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Abstract. Recently, linear structures and algebraic attacks have been widely used in
preimage attacks on round-reduced Keccak. Inherited by pioneers’ work, we make
some improvements for 3-round Keccak-256 and 4-round Keccak[r=640, c=160]. For
3-round Keccak-256, we introduce a three-stage model to deal with the unsatisfied
restrictions while bringing more degrees of freedom at the same time. Besides, we
show that guessing values for different variables will result in different complexity
of solving time. With these techniques, the guessing times can be decreased to 252,
and the solving time for each guess can be decreased to around 25.2 3-round Keccak
calls. As a result, the complexity of finding a preimage for 3-round Keccak-256 can
be decreased to around 257.2. For 4-round Keccak[r=640, c=160], an instance of the
Crunchy Contest, we use some techniques to save degrees of freedom and make better
linearization. Based on these techniques, we build an MILP model and obtain an
attack with better complexity of around 260.9. The results of 3-round Keccak-256
and 4-round Keccak[r=640, c=160] are verified with real examples.
Keywords: Keccak · SHA-3 · Preimage attack · Linear structure.

1 Introduction
The Keccak function, designed by Bertoni et al. [BDPA11b], is a family of cryptographic
functions, which was submitted to the public competition held by NIST in 2008. In 2015,
Keccak was standardized as Secure Hash Algorithm 3 (SHA-3) [Dwo15]. Up to now, plenty
of security analyses have been conducted by public community.

In this paper, we mainly focus on preimage attacks. Bernstein gave theoretical preimage
attacks slightly faster than brute force for up to 8-round Keccak [Ber10]. Naya-Plasencia et
al. proposed practical preimage attacks on 2-round Keccak-224/256 [NRM11]. Morawiecki
et al. applied rotational cryptanalysis to preimage attacks on 4-round Keccak [MPS14].
Then, Guo et al. developed a technique named linear structure and gave preimage attacks
on different variants for up to 4 rounds [GLS16]. For round-reduced Keccak-224/256,
Li et al. used the allocating approach and gave a practical preimage attack on 3-round
Keccak-224, along with attacks improving results on 3-round Keccak-256 and 4-round
Keccak-224/256 [LS19]. Lin et al. further refined the results on 3-round Keccak-224/256
by using the 5-for-3 strategy and the iterating strategy [LHY21]. Pei et al. satisfied the
linear structure probabilistically and made improvement on 3-round Keccak-256 while
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Table 1: Summary of preimage attacks on round-reduced Keccak.
a 2-round a 3-round a 4-round Reference

Keccak-224

– – b 2221 × 20 = 2221 [MPS14]
20 × 210 = 210 297 × 28 = 2105 2213 × 28 = 2221 [GLS16]

– 238 × 29 = 247 2207 × 29 = 2216 [LS19]
– – 2192 × 29 = 2201 [HLY21]
– 232 × 29 = 241 – [LHY21]
– – c 20 × 2202 = 2202 [Din21]
– – d 2184 × 24 = 2188 [WWF+21]

Keccak-256

– – b 2252 × 20 = 2252 [MPS14]
20 × 210 = 210 2192 × 26 = 2198 2251 × 26 = 2257 [GLS16]

– 281 × 29 = 290 2239 × 29 = 2248 [LS19]
– – 2218 × 29 = 2227 [HLY21]
– 265 × 29 = 274 – [LHY21]
– – c 20 × 2231 = 2231 [Din21]
– – d 2215 × 24 = 2219 [WWF+21]
– 264.79 × 29 = 273.79 d 2210 × 24 = 2214 [PC22]
– e 252 × 25.2 = 257.2 – Section 4

Keccak-384

– – b 2378 × 20 = 2378 [MPS14]
2129 × 210 = 2139 2322 × 210 = 2332 – [GLS16]
f 289 × 20 = 289 – – [KMS18]
2113 × 211 = 2124 2321 × 29 = 2330 2371 × 29 = 2380 [Raj19]
292 × 211 = 2103 2270 × 212 = 2282 2365 × 29 = 2374 [LIMY21]

– – c 2128 × 2231 = 2359 [Din21]

Keccak-512

– – b 2506 × 20 = 2506 [MPS14]
2384 × 28 = 2392 2482 × 28 = 2490 – [GLS16]
2321 × 210 = 2331 2475 × 28 = 2483 – [Raj19]
2257 × 212 = 2269 2439 × 212 = 2451 – [LIMY21]

– – c 20 × 2487 = 2487 [Din21]
– d 2424 × 212 = 2436 – [PC22]
– – g 2504.58 × 20 = 2504.58 [QHD+23]

Keccak[b=800]
h solved 27 × 25 = 212 d 262 × 23.4 = 265.4 [MS10, GLS16, WWF+21, BDH+a]

– – e 256.5 × 24.4 = 260.9 Section 5
a Each result is shown by “guessing times × solving time = complexity”. Unit: equivalent 2-round (or 3-round, 4-round) Keccak calls. For the

entries without note, the “guessing times” will be the solved number of linear equation systems, and the “solving time” will be our estimated
results according to the rest degrees of freedom for comparisons (similar to [LIMY21]).

b Achieved through rotational cryptanalysis.
c Based on solving multivariate equation systems with high degree. Significant memory complexity is required.
d In the original paper, results are derived from calculating bit operations of solving equation systems, which is idealistic. Here we re-calculate the

“solving time” by the same rule of other entries or by their experimental results.
e These “solving time” show the actual running time according to experimental results.
f Obtained by the time-memory trade-offs attack which requires 287 memory complexity.
g Resulting from the Meet-in-the-Middle attack requiring 2108 memory complexity.
h Solved by SAT-based attack (without concrete complexity).

the results on 4-round Keccak-256 and 3-round Keccak-512 are also improved [PC22].
For 4-round Keccak-224/256, He et al. [HLY21] and Wei et al. [WWF+21] gave further
attacks by using different techniques including the freedom reuse strategy and the Crossbred
algorithm. For round-reduced Keccak-384/512, Kumar et al. demonstrated better results
on 2-round Keccak-384 with high required memory [KMS18]. Rajasree allowed non-linear
parts on linear structure and improved the results on round-reduced Keccak-384/512 for
up to 4/3 rounds [Raj19]. Liu et al. continued to enhance the results by making full
use of the linear relations through the relinearization technique [LIMY21]. Dinur devised
a polynomial method that can be applied to 4-round Keccak where results on 4-round
Keccak-384/512 are further improved [Din21]. Qin et al. used the Meet-in-the-Middle
attack and gave results on 4-round Keccak-512 [QHD+23]. The results of preimage attacks
on round-reduced Keccak are summarized in Table 1.

Our contribution. First, this paper gives an improved preimage attack on 3-round
Keccak-256. We combine several techniques from previous papers and modify the linear
structure to overcome the difficulties faced by earlier studies. The modified structure leaves
more degrees of freedom and requires a new starting state which is easier to match. We
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propose a three-stage model that extends an additional intermediate stage generating the
required new starting state. Besides, we observe that guessing different variables leads
to the property: when rebuilding the equation system, only a small number of linear
equations will change. To leverage this property, we propose a technique to rebuild and
solve the equation system faster. With these techniques, the guessing times of finding a
preimage for 3-round Keccak-256 can be decreased to 252, and the solving time for each
guess can be decreased to 25.2 3-round Keccak calls. Finally, we demonstrate the first
practical preimage attack on 3-round Keccak-256.

Second, this paper gives a practical preimage attack on 4-round Keccak[r=640, c=160].
We use some techniques to make better linearization such as selecting different bits as
variables, constructing two candidates for the previous message block, taking more output
bits into consideration, and making full use of enumerated variables. With these techniques,
we build an MILP model optimizing the highest probability of matching the digest and
result in an attack with around 256.5 guessing times. Thus, another new solution to the
Crunchy Contest [BDH+a] is obtained.

Organization. In Section 2, we give some preliminaries and notations about Keccak.
The related work and literature review are discussed in Section 3. Then Section 4 presents
the preimage attack on 3-round Keccak-256. Afterward, Section 5 shows the preimage
attack on 4-round Keccak[r=640, c=160]. Conclusions of this paper are provided in Section
6.

2 Preliminaries

2.1 Sponge Construction
The sponge construction is a mode of operation that builds a sponge function [BDPA11a].
As shown in Fig.1, the sponge construction operates on a state of b = r + c bits where
the state is initially set to all ‘0’ initial value. In the absorbing phase, the message M
is padded until its length is a multiple of r. Then the padded input message is divided
into several r-bit message blocks. Each turn the construction absorbs an r-bit message
block by XORing it with the first r bits of the state. After that, the state will be operated
by the Keccak-f permutation. In the squeezing phase, the construction squeezes every
first r bits of the state as part of output, until the total length of the output is greater
than or equal to the required length ℓ. Similar to the absorbing phase, the state will be
operated by the Keccak-f permutation after each squeeze. At last, the digest is obtained
by truncating the output to the required length ℓ.

2. Definitions Cryptographic sponge functions

Squeezing phase The outer part of the state is iteratively returned as output blocks, inter-
leaved with applications of the function f . The number of iterations is determined by
the requested number of bits ℓ.

Finally the output is truncated to its first ℓ bits. The c-bit inner state is never directly affected
by the input blocks and never output during the squeezing phase. The capacity c actually
determines the aĴainable security level of the construction, as proven in Chapters 5 and 6.
We use the term random sponge to denote a sponge function with f a random transformation
or permutation.

The term generic aĴack is oĞen used. For sponge functions we define it as follows:

Definition 7. An aĴack on a sponge function is a generic aĴack if it does not exploit specific prop-
erties of f .

The sponge construction is illustrated in Figure 2.1, and Algorithm 1 provides a formal
definition.

In our original paper on sponge function [11] we treated a more general case with the
outer part and message blocks being elements of an arbitrary group and the inner part ele-
ments of an arbitrary set. Because of its practical relevance, we abandon this generic repre-
sentation to the more specific case where the state is a binary string of a given length b and
the message blocks are r-bit strings.

Figure 2.1: The sponge construction Z = Ѡѝќћєђ[ f , pad, r](M, ℓ)

2.3 The duplex construction

Like the sponge construction, the duplex construction ёѢѝљђѥ[ f , pad, r] uses a fixed-length
transformation or permutation f , a padding rule pad and a parameter bitrate r to build a
cryptographic scheme [14]. Unlike a sponge function that is stateless in between calls, the
duplex construction results in an object that accepts calls that take an input string and return
an output string that depends on all inputs received so far. We call an instance of the duplex
construction a duplex object, which we denote D in our descriptions. We prefix the calls made
to a specific duplex object D by its name D and a dot.

13 / 93

Figure 1: The sponge construction [BDPA11a].
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2.2 Keccak-f Permutation
The state size b can be chosen from {25, 50, 100, 200, 400, 800, 1600}, while NIST selects
the value 1600 for b as SHA-3 standard. As shown in Fig.2, the b-bit state can be described
as 5× 5 w-bit lanes. The state can be denoted as Ax,y,z, where 0 ≤ x, y < 5, 0 ≤ z < w
(w = b/25).

