces are also increasingly
rare, since most modern operating systems tend to favor 48-bit VAs for commodity devices
and 52-bit VAs for server applications. The most relevant cases are thus those of VA spaces
of 48 and 52 bits and, to a lesser extent, 44 bits.

Our results do not directly translate to practical breaks of the PAC feature. Attackers
that rely on memory read gadgets can only mount KPAs using program-generated pointers.
While JIT environments theoretically enable CPAs, practical constraints significantly limit
the choice of inputs. Thus, PAC remains a significant barrier for the attackers.

Comparing to the cryptanalysis published so far, it is worth noting that we improve on
the 4 + 4 rounds attack in [LJ18] in terms of running time and memory usage, despite the
restrictions on inputs and outputs.

In order to perform our cryptanalysis we had to overcome a few hurdles. First, the
clamping of input bits and chopping of output bits in the PAC function limits the differential
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Table 1: Our results, compared to published cryptanalysis of QARMA-64. Rounds are
counted as x+y, where x and y are S-Box layers before and after the reflector, respectively.
For the attacks on the PAC function we also mention the VA space size, which determines
the number of clamped plaintext cells and of chopped ciphertext cells, and “A” and “M”
refer to A-profile and M-profile architectures. Memory is given in cipher blocks.

Rounds VA & Additions Attack Complexity Technique Referenceattacked Profile of w, o(w) Data Time Memory
4 + 6 N 253 CP 2116 + 270.1 2116 Meet-in-the-Middle [ZD16]
3 + 8 N 258.38 CP 264.92 263.38 Imp. Diff. [LZG+20]
4 + 4 Y 216 CP 233 + 290 290 Meet-in-the-Middle [LJ18]

T
hi

s
pa

pe
r

4 + 4 56 (A) Y 225 CP 260 228.98 Rel-Tweak (RT) Diff. Section 5.1
4 + 4 52 (A) Y 225.3 CP 255 228.94 RT Diff. Section 5.2
4 + 4 48 (A) Y 228 CP 260 240.83 RT Mult. Diff. Section 5.3
4 + 4 44 (A) Y 231.19 CP 268 231.67 RT Diff. Section 5.4
4 + 4 40 (A) Y 237.5 CP 276 238.82 RT Diff. Section 5.5
4 + 4 36 (A) Y 233.7 CP 276 235.02 RT Diff. Section 5.6
4 + 4 32 (A) Y 242 CP 276 244.32 RT Diff. Section 5.7
4 + 4 32 (M) Y 245 CP 276 246.32 RT Diff. Section 5.7

4 + 5 Y 216 CP 248 + 289 289 Meet-in-the-Middle [LJ18]
4 + 6 Y 261 CP 272 272.2 Trunc. Imp. Diff. [YQC18]
4 + 6 Y 259 KP 259 223.6 RT Stat. Sat. [LHW19]
4 + 6 Y 247.12 CP 275.13 272 RT Trunc. Diff. [SII23]
5 + 5 Y T · D (CP) = 2119.8 231 Rel-Tweak Imp. Diff. [ZD19]
5 + 5 Y 247.06 CP 283.53 280 RT Trunc. Diff. [SII23]
3 + 8 Y 261 CP 264.4 + 280 261 Imp. Diff. [ZD18]
4 + 7 Y 261 CP 2120.4 2116 Trunc. Imp. Diff. [YQC18]
5 + 6 Y 234.26 CP 2111.16 2108 RT Trunc. Diff. [SII23]
4 + 8 Y 248.4 CP 266.2 253.70 Zero Corr./Integral [ADG+19]
6 + 5 Y 254 CP 266.35 264 RT Differential [CXTQ23]

characteristics we can use, requiring us to perform extended searches. To address this,
we leverage the cipher’s symmetry around the center by forcing center differences to
zero during some clustering searches and while building a multiple differential. While
this only provides bounds rather than exact values, experiments shows that the omitted
characteristics have negligible impact (cf. Section 5.2 and Section 5.3.1). For some attacks,
this hurdle also forces us to find more than one characteristic, often with very different
properties from each other, in order to recover sufficiently many key bits.

Second, the small number of visible output bits creates high noise when trying to
identify the correct key guess. We adopt a statistical approach to determine minimal data
requirements to overcome this noise (cf. Section 3.5). The approach is experimentally
validated as well (cf. Section 4.6).

The fixed total of 64 usable input and output bits means that having more visible
output bits necessarily restrict input bits, and vice versa. Despite this inherent trade-off
between input flexibility and output noise, we are able to provide some successful attacks.

Because of the restrictions on the useable characteristics and the low data bounds, in
our attacks the brute force step is always the most expensive part.

The security of FEAT_PACQARMA5 and that of QARMA-64 with the recommended rounds
for general use is unaffected by our results.

1.3 Outline
In Section 2 we recall the definitions of QARMA and of the PAC function. Section 3 describes
Chosen-Input Key Recovery for the FEAT_PACQARMA3 function, and describes how we
determine the success probability and the data and time complexities of a key recovery
step. In Section 4 we describes how we find suitable characteristics for the attacks. In
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Figure 3: The detailed common structure of MANTIS, QARMA, and QARMAv2.

Section 5 we detail our attacks on the FEAT_PACQARMA3 function. We conclude in Section 6.

2 Background
2.1 QARMA

Definition 2.1. Let E : Fn2 × Fk2 × Fnt2 → Fn2 be a function (P, T,K) 7→ C = EK,T (P ).
The function E is called a TBC if, for each fixed value of the pair (K,T ), it is a bijection
of Fn2 onto itself. The n-bit input P is called the plaintext, the n-bit output C is called the
ciphertext, the nt-bit input T is called the tweak, and the k-bit input K is called the key.
The key is secret, while the tweak is assumed to be public.

We recall here the definition of QARMA (v1). Its structure is represented in Figure 3,
which can also be used to describe MANTIS and QARMAv2. The differences between the
three ciphers, while they may appear minor, have profound implications on their security.
The notations k, resp. t, c denote a round key, resp. tweak and constant: The XOR of these
values at the same round is the latter’s round tweakey.

Each state of QARMA is represented as a 4× 4 matrix of cells

A =




A[0] A[1] A[2] A[3]
A[4] A[5] A[6] A[7]
A[8] A[9] A[10] A[11]
A[12] A[13] A[14] A[15]


 ,

and 4×4 matrices operate column-wise on the state by left multiplication. With respect to
cell numbering, the 64 bits of a state are indexed in big endian order and the bits in a cell
are indexed in little endian order: bits [63 — 60] are contained in Cell 0 and bits [3 — 0] in
Cell 15. The bits in a cell can also be referred to using the square bracket notation.

A full round has the following structure:

k

x τ M S y

t

c

i.e.,

k

x R y

t

c

,

where R = S◦M ◦τ . S consists of a layer of sixteen identical S-Boxes, applied to the sixteen
cells in parallel. M is an involutory Almost-MDS matrix. τ is the MIDORI cell permutation,
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which with our cell numbering is τ = [ 0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2 ], acting
on a state as τ(A)[i] = A[τ(i)] for 0 ≤ i ≤ 15. The 4× 4 matrix M operates column-wise
by left multiplication on each layer of the block. S is the parallel application of the same
S-Box to all 16 cells of the state. The half-round function, only used for the outermost
rounds of the cipher, consists of just a round key addition and an S-Box layer.

The matrices are involutory circulants of the form

M = circ(0, ρa, ρb, ρc) =




0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0


 .

over a ring with zero divisors, Rm = F2[ρ] = F2[X]/(Xm + 1), where ρ is a circular left
rotation of the bits.

We describe only QARMA’s encryption, as decryption uses the same circuit with a different
configuration of round keys and tweaks, which is simple to derive and found in [Ava17].

The 128-bit key is K = w0∥k0 where the 64-bit values w0 and k0 are the whitening and
core keys. Put w1 = o(w0) := (w0 ≫ 1) + (w0 ≫ 63) and k1 = k0 + α. The round keys
k0 and k2r+1 are equal to w0 + k0 and w1 + k1. Then, ki = k0 for 1 ≤ i < r, and ki = k1

for r + 2 ≤ i ≤ 2 r, where α is a constant. The round keys at the sides of the reflector are
kr = w1 and kr+1 = w0. The central round keys are k′0 = 0 and k′1 = k0. Also, τ ′ = τ .

For PAC, QARMA uses the S-Box σ0 := [ 0, 14, 2, 10, 9, 15, 8, 11, 6, 4, 3, 7, 13, 12, 1, 5 ]. The
matrix M has parameters a = 1, b = 2, c = 1. The round constants are consecutive digits
of the fractional part of π, with c0 = 0. The tweak schedule is ti+i = ω(h(ti)) for 0 ≤ i < r
where h is the tweak shuffle h = [ 6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11 ] and ω is a
LFSR that maps cell (b3, b2, b1, b0) to (b0 + b1, b3, b2, b1), applied to Cells 0, 1, 3, 4, 8, 11,
and 13. The tweak schedule is symmetric, i.e., t2r+1−i = ti. For the rationale behind these
choices of components, we refer readers to the original design paper [Ava17].

2.2 The PAC Functions
2.2.1 A-Profile Version

We refer here to [Arm24, Section D8.8]. The admissible VA space sizes V in the Arm
architecture(s) range from 32 to 56 bits in steps of 4 bits, as well as 42 bits, where the 56-th
bit is always reserved. The system configuration bit tbi (“Top Byte Ignored”) indicates
whether the top byte of an address is used for address match for the TTBRx_EL1 (x can be
0 or 1) region, or ignored and used for tagged addresses. If tbi is 0, the PAC is computed
on s64−V∥ptr[V-1:0], where s ∈ {0, 1}, and it is inserted in bits [63:56] and [54:V]. The
effective PAC field length is thus 63 − V bits. The bit s is called the “upper/lower” bit
and it is commonly used to separate user space from system stack nemory. If tbi is 1, the
PAC is computed on ptr[63:56]∥s56−V∥ptr[V-1:0], where s ∈ {0, 1}, and it is inserted in
bits [54:V]. The effective PAC field length is thus 55− V bits.

The PAC bits are taken from the corresponding bits of the QARMA ciphertext output.
For PAC calculation, pointers undergo sign-extension. We assume that the pointers in an
attack are either all in user space or all in kernel space, ensuring zero difference in the
sign extension bits. For the purpose of cryptanalysis, the first z = (64− V)/4 cells of the
plaintext input are clamped and the last 16− z cells of the ciphertext are chopped.

2.2.2 M-Profile Version

We follow [Arm23, Section B6.1.1]. In M-Profile CPUs, pointers are 32 bits long, so the
plaintext input is padded with 32 zeros, and the PAC consists of the 32 least significant
bits of the cipher’s output. Thus, in the cryptanalysis, the first eight cells of the plaintext
are clamped and the first eight cells of the ciphertext are chopped.
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Figure 4: Key Recovery in a Differential Attack on a Clamped and Chopped Cipher.

3 Differential Key Recovery Attack on the PAC Function
Biham and Shamir’s fundamental concept of a differential characteristic [BS90, BS91] is
the starting point of our analysis.

Definition 3.1. We call ∆ = (∆in,∆out) ∈ Fn2 × Fn2 a differential for a block cipher with
block size n that covers a section D of the cipher consisting of rmid rounds where ∆in is
the input difference and ∆out is the output difference. For a TBC, this is associated with a
tweak difference DT , and we write ∆ = (∆in,∆out , DT ) ∈ Fn2 × Fn2 × Fnt2 , where nt is the
tweak’s bit size. We denote the probability of a differential by 2−q for some real value of q.

