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Abstract. A classical way to turn a cryptographic hash function into a MAC (message
authentication code) function is by concatenating key and message and interpreting
the result as a tag. For the Merkle-Damgård hash function construction, the approach
to prepend the key to the message is known to be insecure, as it is vulnerable to
the length extension attack. This observation eventually resulted in the introduction
of the HMAC construction. The alternative approach to append the key to the
message, even though it already dates back to a work of Tsudik from 1992, has
never been investigated in detail. In this work, we perform an in-depth treatment on
the possibilities to design a MAC function from the Merkle-Damgård hash function
construction by processing the key at the suffix. We formalize two constructions:
the suffix keyed Merkle-Damgård construction that simply appends key to message,
and the suffix blinded Merkle-Damgård construction that blinds the state before
compressing the last message, much like the suffix keyed sponge construction (SuKS).
We subsequently prove that both constructions are secure in the standard model
under reasonable assumptions on the underlying compression function. We finally
investigate the security of these constructions in the leaky setting, and demonstrate
that the suffix keyed Merkle-Damgård construction is not leakage resilient, but
the suffix blinded Merkle-Damgård construction is leakage resilient as long as an
appropriate padding rule is adopted and as long as the underlying building blocks
are processing secret data in a leakage resilient manner.
Keywords: suffix keyed Merkle-Damgård · suffix blinded Merkle-Damgård · PRF ·
leakage resilience · SuKS

1 Introduction
Cryptographic hash functions, functions that map an arbitrarily long message M to a
short (e.g., 160 or 256 bits) digest h, are one of the most basic and most prominent
building blocks in modern cryptography. They are traditionally expected to satisfy certain
security properties such as collision resistance (it should be computationally hard to
find two different messages M, M ′ hashing to the same digest), preimage resistance (it
should be computationally hard to find a message M corresponding to a given digest),
and second preimage resistance (it should be computationally hard to find a message
M that collides with another given message M ′) [RS04]. The first generic classical hash
function construction dates back to the 80s and is attributed to Damgård [Dam89] and
Merkle [Mer89]. Internally, it uses a compression function F from n + m to n bits, where
n denotes the state size and m the amount of message bits that one evaluation of F can
absorb into the state. The Merkle-Damgård hash function construction (or, MD) then
(i) initializes a state using an n-bit initial value IV , (ii) applies an injective padding on
M so that its resulting length is a multiple of m bits, and (iii) absorbs the message into
the state using the compression function F , m bits at a time. The output of the last
compression function evaluation is the digest. Refer to Figure 1, where the message is
padded by appending a single one and a minimal but sufficient number of zeros. Exactly
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Figure 1: The Merkle-Damgård construction (MD). Here, the message M is split into
message blocks M1, . . . , Mℓ−1, M̄ℓ, where the Mis are all m bits long and M̄ℓ is between 0
and m− 1 bits.

this construction, but with a slightly more involved padding rule that includes the length
encoding of M (a concept known as strengthening), has been used in standardized hash
functions such as SHA-1 [Nat15a] and the SHA-2 family [Nat15a].

Given the prevalence of hash functions back in the old days, they were used for many
purposes, one of which being message authentication. The idea of a message authentication
code (MAC) function is that it, for a secret key K, maps an arbitrarily long message M
to a short tag h. The resemblance with hash functions is clear, and one may be tempted
to simply hash key and message:

MAC (K, M) = MD(K∥M) . (1)

Unfortunately, it was quickly acknowledged [Tsu92,KR95]1 that this is an unsafe approach,
as it is vulnerable to the length extension attack. In detail, given a tag h corresponding
to a message M , one can obtain a tag h′ corresponding to the message M∥10∗∥X for
|X| ≤ m− 1 without using the key, as

h′ = MD(K∥M∥10∗∥X) = F (h, X∥10∗) .