Figure 2: The Keccak-f state [BDH+b].

The permutation Keccak-f [b] consists of 12+2log2(w) round functions which only differ
in the round-dependent constant. The round function R has 5 steps R = ι ◦ χ ◦ π ◦ ρ ◦ θ,
where:

θ : Ax,y,z = Ax,y,z ⊕
⊕

i=0∼4
(Ax−1,i,z ⊕Ax+1,i,z−1)

ρ : Ax,y,z = Ax,y,(z−rx,y)

π : Ax,y,z = Ax+3y,x,z

χ : Ax,y,z = Ax,y,z ⊕ (Ax+1,y,z ⊕ 1) ·Ax+2,y,z

ι : A0,0,z = A0,0,z ⊕RCz

In the formulas above, “⊕ ” denotes the bit-wise XOR, and “ · ” denotes the bit-wise AND.
x and y are taken modulo 5, and z is taken modulo w. rx,y is a constant shown in Table
2, and RCz is the bit in position z of a round-dependent constant RC which is shown in
Table 3.

Table 2: The offsets of ρ.

x = 0 x = 1 x = 2 x = 3 x = 4
y = 0 0 1 62 28 27
y = 1 36 44 6 55 20
y = 2 3 10 43 25 39
y = 3 41 45 15 21 8
y = 4 18 2 61 56 14

2.3 SHA-3 Standard
There are four SHA-3 versions standardized by NIST [Dwo15]. The parameters are
r = 1600− 2ℓ and c = 2ℓ, where ℓ ∈ {224, 256, 384, 512}. The difference between Keccak
and SHA-3 is the padding rule. The message M is padded with “10∗1” and “0110∗1” in
Keccak and SHA-3, respectively. This paper gives cryptanalysis results for Keccak.
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Table 3: The constant RC of round ir.

ir RC ir RC ir RC
0 0x0000000000000001 8 0x000000000000008a 16 0x8000000000008002
1 0x0000000000008082 9 0x0000000000000088 17 0x8000000000000080
2 0x800000000000808a 10 0x0000000080008009 18 0x000000000000800a
3 0x8000000080008000 11 0x000000008000000a 19 0x800000008000000a
4 0x000000000000808b 12 0x000000008000808b 20 0x8000000080008081
5 0x0000000080000001 13 0x800000000000008b 21 0x8000000000008080
6 0x8000000080008081 14 0x8000000000008089 22 0x0000000080000001
7 0x8000000000008009 15 0x8000000000008003 23 0x8000000080008008

2.4 Properties of Matching the Output Bits
Notice that the output digest is finally truncated from the state after the last ι operation,
which is just a constant-XOR and can be directly inversed. One operation backward, the
state before the last χ operation can also be partially recovered from the digest.

The χ operation can be regarded as applying a 5-bit Sbox on each row. Suppose the
input of the Sbox is a0a1a2a3a4 and the output is b0b1b2b3b4. We list some properties
related to this paper that have been thoroughly discussed in previous works [GLS16, LS19,
Raj19, HLY21, LIMY21].

• If b0b1b2b3 are known, there are two possibilities of a0a1a2a3a4, and four restrictions
can be obtained. Restriction on ai (if ai is fixed) or ai ⊕ aj (if ai and aj are unfixed)
where i, j ∈ {0, 1, 2, 3, 4} can bring a gain of 21.

• If b0b1b2 are known, restriction on ai or ai⊕ai+2 (depending on bi+1) where i ∈ {0, 1}
can bring a gain of 21.

• If bi where i ∈ {1, 2} is known while bi+1 and bi+2 are unconcerned, restriction on ai

can bring a gain of 0.75/0.5 ≈ 20.58. Plus, extra restriction of ai+1 = 1 or ai+2 = 0
can uplift the gain from 20.58 to 21.

2.5 Notations
We use capital Greek letters Θ, P, Π, X, I with a superscript number (from 0 to 3, and 0
represents the first round) to represent the state before the corresponding step is executed.
Besides, we use three indices in subscript to express the bit (or bits) in the inner state. We
use “ ∗ ” to indicate the union of all values, and we use x, y, and z to indicate a specific
value. For example, Θ0

∗,y,z is a row, Θ0
x,∗,z is a column, Θ0

x,y,∗ is a lane, Θ0
∗,∗,z is a slice

and Θ0
∗,y,∗ is a plane.

3 Related Work
In this section, we introduce some existing attack thoughts related to our analysis. These
techniques greatly inspire our research. Hereinafter, we will introduce the linear structure,
allocating model with improved linear structure, iterating strategy using 5-for-3 strategy,
and the relinearization technique linearizing quadratic structures.

3.1 The Linear Structure
The main idea of the linear structure for controlling lanes and column sums is first
introduced by Dinur et al. in [DMP+15]. Then, Guo et al. formalize and develop the
technique linear structure to linearize the permutation of round-reduced Keccak [GLS16].
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Linear structures can be applied to different variants by carefully controlling lanes to be
constant or linear. Taking 3-round Keccak-256 as an example, the technique is shown in
Fig.3. The black lanes mean that these bits are all 1, while the white lanes indicate that

𝜃 𝜋 ∘ 𝜌 ι ∘ χ

𝜃 𝜋 ∘ 𝜌 ι ∘ χ

𝜃 𝜋 ∘ 𝜌 ι ∘ χ

linear

1

0

unconcerned

Θ𝑖𝑟

const

Ρ𝑖𝑟 Χ𝑖𝑟 Θ𝑖𝑟+1

𝑖𝑟 = 0

𝑖𝑟 = 1

𝑖𝑟 = 2
fixed

Figure 3: The linear structure used in 3-round Keccak-256 [GLS16].

these bits are all 0. The yellow lanes imply that these bits are linear (linear combination
of some variable bits on Θ0). The grey lanes suggest that some of these bits are 0, and the
others are 1. To prevent the diffusion of the variables in the θ operation, they add 128
and 192 linear equations on Θ0 and Θ1 so that the sum of each column will be constant.
Then, the state stays linear for up to 2.5 rounds.

There are 6× 64 = 384 variables and 128 + 192 = 320 linear equations, so there are
384 − 320 = 64 degrees of freedom left which can be used to restrict the output bits.
For the property of χ operation, four given output bits can be restricted by four linear
equations. Thus, the 64 degrees of freedom can be used to restrict 64 output bits, and the
remaining 256− 64 = 192 unrestricted output bits will be randomly matched to the given
digest. By varying the constants on Θ0

0,3,∗, Θ0
1,2,∗, and Θ0

3,0,∗ for Dr = 2192 times (in this
paper, we use Dr to denote the size of random space which provides different guesses), it
is expected to obtain a preimage with guessing times of 2192.

3.2 Allocating Approach with Improved Linear Structure
The all ‘0’ capacity part of the starting state limits the design of the linear structure. To
further promote the linear structure, Li et al. put forward the allocating approach to divide
the whole attack into two easier tasks in two message blocks [LS19]. With the two-stage
model, the capacity part of the starting state can be nonzero in the second stage.

b ca
e fd

𝜃 𝜋 ∘ 𝜌 ι ∘ χ

𝜃 𝜋 ∘ 𝜌 ι ∘ χ

𝜃 𝜋 ∘ 𝜌 ι ∘ χ

linear

1

0

Θ𝑖𝑟

const

Ρ𝑖𝑟 Χ𝑖𝑟 Θ𝑖𝑟+1

𝑖𝑟 = 0

𝑖𝑟 = 1

𝑖𝑟 = 2

unconcerned

𝑏𝑖 ⊕ 𝑒𝑖 = 1

𝑎𝑖 ⊕𝑑𝑖 = 1

for most of the 𝑖

𝑐𝑖 ⊕𝑓𝑖 = 1

Figure 4: The linear structure for 3-round Keccak-256 in [LS19].
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Li et al. [LS19] design an improved linear structure for the second stage as shown in
Fig.4. The starting state 1 requires as many following restrictions 2 satisfied as possible.

Θ0
x,3,z = Θ0

x,4,z ⊕ 1 (2 ≤ x ≤ 4, 0 ≤ z ≤ 63)
Θ0

1,3,63 = Θ0
1,4,63

(1)

As Fig.4 shows, every unsatisfied Equation (1) spends 1 degree of freedom ensuring the
corresponding bit on Θ1

1,∗,∗ is constant. In summary, the number of degrees of freedom
can be calculated as follows. Initially, there are 10 × 64 = 640 variables on Θ0. To
construct the linear structure, 5× 64 + 2× 64 = 448 equations are added on Θ0 and Θ1 to
control the column sums, where 2 degrees of freedom can be returned because of inherent
linear dependence. Suppose there are k unsatisfied Equations (1) on the starting state.
Then to eliminate the effect, k extra equations are added on Θ1. As a result, there are
640− 448 + 2− k = 194− k degrees of freedom remaining on X2 which can be used for
digest matching. With a trade-off, the guessing times for the first message block and the
second message block will be 280.06 and 281 by leaving k = 19 unsatisfied Equations (1).

3.3 Iterating Strategy and 5-for-3 Strategy
In [LHY21], Lin et al. propose an iterating strategy that extends the first stage from the
one-block model into the multi-block model, so that a state satisfying more Equations
(1) can be obtained. Besides, they use degrees of freedom more efficiently with 5-for-3
strategy. The process of iterating strategy can be started from any starting state (e.g. the
all ‘0’ initial value). In each turn it uses the linear structure introduced above to find a
new starting state better (the number of unsatisfied Equations (1) k is smaller) than the
previous one. If the linear structure has more degrees of freedom with a better starting
state, it is more likely to generate another better starting state, until a good enough one is
finally obtained. During each try, those 194− k degrees of freedom are used with 5-for-3
strategy consisting of the following equations, so that every 5 degrees of freedom can ensure
3 Equations (1) are satisfied.



X2
0,3,z = 1

X2
0,4,z = 1

X2
2,3,z ⊕X2

2,4,z ⊕X2
3,3,z = 0

X2
3,3,z ⊕X2

3,4,z = 0
X2

4,3,z ⊕X2
4,4,z = 1

→


Θ3

2,3,z = Θ3
2,4,z ⊕ 1

Θ3
3,3,z = Θ3

3,4,z ⊕ 1
Θ3

4,3,z = Θ3
4,4,z ⊕ 1

next−−−→
block


Θ0

2,3,z = Θ0
2,4,z ⊕ 1

Θ0
3,3,z = Θ0

3,4,z ⊕ 1
Θ0

4,3,z = Θ0
4,4,z ⊕ 1

Finally, the iterating process ends with a state satisfying 189 (k = 3) Equations (1) with
guessing times of 263.78. In the second stage (the last message block), the linear structure
has 194 − 3 = 191 degrees of freedom to match the output bits with guessing times of
2256−191 = 265. For the random space, they vary the values of the column sums on Θ1

with Dr = 2128.