To apply differential cryptanalysis to an iterated block cipher, we need to identify a
differential characteristic, i.e., a sequence of differences that describes how a difference
propagates through the successive rounds of the cipher, and with which probability.

Definition 3.2. When ∆ = (∆in,∆out) ∈ Fn2 × Fn2 is fully specified in the sense that each
intermediate state difference is described, we call it a differential characteristic. An r-round
differential characteristic is a series of differences, denoted as (a0 → a1 → · · · → ar),
where a0 = ∆in, and ar = ∆out.

Definition 3.3. A differential can correspond to several differential characteristics. We call
a set of characteristics of the form (a0 → a1 → · · · → ar) with a0 = ∆in and ar = ∆out, a
cluster corresponding to the differential ∆ = (∆in,∆out). The probability of any differential
from input difference ∆in to output difference ∆out can be computed by taking the sum
over the probabilities of all possible characteristics of the form (a0 → a1 → · · · → ar) with
a0 = ∆in and ai = ∆out. We refer to Section 4.5 to see how clustering is performed.

To run key recovery on E using ∆, we extend the differential by adding rounds at
one or both ends until we cover the whole cipher. This is done by tracing the potential
activeness of the cells, but not the actual differences, starting from ∆in, resp., ∆out , and
going outwards through the added rounds until we reach Din, resp., Dout. In Section 4
we describe how to trace this diffusion through the components of QARMA. Our goal is to
recover the set of round key bits K affecting the differences in the rounds added in the
front. We use the back of the function only as a distinguisher. Figure 4 illustrates our
settings, and with reference to it, we have E = g ◦D ◦ f, where f consists of the initial rin
rounds and g is the final (half) round of the cipher.

Following common (abuse of) terminology, we use the terms input difference and output
difference to refer to ∆in and ∆out, respectively, even for extended characteristics, for
which Din and Dout are called the plaintext and ciphertext differences. The ciphertext
output is then chopped to u ≤ n bits, discarding the other n− u bits (in our case n = 64).
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Definition 3.4. The dimensions of Din, Dout, resp., ∆in, are din, dout, resp., δin. We
further define D̂out as the subset of Dout that can be observed in the u visible bits, and d̂out

is its dimension, i.e.
∣∣D̂out

∣∣ = 2d̂out .

Remark 3.1. Note that ∆ may be a truncated (or multiple) differential, where at least
one of ∆in, ∆out, and DT is a set. The non-truncated case corresponds to |∆in| =
|∆out | = |DT | = 1. For simplicity, in this section we consider only a non-truncated ∆. In
Section 5.3.1 we straightorwardly adapt the treatment to the multiple differential case,

3.1 The Key Recovery Algorithm

We give first a high-level description of the various steps of the key-recovery process. The
details are given in the following subsections. Pseudo-code is given in Algorithm 1.

First, we repeatedly query the encryption oracle to generate pairs of plaintext-tweak-
ciphertext triplets

(
(P i

0 , T
i

0 , C
i

0 ), (P i
1 , T

i
1 , C

i
1 )
)

that, by construction, satisfy Din and DT ,
i.e., P i

0 + P i
1 ∈ Din and T i

0 + T i
1 ∈ DT . Suppose also that N of these pairs satisfy ∆in,

i.e., their differences at the start of D are in ∆in. We describe in Section 3.2 how we use
structures so that we get a desired number N of pairs that satisfy ∆in. For now we just
assume that N is the number of pairs that satisfy ∆in , and that one in 2q of these N pairs
satisfies the output difference ∆out — we call the latter right pairs. They of course satisfy
the chopped ciphertext difference D̂out as well. With a right pair, we can use the plaintext
values and the difference at ∆in to deduce the right key, as explained in Section 3.4. For
an attack to be successful, we need at least one right pair, i.e., N ≥ 2q.

However, wrong (i.e., non-right) pairs may also satisfy D̂out by random chance with
probability 2−u+d̂out , and such pairs may suggest any key value. The right key will thus
be suggested with probability 2−q + 2−u+d̂out . (More precisely, since the proportion of
wrong pairs is 1 − 2−q, the right key will be suggested by a pair with input difference
Din with probability 2−q + 2−u+d̂out (1− 2−q), but we are assuming 2−q too small.) The
noise from wrong pairs can make it difficult for the right to stand out, especially when
2−q ≪ 2−u+d̂out . To overcome this noise, we must choose a sufficiently large N . Choosing
N is non-trivial and is described in Section 3.5.

After data collection we perform Pair Sieving, i.e., we keep only the L, say, pairs that
satisfy D̂out, i.e., C i

0 + C i
1 ∈ D̂out. While this could be performed by building a list of

length L, we instead use a hash table keyed by the values taken by the chopped ciphertext
at the inactive cells of D̂out to enable efficient enumeration of the pairs that satisfy D̂out .

Finally, we perform the actual key recovery through the front rin rounds. For each sieved
pair

(
(P i

0 , T
i

0 , C
i

0 ), (P i
1 , T

i
1 , C

i
1 )
)

and each key guess κ ∈ K we test whether fκ(P i
0 , T

i
0 ) +

fκ(P i
1 , T

i
1 ) ∈ ∆in. When this happens, we say we have a positive match that suggests κ

as a key candidate, and we increase a counter associated with κ. The right key should
appear among the most frequently suggested keys across all pairs.

Since the S-Box is bijective, given a non-zero output difference, an input pair with a
non-zero difference produces on average one solution. Hence, the sum of all counters is
expected to be L. To track key counters, we avoid full tables when most entries are zero,
as these waste memory, need a lengthy initialization step, and have poor cache locality.
Instead, we store non-zero counters only in self-balancing trees [Knu98, Section 6.2.3].
In our attacks, AVL trees [AVL62] give the best performance compared to Red-Black
trees [Bay72], splay trees [ST85], and full tables. For cases with just a handful of non-zero
counters, we could use a bubble-sorted list [Fri56] of key-counter pairs, but this does not
occur in our attacks.
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Algorithm 1 Basic Key Recovery Program.
Input: A tweakable encryption oracle E, a characteristic Din×DT 7→ ∆in 7→ ∆out 7→ Dout

and a set of round key bits K intersecting the active cells in the additional front rounds.
Output: A dictionary associating counters with the elements in K.

▷ Data Collection and Pair Sieving Stage
1: C = ∅
2: for s distinct structures S do
3: Prepare L0 =

{
(P, T0,ET0,K(P )) | (P, T0) ∈ S0

}

4: Prepare L1 =
{

(P, T1,ET1,K(P )) | (P, T1) ∈ S1
}

5: for
(
(P0, T0, C0), (P1, T1, C1)

)
∈ L0 ×L1 do

6: if C0 + C1 ∈ Dout then
7: C = C ∪

(
(P0, T0, C0), (P1, T1, C1)

)

▷ Data Analysis Stage (Guess-and-Filter)
8: Prepare a dictionary χ to associate counters with the elements k ∈ ⟨K⟩
9: for

(
(P0, T0, C0), (P1, T1, C1)

)
∈ C do

10: for k ∈ ⟨K⟩ do
11: if fk(P i

0 , T
i

0 ) + fk(P i
1 , T

i
1 ) ∈ ∆in then

12: χ(k) = χ(k) + 1
13: return χ

3.2 Structures and Complexity
To efficiently generate plaintext pairs, we use structures, a technique dating back to [BS92].
We present our adaptation of the concept tailored to our specific case.

Definition 3.5. A structure S consists of two affine subspaces S0,S1 ⊆ Fn2 × Fnt2 , which
we call half-structures, each half-structure being constant on Fnt2 . Here S1 = (x0, t0) + S0
where x0 and t0 are the fixed differences in the input pairs restricted to the plaintext and
to the tweak, respectively.

Remark 3.2. When there are no bits with a fixed non-zero difference at the input and no
tweak difference, then S1 = S0. As in this paper we use a non-zero tweak difference in the
attacks, the remainder of this paper assumes two subspaces, i.e., S1 ̸= S0.

All the elements of Din × DT are of the form
(
(P0, T0), (P1, T1)

)
with (Pi, Ti) ∈ Si.

Since the Si have dimension din, each structure generates 22din pairs, out of which 2din

satisfy ∆in. With 2s structures we generate 2s+din such pairs. To generate N pairs, we
distinguigh two cases, depending on the relative magnitude of 2din and N .

If 2din ≤ N , then we have s = log2 N − din and we need to query the encryption oracle
2 · 2s+din = 2log2 N+1 = 2N times.

If 2din > N , a complete structure generates more data than needed. Instead, we use a
partial structure, where each half-structure Si is a randomly chosen subset of Fn2 ×Fnt2 , and
is constant on Fnt2 . If we pick 2x values out of 2din from each of S0 and S1, the expected
number of pairs that satisfy ∆in is approximately 22x−din . We want 22x−din = N , that is
x = (log2 N + din)/2, hence we need to query the encryption oracle 2

√
N · 2din times.

In some cases (namely, where we use conditional characteristics) we have to use multiple
partial structures, which requires minomal adjustments to data and time complexity (cf.
Section 4.6 for the background, Section 5.3.1, and Section 5.4 for concrete applications).

For each pair that satisfies D̂out, we perform a guess-and-filter step, whose cost we
denote by TGF. We determine the cost of such steps in Section 3.4. The number of non-zero
counters is expected to be relatively small, hence the time for updating them is usually
negligible, but its worst case is min(2|K|, L).
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3.3 Memory Usage
Each data triplet (P i, T i, C i) needs only two 64-bit blocks worth of storage, since the
tweaks are constant per half-structure. By offloading structure data to external storage,
we need to keep in RAM only at most one structure worth of collected data.

For the hash table we need at most one block (which can hold either a plaintext or a
pointer depending on the implementation) per entry in the structure currently in memory,
as well as one block per each of the 2u−d̂out possible hashing keys.

Regarding the dictionary structure, let us consider an AVL tree. An internal node
contains two pointers, a key, and a counter, which in our attacks always fit in 3 blocks. A
leaf counter does not contain the pointers, hence it fits in one block. Since at least 1/φ
of the nodes are leaves (where φ = (1 +

√
5)/2), we have that the average size of a node

does not exceed 3 · (1− 1/φ) + 1/φ ≈ 1.764 blocks. We allocate the blocks in chunks, to
minimize the overhead and performance impact from the system memory allocator. The
number of nodes is ℓ = min

(
2|K|, L

)
. Since the size of the AVL tree can be estimated in

advance, we revert to a table of counters in case the latter is expected to be smaller.
Computing the memory storage is a routine application of the three estimates above

to the data provided with the attacks. If an attack uses more characteristics, we reuse
the memory and thus consider only the maximum memory usage across all characteristics.
Full results are tabulated in Table 1 to provide a comparison with previous work.