Apart from this construction, Tsudik [Tsu92] described two other ways to key Merkle-
Damgård, namely by keying it at the suffix, as in MD(M∥K), and by keying it at both
the prefix and the suffix (“enveloping”), as in MD(K∥M∥K). The former one was quickly
discarded: Preneel and Van Oorschot [PvO95] demonstrated that this construction is
vulnerable to an offline attack, where the adversary finds an inner collision in the keyless
part of the Merkle-Damgård construction in around 2n/2 offline compression function
evaluations. The envelope construction eventually evolved into the invention of the HMAC
design [BCK96, KBC97, Nat08]. In a nutshell, HMAC operates on an inner key Kin
and outer key Kout, it processes the message basically as in (1) with the inner key, and
subsequently processes the result likewise as in (1) but using the outer key. Bellare et
al. [BCK96] and Bellare [Bel06] proved that, security of HMAC follows from that of F , or
in detail, that if F is a pseudorandom function (PRF), then so is HMAC . Yasuda proved
that a similar result applies to the envelope construction, under the assumption that F is
a PRF both if keyed through the chaining path as well as if keyed through the data path.

Of course, retrospectively, HMAC was a solution to a problem that should not have
existed in the first place, the length extension attack, but this may in part have been caused
by the lack of theoretical knowledge on generic hash function design. It was not until 2004
that a formal treatment of generic hash function design gave evidence as to which designs
could be used as in (1) and which not. In detail, in 2004, Maurer et al. [MRH04] introduced
the indifferentiability framework, which was tailored to hashing one year later by Coron
et al. [CDMP05]. This model says that if a hash function construction is indifferentiable
from a random oracle, it basically behaves like a random oracle and it can be used as such
in many applications.2 Thus, if a hash function construction H behaves like a random

1Tsudik [Tsu92] attributes the observation to Dave Solo and Steve Kent.
2This claim is restricted to single-stage games, cf., Ristenpart et al. [RSS11].
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oracle, one can among others safely evaluate H(K∥M). This would for instance work
for variants of Merkle-Damgård that chop the final output [CDMP05], including some
instances of the SHA-2 family (generically), or designs based on the Merkle-Damgård
with Permutation (MDP) construction [HPY07,Hir21]. More modernly, it also works for
sponges [BDPV07, BDPV11a] and (generically) SHA-3 [Nat15b]. In particular, the US
NIST standardized MAC function KMAC [Joh16] follows this design approach with the
Keccak/SHA-3 hash function [BDPV11b] underneath.

As the sponge function is a powerful function in general [BDPV07,BDPV11a,BDPA08,
BDPA11,BDPV11b,DMA17,Men23], there has also been dedicated research in keying the
sponge to obtain a MAC function. Notably, it was observed that if the key is prepended
to the data, one can even authenticate more efficiently by absorbing over the entire
state [BDPV12, MRV15] (a similar observation applies to the envelope construction on
top of Merkle-Damgård [Yas07a]). For the sponge, there was also particular interest in
its security if keyed at the suffix. The initial idea was already described by Bertoni et
al. [BDPV11a, Section 5.11.2], and a general treatment of this approach, currently known
as the suffix keyed sponge (or, SuKS), was given by Dobraunig and Mennink [DM19b].
They proved that SuKS is a secure PRF as long as the permutation is random. They
furthermore demonstrated that, purely due to the keying at the suffix instead of the prefix,
this construction is secure even in the case of side-channel attacks. More detailed, they
proved that, by keying at the suffix, this construction is not only a black-box secure PRF
but also a leakage resilient PRF.

1.1 Suffix Keyed and Suffix Blinded Merkle-Damgård
In general, one may say the plain use of Merkle-Damgård for message authentication has
been overtaken by time. Specifically, using cryptographic hash functions whose underlying
mode is indifferentiable from a random oracle yields a much simpler MAC design, most
notably through H(K∥M). This observation can particularly be seen as argument to step
away from HMAC on top of SHA-1/SHA-2 and use KMAC instead.