3.4 Quadratic Structure with the Relinearization Technique
The design of an entirely linear structure may be unnecessary in some cases. Take the
linear structure shown in Fig.5 as an example, which is designed by Rajasree[Raj19] and
used in preimage attack on 2-round Keccak-512. With the partially-linear structure, there

1The starting state also requires
⊕

0≤x≤4,0≤z≤63 Θ0
x,4,z = 0 (to ensure the setting of column sums on

Θ0 has a solution), or else there is an adjusting method introduced thoroughly in [LS19].
2192 + 1 = 193 equations in total, where 1 is for the padding rule when constructing the last message

block.
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𝜃 𝜋 ∘ 𝜌 ι ∘ χ

𝜃 𝜋 ∘ 𝜌 ι ∘ χ

linear
Θ𝑖𝑟

const

Ρ𝑖𝑟 Χ𝑖𝑟 Θ𝑖𝑟+1

𝑖𝑟 = 0

𝑖𝑟 = 1

unconcerned

quadratic

fixed

Figure 5: The linear structure used in 2-round Keccak-512 [Raj19].

remain 6 × 64 − 1 − 3 × 64 = 1913 degrees of freedom which can be used to match the
output bits with a gain of 2191. On the contrary, if it requires an entirely linear structure,
bits on Θ0

3,0,∗ and Θ0
3,1,∗ should be constant which causes a loss of 64− 1 = 63 degrees of

freedom.
The relinearization technique (we refer to their work as relinearization technique for

ease of reference in this paper) is based on Crossbred algorithm [JV18] for solving special
quadratic equation systems (the number of equations is much larger than the number
of different non-linear terms). This algebraic method has been widely used in preimage
attacks on round-reduced Keccak [WWF+21, LIMY21]. Fig.6 is an example of solving an
equation system using relinearization technique.

𝑥0 ⊕𝑥2 ⊕𝑥3 = 1

𝑥1 ⊕𝑥2 = 1

𝑥1 ⊕𝑥3 = 1

𝑥0 ⊕𝑥1 ⊕𝑥3 ⊕𝑥0 ∙ 𝑥1 ⊕𝑥1 ∙ 𝑥2 = 0

𝑥2 ⊕𝑥3 ⊕𝑥0 ∙ 𝑥2 ⊕𝑥1 ∙ 𝑥3 ⊕𝑥2 ∙ 𝑥3 = 0

𝑥3 ⊕𝑥0 ∙ 𝑥3 = 0

𝑥0 ∙ 𝑥1 ⊕𝑥1 ∙ 𝑥2 ⊕𝑥0 ∙ 𝑥3 = 1

𝑥0 ⊕𝑥2 ⊕𝑥3 = 1

𝑥1 ⊕𝑥2 = 1

𝑥1 ⊕𝑥3 = 1

𝑥0 ⊕𝑥1 ⊕𝑥3 ⊕𝑥4 = 0

𝑥2 ⊕𝑥3 ⊕𝑥5 = 0

𝑥3 ⊕𝑥6 = 0

𝑥4 ⊕𝑥6 = 1

relinearize solve

𝑥0 = 1

𝑥1 = 0

𝑥2 = 1

𝑥3 = 1
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Figure 6: An example of applying the relinearization technique.
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Figure 7: Preimage attack on 2-round Keccak-512 [LIMY21].

The relinearization technique can be applied to 2-round Keccak-512 matching more
output bits [LIMY21]. As shown in Fig.7, the 8 yellow lanes on Θ0 are set as variables.
And they add 4 × 64 = 256 linear equations on Θ0 to control the sum of each column.
By simplifying the variables with the 256 equations, there remain 8 × 64 − 256 = 256
variables. After executing the χ operation in the first round, there are 3 × 64 = 192
quadratic terms on Θ1. With relinearization, they use another 192 variables to replace
these quadratic terms. Hence, the state X1 is linear with 256 + 192 = 448 variables. To
match the output bits, it requires 448 linear equations and 64 quadratic equations. Finally,

3Here −1 corresponds to a constant bit on Θ0
3,1,∗ (yellow lane) that matches the padding rule of Keccak,

the same below. And −3 × 64 refers to controlling the column sums.
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they construct a linear equation system consisting of these 448 linear equations on 448
variables, and it is expected to have one solution for each guess. They use the solution to
recover the corresponding message and check the output bits. Considering the padding
rule, they can get a preimage by varying the column sums on Θ0 and constants on Θ0

4,0,∗
for 2512+192−448+1 = 2257 times on average (21 for matching the padding rule).

4 Improved Attack on 3-Round Keccak-256
The preimage cryptanalysis of 3-round Keccak-256 is presented in this section. We first
give an overview of how to make further improvements. After that, we introduce the whole
three-stage attack, which can lead to a preimage within 252 guessing times. At last, we
present a better way to choose the random space and enumerate it with high efficiency to
speed up the solving time.

4.1 How to Get Improved
The complexity of the previous attack [LS19, LHY21] is a trade-off between two stages.
For the previous stage, it is challenging to find a good starting state that satisfies all the
Equations (1). The latter stage is limited by the number of degrees of freedom because
the linear structure provides only at most 194 degrees of freedom while the unsatisfied
Equations (1) further cost degrees of freedom. In the following, we will present an overview
of how to deal with these difficulties.

We first consider the latter stage which is limited by the number of degrees of freedom.
Since the output bits can recover 256 linear equations while the linear structure merely
uses at most 194 of them, a basic improved idea is to apply a quadratic structure with
more variables. After introducing more variables, the produced quadratic terms can be
removed by relinearization technique (in Section 3.4). Thus, the goal is to find a good way
to introduce new variables producing the fewest quadratic terms.

We then consider the previous stage which can hardly produce a state satisfying all the
Equations (1). To solve this problem, some modifications can be made at the latter stage
so that a few Equations (1) of Θ0

4,3,z ⊕Θ0
4,4,z = 1 are no longer required (see Section 4.2.3

for more details). As a result, the new required starting state is easier for the previous
stage to produce. We divide the previous stage into two stages (the first stage and the
second stage). In the first stage, the goal is the same as before (producing a state satisfying
as many Equations (1) as possible). In the second stage, we produce a state satisfying the
new requirements of the latter (third) stage.

With the above improvements, the complexity of each stage is decreased to be practical.

4.2 The Three-Stage Attack
4.2.1 The First Stage

In the first stage, we use the linear structure [LS19] with iterating strategy and 5-for-3
strategy [LHY21] to get a state satisfying as many Equations (1) (Θ0

x,3,z⊕Θ0
x,4,z = 1, where

2 ≤ x ≤ 4) as possible, so that the linear structure of the next stage has sufficient degrees
of freedom. We list the iterating process in Table 4. In the table, k and k′ represent the
number of unsatisfied Equations (1) before and after the current message block, respectively.
Here we analyze the expected guessing times for each iteration. For the rest 194 − k
degrees of freedom4, the 5-for-3 strategy is used to satisfy

⌊ 194−k
5

⌋
× 3 Equations (1).

The remaining 192 −
⌊ 194−k

5
⌋
× 3 Equations (1) are supposed to be satisfied randomly,

4In the first stage our attack is still based on the linear structure in [LS19]. Thus the initial number of
degrees of freedom is still 194.
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and the probability of generating a state with at most k′ unsatisfied Equations (1) is
Ck′

192−⌊ 194−k
5 ⌋×3/2192−⌊ 194−k

5 ⌋×3 (here Cn
m, expressed elsewhere as

(
m
n

)
, is the combination

number, i.e. Cn
m = m!

n!(m−n)! ). Taking
⊕

0≤x≤4,0≤z≤63 Θ0
x,4,z = 0 into account5, the

calculation of guessing times is 21 × (2192−⌊ 194−k
5 ⌋×3)/(Ck′

192−⌊ 194−k
5 ⌋×3). Once a better

state is found, we continue searching with this new state. After a 24-block iteration, we
find a state satisfying 192− 8 = 184 Equations (1) with expected guessing times of around
247.10. Using this state, we have enough degrees of freedom for the next stage.

Table 4: The iterating process to get a state with only 8 unsatisfied Equations (1).

block id k k′ guessing times block id k k′ guessing times

1st 192 85 26.93 13th 28 26 217.94

2nd 85 67 24.97 14th 26 25 219.33

3rd 67 57 24.82 15th 25 22 223.96

4th 57 48 26.18 16th 22 21 223.80

5th 48 44 26.66 17th 21 20 225.53

6th 44 42 26.95 18th 20 19 227.36

7th 42 41 27.48 19th 19 18 227.26

8th 41 37 210.23 20th 18 16 231.28

9th 37 36 29.97 21th 16 14 235.74

10th 36 30 215.91 22th 14 12 238.32

11th 30 29 215.65 23th 12 9 246.58

12th 29 28 215.39 24th 9 8 247.10

Here the selection of k and k′ merely matches the experimental result which
accepts the first better state with a smaller k′. Actually, the choice of k, k′ and
the number of steps hardly trouble because they are not the bottleneck.

4.2.2 The Second Stage

The second stage builds a bridge between the first stage and the third stage. The first stage
gives a good state satisfying 184 Equations (1) which provides the second stage with a linear
structure remaining 194− (192− 184) = 186 degrees of freedom. The third stage requires a
starting state (introduced later in Section 4.2.3) which should satisfy all the Equations (1)
of Θ0

2,3,z ⊕Θ0
2,4,z = 1 and Θ0

3,3,z ⊕Θ0
3,4,z = 1 as well as Θ0

1,3,63 ⊕Θ0
1,4,63 = 0 for padding

rule. Additionally, the required starting state should satisfy at least 51 Equations (1) of
Θ0

4,3,z ⊕ Θ0
4,4,z = 1. Therefore, the target of the second stage is generating a required

starting state with the provided degrees of freedom.
We then analyze how to spend degrees of freedom adding equations and calculate the

corresponding probability. Because of the independence between different slices, here we
only consider the case in one slice. We focus on the property of the Sbox (operation χ) on
two rows (X2

∗,3,z and X2
∗,4,z). If we add the following three linear equations,

X2
3,3,z ⊕X2

0,4,z ⊕X2
3,4,z = 1

X2
4,3,z ⊕X2

4,4,z = 1
X2

2,3,z ⊕X2
3,3,z ⊕X2

2,4,z = 0
(2)

it yields that the probability of satisfying the first two Equations (1) of x = 2 and x = 3 is
0.625 and the probability of satisfying all three Equations (1) is 0.4375. For example, if

5This is not necessary if adjusting method is applied [LS19].
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the inputs of two Sboxes are X2
∗,3,z = 00001 and X2

∗,4,z = 01010 which satisfy the three
Equations (2), the outputs will be 00101 and 00011 which satisfy the first two Equations
(1) of x = 2 and x = 3 (00101⊕ 00011 =??11?), but do not satisfy the third Equation (1)
of x = 4. After statistics, there are 25 × 25 = 1024 kinds of inputs of two 5-bit Sboxes
while 1024/23 = 128 of them satisfy the three Equations (2). Among these 128 kinds, 80
of them satisfy the first two Equations (1), and 56 of them satisfy all three Equations
(1). If we suppose every kind of input occurs randomly, the probability of satisfying the
first two or three Equations (1) will be 80/128 = 0.625 or 56/128 = 0.4375, respectively.
We add Equations (2) on 186/3 = 62 slices and regard the bits on the rest 2 slices as
random values. The probability of satisfying all Equations (1) of Θ0

2,3,z ⊕Θ0
2,4,z = 1 and

Θ0
3,3,z ⊕ Θ0

3,4,z = 1 is 0.62562 × 0.52×2 ≈ 2−46.04. When the first two Equations (1) are
satisfied, the conditional probability of satisfying the third Equation (1) in one slice is
0.4375/0.625 = 0.7 (51 slices are required in total). Finally, taking the padding rule
(Θ0

1,3,63 ⊕Θ0
1,4,63 = 0) into account, the probability of getting a required message block is

2−1 × 2−46.04 ×
∑

i+j>=51(Ci
62 × 0.7i × (1− 0.7)62−i ×Cj

2 × 0.5j × (1− 0.5)2−j) ≈ 2−51.52.