3.4 Implementing Guess-and-Filter
3.4.1 Guess-and-Filter in a 0.5R Attack

Let us start with the case where a half-round is added in front of the characteristic. This
is called a 0.5R (for half round) attack. We denote the set of the indices of the active
cells at the beginning of D by ℑ ⊆ [0..15]. Note that ℑ coincides with the set of active
cells in Din, except possibly for those affected by the tweak addition. Let A[i] denote the
i-th cell of a state A. Given a sieved pair

(
(P0, T0, C0), (P1, T1, C1)

)
, we aim to obtain key

suggestions (k + w)[i] for i ∈ ℑ. As ∆in is the output difference of the first S-box layer,
we recover i-th cell of k + w by solving the following equations

∆in[i] = S
(
P0[i] + T0[i] + (k + w)[i]

)
+ S

(
P1[i] + T1[i] + (k + w)[i]

)
for i ∈ ℑ , (1)

where S is the S-box. We can rewrite Equation (1) as

∆in[i] = S
(
x[i]
)

+ S
(
x[i] + P0[i] + P1[i] + T0[i] + T1[i]

)
for i ∈ ℑ , (2)

where x[i] = P0[i] + T0[i] + (k + w)[i]. Solving such equations is easy since the differences
P0[i] +P1[i] +T0[i] +T1[i] and ∆in [i] are known. Following [BS90, BS91], we store not only
the number of solutions in the Difference Distribution Table (DDT) but also the solutions
themselves. By solving each of these equations we obtain suggestions for each (k + w)[i],
and we denote the set of suggested keys by Ki for each i ∈ ℑ. After that, we combine the
sets Ki suggestions for each i ∈ ℑ.

For each sieved pair, the cost of key recovery through a half-round at the front depends
on the size of ℑ. Note that while P0[i] + P1[i] + T0[i] + T1[i] and ∆in[i] are fixed, for any
active S-box there are at most 4 solutions to Equation (2) due to the differential uniformity
of the used S-box being 4. Out of the 255 entries (excluding the entry corresponding to
0 7→ 0) in the DDT, 102 are non-zero: 84 entries have the value 2 and 18 the value 4. On
average, for a random non-zero input/output pair, we expect a solution, but if there are
solutions, there are either 2 or 4. In most of the characteristics used in this paper, the size
of ℑ is at most 7. Hence, when a solution exits, there are about 27 solutions, the same
number as the amount of S-Boxes in QARMA3. Thus, we bound the cost of TGF in a 0.5R
attack from above with the cost of a single QARMA3 encryption, which we denote by TE.
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Figure 5: The four cell quartets of a state mapped by τ to columns.
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Figure 6: Attacking 1.5 rounds, naïvely.

3.4.2 Guess-and-Filter in a 1.5R Attack

Adding 1.5 rounds to the differential characteristic is also called a 1.5R attack. As before,
we consider the case where the rounds are added to the front. The naïve way of performing
a 1.5R attack is to try all the involved key bits in k + w and k.

Due to the matrix operation in the full round, we must examine ∆in column-wise.
Consider the four cells of Din that map to an active column c of ∆in after 1.5 rounds: The
four cell quartets of Din mapped to the four columns of ∆in by τ are given in Figure 5.
For conciseness, we consider only the first quartet, corresponding to the first column, the
other cases being corresponding to permutations.

If only one cell of c is active, then exactly three of the four cells in Din are active unless
the fourth is activated by a tweak addition or one is cancelled by the tweak difference.
Given a sieved pair

(
(P0, T0, C0), (P1, T1, C1)

)
, up to a permutation of the indices, the

situation is equivalent to the one depicted in Figure 6, where 0 indicates a zero difference.
Let G denote the set of the three cells activated by c in Din , in our example G = {5, 10, 15}.
Note that here we attempt to recover the key bits of (k+w) and k that are involved while
we extend ∆in backward to Din. However, in the case of the key bits in k, it is more
helpful to recover the equivalent key k′ where k′ = M(τ(k)) is added before the second
S-box operation as shown in Figure 7. This results in the following relations




Qi[j] = S
(
Pi[j] + Ti[j] + (k + w)[j] + c0[j]

)
for i ∈ {0, 1} and j ∈ {5, 10, 15}

Wi[j] = Qi[j] + ω
(
h(Ti)

)
[j] + c1[j]

Xi[0] = Wi[0] , Xi[4] = Wi[10] , Xi[8] = Wi[5] , Xi[12] = Wi[15]
Yi[0] = ρ(Xi[4]) + ρ2(Xi[8]) + ρ(Xi[12])
Yi[4] = ρ(Xi[0]) + ρ(Xi[8]) + ρ2(Xi[12]) ⇒ ∆Y [4] = ρ(∆X [8]) + ρ2(∆X [12])
Yi[8] = ρ2(Xi[0]) + ρ(Xi[4]) + ρ(Xi[12]) ⇒ ∆Y [8] = ρ(∆X [4]) + ρ(∆X [12])
Yi[12] = ρ(Xi[0]) + ρ2(Xi[4]) + ρ(Xi[8]) ⇒ ∆Y [12] = ρ2(∆X [4]) + ρ(∆X [8])
∆Z [0] = S

(
Y0[0] + k′[0]

)
+ S

(
Y1[0] + k′[0]

)
,

(3a)

(3b)

where ∆v denotes v0 + v1 for any variable pair v = (v0, v1). These relations imply that in
order to recover, say k′[0], we also need to either know or to guess (k + w)[G].

We now describe the peeling strategy (see the 3R attack in [BS91, Section 5]) to recover
one or more cells of k′ — for simplicity let us stick to k′[0]. Assuming that we already
mounted a 0.5R attack with the same Din and D̂out , we can reuse the same data set. We
repeat the pair sieving iterator of the 0.5R attack, but this time instead of testing for
round key candidates, we we simply check whether the current pair suggests the already
recovered right key bits of (k +w). For these pairs and each possible guess of the as-of-yet
unknown bits of (k+w)[G] that contribute to k′[0], we determine candidates for k′[0]. The
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Figure 7: Attacking 1.5 rounds, using an equivalent key on the second round, landing on
a column with one active cell.
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Figure 8: Attacking 1.5 rounds, using an equivalent key on the second round, landing on
a column with two active cells.

counters correspond to the guessed bits (k + w)[G] ∪ k′[0]. To recover k′ in our example,
we compute the values Y0[0] and Y1[0] from Equation (3a). Note that we either know
P0, P1, T0, T1 as well as the cells of k + w that are required to compute Yi[0], or we need
to fix a guess for the unknown cells of k + w that contribute to k′[0]. Finally, we consider
the following equation which is equivalent to Equation (3b), and we solve it for k′[0]

∆Z [0] = S(x[0]) + S
(
Y1[0] + Y0[0] + x[0] + k′[0]

)

where x[0] = k′[0] + Y1[0] + Y0[0]. Since the rounds of filtering are relatively rare, and the
number of key bits to recover in a peeling step — including both bits to be guessed and
those to be filtered — is often smaller than in the initial 0.5R attack step, making the
the cost of a peeling step is bounded by that of a 0.5R attack. This is the case in all our
attacks.

The case where in the column c two cells (Figure 8) or more are active is similar. As
the number of active cells in c increases, the number of cells with zero differences in ∆Y

decreases, and at the same time we can recover more bits of k′. There is thus a trade-off
between the number of key bits recovered and the time complexity. In this paper, we use
characteristics with at most two active cells in c.

Remark 3.3. Peeling can be done directly after a 0.5R attack even if did not start with a
differential for a 1.5R attack. With reference to Figure 4, we perform key recovery also
inside D. The transition through the second round is not always unique, and sometimes
there are multiple transitions with the same probability. However, if we fix the second
round transition as in the original characteristic of the 0.5R attack, the probability of the
differential obtained by removing the first round of D is still higher than that of D. In
particular, it allows us to recover correct key bits without the need for additional data.

3.5 The Poisson Distribution Argument
The relation between data complexity, time complexity and success probability is quite
complex. However, ignoring the latter easily leads to oversimplifications and too optimistic
complexity estimates. This subsection describes the approach we follow in this paper to
determine all three quantities together: the Poisson distribution argument.

For each integer a, let ω(a) be the probability that the counter of a fixed wrong key
is equal to a. The probability that the counter of one, fixed wrong key is smaller than
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Figure 9: Modeling success probability. Let ψ be the probability that the counter for
a fixed wrong key is smaller than E(R). If ψ is not close to 1 (left), then its successive
powers will quickly converge to zero. To ensure that the counters of many wrong keys are
all smaller than E(R) with a significant probability, ψ must be very close to 1 (right), i.e.,
the probability that the counter of a fixed wrong key is at least E(R) must be negligible.

the expected value of the counter of the correct key E(R) is the sum of the probabilities
ω(a) for all a < E(R). This sum is depicted as the shaded areas in Figure 9, while the
dotted areas represent the failure probability. Since this must happen for all wrong keys,
under the Wrong Key Randomization Hypothesis (WKRH) [HKM95], if the number of all
possible keys is ν, the success probability is

( ∑

a≤E(R)

ω(a)
)ν−1

, (4)

i.e., the (ν−1)-th power of the cumulative distribution function for the Poisson distribution
at E(R). To ensure a good success probability, the distributions for the counters of the
correct key and of a wrong key must be clearly separated. To achieve this, we require that
the difference between the expected counter values for the correct key and a wrong key be
γ times the standard deviation of the counter of a wrong key. We then pick the smallest
value of γ such that Equation (4) yields a 90% success probability under ideal distribution
assumptions. When more than one characteristic is used in an attack, the product of their
corresponding success probabilities should be at least 90%, so we have to aim at higher
probabilities for the individual characteristics.

It is known that the WKRH is not always completely accurate [BT13], particularly for
lightweight ciphers [ABR20]. Hence, after determining a value for N we experimentally
verify the effectiveness of the characteristics — if computationally feasible (cf. Table 2).

We now describe the actual Poisson distribution argument. If we are recovering d
round key bits from the front, we have ν = 2d round key choices and, thus, counters.

Let N be the to-be-determined required number of pairs that satisfy the input dif-
ference ∆in. We want to obtain a bound for N in terms of the statistical properties
of the characteristic we are analysing. The counters of the wrong keys behave ac-
cording to Poisson

(
N · 2−u+d̂out

)
, since a random pair, even if not right, still passes

the sieving test with probability 2−u+d̂out . The counter of the correct key behaves like
Poisson

(
N ·

(
2−q + 2−u+d̂out

))
where N · 2−q is the contribution from the right pairs. To

ensure a significant separation between the distributions of the counter for the correct
key and of the counters of the wrong keys, we require the difference between the means,

N · 2−q, to be γ times the standard deviation σ =
√
N · 2−u+d̂out ·

(
1− 2−u+d̂out

)
of the

counter associated with a wrong key for some positive real number γ. Solving the inequality
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N · 2−q ≥ γ · σ for N , we obtain that N must be at least

N(γ) = γ2 · 22q · 2−u+d̂out ·
(

1− 2−u+d̂out
)
.

Then, we apply Equation (4) to the distribution Poisson
(
N(γ) · 2−u+d̂out

)
and the expected

value of the counter of the correct key, E(R) = N(γ) ·
(

2−q + 2−u+d̂out
)

, with ν = 2d to
determine the success probability for the given γ.

If log2 N ≥ din we use multiple structures, otherwise we use partial structures. Out of
the structures of Section 3.2 one can construct 2din ·N pairs and therefore there are

L ≈ 2din ·N ·
(

2−u+d̂out + 2−(q+din)
)

= N ·
(

2din−u+d̂out + 2−q
)
. (5)

sieved pairs. Note that if we fix some of the variable bits, the effective value of din needs
to be reduced accordingly. The time and data complexities of Algorithm 1 are thus

D = 2m+1 and T = 2m+1 · (TO + TMW + TMR) + L · TGF

where m =





log2 N if log2 N ≥ din and
log2 N + din

2 if log2 N < din .

(6)

Here, TMW, resp., TMR is the time required for a memory write, resp., read. TO is the time
required to query the SW oracle to obtain a chosen input encryption. The additional cost
of TO over that of an encryption, TE, is impossible to estimate in general, as it depends on
the details of the SW attack. For simplicity, we shall assume that TO ≈ TE.