That said, inspired by the recent works on sponges, and SuKS in particular, it makes
sense from a theoretical perspective to investigate what we can achieve with the classical
Merkle-Damgård construction when keying at the suffix, both in the black-box setting and
in the leakage resilience setting. We do so by formalizing and analyzing two constructions:

• Suffix keyed Merkle-Damgård (or, sukMD) as described in Section 3.1 and depicted
in Figure 2, that appends the key to the message with wise padding (to avoid the
key being split into two data blocks);

• Suffix blinded Merkle-Damgård (or, subMD) as described in Section 3.2 and depicted
in Figure 3, that blinds the state with the key using a uniform and universal hash
function G, right before compressing the last message block.

At first sight, it appears that the analysis of these two constructions is obvious and
quickly/immediately follows from several earlier results. However, this is not at all the
case, for multiple reasons:

• One possibility to attempt is to rely on indifferentiability of variants of the Merkle-
Damgård construction. Indeed, sukMD is basically prefix-free Merkle-Damgård
as long as the adversary does not guess the key. This means that one could po-
tentially reduce security of sukMD to the indifferentiability of prefix-free Merkle-
Damgård [CDMP05], plus a bad event covering key guessing. A similar reasoning
holds for subMD in relation to MDP [HPY07]. However, this approach inherently
requires F to be modeled as a random function, which is a too strong condition
for reasoning about PRF security, and in particular earlier works of Bellare et
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al. [BCK96], Bellare [Bel06], and Yasuda [Yas07b] suggest that we can avoid that
assumption;

• Looking at those earlier proofs [BCK96,Bel06,Yas07b], actually, they assume PRF
security on F and then observe that a cascade of PRFs yields PRF security up to a
certain bound. This approach cannot be adapted here, as in sukMD/subMD only
the last evaluation of F gets secret input;

• In fact, the sukMD/subMD constructions remind us more of the hash-then-PRF
approach, where a cryptographic hash function is used to turn the message into a
digest and a PRF to turn this digest into a tag. Such construction can be proven
secure under the assumption that the hash function is a random oracle [BR93], and
in addition for composition reasons the hash and PRF are required to be independent
primitives. These are two requirements we wish to avoid.

However, there is one earlier result that gets pretty close to what we would need, which
is to argue security of the hash-then-PRF approach under the assumption that the hash
function is collision resistant and the finalization is a PRF. This approach was followed
by Rogaway in the human ignorance model [Rog06]. In detail, he proved that if one has
an iterated hash function construction based on compression function F ′ followed by a
PRF F , the resulting construction is PRF secure as long as F ′ is collision resistant (in the
human ignorance model) and F is PRF secure.

1.2 Black-Box Security
Our security proofs for sukMD and subMD will be inspired by the proof of Rogaway, but
tackle several technical issues present in the new constructions. Firstly, we will use the
same primitive F for both hashing and finalization. Secondly, in sukMD the message is
not only processed in the hashing part but possibly also partially alongside the key in
the PRF part. Thirdly, in subMD, a uniform and universal hash function G blends the
key into the state, and this is not supported by earlier proofs. While the first issue is
mostly editorial (Rogaway proved his result through composition and for the current type
of composition we turn out to be able to derive a single direct result), the other two are
more subtle. Nonetheless, we manage to derive tight security bounds in Theorem 1 (for
sukMD) and Theorem 2 (for subMD).

To be precise, we prove that sukMD is a secure PRF under the assumption that F is
(keyless) collision resistant as well as PRF secure, and we prove that subMD is a secure PRF
under the assumption that F is collision resistant as well as related-key PRF secure [BK03]
under a key derivation function set based on universal hash function G. We remark that
these security results do not contradict aforementioned offline attack [PvO95], as it trickles
down to the collision resistance assumption of F .

We also demonstrate that these results straightforwardly generalize to the case where the
keying mechanisms, suffix keying and suffix blinding, are applied to the Merkle-Damgård
with Permutation (MDP) construction, yielding sukMDP and subMDP.