4.2.3 The Third Stage

In the third stage, we use the starting state provided by the second stage to match the
output bits. As introduced in Section 4.1, we conclude that there are two difficulties we
need to overcome. First, we need to introduce new variables increasing degrees of freedom
while producing minimum quadratic terms. Second, the required starting state should be
easier to produce (according to the second stage, we now have the starting state satisfying
all the Equations (1) except 13 Equations (1) of x = 4).

To overcome these difficulties, we add 13 variables on Θ1
1,2,∗. For the first difficulty, as

shown in Fig.8, we find that adding extra variables on Θ1
1,∗,∗ leads to the fewest quadratic

terms. For example, every bit on Θ1
1,2,z only produces 4 quadratic terms on X0

0,2,z, X0
4,2,z,

I1
0,3,z+10 and I1

1,3,z+10 which can be relinearized with minimum cost.
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Figure 8: The modified linear structure.

By adding variables on Θ1
1,2,∗, the second difficulty can be solved at the same time.

To reduce the cost of matching the starting state, we need to ensure that the 6 lanes of
P 0

x,y,∗(2 ≤ x ≤ 4, 3 ≤ y ≤ 4) are proper constants so that the relation (equal or opposite)
of each bit pair P 0

x,3,z and P 0
x,4,z matches the relation of corresponding bit pair on the

starting state. To control the required constants on P 0, we need to control some constants
on X0. As shown in Fig.9, if merely Θ1

1,∗,∗ can be extra variables, here are four types of
row settings on Θ1. Now we need to decide the type of the setting of each row on Θ1.
Among them, only the first type of setting satisfies that bit X0

4,y,z is constant, and its
value is 1. Therefore, the rows of Θ1

∗,0,z, Θ1
∗,1,z and Θ1

∗,3,z must belong to the first type.
With that, 2 lanes (a′ = P 0

2,3,∗ and b′ = P 0
3,3,∗) will be constant 0, and 3 lanes (x′ = P 0

2,4,∗,
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Figure 9: Controlling the constants.

y′ = P 0
3,4,∗ and z′ = P 0

4,4,∗) will be constant 1. However, the rows of Θ1
∗,2,z and Θ1

∗,4,z

can be set to any type. Suppose t of them belong to the third and fourth types, which
adds t degrees of freedom and generates 4t quadratic terms. To apply the relinearization
technique, 192 + t + 4t ≈ 256 is required6, which infers t = 13. Thus, at most t = 13 bits on
lane c′ = P 0

4,3,∗ can be constant 1 rather than constant 0. As a result, we need a starting
state satisfying all the Equations (1) (Θ0

x,3,z ⊕Θ0
x,4,z = 1 for 2 ≤ x ≤ 4 and 0 ≤ z ≤ 63)

except at most t = 13 Equations (1) of Θ0
4,3,z ⊕Θ0

4,4,z = 1. That is what we obtained in
the second stage exactly.

In summary, the third stage consists of six steps (see also Fig.8).

- Construct state Θ1 by setting bits on Θ1
0,∗,∗ and Θ1

2,∗,∗ as variables (640 in total),
bits on Θ1

1,∗,∗ and Θ1
3,∗,∗ as 1, and bits on Θ1

4,∗,∗ as 0.

- Determine which 13 rows on Θ1 should be changed to the fourth type (change Θ1
1,2,z

from 0 to variable and change Θ1
3,2,z from 0 to 1) according to the 13 unsatisfied

Equations (1).

- Invert state Θ1 one round backward (introduce 2× 13 new variables to replace the
quadratic bits) and add 320 equations to satisfy the starting state.

- Add 128 linear equations on Θ1 to control the column sums and prevent the diffusion
of the variables.

- Develop state Θ1 two rounds forward (introduce another 2 × 13 new variables to
replace the quadratic bits) and add 256 equations to match the output bits.

- Construct an equation system with 320 + 128 + 256 = 704 linear equations and
2× 13 + 2× 13 = 52 quadratic equations (produced by relinearization) on 640 + 13 +
2× 13 + 2× 13 = 705 variables.

The expected number of guessing times is 2704−min(704,705)+52 = 252.
Taking all three stages into account, the bottleneck of the whole attack lies in the third

stage. Thus we regard the complexity of the third stage (multiplied with solving time) as
the final complexity.

6Here the initial number of variables becomes 192 instead of 194 because our quadratic structure will
break the inherent linear dependence among equations.
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4.3 Speeding Up the Solving Time
We should consider not only the expected number of guessing times but also the solving
time for each guess. Thus, making it easier to construct and solve the equation system is
of great importance. In this section, we show that selecting different bits as random space
affects the complexity of the solving time.

In general, the process of an attack can be summarized as Algorithm 1 shows. As
shown in Line 2 and Line 3 of Algorithm 1, every linear equation in E′

L is obtained after
all the ri in R are determined, because every ri is possibly involved in the linear equation
(such as a term of r0v0).

Algorithm 1: The basic way solving an equation system.
Input: Variables composing the random space R← {ri|0 ≤ i ≤ log2(Dr)− 1},

Variables V ← {vj |0 ≤ j ≤ n− 1},
Equations E ← {ek(R, V )|0 ≤ k ≤ m− 1}.

Output: The solution of the equation system.
1 while the enumeration in the random space is not exhausted do
2 Assign new values for every ri in R;
3 Generate equations E′ by substituting R, while E′

L (part of E′) is linear;
4 V ′ ← V , E′

Q ← E′ \ E′
L, Erec ← ∅;

5 for e′ in E′
L do

6 Select a variable v′, where v′ is involved in e′;
7 Erec ← Erec ∪ (v′, e′); // Record equations to recover V later.
8 Simplify and eliminate the variable v′ in E′

L, part of E′
Q and V ′ by

substituting e′, and obtain updated E′
L, E′

Q and V ′; // Here is a
trade-off that, if E′

Q is fully simplified, it is
time-consuming but easy to verify the solution afterward.

9 end
10 if V ′ ̸= ∅ then
11 Solve the quadratic equation system E′

Q by Crossbred algorithm or
relinearization technique replacing all the quadratic terms, and obtain
the value of each variable in V ′; // This is not the case for
attack on 3-round Keccak-256, because E′

L is sufficient to
solve V .

12 end
13 Recover the value of each variable in V by V ′ and Erec;
14 if No conflict happens before and V satisfy the rest equations E′

Q then
15 return V as a solution;
16 end
17 end
18 return no solution;

However, if variables set R (composing the random space) is chosen properly, only a
small number of ri are involved in each linear equation in E′

L. Thus, some linear equations
will be obtained in advance when only a part of random space variables are determined.
During the process of determining random space, we do the simplification of Line 6 to Line
8 of Algorithm 1 immediately once a linear equation is obtained. For some continuous
guessings, the first major part of random space remains the same and the equation system
can be derived from the intermediate state (the partly eliminated equation system) of the
previous guessing. Consequently, only the last few simplifications should be considered,
and the solving time for each guess can be greatly reduced.
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Figure 10: Vary the constants on Θ1
1,4,∗.

In concrete, as shown in Fig.10, if we vary the values of some constant bits on Θ1
1,4,∗,

the structure keeps linear as before. Therefore, the values of constant bits on Θ1
1,4,∗

can be selected as random space. We first regard these bits as variables and use the
relinearization technique to deal with the newly produced quadratic terms, similarly to
Section 4.1 and Section 4.2. After that, we determine the values of these bits and linearize
the new quadratic equations caused by relinearization. Every time the value of a bit on
Θ1

1,4,∗ is determined, 1 + 4 = 5 linear equations can be obtained (1 for determining bit
Θ1

1,4,∗, and 4 for linearizing 4 quadratic equations).
As a result, for a new guess, we usually need to undo the last 2× 5 = 10 added linear

equations on average (because the last 2 valued bits changed on average) and add another
2× 5 = 10 linear equations. Then we simplify the linear equations and get the solution.
Last, we verify the rest quadratic equations with the solution. In most cases, we deal with
a small number of linear equations, and the solving is very fast. With these techniques, we
can guess around 1.01 million times per second on a personal computer.

To support the theoretical analysis of 3-round Keccak-256, we run a program to provide
a preimage of all ‘0’ digest. The experiments are run on a supercomputer. All the three-
stage experimental results are finished within half a week using ten thousand core-groups
(CGs). Every CG consists of a master core, and 64 slave cores (1.5 GHz). However, with
basic code implementation, the ideal speed is hard to achieve even if we only run the
Keccak permutation. Thus, the solving time is calculated according to the performance on
a personal computer (3.7 GHz). Besides, the memory cost is around 0.2 MB. The running
time and the running speed of each stage are shown in Table 5. The whole input message
blocks (26 in total) and the state after finishing each stage are shown in Appendix A.

Table 5: The running time of preimage attack on 3-round Keccak-256.

stage
arunning

time
bsolving
speed

expected
guessing times

cactual
guessing times

dexpected
complexity

c,dactual
complexity

the first stage 83 e1.79 247.1 248.9 253.9 255.7

the second stage 30 6.50 251.5 249.3 256.4 254.2

the third stage 360 f5.43 252.0 252.6 257.2 257.8

a Unit: 1000 CGs · hour.
b Unit: million guesses / (second · CG).
c The ‘actual’ refers to the experimental result for once.
d Unit: equivalent 3-round Keccak calls.
e The solving speed of the first stage is slower because we need to calculate the number of satisfied Equations (1), while in

the other two stages, we just need to check whether Equations (1) are all satisfied.
f It is able to run the third stage with 1.01 million guesses per second on a personal computer, while the 3-round Keccak

running speed is 37 million times per second. Thus, the solving time is around 25.2 3-round Keccak calls.