4 Finding Good Key Recovery Characteristics

In this section, we describe how we search for key recovery friendly differential characteristics
for QARMA. This is a cipher-specific and challenging problem. For a different scenario, namely
the search for key recovery friendly characteristics for GIFT, see [ZDC+21].

4.1 Choice of the Cost Function

It is well established that the time complexity of key recovery inversely correlates with
the probability 2−p of the characteristic, making it desirable to minimize p. However, a
characteristic with minimal p but involving too many key bits may lead to a poor attack
complexity [BS93]. Indeed, when the guess-and-filter phase dominates the cost of key
recovery, time complexity is roughly proportional to L encryptions. From Equation (5) we
have L ≈

(
γ · 2q−u+d̂out

)2
· 2din , with a dependency on din, specifically a factor of 2din . To

heuristically account for this effect, we also consider characteristics minimizing p+ din.
To better illustrate our approach, we discuss two characteristics. Each characteristic is

constructed from a differential with two forward and three backward rounds, extended by
1.5 rounds at the front and 0.5 at the back. Only the two most significant nibbles of the
output are visible and can thus be used as a distinguisher. The first characteristic has
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been found by maximizing its probability, which is 2−p = 2−9.
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Here, and in the following, we denote the undetermined differences by ∗, the clamped
plaintext cells by a boldface zero, and the visible ciphertext cells are grouped by a “lasso.”
A single large, boldface zero in a smaller square denotes an all-zero state in the center.
The states with an additional border are Din, ∆in, ∆out and Dout.

A random pair passes the sieving step with probability 2−8. By the Poisson distribution
argument (Section 3.5) we need 216 pairs satisfying ∆in, with γ = 8, to get a success
probability of 95 %. A partial structure with 228 values per each half-structure (out of
240) produces the required 216 pairs, with a data complexity of 229. After pair sieving, an
average of 248 sieved pairs remain. The time complexity is approximately 249 TE.

The second characteristic has been found by minimizing p + din. It has probability
2−14, din = 20 and thus p+ din = 34.
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The Poisson distribution argument shows we need 225 pairs satisfying ∆in, with γ = 5.35,
to attain a success probability of 95 %. We use 25 complete structures, each producing 220

pairs satisfying ∆in , for a data complexity of 226. The time complexity is 237 TE. Therefore,
the second characteristic leads to a faster key recovery that also needs less data.

We now re-evaluate the two examples using the probability of the differential. For the
first example, the probability of the differential 2−q ≈ 2−2 is significantly higher than the
probability of the characteristic.3 Thus, there is an attack with a data complexity of 227.5,
a time complexity of 246 TE, and a success probability of 95 %. For the second example,
q ≤ 5, for a data complexity of 217, a time complexity of 225 TE, and a success probability
of 95 %. Notably, the second characteristic remains the more effective one. While this is
usually to be expected, it is not necessarily always the case. Nonetheless, these examples
indicate that minimizing p+ din is a source of useful characteristics.

Though the expression L ≈
(
γ · 2q−u+d̂out

)2
· 2din suggests the use of the cost function

p+ d̂out +din/2 (note that din is always a multiple of 4), the latter did not lead to improved
attacks, while considerably increasing search time.

3 This bound, as well as the bounds for the other examples in this subsection, can be obtained by
clustering (cf. Section 4.5) or by an argument similar to the one we use for Char. (13).
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Expanding on the examples above, minimizing p+ d̂out + din/2 we find a characteristic
with probability 2−10, din = 28 and d̂out = 0, for p+ d̂out + din/2 = 24.
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We need 217.60 pairs satisfying ∆in, with γ = 7, to attain a success probability of 95 %.
A partial structure with 222.80 values in each half-structure produces the required 217.60

pairs. With respect to the second characteristic we need less data — 223.80 blocks instead
of 226 — but the running time is slightly higher — 237.61 TE as opposed to 237 TE.

Using the probability of the differential 2−3, i.e., q = 3, results in an attack with a
data requirement of 221.25 blocks and a time complexity of 232.50, TE. This is notably
less effective than the second characteristic. This observation holds generally and can be
attributed to the presence of the term d̂out in the cost function. Reducing d̂out imposes a
fixed difference on more output cells, limiting their ability to take any value; as a result, it
restricts the number of characteristics within a cluster.

We observe that constraining d̂out leads to an increase in data requirements while the
time complexity reduction does not significantly improve the time complexity of complete
attacks, since they are primarily determined by the final brute-force steps.

Therefore, a more favorable cost function could be p+ din/2. It quickly provides the
second example, and also Char. (16) was found by minimizing this function.

4.2 Modelling the Search
In order to find good characteristics for key recovery, we model QARMA as a program for
STP, the Simple Theorem Prover [GD07]. We extend Stefan Kölbl’s cryptosmt [Köl14],
which produces a Satisfiability Modulo Theories (SMT) program written in Cooperating
Validity Checker (CVC) format (a language whose roots can be traced back to [SBD02]).
STP uses then cryptominisat [SNC09] as the SAT solver. The steps are:

1. We program a bit-wise model of the rmid middle rounds (always including also
the central construction). This allows tighter bounds than the cell-wise MILP
(Mixed-Integer Linear Programming) models used in the development of QARMA.

2. To determine Din and D̂out , and thus din and d̂out , we add cell-wise models to trace
the involved key cells through the first rin rounds and the last round.

3. We add constraints on Din , ∆in , ∆out , Dout and, if necessary, also relations involving
arbitrary cell differences to the model. Such constraints are used to restrict a search,
or to split a single search into more searches that can run in parallel.

4. Finally, we add one of the cost functions discussed in Section 4.1 to the model.

STP can find all characteristics with a given cost. We also use it to enumerate repre-
sentatives of all subsets of a cluster defined by a common difference at a given state (e.g.,
the state after the first S-Box layer that follows ∆in). The code is publicly available on
GitHub4.

4https://github.com/ShibamCrS/DifferentialAttackPACQARMA3.git

https://github.com/ShibamCrS/DifferentialAttackPACQARMA3.git
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4.3 Impact of Input Clamping
The input to PAC functions is clamped. Without clamping, for each characteristic, usually
additional ones exist with similar probabilities and related by various symmetries. Such
symmetries can often be expressed as permutations of the cells, which can be iterated.
In papers on unconstrained ciphers, authors often just need to mention that more key
cells can be recovered at the same complexity by finding additional similar characteristics.
However, input clamping eliminates most of these symmetries, necessitating an explicit
search for additional characteristics.

4.4 Impact of Output Chopping
It is tempting to invoke some form of signal-to-noise-ratio argument to conclude that
differential attacks are impossible when the probability of the differential is smaller than
2−u, where u is the number of output bits. However, our analysis provides counterexamples,
proving such an argument incorrect. Similar findings have been reported in the differ-
ential attacks on Feistel structures [Pat08] used to attack format preserving encryption
schemes [HTT18, HMT19] and in linear cryptanalysis [ABD17].

4.5 Clustering
After a potentially good differential characteristic has been found, we can estimate its
actual probability by identifying clusters for the given ∆in and ∆out .

In our SMT model we fix the input difference ∆in and only the zero positions of the
output difference ∆out . This reflects the fact that pair sieving is based on the activeness of
the output cells, not on their values, and suffices for key recovery only in the front rounds.
The values of DT are fixed. The number of solutions is determined using cryptominisat.

Suppose we have a characteristic ∆in 7→ ∆out with probability 2−p. We count the
characteristics ∆in 7→ ∆out with probability 2−p, 2−(p+1), ... until a certain fixed limit is
reached. The sum of the probabilities of all the found characteristics, denoted by 2−q, is
an estimate of the probability of the differential ∆in 7→ ∆out . In Tables 2 and 3 we collect
data on the effect of clustering analysis on the differentials used in our attacks.

4.6 Experimental Verification of Clustering Probabilities, and Condi-
tional Characteristics

We experimentally verified the probabilities 2−q computed by clustering by averaging
results from 100 trials using random plaintexts, tweaks, and keys, obtaining a value 2−q.
A highly optimized implementation of QARMA is used in these experiments. The code for
experimental verification is available on GitHub5.

We now explain our experiments. If we use N pairs, we observe random noise of
magnitude η = N · 2−u+d̂out . The goal is to distinguish between two distributions, one
with probability µ1 = 2−q + 2−u+d̂out and another with probability µ2 = 2−u+d̂out and
want to estimate q. Let hi be the number of pairs that satisfy the truncated output
difference D̂out in the i-th experiment. The statistics of hi − η give us an estimate of q as
q = − log2(Mean(hi − η)/N). These values are given in Table 2 for each characteristic.

We consider that a differential has sufficient signal if hi − η is at least γ/2 units of
the standard deviation of random noise. Thus, if hi − η > (N · 2−q)/2, we consider the
experiment to have been successful. We record the number of successful experiments
in Table 2 together with q and the value of q obtained from clustering analysis.

5https://github.com/ShibamCrS/DifferentialAttackPACQARMA3.git

https://github.com/ShibamCrS/DifferentialAttackPACQARMA3.git
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Table 2: Statistical properties of the characteristic used in our attacks.
The number of pairs N used in each experiment is the same as in the corresponding attack
in Section 5. ∗ marks the experiments restricted to tweaks fulfilling Relations (7) (resp.
(8)) for Char. (13) (resp., Char. (15)). The experimentally obtained value of q, namely q,
is compared to the value obtained by clustering.

Estimated Computed Successes
z Char.

u
−
d̂

ou
t

N q
Chars. in
Cluster

η hi − η q
out of

100 trialsS.D. Mean ± S.D Min Max

2
(9) 8 214 7.98 1543 7.98 64.11 ± 11.69 40 107 8.00 100
(10) 8 218 10.01 474186 31.94 256.19 ± 32.40 186 346 10.00 100
(11) 8 220 12.00 385024 63.87 257.50 ± 58.90 140 406 11.99 100

3
(11′) 12 218 12.01 384880 7.99 63.80 ± 11.50 34 96 12.00 100
(13) 8 222 12.00 > 100 K 127.75 1022.33 ± 1832.27 −396 4739 12.00 27
(13)∗ 8 218 10.00 — 31.93 258.32 ± 39.27 164 366 9.98 100

4 (13′) 8 222 12.00 > 100 K 127.75 1022.33 ± 1832.27 −396 4739 12.00 27
(13′)∗ 8 218 10.00 — 31.93 258.32 ± 39.27 164 366 9.98 100

5 (15) 12 229 18.00 1512 361.99 2128.71 ± 2075.29 −614 5345 17.94 53
(15)∗ 12 227 17.00 — 181.00 1026.25 ± 174.94 568 1527 17.00 100
(16) 16 230 21.00 22440 128.00 505.58 ± 141.39 126 790 21.02 94
(16) 16 231 21.00 22440 181.02 1028.42 ± 176.56 659 1472 20.99 100

6 (18) 4 233 18.00 > 350 K 5781.29 33324.88 ± 6337.25 20921 47369 17.97 100
7 (18′) 8 233 18.00 > 350 K 5781.29 31647.44 ± 5694.98 19383 43991 18.05 100

Looking at Table 2 we see that two characteristics — (13) (also (13′)) and (15) —
have significantly lower success rates. We observe that, for these two characteristics, the
probability is highly dependent on the tweak and key values — being higher than average
for some combinations and zero for others. This also explains the high standard deviation
in hi − η. Such characteristics are called conditional characteristic [BB93],

To understand this behavior, we investigate the dependency on the tweak and the key
for both characteristics. For Char. (13), the dependency occurs in the third round. This
part of the characteristic is depicted in Figure 10, where T ′i for i = 0, 1 is the value of the
tweak in the third round in the first and the second element of a differential pair. The sets
A and B of the valid S-box transitions in ∆P → ∆Q and ∆Y → ∆Z , respectively, are:

A = {x : S(x+ 4) + S(x) = 1} = {1, 3, 5, 7}
B = {x : S(x+ 4) + S(x) = 2} = {10, 11, 14, 15} .