1.3 Leakage Resilience
In addition, we investigate the security of our constructions against side-channel adver-
saries. Indeed, if our constructions are evaluated in a hostile environment, side-channel
attacks [Koc96, KJJ99] where the adversary may obtain certain information about the
secret data through for example power consumption, become a serious threat. In the
permutation-based setting, SuKS has been observed to generically behave quite well
against side-channel attackers [DM19b,BM24] (in fact, unlike the plain keyed sponge that
prepends the key to the message [DM19a]). In other words, at the mode level, SuKS
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achieves a quite decent level of security against side-channel attacks and this means that
only lighter security measures against side-channel attacks have to be included at the
implementation level, most notably against SPA attacks [DM19b]. Not surprisingly, this
SuKS construction has been used as authentication in the NIST lightweight competition
finalist ISAP v2 [DEM+17,DEM+20,DEM+21].

Note that, as mentioned above, sukMD and subMD resemble a bit of the hash-then-
PRF approach, for which leakage resilience analysis has already been performed before
(cf., [BKP+16, BPPS17, GSWY19, BGP+20, BGP+23], among others). However, these
results assume independent primitives and/or a perfectly protected cryptographic primitive,
both of which are assumptions we aim to avoid in this work.

In particular, we derive our own results, and to do so we adopt the bounded leakage
model of Dodis and Pietrzak [DP10], where we assume a generous upper bound λ on
leakage per evaluation of a secret primitive, and where we consider an adversary that is
given access to a leaky oracle and a challenge oracle.3 The idea of this model is that, even if
the adversary gains a certain amount of leakage, new evaluations of the construction should
look random. We particularly restrict our focus to non-adaptive bounded leakage [FPS12],
where the leakage function is defined prior to the experiment and is meant to capture
specifically the attack target (such as a specific byte) of the side-channel adversary. This
model of (non-adaptive) bounded leakage was used before for the analysis of various
constructions [Pie09,YSPY10,FPS12,SPY+10,DP10,BMOS17] and it was also used by
Dobraunig and Mennink [DM19a] for the analysis of the duplex construction and by the
same authors [DM19b] for the analysis of SuKS .

In this model, we argue that sukMD and subMD as depicted in Figures 2 and 3,
respectively, actually cannot achieve security: for both, there exists a leakage function
complying with the model that allows the adversary to obtain the secret key or a secret
state and to distinguish the scheme from random. We also argue that the attack against
sukMD applies to enveloping and HMAC , too. That said, for subMD we demonstrate that
with a slightly different padding rule, i.e., one that appends m zeros, the construction does
achieve quite strong leakage resilience, in a similar fashion as how SuKS does [DM19b].

1.4 Outline
We discuss security notions and the concept of plain iterated hashing in the preliminary
material in Section 2. We describe our two variants to key Merkle-Damgård at the suffix
in Section 3: suffix keyed Merkle-Damgård is specified and analyzed in Section 3.1 and
suffix blinded Merkle-Damgård is specified and analyzed in Section 3.2. These two sections
also describe the generalizations to suffix keyed and suffix blinded Merkle-Damgård with
Permutation, sukMDP and subMDP, respectively. Then, we investigate leakage resilience
of the constructions in Section 4. The model we adopt is given in Section 4.1 and the
particular assumption on G that we make is given in Section 4.2. We then investigate
leakage resilience of sukMD in Section 4.3 and subMD in Section 4.4. The work is concluded
in Section 5.

2 Preliminaries
Let n ∈ N and m ∈ N ∪ {∗}. We denote the set of n-bit strings by {0, 1}n, the set of
arbitrarily long strings by {0, 1}∗, and the set of m-to-n-bit functions by func(m, n).

We define a padding function ✂n : {0, 1}n∗ → ({0, 1}n)∗ that takes as input a bitstring
X ∈ {0, 1}n∗ of length a multiple of n bits and splits it into n-bit blocks X1, . . . , Xℓ. We
define by ✂10

n : {0, 1}∗ → ({0, 1}n)∗ the well-known 10∗-padding that takes as input an
arbitrarily long string X ∈ {0, 1}∗, appends a 1 and a minimal but sufficient number of 0s

3Alternative bounding approaches exist, cf., [KR19].
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so that the length of the resulting string is a multiple of n, and splits this string into n-bit
blocks X1, . . . , Xℓ. In other words, ✂10

n (X) = ✂n(X∥10−|X|−1 mod n). For X ∈ {0, 1}n

and if m ≤ n, the leftmost m bits of X are denoted by leftm(X). For a finite set X ,
X

$←− X denotes the uniformly random drawing of an element X from X .