342 Practical Preimage Attacks on 3-Round Keccak-256 and 4-Round Keccak [r=640, c=160]

5 Preimage Attack on 4-Round Keccak[r=640, c=160]
The cryptanalysis of the preimage attack on 4-round Keccak[r=640, c=160] will be
introduced in this section.

5.1 Related Work
Keccak[r=640, c=160] is an instance of Keccak in the Keccak Crunchy Crypto Collision and
Preimage Contest [BDH+a]. In 2021, Wei et al. [WWF+21] applied Crossbred algorithm
and gave attack on 4-round Keccak[r=640, c=160]. According to their attack, they built a
linear structure linearizing two rounds with 94 degrees of freedom left. To match the digest,
10 output bits are linearized and restricted with 53 + 10 = 63 degrees of freedom. Then, to
match the first 48 output bits, a quadratic equation system with 48− 10 = 38 equations
over 94 − 63 = 31 variables is obtained which can be solved by Crossbred algorithm.
Taking the last 32-bit digest into account, their attack is required to solve 232+38−31=39

quadratic equation systems (or equivalent 262 linear equation systems by relinearizing all
the quadratic terms).

In addition, our improved attack incorporates the technique zero coefficient [HLY21].
This property describes the linear dependence among some bits on X2. When a degree
of freedom is spent to restrict a bit on X2 a constant bit, additional bits on X2 will
simultaneously become constant. Consequently, the linearization will be more efficient. A
concrete example is explained in Section 5.3.1.

5.2 Making Further Improvements
The linear structure used for 4-round Keccak[r=640, c=160] is shown in Fig.11. Compared
to the linear structure used in [WWF+21] (similar to [LS19]), we take variables on Θ1

1,∗,∗
and Θ1

3,∗,∗ instead of Θ1
0,∗,∗ and Θ1

2,∗,∗. On the one hand, this modification does not affect
matching the starting state because the capacity part only involves the last plane which
does not require specific constant bits on P 0

∗,3,∗ and P 0
∗,4,∗. On the other hand, the result

of the MILP model shows that this modification gives better linearization matching the
output digest. Then, we analyze the degrees of freedom for the first two rounds. There
are 10× 32 = 320 variables on Θ1. To match the starting state, we select two candidates
for the previous message block, so that 5× 32− 1 = 159 equations are required to match
one of them. Besides, to satisfy the padding rule, another 1 equation is added. To control
the column sums on Θ1, 2 × 32 = 64 equations are added. With two linear-dependent
equations, there are 320− 159− 1− 64 + 2 = 98 degrees of freedom left on Θ2.

Afterward, with the 98 degrees of freedom, we should try to linearize a part of the state
on the next two rounds so that the probability of matching the output digest is as high
as possible. Different from [WWF+21], we consider both the technique zero coefficient
proposed in [HLY21] and the entire 80-bit digest instead of only the first 48 bits. Besides,
to make further linearization, we make full use of the variables composing the random
space according to the result of the MILP model, instead of using only a part of them. At
last, with these techniques, we build an MILP model [Gur24] optimizing the probability of
matching the digest by linearizing the last two rounds using the 98 degrees of freedom.
The detailed way to build the MILP model will be introduced in the next section (Section
5.3).

5.3 Details of the MILP Model
In Section 5.2, we use a linear structure (Fig.11) so that the state is linear for first two
rounds till Θ2 with 98 degrees of freedom left. With these 98 degrees of freedom, we will
spend some degrees of freedom restricting some bits on X2 constant bits so that some bits



Xiaoen Lin, Le He and Hongbo Yu 343
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Figure 11: The linear structure used for 4-round Keccak[r=640, c=160].

on Θ3 will be linear. When some bits on Θ3 are linear, a few bits on X3 will be linear
accordingly. We then spend some degrees of freedom adding linear restrictions with these
linear bits on X3 to maximize the probability of matching the digest. The above tasks can
be achieved by building an MILP model which will be introduced in this section.

The MILP model can be divided into two parts. The first part is linearizing last
two rounds, including how to linearize bits on Θ3 by spending some degrees of freedom
restricting constant bits on X2 (or P 2 equivalently) and how to deduce linear bits on X3

according to linear bits on Θ3. The second part is how to calculate the probability of
matching the digest with some linear bits on X3.

5.3.1 Linearizing Last Two Rounds

To model the first part, we use 800 + 800 + 160 = 1760 boolean variables representing
the concerned attributes of bits on three states (X2, Θ3, and X3). Precisely, we are
concerned with whether we should spend a degree of freedom restricting X2

x,y,z a constant
bit (or corresponding bit on P 2 equivalently). We introduce 800 variables (aX2

0,0,0
to

aX2
4,4,63

) where aX2
x,y,z

= 1 means a degree of freedom is spent restricting X2
x,y,z a constant

bit. Besides, we are also concerned with whether each bit on Θ3 or X3
∗,0,∗ is linear or

not. We introduce another 800 + 160 = 1600 variables (aΘ3
0,0,0

to aΘ3
4,4,63

, and aX3
0,0,0

to
aX3

4,0,63
) where aΘ3

x,y,z
= 1 (or aX3

x,0,z
= 1) means the bit Θ3

x,y,z (or X3
x,0,z) is linear, or

the corresponding bit is quadratic if the value of variable is 0 otherwise.
According to the property of χ operation, Θ3

x,y,z will be a linear bit if X2
x+1,y,z or

X2
x+2,y,z is a constant bit. Furthermore, X2

x,y,z will be a constant bit when a degree of
freedom is spent on itself or a linear-dependent bit. For example, if Θ3

4,0,0 need to be
linearized, the most direct way is restricting X2

0,0,0 or X2
1,0,0 a constant bit. Besides,

restricting X2
4,2,18 a constant bit is also an option (the technique zero coefficient in

[HLY21]). It is because we have X2
4,2,18 = P 2

0,4,0 and X2
0,0,0 = P 2

0,0,0. Meanwhile, thanks to
the selection of column sums on Θ1, both Θ2

0,4,0 and Θ2
0,0,0 are constant bits. According to

the property of θ operation, we have Θ2
0,4,0 ⊕Θ2

0,0,0 = P 2
0,4,0 ⊕ P 2

0,0,0. If we restrict X2
4,2,18

(P 2
0,4,0) a constant bit, P 2

0,0,0 (X2
0,0,0) will be a constant bit simultaneously, resulting Θ3

4,0,0
a linear bit as well. Similarly, there are 3 more options by restricting X2

3,4,9, X2
3,1,1, or

X2
2,3,30 a constant bit. With the relations above, we add an equation of

aΘ3
4,0,0
≤ aX2

0,0,0
+ aX2

1,0,0
+ aX2

4,2,18
+ aX2

3,4,9
+ aX2

3,1,1
+ aX2

2,3,30

to the MILP model which means Θ3
4,0,0 can be linearized when at least one of these 6 bits
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on X2 is restricted spending a degree of freedom. By adding 800 equations, we successfully
build the MILP model of linearizing bits on Θ3 by spending some degrees of freedom
restricting constant bits on X2.

The MILP model of deducing linear bits on X3 according to linear bits on Θ3 is similar.
For example, X3

0,0,0 will be a linear bit when 11 bits on Θ3 (Θ3
0,0,0, Θ3

1,0,31, Θ3
4,0,0, Θ3

1,1,31,
Θ3

4,1,0, Θ3
1,2,31, Θ3

4,2,0, Θ3
1,3,31, Θ3

4,3,0, Θ3
1,4,31, and Θ3

4,4,0) are all linear bits. Thus, we
add the following 11 equations to the MILP model in Table 6. After adding another
11× 160 = 1760 (only 160 bits on the first plane Xx,0,z affect digest matching) equations,
the MILP model of the first part is built.

Table 6: The 11 equations modeling X3
0,0,0.

aX3
0,0,0
≤ aΘ3

0,0,0
aX3

0,0,0
≤ aΘ3

1,0,31
aX3

0,0,0
≤ aΘ3

4,0,0
aX3

0,0,0
≤ aΘ3

1,1,31

aX3
0,0,0
≤ aΘ3

4,1,0
aX3

0,0,0
≤ aΘ3

1,2,31
aX3

0,0,0
≤ aΘ3

4,2,0
aX3

0,0,0
≤ aΘ3

1,3,31

aX3
0,0,0
≤ aΘ3

4,3,0
aX3

0,0,0
≤ aΘ3

1,4,31
aX3

0,0,0
≤ aΘ3

4,4,0

5.3.2 Calculating the Probability

With the model of the first part, there is a variety of possibilities for the values of variables
aX3

x,0,z
which means the different possibilities of linearization. In the second part, we need

to parse the case of linearization and decide the number of added restrictions. After that,
the probability of matching the digest can be obtained by some precomputation.

To model the second part, as shown in Fig.12, we use 32 × 5 = 160 variables (az
i,j ,

where 0 ≤ i ≤ 31, 0 ≤ j ≤ 4) for each Sbox (χ operation on a row X3
∗,0,z, and there are 32

(z = 0 ∼ 31) Sboxes in total).

1 2 3 4≤ ≤ ≤0 ≤

1 2 3 4≤ ≤ ≤0 ≤

1 2 3 4≤ ≤ ≤0 ≤

1 2 3 4≤ ≤ ≤0 ≤

+
+

+ ……

…
≤
1

……

3
2
 cases o

f lin
earizatio

n

spending at most 4 degrees of freedom

Figure 12: Modeling an Sbox.

We focus on one Sbox (for a fixed z) modeling how to add linear restrictions and how
to calculate the probability. Since every bit X3

x,0,z on X3
∗,0,z may be linearized (aX3

x,0,z
= 1)

or not (aX3
x,0,z

= 0), there are 25 = 32 possible cases for the Sbox showing which bits
can be involved in linear restrictions. Thus, we use 32 variables (az

i,0, where 0 ≤ i ≤ 31)
distinguishing which case it is (az

i,0 = 1 represents the ith case). On the one hand, the
circumstance must belong to only one case by adding an equation of

Σi=0∼31az
i,0 ≤ 1
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to the MILP model. On the other hand, the corresponding bits should accord with the
linearization of bits on X3

∗,0,z. For example, considering the case i = 22 = (10110)2 which
means restrictions can be added on three linear bits X3

1,0,z, X3
2,0,z, and X3

4,0,z, we add
three equations of

az
22,0 ≤ aX3

1,0,z

az
22,0 ≤ aX3

2,0,z

az
22,0 ≤ aX3

4,0,z

to the MILP model meaning that the Sbox may belong to the ith case when the three bits
on X3 are all linearized. After determining which case it is, we consider the number of
added restrictions. If one restriction is added, the az

i,1 will be 1. If the second restriction
is added, the az

i,2 will be 1 as well. Surely restrictions should be added one by one on
corresponding case. Thus, for each case, we add 4 equations

az
i,1 ≤ az

i,0

az
i,2 ≤ az

i,1

az
i,3 ≤ az

i,2

az
i,4 ≤ az

i,3

to the MILP model. For example, if az
i,3 = 1 and az

i,4 = 0, it means that we spend 3
degrees of freedom adding 3 linear restrictions on the Sbox.