Now we have the following relations




Xi[0] = S(Pi[0]) + (T ′i + k + c2)[0] , Xi[4] = S(Pi[10]) + (T ′i + k + c2)[10] ,
Xi[8] = S(Pi[5]) + (T ′i + k + c2)[5] , Xi[12] = S(Pi[15]) + (T ′i + k + c2)[15] ,
Yi[0] = ρ(Xi[4]) + ρ2(Xi[8]) + ρ(Xi[12])

= ρ2((T ′i + k + c2)[5]
)

+ ρ
(
(T ′i + k + c2)[10]

)
+ ρ
(
(T ′i + k + c2)[15]

)
+

+ ρ2(S(Pi[5])
)

+ ρ
(
S(Pi[10])

)
+ ρ
(
S(Pi[15])

)
,

Yi[8] = ρ2(Xi[0]) + ρ(Xi[4]) + ρ(Xi[12])
= ρ2((T ′i + k + c2)[0]

)
+ ρ
(
(T ′i + k + c2)[10]

)
+ ρ
(
(T ′i + k + c2)[15]

)
+

+ ρ2(S(Pi[0])
)

+ ρ
(
S(Pi[10])

)
+ ρ
(
S(Pi[15])

)
.

To get a valid transition through the part of the characteristic depicted in Figure 10,
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Figure 10: Example of tweak dependency (from (13)).

the following four conditions must be satisfied

Pi[0], Pi[5] ∈A and Yi[0], Yi[8] ∈ B .

This implies ρ2((T ′i + k + c2)[5]
)

+ ρ2((T ′i + k + c2)[0]
)
∈ {0, 1, 4, 5}, or, equivalently

(T ′i + k + c2)[5] + (T ′i + k + c2)[0] ∈ {0, 1, 4, 5}. We get two linearly independent binary
relations on a few bits of the tweak and the key:

{
(T ′i + k + c2)[5][1] + (T ′i + k + c2)[0][1] = 0
(T ′i + k + c2)[5][3] + (T ′i + k + c2)[0][3] = 0 .

However, the relations given above are on the third round tweaks T ′i . Inverting the tweak
schedule, we obtain these two relations over the input tweaks Ti:
{
B0 := Ti[2][2] + Ti[5][2] = (k + c2)[0][1] + (k + c2)[5][1]
B1 := Ti[2][0] + Ti[2][1] + Ti[5][0] + Ti[5][1] = (k + c2)[0][3] + (k + c2)[5][3] .

(7)

Since Cells 2 and 5 of the tweak are inactive, Relations (7) do not depend on i. For an
attack to be feasible, the l.h.s. expressions in the tweak bits in Relations (7) must take
specific values B0 and B1, which are determined by the key. This means that only 25 % of
tweaks can be used to recover a given key, and a given tweak pair can aid in recovering
only 25 % of all keys. However, when the conditions are met, the distinguisher probability
increases fourfold to approximately 2−10. Our experimental results in Table 2 confirm this.

Remark 4.1. (i) The structures can be easily constructed such that the pairs are evenly
split into four subsets according to the four values of (B0, B1). Since only one subsets
allows to counter of the correct key to stand out, testing the subset in succession reduces
the average complexity by 37.5% versus the worst case. If multiple structures are used,
then a quarter each of the structures will have a different value of (B0, B1). If a single
partial structure was meant to be used had the characteristic not been conditional, then
four partial structures should be used instead, each one having half-structures of half-size.

(ii) Furthermore, this construction of the structures still allows the counter of the
correct key to stand out also when all pairs are considered and all their suggestions counted.

Remark 4.1.(ii) is crucial for the multiple differential attack for z = 4 (Section 5.3.1).
In addition to Char. (13′), 43 more characteristics are used, displayed in Figures 12
and 13. Their statistical properties are collected in Appendix A. They are all conditional
characteristics, with the conditions all using the same expressions Bi as defined in (7), but
with different parities (B0, B1) = (d0, d1) ∈ F2 × F2, as in
{
B0 := Ti[2][2] + Ti[5][2] = (k + c2)[0][1] + (k + c2)[5][1] + d0

B1 := Ti[2][0] + Ti[2][1] + Ti[5][0] + Ti[5][1] = (k + c2)[0][3] + (k + c2)[5][3] + d1 .
(7′)

Each characteristic is effective for only one of the four possible values (d0, d1) can take and,
for a fixed key, all four possible values are taken by the characteristics. This implies that,



400 Differential Cryptanalysis of FEAT_PACQARMA3

for the attack to succeed, the pairs must be equally distributed among the four subsets
characterised by (d0, d1).

Similarly, we establish that Char. (15) is also conditional, the dependency

∑

j∈{0,2,3}

(
Ti[3] + Ti[15]

)
[j] = 1 +

3∑

j=0

(
(k + c2)[7] + (k + c2)[8]

)
[j] (8)

being independent from i since ∆T [3] = ∆T [15] = 0. When this condition is met, the
probability is 2−17, otherwise it is 0. This has been experimentally verified, cf. Table 2.

Finally, we observe that some experiments for Equation (16) do not show a significantly
strong signal. We could not identify any tweak or key dependency, and the absence of
such a dependency is supported by the low standard deviation of hi − η. While some
experiments had hi − η lower than (N · 2−q)/2 due to our choice of N , increasing N to 231

from 230 yields a success rate of 100. In contrast, for Chars. (13) and (15), increasing the
data amount does not improve success rates because of the tweak dependencies discussed
above.

5 Cryptanalysis of the PAC Function in FEAT_PACQARMA3

We now describe the cryptanalysis of the PAC function for z = 2 through 8, with z = v, in
full detail. Table 3 summarizes all attacks. For most characteristics we perform a 0.5R key
recovery, followed by peeling to recover second round equivalent key cells k′ = M(τ(k)),
guessing additional k + w bits as needed. This is repeated for every characteristic in an
attack, and any remaining bits are recovered through brute force. For z = 2 and 3, we
also perform a 1.5R recovery, while for z = 4 we also mount a multiple differential attack.

5.1 Attack for z = 2 (56-bit Pointers)
Let us consider first the case of z = 2, i.e., the two most significant cells of the input are
clamped, and only the two most significant cells of the output are revealed.

We first use Char. (9), with p = 16 and din = 28, in a 0.5R key recovery step, to
recover the 28 bits (k + w)[{4, 6, 7, 8, 11, 13, 14}]. Clustering analysis (cf., Section 4.5 and
experimental verification results in Table 2) show that the probability of the differential
distinguisher is 2−7.98, i.e., q = 7.98.
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(9)

We follow the Poisson distribution argument from Section 3.5 to determine how many
pairs satisfying the input difference ∆in are required in a key recovery step on Char. (9).
As we can observe exactly two output cells, a random pair passes the sieving test with
probability 2−8. We have 228 possible round key. With N pairs, the counters of the
wrong keys follow Poisson

(
N · 2−8) distribution. The counter for the correct key follows

Poisson(N · (2−8 + 2−7.98)) distribution as N · 2−8 of the pairs pass the filter by random
chance, and N · 2−7.98 are right pairs satisfying the characteristics. We find that the
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Table 3: Summary of key recovery attacks on the PAC function for 2 ≤ z ≤ 8.
For each characteristic, initial key cell recovery and peeling steps are separated by semi-
colons. “M” denotes the only M-profile attack, which is for z = 8.
The success probability of each complete attack is at least 90 %.

z Char. din p q log2 D log2 T Recovered Round Key Cells

2

(9) 28 16 7.98 22 35 (k + w)[{4, 6, 7, 8, 11, 13, 14}] ∪
∪ (k + w)[{1, 2} ∪ k′[{5, 15}].

(10) 16 19 10.01 18 26 (k + w)[{3, 9, 12}]; k′[{6, 10}].
(11) 28 22 12.00 24.5 39 k′[2].

Exhaustive Search — 60 (k + w)[{0, 5, 10, 15}] ∪
∪ k′[{0, 1, 3, 4, 7, 8, 9, 11 — 14}].

Overall Complexity 25 60
Without using (11) 22.2 64

3

(11′) 28 22 12.01 24 35 (k + w)[{3, 4, 7, 9, 11, 12, 14}], k′[{2, 5}].

(13) 40 24 12.00 24.5 38
(k + w)[{5, 6, 8, 10, 13, 15}];
k′[{0, 6}];
(k + w)[2] ∪ k′[7].

Exhaustive Search — 52 (k + w)[{0, 1}] ∪ k′[{1, 3, 4, 8 — 15}].
Overall Complexity 25.3 52

4

(13′)
Fig. 12
Fig. 13

40 24
12.00
13.00
14.00

28 54.5
(k + w)[{4, 5, 6, 8 — 11, 13, 14, 15}];
(k + w)[0] ∪ k′[0, 5];
(k + w)[3] ∪ k′[6]; (k + w)[2] ∪ k′[7].

Exhaustive Search — 60 (k + w)[{1, 7, 12}] ∪ k′[{1, 2, 3, 4, 8 — 15}].
Overall Complexity 28 60

5

(15) 24 26 18.00 30 41 (k + w)[{5, 7, 8, 10, 13, 15}];
(k + w)[0] ∪ k′[{4, 8}]; (k + w)[2] ∪ k′[{3, 7}].

(16) 16 25 20.80 30.35 31 (k + w)[{9, 14}]; k′[12].

Exhaustive Search — 68 (k + w)[{1, 3, 4, 6, 11, 12}] ∪
∪ k′[{0, 1, 2, 5, 6, 9, 10, 11, 13, 14, 15}].

Overall Complexity 31.19 68

6

(18) 20 30 18.00 37.50 54
(k + w)[{10, 12, 13, 15}];
(k + w)[{0, 5}] ∪ k′[{4, 12}];
(k + w)[{2, 7, 8}] ∪ k′[{3, 7}].

Exhaustive Search — 76 (k + w)[{1, 3, 4, 6, 9, 11, 14}] ∪
∪ k′[{0, 1, 2, 5 — 10, 13, 14, 15}].

Overall Complexity 37.50 76

7
(18′) 20 30 18.00 33.70 46 Same as for z = 6, Char. (18).

Exhaustive Search — 76 Same as for z = 6.
Overall Complexity 33.70 76

8

(19) 12 38 29.00 42 43 (k + w)[{9, 11, 13}]; (k + w)[{2, 7, 8}] ∪ k′[3];
(k + w)[{1, 4, 14}] ∪ k′[{5, 9, 13}].

Exhaustive Search — 76 (k + w)[{0, 3, 5, 6, 10, 12, 15}] ∪
∪ k′[{0, 1, 2, 4, 6, 7, 8, 10, 11, 12, 14, 15}].

Overall Complexity 42 76

M
(19) 12 38 26.00 45 46.33 Same as for z = 8 (A-profile), Char. (19).

Exhaustive Search — 76 Same as for z = 8 (A-profile), Char. (19).
Overall Complexity 45 76
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difference between the means must be at least γ = 7 times the standard deviation of the
counter values associated with wrong keys, and that we need (at least) N = 214 pairs
satisfying the input difference ∆in, to achieve a success rate of 99 %. A partial structure
of 221 values out of 228 for each of the two half-structures generates an expected 214 such
pairs, and the total data complexity is 222 chosen plaintexts.

So far we have recovered the 28 key bits (k + w)[{4, 6, 7, 8, 11, 13, 14}]. We can recover
more cells using the same sieved pairs from the previous step by peeling the first half
round. To recover k′[{5, 15}], we additionally need to guess (k + w)[{1, 2}]. Thus, we
iterate again through all sieved pairs from the first step. This time, for each sieved pair
that suggested the correct value of the 28 key bits, we guess (k + w)[{1, 2}] and compute
the values of (Y0[5], Y1[5]) and (Y0[15], Y1[15]) (i.e., the cell values before the second S-box
layer according to the notation given in Figure 7). By enforcing the transitions 2 7→ 9
and 7 7→ 3, we obtain candidates for k′[{5, 15}], and for each of them we tick the counter
corresponding to (k + w)[{1, 2}] ∪ k′[{5, 15}].

After pair sieving, we are left with L ≈ 214 ·
(
228−8 + 2−7.98) = 234 candidate pairs on

average, as per Equation (5). For each such pair we perform a guess-and-filter step and of
the peeling step, whose costs are bounded by the cost of a single QARMA encryption. So,
the time complexity of this key recovery step is ≈ 2 · 234 = 235 TE.

We then use Char. (10) below, which has p = 19, din = 16 to recover the 12 key bits
(k + w)[{3, 9, 12}]. For this characteristic, clustering analysis yields q = 10.01.

0 0 E 0
0 0 0 0
0 0 0 0
0 0 9 0

0 0 9 0
0 0 E 0
0 0 0 0
0 0 0 0

F 0 0 0
0 0 9 0
0 0 0 0
0 0 0 0

C 0 0 0
7 0 0 0
0 0 0 0
0 0 0 0

h, ω h, ω h, ω

0 0 ∗ ∗
0 0 0 0
0 ∗ 0 0
∗ 0 9 0

0 0 ∗ ∗
0 0 0 0
0 ∗ 0 0
∗ 0 0 0

0 0 9 5
0 0 0 0
0 7 0 0
D 0 0 0

0 0 0 5
0 0 E 0
0 7 0 0
D 0 0 0

0 0 0 0
0 0 A 0
0 0 E 0
0 0 0 0

0 0 0 0
0 0 9 0
0 0 F 0
0 0 0 0

F 0 0 0
0 0 0 0
0 0 F 0
0 0 0 0

F 0 0 0
F 0 0 0
0 0 0 0
0 0 0 0

C 0 0 0
7 0 0 0
0 0 0 0
0 0 0 0

0

0 0 ∗ ∗
0 0 ∗ 0
0 ∗ 0 0
∗ 0 9 0

0 0 ∗ ∗
0 0 ∗ 0
0 ∗ 0 0
∗ 0 0 0

0 0 9 A
0 0 7 0
0 C 0 0
9 0 0 0

0 0 0 A
0 0 9 0
0 C 0 0
9 0 0 0

0 0 0 0
0 0 5 0
0 0 C 0
0 0 0 0

0 0 0 0
0 0 9 0
0 0 F 0
0 0 0 0

F 0 0 0
0 0 0 0
0 0 F 0
0 0 0 0

F 0 0 0
F 0 0 0
0 0 0 0
0 0 0 0

C 0 0 0
7 0 0 0
0 0 0 0
0 0 0 0

0

τ,M S

τ,M S

τ,M S

τ,M S

0

0

τ,M, τ

S

S

τ,M, S

τ,M, S

0 0

(10)

Reasoning as before, we need 217 pairs with input difference ∆in, and γ = 5, for a 95 %
success rate. We use two structures, each providing 216 such pairs out of 232 total pairs,
for a data complexity of 218. We then peel another round to recover k′[{6, 10}], using the
known (k + w)[6] from earlier. This key recovery step has time complexity 226 TE.

Next, we use Char. (11) below, with p = 22, din = 28 and q = 12.01, to recover k′[2] in
a 1.5R attack, with the knowledge of previously recovered key bits (k + w)[{3, 9, 12}]:

0 0 0 F
E 0 0 0
0 0 0 0
0 0 0 6

0 0 0 B
0 0 0 F
0 0 0 F
0 0 0 0

0 0 0 0
0 0 0 B
7 0 0 0
0 0 0 F

0 0 0 7
0 0 0 0
5 0 0 0
7 0 0 0

h, ω h, ω h, ω

0 0 0 ∗
∗ 0 0 ∗
0 ∗ 0 ∗
∗ 0 ∗ 6

0 0 0 ∗
∗ 0 0 ∗
0 ∗ 0 ∗
∗ 0 ∗ 0

0 0 0 ∗
∗ 0 0 F
0 ∗ 0 ∗
∗ 0 ∗ 0

0 0 0 ∗
∗ 0 0 0
0 ∗ 0 ∗
∗ 0 ∗ 0

0 0 ∗ 0
0 ∗ 0 0
0 0 0 0
0 0 0 0

0 0 B 0
0 F 0 0
0 0 0 0
0 0 0 0

0 0 B 0
0 F 0 B
7 0 0 0
0 0 0 F

0 0 0 D
0 0 0 0
F 0 0 0
F 0 0 0

0 0 0 7
0 0 0 0
5 0 0 0
7 0 0 0

0

0 0 0 ∗
∗ 0 0 ∗
0 ∗ 0 ∗
∗ 0 ∗ 6

0 0 0 ∗
∗ 0 0 ∗
0 ∗ 0 ∗
∗ 0 ∗ 0

0 0 0 2
3 0 0 F
0 C 0 6
C 0 9 0

0 0 0 9
3 0 0 0
0 C 0 9
C 0 9 0

0 0 6 0
0 C 0 0
0 0 0 0
0 0 0 0

0 0 B 0
0 F 0 0
0 0 0 0
0 0 0 0

0 0 B 0
0 F 0 B
7 0 0 0
0 0 0 F

0 0 0 D
0 0 0 0
F 0 0 0
F 0 0 0

0 0 0 7
0 0 0 0
5 0 0 0
7 0 0 0

0

S τ,M

τ,M S

τ,M S

τ,M S

0

0

τ,M, τ

S

S τ,M, S

τ,M, S

0 0

(11)

Since there are only 16 possible key values, we have ν = 4 in (4). A Poisson distribution
argument shows that γ = 2.8 is sufficient achieve a success rate of 96 %, using 219 pairs
with input difference ∆in. To generate these 219 pairs we use a partial structure of 223.5

values out of 228 per each half-structure, resulting in a data complexity of 224.5. The time
complexity of this key recovery step is 239 TE.
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Lastly, we brute force the 60 remaining bits. The entire attack is graphically represented
in Equation (12), where each cell of (k + w) and k′ is labeled with the number of the
characteristic used to recover it or with b to indicate that its value is brute forced:

(k + w)←




b (9) (9) (10)
(9) b (9) (9)
(9) (10) b (9)
(10) (9) (9) b


 and k′ ←




b b (11) b
b (9) (10) b
b b (10) b
b b b (9)


 . (12)

The total data complexity of the attack is ≈ 225 and the time complexity is dominated
by the brute force step, i.e., 260 TE. The success probability is 99 % · 95 % · 96 % = 90 %.

Remark 5.1. Without using Char. (11), one can still obtain a valid attack with data
complexity of 222.2 and time complexity of T = 264 encryptions.

5.2 Attack for z = 3 (52-bit Pointers)
We adapt Char. (11) by clamping one additional plaintext cell and making one more
ciphertext cell visible. This is possible since the first three plaintext cells of Char. (11) are
zero differences. The resulting Char. (11′) has parameters p = 22, din = 28 and q = 12.

0 0 0 F
E 0 0 0
0 0 0 0
0 0 0 6

0 0 0 B
0 0 0 F
0 0 0 F
0 0 0 0

0 0 0 0
0 0 0 B
7 0 0 0
0 0 0 F

0 0 0 7
0 0 0 0
5 0 0 0
7 0 0 0

h, ω h, ω h, ω

0 0 0 ∗
∗ 0 0 ∗
0 ∗ 0 ∗
∗ 0 ∗ 6

0 0 0 ∗
∗ 0 0 ∗
0 ∗ 0 ∗
∗ 0 ∗ 0

0 0 0 ∗
∗ 0 0 F
0 ∗ 0 ∗
∗ 0 ∗ 0

0 0 0 ∗
∗ 0 0 0
0 ∗ 0 ∗
∗ 0 ∗ 0

0 0 ∗ 0
0 ∗ 0 0
0 0 0 0
0 0 0 0

0 0 B 0
0 F 0 0
0 0 0 0
0 0 0 0

0 0 B 0
0 F 0 B
7 0 0 0
0 0 0 F

0 0 0 D
0 0 0 0
F 0 0 0
F 0 0 0

0 0 0 7
0 0 0 0
5 0 0 0
7 0 0 0

0

0 0 0 ∗
∗ 0 0 ∗
0 ∗ 0 ∗
∗ 0 ∗ 6

0 0 0 ∗
∗ 0 0 ∗
0 ∗ 0 ∗
∗ 0 ∗ 0

0 0 0 2
3 0 0 F
0 C 0 6
C 0 9 0

0 0 0 9
3 0 0 0
0 C 0 9
C 0 9 0

0 0 6 0
0 C 0 0
0 0 0 0
0 0 0 0

0 0 B 0
0 F 0 0
0 0 0 0
0 0 0 0

0 0 B 0
0 F 0 B
7 0 0 0
0 0 0 F

0 0 0 D
0 0 0 0
F 0 0 0
F 0 0 0

0 0 0 7
0 0 0 0
5 0 0 0
7 0 0 0

0

S τ,M

τ,M S

τ,M S

τ,M S

0

0

τ,M, τ

S

S τ,M, S

τ,M, S

0 0 0

(11′)

We use it to recover (k + w)[{3, 4, 7, 9, 11, 12, 14}] and k′[{2, 5}]. By means of a Poisson
distribution argument, we find that 218 pairs satisfying the input difference ∆in are required
with γ = 8 to obtain a success rate of 99 %. These pairs can be generated using a partial
structure of 223 values out of 228 for each half-structure, for a data complexity of 224. The
overall time complexity of this key recovery step is 235 TE.

To recover (k + w)[{5, 6, 8, 10, 13, 15}] we consider Char. (13) with p = 24.