So far, we have built a majority of the MILP model. In the following, we supplement a
global constraint (requirement of degrees of freedom) and the objective (maximizing the
probability). According to the linear structure, there are 98 degrees of freedom left on Θ2.
On X2, we spend Σx=0∼4,y=0∼4,z=0∼31aX2

x,y,z
degrees of freedom restricting constant bits.

On X3, we spend Σi=0∼31,j=0∼4,z=0∼31az
i,j degrees of freedom adding linear restrictions

to increase the probability of matching the digest. Besides, we leave around 8 = 7 + 1
degrees of freedom because the large quadratic equation system over 7 variables can be
solved by Gauss elimination using relinearization technique (introduced in Section 3.4),
and the rest 1 degree of freedom makes it easier to solve the equation system. Then, we
add an equation

(Σx=0∼4,y=0∼4,z=0∼31aX2
x,y,z

) + (Σi=0∼31,j=0∼4,z=0∼31az
i,j) + 8 ≤ 98

to the MILP model.
At last, we consider the objective of the MILP model. We first introduce a precomputed

probability table of 32 × 32 × 5 = 5120 constants (pz,i,j , where 0 ≤ z ≤ 31, 0 ≤ i ≤ 31,
0 ≤ j ≤ 4). The z means the zth Sbox, where some required output bits are given according
to the digest. The i means an input bits mask, where the linear restrictions can only
be added on some input bits masked by i (for example, i = 22 = (10110)2 means X3

1,0,z,
X3

2,0,z, and X3
4,0,z are linear). The j means the number of linear restrictions added in total.

The pz,i,j means the maximum probability of the output bits matching given digest on zth

row with j added linear restrictions on input bits masked by i. Here we take z = 0 and
i = 22 as an example. The given digest (operated by inverse ι of fourth round) on row
I3

∗,0,z=0 is 101??. The linearization of row X3
∗,0,z=0 is QLLQL (X3

1,0,z, X3
2,0,z, and X3

4,0,z

are linear; X3
0,0,z and X3

3,0,z are quadratic). The p0,22,j for different j are calculated as
follows.

• If no (j = 0) restriction is added, the probability of matching the given 3-bit digest
is p0,22,0 = 4/32 (suppose every kind of input occurs randomly).

• If one (j = 1) restriction is added, one of the best choices is adding an equation
of X3

1,0,z = 0 so that there are 4 kinds of input (among the 16 kinds satisfying
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X3
1,0,z = 0) whose output will match the given 3-bit digest. Thus, the probability

will be p0,22,1 = 4/16.

• If two (j = 2) restrictions are added, one of the best choices is adding two equations
of X3

1,0,z = 0 and X3
2,0,z = 1. Then there are 3 kinds of input (among the 8 kinds

satisfying the two equations) whose output will match the given 3-bit digest, leading
to p0,22,2 = 3/8.

• If three (j = 3) restrictions are added, one of the best choices is adding three
equations of X3

1,0,z = 0, X3
2,0,z = 1, and X3

4,0,z = 0. After that, there are 2 kinds of
input (among the 4 kinds satisfying the three equations) whose output will match
the given 3-bit digest. We have p0,22,3 = 2/4.

• If we plan to spend one more (j = 4) degree of freedom, no more gain can be obtained
because restrictions can only be added on the three input bits under the case i = 22.
Hence, the probability remains the same with p0,22,4 = p0,22,3 = 2/4 (an idle case).

With the probability table p, we set an objective to the MILP model by adding

Maximizing : Σz=0∼31,i=0∼31,j=1∼4(log2(pz,i,j/pz,i,j−1)× az
i,j)

which means if a degree of freedom is spent on adding the jth restriction (az
i,j = 1), the

gain (calculated by the power of 2) of the probability matching the corresponding digest
bits will be log2(pz,i,j/pz,i,j−1).

The algorithms of calculating the precomputed probability table p and building the
MILP model are shown in Appendix C.

After obtaining the result of the MILP model, it is necessary to check the validation
practically to avoid some corner cases. For example, if X2

x,y,z is a constant bit and
X2

x+1,y,z = 1, the bit Θ3
x,y,z will be a constant bit instead of a linear bit. If some specific 11

bits on Θ3 all happen to be constant bits, X3
x,0,z will be a constant bit instead of a linear

bit. Suppose that X3
x,0,z = 1, we can not spend a degree of freedom restricting X3

x,0,z = 0,
which causes failing of the attack.

5.4 Summary of Preimage Attack on 4-Round Keccak[r=640, c=160]
In summary, the result of the MILP model is shown in Table 7. For each guess, we
determine the values of 71 bits on X2 to linearize 19 bits on X3

∗,0,∗. We add 19 linear
equations bringing a gain of around 216.5. Note that some of the 19 linear equations can
be obtained when part of 71 bits on X2 are determined. Thus, with technique introduced
in Section 4.3, the equation system can be partly simplified in advance. We then solve
quadratic equation systems with 48− 14 = 34 quadratic equations over 98− 71− 19 = 8
variables. Guessing the value of only one more variable (the number of quadratic terms
will be 7 × (7 − 1)/2 = 21, satisfying 21 + 7 ≤ 34), the quadratic equation system can
be solved linearly by Crossbred algorithm (or relinearization technique replacing all the
quadratic terms) which brings a gain of 27. The guessing times of the attack will be
280−16.5−7 = 256.5 while the solving time for each guess is around 24.4 4-round Keccak
calls according to experimental results. Finally, the total complexity is 260.9.

With the techniques introduced previously, we successfully find a solution for the
4-round preimage challenge with width b = 800 in the Keccak Crunchy Crypto Collision
and Preimage Contest [BDH+a]. The experiment on 4-round Keccak[r=640, c=160] is
run on another supercomputer. The result is obtained within 24 days using five thousand
core-groups (CGs). Every CG consists of a master core, and 64 slave cores (2.25 GHz).
The solving time is also calculated according to the performance on a personal computer
(3.7 GHz). The memory cost is around 0.3 MB. The running time and the running speed
are shown in Table 8. Appendix B presents the input message blocks.
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Table 7: The result of the MILP model (in little-endian order).

71 bits on X2 restricted to be constant a

00 10 00 80 00 00 a0 19 00 00 10 00 00 00 28 00 00 00 00 00
00 00 a0 80 02 40 40 22 02 00 90 80 00 00 20 00 00 00 00 00
00 00 a0 02 00 00 00 a0 01 00 00 14 00 00 68 41 03 00 00 10
00 00 80 00 02 00 00 80 00 00 90 a8 01 00 00 51 0a 00 28 00
02 40 10 82 00 00 c0 22 24 00 00 80 01 00 40 50 00 00 00 00

19 linearized bits on X3
∗,0,∗

b

02 00 e0 a2 2d 2a 00 00 0a 08 00 00 00 08 00 00 08 00 00 00
a A bit is ‘1’ means that this bit is constant spending 1 degree of freedom.
b A bit is ‘1’ means that this bit is linear.

Table 8: The running time of preimage attack on 4-round Keccak[r=640, c=160].

stage
arunning

time
bsolving
speed

expected
guessing times

cactual
guessing times

dexpected
complexity

c,dactual
complexity

1st block negligible – 21 – – –
2nd block 2880 e16.3 256.5 257.2 260.9 261.6

a Unit: 1000 CGs · hour.
b Unit: million guesses / (second · CG).
c The ‘actual’ refers to the experimental result for once.
d Unit: equivalent 4-round Keccak calls.
e On a personal computer, the solving time is around 24.4 4-round Keccak calls.

6 Conclusion

In this paper, we provide preimage attacks on 3-round Keccak-256 and 4-round Kec-
cak[r=640, c=160].

For 3-round Keccak-256, we propose a three-stage model. In the third stage, we modify
the linear structure by introducing some extra variables on Θ1

1,2,∗. With that, the modified
linear structure leaves more degrees of freedom for digest matching. At the same time, the
difficulty of matching the starting state is solved by the new required starting state as well
as the additional second stage. Besides, we speed up the solving time by selecting constants
on Θ1

1,4,∗ as random space. With that, most of the linear equations can be obtained in
advance, and the change of each constant bit only causes a small number of varied linear
equations. By guessing the constant bits hierarchically, we only need to deal with a small
number of linear equations for each guess on average. As a result, the guessing times of
finding a preimage for 3-round Keccak-256 can be decreased to 252 times, and the solving
time for each guess can be decreased to 25.2 3-round Keccak calls. Moreover, we find a
preimage of all ‘0’ digest for 3-round Keccak-256.

For 4-round Keccak[r=640, c=160], we enhance linearization through techniques such
as strategic variable selection, two candidates for the previous message block, increased
consideration of output bits, and comprehensive utilization of enumerated variables. With
these techniques, we develop an MILP model that optimizes the highest probability for the
digest matching with complexity around 260.9 leading to another solution to the Crunchy
Contest.

It is noted that our cryptanalysis is still far from threatening the security of full-round
Keccak.
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[WWF+21] Congming Wei, Chenhao Wu, Ximing Fu, Xiaoyang Dong, Kai He, Jue
Hong, and Xiaoyun Wang. Preimage attacks on 4-round keccak by solving
multivariate quadratic systems. In Jong Hwan Park and Seung-Hyun Seo,
editors, ICISC 21, volume 13218 of LNCS, pages 195–216. Springer, Cham,
December 2021. https://doi.org/10.1007/978-3-031-08896-4_10.

A An Instance of Preimage of 3-Round Keccak-256
The instance of preimage of 3-round Keccak-256 is shown in Table 9.