0 0 0 0
0 0 0 0
0 0 0 0
0 0 4 8

0 0 4 4
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 4 4
0 0 0 0
0 0 0 0

2 0 0 0
0 0 0 0
2 0 0 0
0 0 0 0

h, ω h, ω h, ω

0 0 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

0 0 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

0 0 0 0
1 1 4 0
2 8 8 8
0 2 8 8

0 0 4 4
1 1 4 0
2 8 8 8
0 2 8 8

4 0 0 0
0 4 2 1
0 0 0 0
0 0 0 0

1 0 0 0
0 1 4 4
0 0 0 0
0 0 0 0

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

4 0 0 0
0 0 0 0
4 0 0 0
0 0 0 0

2 0 0 0
0 0 0 0
2 0 0 0
0 0 0 0

0

0 0 ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

0 0 ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

0 0 C 6
1 1 2 0
4 4 8 8
0 4 8 8

0 0 8 2
1 1 2 0
4 4 8 8
0 4 8 8

4 0 0 0
0 4 1 2
0 0 0 0
0 0 0 0

1 0 0 0
0 1 4 4
0 0 0 0
0 0 0 0

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

4 0 0 0
0 0 0 0
4 0 0 0
0 0 0 0

2 0 0 0
0 0 0 0
2 0 0 0
0 0 0 0

0

τ,M S

τ,M S

τ,M S

τ,M S

0

0

τ,M, τ

S

S

τ,M, S

τ,M, S

0 0 0

(13)

We can establish that q ≤ 12 and that in fact q is very close to 12 as follows: First, we note
that Char. (13) has a zero difference at its center. It is easy to prove that a zero difference
at the center and ∆T being active only in Cells 14 and 15 force the first two cells of Dout
to be zero (cf. Figure 11). In other words, the transition probability from center to D̂out
is 1. The path from ∆in to the center is uniquely determined and has probability 2−12.
Hence, all characteristics matching the forward path up to the center have a cumulative
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0 0 0 0
0 0 0 0
0 0 0 0
0 0 4 8

0 0 4 4
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 4 4
0 0 0 0
0 0 0 0

2 0 0 0
0 0 0 0
2 0 0 0
0 0 0 0

h, ω h, ω h, ω

0 0 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0 0 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0 0 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0 0 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ 0 0 0
0 ∗ ∗ ∗
0 0 ∗ 0
0 0 0 ∗

∗ 0 0 0
0 ∗ 4 4
0 0 ∗ 0
0 0 0 ∗

∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

∗ 0 0 0
0 0 0 0
∗ 0 0 0
0 0 0 0

2 0 0 0
0 0 0 0
2 0 0 0
0 0 0 0

0 0S τ,M S τ,M S τ,M, S

Figure 11: Diffusion from the center to the output in Char. (13) and similar ones.

probability of 2−12. They belong to the cluster for Char. (13) and, while characteristics
with non-zero center exist, we expect their contribution to be negligible. This is confirmed
in the experiments reported in Section 4.6 (see Table 2), where we obtained q = −12.00.
For comparison, a clustering search only reached q = 12.78 in a week (during which it
found 613768 characteristics), before we interrupted it.

By the Poisson distribution argument, we find that about N = 221 pairs satisfying ∆in
are needed, with γ = 6, for a success rate over 97 %. However, since this characteristic
has 10 active cells in Din, using it naïvely results in a data complexity of at least 231.
To reduce the latter, we leverage the fact that the 16 key bits (k + w)[{4, 9, 11, 14}] have
already been recovered using Char. (11′). With a negligible computation overhead, we can
determine fixed differences at these positions in ∆in such that, by varying the remaining
24 bits within a single structure, we generate plaintext pairs where one in 224 satisfies the
input difference ∆in, instead of one in 240. (A similar approach was used in [BDD+23].)

Now, Char. (13) is conditional (cf. Section 4.6). To use it, we partition the N = 221

pairs satisfying ∆in into four equal sets with the tweak bit expressions in Relations (7)
taking a different value for each set. Instead of using a single partial structure with 222.5

values out of 224 for each half-structure, we build four partial structures with 221.5 values
for each half-structure, each structure generating 219 pairs. The data complexity is 224.5.

After the recovery of the 24 first round key bits, we perform peeling again to recover
k′[{0, 6}] using the transitions 4 7→ 1 and 2 7→ 4 through the S-Boxes on Cells 0 and 6.
Last, we recover k′[7] by guessing (k + w)[2] and using the transition 1 7→ 4. The overall
time complexity of this key recovery step is 239.5 TE.

We brute force the remaining 13 cells. The complexity of the brute force step, 252 TE,
dominates the time complexity. The total data complexity is 225.3 chosen plaintexts, and
the success rate is over 96 %. The complete attack is represented in Equation (14):

(k + w)←




b b (13) (11′)
(11′) (13) (13) (11′)
(13) (11′) (13) (11′)
(11′) (13) (11′) (13)


 and k′ ←




(13) b (11′) b
b (11′) (13) (13)
b b b b
b b b b


 . (14)

5.3 Attack for z = 4 (48-bit Pointers)

From this point onwards, if the recovery process is similar to previous cases, we provide
only the used characteristics, key bits, and complexities.
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We reuse Char. (13) with an additional clamped cell, as Char. (13′) below.

0 0 0 0
0 0 0 0
0 0 0 0
0 0 4 8

0 0 4 4
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 4 4
0 0 0 0
0 0 0 0

2 0 0 0
0 0 0 0
2 0 0 0
0 0 0 0

h, ω h, ω h, ω

0 0 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

0 0 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

0 0 0 0
1 1 4 0
2 8 8 8
0 2 8 8

0 0 4 4
1 1 4 0
2 8 8 8
0 2 8 8

4 0 0 0
0 4 2 1
0 0 0 0
0 0 0 0

1 0 0 0
0 1 4 4
0 0 0 0
0 0 0 0

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

4 0 0 0
0 0 0 0
4 0 0 0
0 0 0 0

2 0 0 0
0 0 0 0
2 0 0 0
0 0 0 0

0

0 0 ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

0 0 ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

0 0 C 6
1 1 2 0
4 4 8 8
0 4 8 8

0 0 8 2
1 1 2 0
4 4 8 8
0 4 8 8

4 0 0 0
0 4 1 2
0 0 0 0
0 0 0 0

1 0 0 0
0 1 4 4
0 0 0 0
0 0 0 0

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

4 0 0 0
0 0 0 0
4 0 0 0
0 0 0 0

2 0 0 0
0 0 0 0
2 0 0 0
0 0 0 0

0

τ,M S

τ,M S

τ,M S

τ,M S

0

0

τ,M, τ

S

S

τ,M, S

τ,M, S

0 0 0 0

(13′)

It has p = 24 and q ≤ 12 (by the same argument as in the previous attack). Here,
we aim to recover first the 40 key bits (w + k)[{4, 5, 6, 8, 9, 10, 11, 13, 14, 15}], and then
(w + k)[0] ∪ k′[0, 5], (w + k)[3] ∪ k′[6], and (w + k)[2] ∪ k′[7] by peeling. We need γ = 5.77
to achieve a success rate of at least 90 %, using 221 pairs with input difference ∆in.
Similarly to what we have done in the case z = 3, we generate these pairs by using four
partial structures, each with 229.5 values out of 240 of each half-structure, for a total data
complexity of 232.5. The time complexity is 254 TE. We brute force the remaining 60 bits.

5.3.1 A Multiple Differential for z = 4

While the attack for z = 4 described above works, it exceeds our target limit of 230 for the
data complexity. To improve the latter, we propose a multiple differential attack [Knu94]
for z = 4 using Char. (13′) together with similar ones. We start by searching for additional
characteristics of lowest weight such that:

1. The have the same 10 cells active in ∆in as (13′);

2. The have the same tweak difference;

3. The differences after the first S-Box layer of all characteristics are pairwise distinct;

4. The difference after the second S-Box layer is always equal to that in (13′); and

5. The first two cells at the ciphertext output have zero differences.

The third requirement prevents counting some characteristics multiple times when clustering
each characteristic, and then building the multiple differential.

We can find 12 such characteristics with p = 25 and 31 with p = 26. The characteristics
with p = 25, resp., p = 26, are given in Figure 12, resp., Figure 13. It suffices to show the
beginning of their non-truncated section, as the rest is similar to Char. (13′).

For all the characteristics with p = 25, resp., p = 26, the probability of the differential
from the input to the center (with a zero difference) is at least 2−13, resp., 2−14. This holds
because the argument used for Char. (13) regarding the backward path having probability
1 clearly applies to all 44 characteristics. Furthermore, we have experimentally verified all
the characteristics using the approach described in Section 4.6. For all the characteristics
with p = 25, resp., p = 26, the experimental probability of the differential is approximately
2−12.9, resp., 2−13.7, which confirms the claim.

We combine these 44 characteristics in a multiple differential attack to recover the 40
key bits (w + k)[{4, 5, 6, 8, 9, 10, 11, 13, 14, 15}]. The counter associated with a key guess is
a 44-dimensional vector with the coordinates corresponding to the 44 differentials. We
assume that the coordinates are independent. Here we are interested in the distribution of
the sum of these 44 values in each counter. Let us consider N pairs, each one satisfying one
of the 44 input differences in ∆in . Then, for each wrong key, the distribution of the counters
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Figure 12: Start of the the 12 characteristics with p = 25.

follows Poisson(N ·44·2−8), and for the correct key, it follows Poisson
(
N ·(2−8.12 +44·2−8)

)

where 2−8.12 = 2−12 + 12 · 2−13 + 31 · 2−14. By the Poisson distribution argument, we need
γ = 8.12 to achieve a success probability higher than 90 %, corresponding to N = 219.5.

To take into account the fact that all 44 characteristics are conditional, we use four
partial structures. In each structure, the tweak bits involved in Relations (7) satisfy a
different value of (B0, B1) ∈ F2 × F2, and we pick 226 values from each half-structure (out
of 240), which allows it to generate 217.5 pairs satisfying ∆in. The data complexity is 229.

After that, we perform three peeling steps to recover, in order, (w + k)[0] ∪ k′[0, 5],
(w + k)[3] ∪ k′[6], and (w + k)[2] ∪ k′[7]. Here we make use of the fact that the difference
after the second S-box layer is the same in all 44 characteristics. Thus, we can use the
same data we have collected previously. The time complexity of this key recovery step is
4 · 44 · 247 TE ≈ 254.5 TE. We recover the remaining 60 bits by brute force.

5.4 Attack for z = 5 (44-bit Pointers)
First, we use Char. (15) with p = 26 and din = 24. Clustering analysis gives here q = 18.
Using it, we recover (k+w)[{5, 7, 8, 10, 13, 15}]. We need 229 pairs with input difference ∆in
and γ = 5.8 to achieve a 94 % success rate. The attack requires data complexity 230 (using
32 structures) and time complexity 241 TE. As shown in Section 4.6, this characteristic
is conditional with a single bit condition. We therefore split the 32 structures equally
between tweaks where the expression in Equation (8) equals 0 and 1.
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Then, using Char. (16), with p = 25, din = 16 and q = 21.00, we recover (k+w)[{9, 14}],
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Figure 13: Start of the the 31 characteristics with p = 26.

and k′[12]. The data complexity of this key recovery step, with γ = 3.4, is 230.53 and the
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time complexity is 231.11 TE for a success rate of 91 %.
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(16)

Incidentally, Char. (16) is found quickly by minimizing the cost function p+ din/2.
Brute forcing the remaining 68 bits dominates the time complexity. The total data

complexity is 231.19. The entire attack is summarized as follows:

(k + w)←




(15) b (15) b
b (15) b (15)

(15) (16) (15) b
b (15) (16) (15)


 and k′ ←




b b b (15)
(15) b b (15)
(15) b b b
(16) b b b


 . (17)

5.5 Attack for z = 6 (40-bit Pointers)

Consider Char. (18), with p = 30, din = 20 and clustering yields q = 18. We use
it to recover (k + w)[{8, 10, 12, 13, 15}], then (k + w)[{0, 5}] ∪ k′[{4, 12}], and finally
(k + w)[{2, 7}] ∪ k′[{3, 7}] by successive peeling. The data complexity of this step is 237.50,
since 236.50 pairs that satisfy the input difference ∆in are required, with γ = 5, to achieve
a success rate of 92 %. The time complexity of this step is approximately 254 TE.
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We brute force the remaining 76 bits.

5.6 Attack for z = 7 (36-bit Pointers)

This attack is similar to the previous one. Clustering on Char. (18′) yields q = 18, i.e.,
the same as Char. (18). This can be explained by the easily proved fact that Cell 3 of
the ciphertext output has a zero difference if and only if Cell 6 has a zero difference. We
recover first (k + w)[{8, 10, 12, 13, 15}] and then, by peeling, (k + w)[{0, 5}] ∪ k′[{4, 12}],
and (k + w)[{2, 7}] ∪ k′[{3, 7}]. Approximately 232.7 pairs are required that satisfy the
input difference ∆in, considering γ = 5.2, to achieve a success rate of 90 %. The data
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complexity of this step is 233.7, and its time complexity is approximately 246 TE.
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We brute force the remaining 76 bits.

5.7 The case of z = 8 (32-bit Pointers)
The best attack we found uses the following characteristic, with p = 38:
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This characteristic has been found by searching for characteristics with the smallest p, for
various values of the number of active cells of Din.

For the A-profile variant, we reach q = 29 by clustering, using 1512 characteristics. We
reach a success rate of 90 % in an attack requiring 242 pairs satisfying ∆in, with γ = 4.2.
The data complexity is 243. We first recover (k + w)[{9, 11, 13}]. By peeling, we recover
k′[3] guessing (k + w)[{2, 7, 8}], and recover k′[{5, 9, 13}] guessing (k + w)[{1, 4, 14}]. The
time complexity is 243 TE, mostly data collection (guess-and-filter costs about 234 TE).

For the M-profile variant, clustering returns exactly q = 26 with a total of 286272
characteristics. Taking γ = 4, we obtain an attack requiring 244 pairs satisfying the input
differential, for a data complexity of 245 and a success rate of 90 %. The time complexity
of guess-and-filter is 244 TE for each of initial key recovery, two peeling steps, i.e. 245.6, and
including data collection we reach 245 + 245.6 = 246.33.

We recover the same 13 round key cells for both versions and brute force 76 bits.
Because of the data requirements, both versions can be considered secure. However,

the running time is lower than 280 TE and the time/data product smaller than 2128.

6 Conclusions
We have analysed the security of the clamped and chopped version of QARMA3 used in
FEAT_PACQARMA3. We found that while the versions with z = 8 are secure, and those with
z = 6 and 7 provide adequate security, the cryptographic strength of variants more typical
in commodity devices (z = 3, 4, and 5) falls short of expectations.

In all cases, computational and memory requirements are non-trivial, and ongoing
attacks could be detected by system-level anti-malware monitoring. Additionally, certain
practical constraints complicate real-world attacks:
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1. Code pointers on architectures with fixed size, 32-bit long instructions always have
their two least significant bits equal to zero.

2. The activeness patterns of plaintext and tweak are very different in our characteristics,
in contrast with the fact that they usually are pointers from close memory regions.

3. Bit 56 of the output is omitted and, if the Memory Tagging Extension (MTE) [Arm24]
is enabled, the reserved bits of the pointer are shared between MTE and PAC.

Despite these constraints, security margins remain thinner than ideal. To hedge against
potential advancements in cryptanalysis, we recommend to deploy QARMA5 or QARMAv24 on
high-performance, out-of-order cores, restricting the use of QARMA3 to small 32-bit cores.
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A Statistical Properties of the Multiple Differential used
in the Attack on z = 4

In Tables 4 and 5 we show the statistical properties for the characteristics shown in
Figures 12 and 13. In the first table we display the results with no constraints on the
involved tweak bits, and in the second table the results with the constraints set to the
indicated values of (d0, d1), i.e., the parities in Relations (7′).
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Table 4: Statistical properties of the 43 characteristics from Figures 12 and 13 without
restrictions on the tweak values.

The 12 characteristics from Figure 12: N = 224 pairs were used in each experiment.

Estimated Computed Successes
Char. η hi − η q

out of
100 trialsS.D. Mean ± S.D Min Max

1 255.50 2085.58 ± 3615.61 −670 8751 12.97 26
2 255.50 2266.01 ± 3650.12 −451 8512 12.85 28
3 255.50 2369.74 ± 3820.03 −655 10826 12.79 33
4 255.50 1993.47 ± 3511.78 −700 8576 13.04 25
5 255.50 2165.11 ± 3724.98 −645 10359 12.92 28
6 255.50 2463.98 ± 3933.09 −676 10652 12.73 30
7 255.50 2434.28 ± 3911.55 −415 10487 12.75 29
8 255.50 1920.57 ± 3284.62 −503 8903 13.09 32
9 255.50 1994.94 ± 3398.59 −531 9023 13.04 32
10 255.50 2293.29 ± 3684.26 −473 8570 12.84 28
11 255.50 2440.46 ± 3836.79 −414 10527 12.75 32
12 255.50 2288.07 ± 3783.04 −673 10673 12.84 32

The 31 characteristics from Figure 13: N = 226 pairs were used in each experiment.

Estimated Computed Successes
Char. η hi − η q

out of
100 trialsS.D. Mean ± S.D Min Max

1 511.00 5798.21 ± 8069.88 −1299 24959 13.50 33
2 511.00 5640.47 ± 9929.57 −1085 33788 13.54 31
3 511.00 4209.51 ± 6506.38 −1296 17398 13.96 32
4 511.00 4094.33 ± 7048.86 −1252 17159 14.00 25
5 511.00 4408.30 ± 6818.51 −777 17841 13.89 31
6 511.00 5069.72 ± 7001.92 −935 17287 13.69 36
7 511.00 3903.80 ± 6924.97 −1515 17376 14.07 24
8 511.00 6774.15 ± 12369.40 −1581 42109 13.27 31
9 511.00 4927.80 ± 7474.82 −871 17614 13.73 30
10 511.00 6633.73 ± 10880.50 −1201 25595 13.30 27
11 511.00 7330.09 ± 7933.66 −1294 25146 13.16 42
12 511.00 5502.13 ± 8254.59 −1307 24922 13.57 33
13 511.00 6316.38 ± 9064.93 −1201 25065 13.38 35
14 511.00 4066.96 ± 6295.16 −1230 16806 14.01 34
15 511.00 6032.48 ± 9243.16 −1186 33229 13.44 37
16 511.00 4092.05 ± 7116.01 −1225 17532 14.00 25
17 511.00 4475.24 ± 7876.58 −1203 24894 13.87 27
18 511.00 4534.33 ± 6575.20 −1079 17148 13.85 35
19 511.00 4129.26 ± 7557.05 −1347 25604 13.99 25
20 511.00 4732.90 ± 7566.95 −1166 24574 13.79 32
21 511.00 5011.33 ± 7583.58 −1446 17219 13.71 31
22 511.00 4941.77 ± 6975.90 −930 16978 13.73 37
23 511.00 6122.91 ± 10670.29 −1168 25513 13.42 25
24 511.00 5618.01 ± 8562.89 −1066 33500 13.54 36
25 511.00 4012.03 ± 7452.16 −1749 25390 14.03 25
26 511.00 6583.67 ± 10868.99 −1115 26046 13.32 27
27 511.00 4414.86 ± 7269.64 −1220 17261 13.89 27
28 511.00 5322.38 ± 8400.51 −1485 25166 13.62 31
29 511.00 4432.92 ± 6609.33 −1053 17107 13.89 34
30 511.00 3959.22 ± 6344.22 −812 17069 14.05 31
31 511.00 6913.14 ± 7769.96 −1602 25567 13.24 54
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Table 5: Statistical properties of the 43 characteristics from Figures 12 and 13 when the
tweak Conditions (7′) are met with the given values of (d0, d1).

The 12 characteristics from Figure 12: N = 220 pairs were used in each experiment.

Estimated Computed Successes
Char. η hi − η q

out of
100 trials

(d0, d1)
S.D. Mean ± S.D Min Max

1 63.87 515.52 ± 62.94 369 679 10.99 100 (0, 1)
2 63.87 509.91 ± 66.30 383 665 11.01 100 (1, 0)
3 63.87 543.28 ± 84.07 342 719 10.91 100 (1, 1)
4 63.87 512.59 ± 78.59 352 783 11.00 100 (0, 1)
5 63.87 539.08 ± 78.20 358 760 10.93 100 (1, 1)
6 63.87 540.32 ± 92.68 309 838 10.92 100 (1, 0)
7 63.87 548.32 ± 90.16 393 760 10.90 100 (1, 0)
8 63.87 508.02 ± 69.37 316 677 11.01 100 (1, 1)
9 63.87 509.21 ± 64.34 370 718 11.01 100 (1, 1)
10 63.87 507.80 ± 65.95 374 676 11.01 100 (1, 0)
11 63.87 538.37 ± 76.19 376 702 10.93 100 (0, 1)
12 63.87 551.91 ± 82.18 378 805 10.89 100 (0, 1)

The 31 characteristics from Figure 13: N = 222 pairs were used in each experiment.

Estimated Computed Successes
Char. η hi − η q

out of
100 trials

(d0, d1)
S.D. Mean ± S.D Min Max

1 127.75 1154.17 ± 262.88 753 1741 11.83 100 (0, 1)
2 127.75 1261.24 ± 442.28 745 2296 11.70 100 (0, 0)
3 127.75 1037.21 ± 141.04 690 1482 11.98 100 (0, 1)
4 127.75 1026.67 ± 139.99 715 1398 12.00 100 (0, 0)
5 127.75 1028.04 ± 135.39 654 1314 11.99 100 (1, 0)
6 127.75 1010.56 ± 138.67 610 1396 12.02 100 (1, 0)
7 127.75 1024.98 ± 130.43 805 1385 12.00 100 (0, 0)
8 127.75 1475.22 ± 613.13 754 2765 11.47 100 (0, 0)
9 127.75 1025.01 ± 123.17 706 1340 12.00 100 (0, 1)
10 127.75 1526.31 ± 143.34 1124 1845 11.42 100 (0, 1)
11 127.75 1148.12 ± 254.34 744 1768 11.83 100 (1, 1)
12 127.75 1370.89 ± 264.60 730 1812 11.58 100 (1, 1)
13 127.75 1138.22 ± 228.49 769 1672 11.85 100 (1, 0)
14 127.75 1028.94 ± 129.78 797 1443 11.99 100 (0, 0)
15 127.75 1307.01 ± 486.10 758 2342 11.65 100 (0, 0)
16 127.75 1014.07 ± 140.57 704 1394 12.01 100 (1, 0)
17 127.75 1122.94 ± 236.16 725 1780 11.87 100 (1, 1)
18 127.75 1021.63 ± 117.58 735 1402 12.00 100 (1, 0)
19 127.75 1138.60 ± 246.36 679 1876 11.85 100 (1, 1)
20 127.75 1165.59 ± 258.04 659 1891 11.81 100 (0, 1)
21 127.75 1018.88 ± 136.51 759 1452 12.01 100 (1, 0)
22 127.75 1022.58 ± 133.59 611 1387 12.00 100 (1, 0)
23 127.75 1140.75 ± 259.66 701 1689 11.84 100 (1, 1)
24 127.75 1452.98 ± 248.09 790 1824 11.50 100 (1, 1)
25 127.75 1197.76 ± 275.43 754 1812 11.77 100 (1, 0)
26 127.75 1533.00 ± 118.06 1295 1887 11.42 100 (0, 1)
27 127.75 1034.45 ± 114.33 708 1300 11.99 100 (0, 1)
28 127.75 1165.27 ± 246.96 671 1701 11.81 100 (1, 1)
29 127.75 1036.41 ± 121.61 721 1369 11.98 100 (0, 1)
30 127.75 1013.12 ± 106.29 742 1263 12.02 100 (0, 0)
31 127.75 1129.12 ± 240.12 699 1737 11.86 100 (1, 1)
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