Table 9: An instance of preimage of 3-round Keccak-256 (in big-
endian order).

the 1st message block
b37313233b373133 5555555555555555 aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa cc4c8cecc4c8cecd
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
19d9b989919d9b99 ffffffffffffffff ffffffffffffffff ffffffffffffffff 9919d9b9919d9b98
ffffffffffffffff ffffffffffffffff 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 2nd message block
673fd6621904c5d4 c3cabb7867a65d30 8ff3b33ccae1b20d a351c99bc0bd1a7b 0d22cf2e21c47bfe
48b8605866ddd794 b7b016f753eafc76 e2a72433a1de16eb c5b77a83b99a4631 5ad7b7c347b83b0a
d2e3796fd0061aea 40a3ec9b7c8f1edb a8044a16da4e35e4 24e2753d38030867 00989952ab6b66e7
e63843f8ce001643 107a40611e7f7b98 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 3rd message block
52e2cac588dee9fe d5276803a3b8acef e78ad424128b6cbb f27c0bfd6bb3ea82 e116a542a5335bff
cdcc9bcd253a6fc9 8fa64585abb8dbef 7201c2c7e974f73d cb0d7080c315c4f1 a424bba861d56df4
493126dc26070589 8293b4dbe162b665 ff1106edc2035d0b 90c6d779b7cc43a1 5d237e29860042d8
d15c9df5c0a777bf 926c87b5dcb1685e 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 4th message block
157c8c05aaaa492b bc1a97672988816c 3de7e1c9452c9248 d97e56828795edbb 7c6f5bc91f53272c
ee4edd50c5b9662e 8e3864fb2c7dd15d 02c01a547b30f5ed b735d6bbbca3167c d4bafe63f322f89a
5aea022c2111eeb8 01d2a0445bf11961 72c22a10f7250601 2501e88923728778 2b8aa27721c9545b
5712af5c13567857 13f5ad228c093f73 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 5th message block
cbf72d75c71e5b43 c8d9cf65a00b7f1c 1437205506f22845 248af05bd3ed53f2 9945cd9c5af8aa6f
c68d43517a3a147b 39792961700804bc 0eed56f50ad29f67 90f50893c88c1347 615167dc6e81956e
4c88f8cdfdb0fe34 ca810a19281e15f4 8eb245291c783975 4418f699495b5320 82104b0a0acd1ba4
cd0962f74574bfa6 fcd0cabf4aab7de6 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 6th message block
0bbf8d72bdef5c0c 336d8e97bd32c874 13d271488d3378ee 5406ea75de2457b3 12517a561e92b75c
4c2a88ed00888fc9 f30baa06130bb284 5b17117860b7f544 4d4213363d858801 937944066cb9f5e9
086c178c9bc40d39 9162327ca8758466 6a3b2947134c2cfa d92f33aece39b658 8ef518fc5b5c56f7
a906ebbec99f6945 26f579be884fe099 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 7th message block
ef87b752d3da4f5e 14476a96f4fdfb3f 1011c947493e62b1 6c6098539711bf18 69a7dcfe84a2604a
5dce33448829d83d fe63fcd82f8a2bfd 2695088161e57899 50ab4559d5fa5aba acdef158d0873b14
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bdbe87c3beb786a1 8a6708c21bf3826a 7ca9deabc01b4ac0 f3a5d6c14dfd4c92 87974f43c468d186
942dffa0a3ee75a5 42de16335da1d72d 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 8th message block
10b20df59b980828 f83f31894599cc75 0d21d228382322b2 02be27186c2bfb9c 82d9c11eb4ec2f3b
2e2640f216db8ee4 9f4313f2f74a24ee 1ed0f4ea04f34a02 9b164ad04fd76b74 678effbcf2ed0ea0
dc070aae098d8fef cf7186039aba338d dd2ba62247b6de33 2488f4e83d639a3f 7060d8a0f74a50cc
2e597fd3ec4fd07e 7c1c55f96e8c9da8 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 9th message block
af42ed15a74f5230 21c36f088e0c99f5 d772187d68f55f41 67120ad709a9c72a 64f1735265a2e261
1cea3adbfd461622 ec46ba5013f35b01 4cbb2b5c847f6da2 d1fe597844a076a9 e99914c4b423a1a1
1e2e4d5d31812963 a602c428bedaf9a4 17c1dcdfb1e433e0 31cfc8e6ae88bca7 3ed473c8cdc5682f
9b44a41e3dd6d46e ad60e342064c98be 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 10th message block
b3ac5b4e443fc7b1 27678230d925bfde 559415437ff8ef0b 226460c2517587af 78a65f11879d4349
6661b06a19f0e57f 512cebce2bc08e9b 3493ae909047e8c9 176807105e558612 303720b31558c933
c1a0184a7a2b1162 ed6ceb30acd1cce0 f177cd65554610df fcf6ae8ca520e1a6 aea4e94843f71e42
b54f7f090e1dfc72 c3971c7c2609a38b 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 11th message block
f4f7b1904308b12d 86c5e19b42015969 10d0e3a53817567e 3a238e14d4197799 4e3d746c0601b274
746c501e430512d8 b6174a5d33f32292 7395112085c75ed0 9989f62d02acfd24 e4888fc2b536c9cd
49d3ea243de4bcd6 2e60ec0942ca343b 4f1e30f103bdbabf c5289c52486654b4 5172b85107091490
b8a27f7f60fdd837 6e6a457edbd51b25 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 12th message block
bff58bb4668a1769 ed767a519c636835 9162f0cff40338ab 22cb7d6247c01890 5489b7f129ace874
053eaaeab7328636 6a133c2f7a90d569 9673f98fb2594d32 8605e5cb4a97e173 ddda14f4daf7faa3
2770269f0beb47c5 247ba9c42c701aeb 1f66825de19c7209 8fea7fb94cf366e2 985739388d19a616
e25ddb2559b5ab9f b34a532dee346cc3 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 13th message block
f17454aaf03b4b64 4193c95ad351809a c2412fbc53f69c0d 88cb87d86bdd44fe 645b0eaf7c59a06b
9a392c1ee040d397 2d209b3fadf188c3 c551b4f208f670c8 e508216c92418d53 1ca714044770a1f3
72398f7b14d059cc 0895d6ae4c555437 cb69f9abf697023d d74f502fc91fb37e f6bd04bfda371855
2a33d37a42e5fdf7 5b84e2ebb6bbb83a 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 14th message block
3284e7ce5d8633f7 532cd6dc071ff777 7ccafd3d5b565e12 84a6c00b3045328d 5b8e1d2f57f217ab
b5437acc9d8b2e4b d7bab63f968afad3 21ba3782d3413c54 fcf5d3429dc9b263 2f1d54ad3cfadad0
28d1acbc1f72c7ca 7f4023b0c468a000 0007def828359bf6 d0de41cfc7416ab6 4a4a43b1de3eb074
4274ac0db96edde8 a7b515a4b08543dc 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 15th message block
1aef05eab8208394 ba3864046462d17f c6beb1b1763733c4 872120212dfa094f b05b20a21c70ba41
b019241583274fe6 98cc13d6ff996bb8 c2bea1d48afa4c4e 417ea34eb2754bf9 ef31d0730d2b79c2
a1b3f7639b13eeda 146f6670bcda6e18 012312bdef3ef43b 89b395294b8f1aae f948a05519405544
77a874dd44ef2119 f45e17d8dbea0655 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 16th message block
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74c66ef88b2b4168 be5372c2b6b7ee4d 6664096c043abcac 617a90ee574b0ca2 a3cb5cb0007cff6f
c9abfeec68ce240f a720bcea8050bba3 320eaa769487f4cd a01561e3b9f0c7d6 c0588d89eab44ec0
cf9ab13c8529ad9c fe059b52b372e45d 9cb74d3b5e9e54a9 66238a7191961d1e 9f886318ef485f83
bc7efc3c0c66b25e f11cf52ba9fbaeaa 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 17th message block
702523782bf27f28 0d2d11db773286aa 14258b2c80bd4265 176bc38ddc9ffd4d e52d5cdb4c42cad4
319ca089d3bc82c6 b1da456c04898151 48fcd328946f20af 71fe1738cf330fa3 0d839e27de510434
8c296a263644966b dec4b376c9f51e2c e7a798e2a368d632 2bf44c727667a616 c3a78947b82ee2df
432c5faa2467e91c 8e28558373f2ccab 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 18th message block
bdbd2ec0173d12e2 8127e99e1e68ac01 6aed746a37ec37e1 b6acabe2e5205f78 08dd2692cd23e449
c35bab2509daad65 66c07eb0f26d4ad0 66c6c2f858690f88 1db47b83b690ca3a e844051c319613b2
2c8fb88df528784d 588c19ccf589437c 95569822ca90dbc0 e30f8fb10c3c4e3e 5c3fe40fff6e4031
01cebf41f465991b 272d3d4934ab211a 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 19th message block
857821d22905540b c91119948f4d1f84 276c9be260ef9b1e f0bae5eab0b3fe3e f57a494425fdccbc
702dc15fddefa613 6e8812bbb041aa5d 41f7482b072fb4fb 48c9617858bcfc72 4e22da96b1403036
811b165a23a9990e f29d56d160c5d1f4 066ab1d95aa25b22 f1128c74a8daf545 a10b6c8186bd68f9
165af8be7f09def5 9fe3cc9f68c347b8 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 20th message block
1070470238f83d8c f9cb66ff16662c4e 417fca6cf9317681 9d61e9facc0f7020 c789407b23c8e36a
f33acfb05a173c15 d098a5bb77c1437d 577ca0e67db1e8d2 39ecd0c3a0dd5a81 fcc90cec19ac1e43
b7c7b06ce385d0a2 58369aa97e72bb65 030a784e8325be06 45a786d3b1fe323c e31a648ee8967318
0d1eff874f84ac9f b79ec22290b02473 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 21st message block
116b68b605184cb7 a192c9a2d9aa150b aea88b4a7d0e5178 5ab675b1d8511278 7159f23b66a4f188
440a652226bf8f99 6e3b0e860fdc99e7 0a59992c8a68dc10 c1faaa6c40db9a6f f3cb579b9b86beff
c89fe6f93dad9680 b7d360b638e2bdc7 fe91812de7e38586 71b9b20325c5e541 119e0a287a54ce05
3eaf427da45496fb 81866c0f1a40928a 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 22nd message block
a0f3738f6aeeccbe 9120a472e84f68f0 8c6940ddcc7c9ee1 1bb88438e71ffd55 af492b1447a50e09
de6f4948cfd162e0 4386b55d47c1dbcb 08d34730280926fd 4a0a0674a4c23142 d2ea9a30db4108ba
6b34cb5abc6a6e13 d8aa92e41f2576b5 4597a65bcdaac7f6 3de783ff4bc3feea 82141a8262689299
04c5d5c9df0bd71a 192332928d0188fa 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 23rd message block
eeff1728343ebd82 69baaddf82153598 5a3af1eea558c47c 8344bef775da1646 29b87f96982738c1
d3e7b22bdb5f40b5 300ed144acf6bf7f cd6de082fb5e6cd5 7965200f0b08279a 9ed9b7e3ada25b32
5b9b5d794569bd67 714816b864e114ef 214d3ed5be2592eb c199d4e4f557713c 12033da2d7b07c81
03cfe69aaed6dc7c a079305b3ecf8b96 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 24th message block
9fb4ab0a18ff198c b6b26934534e6a1f 3f8270bfe9307d70 8cc2f3d05bc097af 364e5af73ec63613
05beab7cddc18bf0 323fe5e345103d25 bccb06af4244d312 db713d6b9e6fea01 0725ec27b96a1a86
2003f682a1cf5b05 bcd0dd1a4781fee0 98aeaa1bcead1a79 bada8cf402143ec8 43090b5c2830ee64
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2754e09f7dffcc75 90a6e3ee492bd82f 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the state after the first stage
3d99e3864dd978a7 60373513737dad0d f979bbe6c728af9d 15e42f9fd704d3f8 ed0b9f1898371841
ed0fa702f897b231 3d386c110829eeeb 17a11ff1a7a75bc9 66dc2fae30780caa f3418af070433128
03d15d5a9d12d422 03f2032b3ab8fc82 2cc7f5a6122a7646 f0fee590a8d5b7f9 b0d697274be5aff8
ea0fceb7f3f7cfe7 55e0f8617153ce65 b06128f02c49bc1e cf9860c288fcad15 39bc989909a4eb23
39330abeaf39ba5f 9ff28abe0328b25f 5ffed70fd3b643e1 30779d3d770352ea c6536e66f65b14dc

XOR values of Equations (1)
ef9fffffffffffff ffeffdffffffffff ffeff6ffffffffff

the 25th message block
b1adf08a211d6d0d 11f90ac31b2801f1 38c7d0d4afd7b5fd 0488b6216e6620c3 72b994921e5ca1e2
2bc35243a851f791 5d7511d23c7e36c3 b7a037018beee7d7 6cb07a0aae79c9bd caed1b6979e7da0b
21994d3c6bb02703 63aa9ad7bbb8fb2b d966739029e76db9 0323564413532ca0 332357afbfe97532
2cc33bf6a3318a47 35ad85a24504164d 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the state after the second stage
26f6b72f64c7a017 904944b040829111 66bf3559df68f59e 08a764ce5bef39f5 663f9898bf40b461
c8bc323ea04684a7 3df4e9b993e3fea5 956263eb51febd9f 3cfa16d9554f8461 a105f32f994d27be
8051093937899dc8 78e471aa3ec14b76 7f146246fc095604 63313678fc6db963 fcabeefb6454ddc4
7cf1199b99f90719 907969a13f49db6d d684663e6cab54fa f27dbd3b15a57fda 7fef1fdb19e90f9a
af7d47dcf3e24ebf c99bead4c54adef7 297b99c19354ab05 0d8242c4ea5a8025 c012a804cc129041

XOR values of Equations (1)
ffffffffffffffff ffffffffffffffff bffdb7dfd5fb9fdb

the 26th message block
4609b0573539b4c1 5fcf06c9ff60e4d3 1f474596b8cdae7c cbc2c23e89cb4884 9b1fdf168988b62d
912e8a1dac5bb4e7 0f98d492841cc3ad 43e605d5354569f4 8fc78a891508739c 9ee8a4d4aaa04800
61773534510b59ad 6d36e2685d6213f5 21f3ab896958f7f0 8e335d8f2b2193b6 ff9787ac8a80f8c1
2563a1b895e43759 a215548a28b6e665 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the final state
0000000000000000 0000000000000000 0000000000000000 0000000000000000 80e171e3611cc7f1
e28c9fbe1b6a1374 7860b435de30e34b aeb784f6d747cbb3 12ea874996aaf826 c37af932b711fb86
2adce91fe7865ac2 29743ce03dea5172 0575f66fe6f4570c 22d91197c038438c 9075e1e53959830c
0c5aa5f2f4ba2607 7bd2c4c129b5f319 c3ac95e3aef8a884 755eacf9401d8879 c71817c519df211a
f28db1602f43a61d 39070676354565be 7117cc77c82348dc 4c8feae15571e374 4f8b1c9b9294d282

3-round digest
0000000000000000 0000000000000000 0000000000000000 0000000000000000

B An Instance of Preimage of 4-Round Keccak[r=640,
c=160]

The instance of preimage of 4-round Keccak[r=640, c=160] (start round index ir = 0) is
shown in Table 10.

Table 10: An instance of preimage of 4-round Keccak[r=640, c=160]
(in little-endian order).

the 1st message block
09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

the 2nd message block
52 25 14 75 c1 14 5e cf 5f 91 ee 85 85 6a b3 8e 1a 6c d0 89
27 9c ae b5 93 f1 2f a1 bc 73 a4 a4 e0 02 c1 95 0e eb 6a 07
62 06 8e 83 8d 14 47 94 f7 ae 66 77 8d 5d 65 bf 5a 66 4f 54
34 91 ce 3c 82 76 34 4e 7b a6 c7 7d 81 5d 6a 38 d4 01 3c cb
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

80-bit output digest
75 1a 16 e5 e4 95 e1 e2 ff 22

The verification code is provided as follows, which can be added to ‘KeccakCrunchy-
Contest.cpp’ directly [BDH+a].

1 counter += verifyPreimageChallenge (
2 // Keccak [r=640 , c=160 , rounds =4]: preimage challenge
3 640 , 160 , 4, ( const UINT8 *)"\x75\x1a\x16\xe5\xe4\x95\xe1\xe2\xff\x22",
4 0, // fill in this line with the start round index (0= first )
5 ( const UINT8 *)"\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\

x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x52\x25\x14\x75\xc1\x14\x5e\
xcf\x5f\x91\xee\x85\x85\x6a\xb3\x8e\x1a\x6c\xd0\x89\x27\x9c\xae\xb5\x93\
xf1\x2f\xa1\xbc\x73\xa4\xa4\xe0\x02\xc1\x95\x0e\xeb\x6a\x07\x62\x06\x8e\
x83\x8d\x14\x47\x94\xf7\xae\x66\x77\x8d\x5d\x65\xbf\x5a\x66\x4f\x54\x34\
x91\xce\x3c\x82\x76\x34\x4e\x7b\xa6\xc7\x7d\x81\x5d\x6a\x38\xd4\x01\x3c\
xcb", 1278 // fill in this line

6 );

C The Algorithms
We summarize the precomputed probability table p and the MILP model in Algorithm 2
and Algorithm 3.
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Algorithm 2: Precompute the probability table p.
Input: The required digest Θ4

∗,0,∗.
Output: The probability table p, the corresponding restrictions pr satisfying the

best probability in p.
1 I3

∗,0,∗ ← ι−1
ir=3(Θ4

∗,0,∗); // Get I3
∗,0,∗ by applying the inverse ι of fourth

round to Θ4
∗,0,∗.

2 p← (pz,i,j = −inf)32×32×5; // Prepare a table p to record the best
probability with initial value −inf.

3 pr ← (prz,i,j = null)32×32×5; // Prepare an empty table pr to record the
restrictions with respect to the best probability recorded in p.

4 for z ← 0 to 31 do
5 d← I3

∗,0,z;
6 for i← 0 to 31 do
7 for j ← 0 to 4 do
8 foreach valid j restrictions, denoted by r (only bits under mask i are

involved in r) do
9 Calculate the input set I recording all the 5-bit inputs satisfying

restrictions r;
10 cnt← 0;
11 foreach ip in I do
12 if χ(ip) matches the digest bits d then
13 cnt← cnt + 1;
14 end
15 end
16 if cnt/|I| > pz,i,j then
17 pz,i,j ← cnt/|I|, prz,i,j ← r;
18 end
19 end
20 end
21 end
22 end
23 return p and pr;
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Algorithm 3: Build the MILP model and get the result.
Input: The required digest Θ4

∗,0,∗.
Output: The way to linearize last two rounds with the 98 degrees of freedom

maximizing the probability matching the digest.
1 (p, pr)← Algorithm 2(Θ4

∗,0,∗); // Get the probability table p, and the
corresponding restrictions pr by Algorithm 2.

2 V ← {aX2
x,y,z
} ∪ {aΘ3

x,y,z
} ∪ {aX3

x,0,z
} ∪ {az

i,j}; // The MILP model will use
800 + 800 + 160 + 32× 32× 5 = 6880 variables (aX2

x,y,z
, aΘ3

x,y,z
, aX3

x,0,z
,

and az
i,j).

3 O ← (Σz=0∼31,i=0∼31,j=1∼4(log2(pz,i,j/pz,i,j−1)× az
i,j), Maximize); // The

objective to the MILP model which should be maximized.
4 E ← ∅; // Initialize an empty set to record the equations that

should be added to the MILP model.

5 for (x, y, z)← (0, 0, 0) to (4, 4, 63) do
6 S ← ∅;
7 for (x′, y′, z′)← (0, 0, 0) to (4, 4, 63) do
8 if X2

x′,y′,z′ is linear-dependent to X2
x+1,y,z or X2

x+2,y,z then
9 S ← S ∪ {X2

x′,y′,z′};
10 end
11 end
12 E ← E ∪ {aΘ3

x,y,z
≤ Σs∈Sas};

13 end
14 for (x, y, z)← (0, 0, 0) to (4, 4, 63) do
15 T ← {Θ3

x′,y′,z′}; // According to the θ, ρ, and π operations,
determine the set T (of size 11) where X3

x,y,z =
⊕

t∈T t.
16 E ← E ∪ {aX3

x,y,z
≤ at|t ∈ T};

17 end
18 for z ← 0 to 31 do
19 E ← E ∪ {Σi=0∼31az

i,0 ≤ 1};
20 for i← 0 to 31 do
21 for x← 0 to 4 do
22 if i&2x > 0 then

// If the x-th bit of i is 1.
23 E ← E ∪ {az

i,0 ≤ aX3
x,0,z
};

24 end
25 end
26 E ← E ∪ {az

i,j ≤ az
i,j−1|1 ≤ j ≤ 4};

27 end
28 end
29 E ← E ∪ {(Σx=0∼4,y=0∼4,z=0∼31aX2

x,y,z
) + (Σi=0∼31,j=0∼4,z=0∼31az

i,j) + 8 ≤ 98};

30 R← MILP(V, O, E); // Get the MILP result.
31 L← {X2

x,y,z = rX2
x,y,z
|R.aX2

x,y,z
= 1} ∪ {prz,i,j |R.az

i,j = 1 AND (j = 4 OR
R.az

i,j+1 = 0)}; // Parse the result of the MILP model where rX2
x,y,z

is an arbitrary constant as random space.
32 return L;


	Introduction
	Preliminaries
	Sponge Construction
	Keccak-f Permutation
	SHA-3 Standard
	Properties of Matching the Output Bits
	Notations

	Related Work
	The Linear Structure
	Allocating Approach with Improved Linear Structure
	Iterating Strategy and 5-for-3 Strategy
	Quadratic Structure with the Relinearization Technique

	Improved Attack on 3-Round Keccak-256
	How to Get Improved
	The Three-Stage Attack
	Speeding Up the Solving Time

	Preimage Attack on 4-Round Keccak[r=640, c=160]
	Related Work
	Making Further Improvements
	Details of the MILP Model
	Summary of Preimage Attack on 4-Round Keccak[r=640, c=160]

	Conclusion
	An Instance of Preimage of 3-Round Keccak-256
	An Instance of Preimage of 4-Round Keccak[r=640, c=160]
	The Algorithms