2.1 Uniform and Universal Hashing
Let k, m, n ∈ N and δ, ε ∈ [0, 1]. A function G : {0, 1}k × {0, 1}m → {0, 1}n is δ-uniform if
for any X ∈ {0, 1}m and Y ∈ {0, 1}n,

Pr (G(K, X) = Y ) ≤ δ ,

where K
$←− {0, 1}k. The function is ε-universal if for any distinct X, X ′ ∈ {0, 1}m,

Pr (G(K, X) = G(K, X ′)) ≤ ε ,

where K
$←− {0, 1}k.

We note that the simple XOR operator, e.g., G(K, X) = K∥0m−k⊕X assuming k ≤ m,
is 2−k-uniform and 0-universal. This is a logical choice for our application in subMD in
Section 3.2. However, in the context of leakage, we will require G to be easy to protect
against leakage, and then we may require a more involved function G.

2.2 Collision Resistance
Let m, n ∈ N. Consider a function F : {0, 1}n × {0, 1}m → {0, 1}n. Often, one requires
that F has no structural weaknesses and behaves like a random function Rn+m,n

$←−
func(n + m, n). However, in our analysis, we will use F as a building block and merely
require collision resistance (and PRF security in a certain form of keying, cf., Sections 2.3
and 2.4). Unfortunately, defining collision resistance of F is a paradoxical task. As
n + m ≥ n, the function does have collisions, and these may be hardwired in the algorithm
of the adversary. Such an adversary can thus output collisions for F with probability 1
in constant time. Of course, it is hard to actually find such an adversary, even though
it is known to exist. This gives room for still defining collision resistance of F , adopting
the human ignorance formalization of Rogaway [Rog06]. In detail, we define the collision
security of F against an adversary A as follows:

Advcol
F (A) = Pr ((X, X ′)← A : X ̸= X ′ ∧ F (X) = F (X ′)) , (2)

where the randomness is taken over the random coins of A. As said before, as n + m ≥ n,
there exists an adversary A such that Advcol

F (A) = 1. However, as in our work we consider
explicitly constructed adversaries, this is not a problem.

We will, however, use a slightly stronger notion where A also wins if it finds a preimage
for a dedicated initialization vector IV . This idea appeared before, e.g., in [AMPS12], and
allows us to refrain from using length encoding in our constructions of Section 3. In detail,
instead of (2), we define the collision security of F against an adversary A as follows:

Advcol
F (A) = Pr ((X, X ′)← A : X ̸= X ′ ∧ F (X) ∈ {F (X ′), IV }) , (3)

where IV ∈ {0, 1}n is a predetermined constant, and where the randomness is taken over
the random coins of A. We say that F is collision resistant if Advcol

F (A) is sufficiently
small for all known adversaries that operate in a certain predefined time T .
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2.3 PRF Security
Let k, m, n ∈ N and m′ ∈ N∪{∗}. Consider a function F : {0, 1}n×{0, 1}m → {0, 1}n, and
a construction C[F ] : {0, 1}k × {0, 1}m′ → {0, 1}n that merely describes how a key goes
into F .4 We write C[F ] instantiated with a key K ∈ {0, 1}k as C[F ]K . The pseudorandom
function (PRF) security of C[F ] is defined by how hard it is for an adversary to distinguish
C[F ]K with a secret key K from a random oracle [BR93] Rm′,n

$←− func(m′, n). In detail,
we consider an adversary A that is given access to either of those and aims to determine
which one it communicates with, by outputting a decision bit b ∈ {0, 1}. We define the
pseudorandom function (PRF) security of F against an adversary A as follows:

Advprf
C[F ](A) = Pr

(
1← AC[F ]K

)
−Pr

(
1← ARm′,n

)
, (4)

where K
$←− {0, 1}k and Rm′,n

$←− func(m′, n). We say that C[F ] is a secure pseudorandom
function if Advprf

C[F ](A) is sufficiently small for any adversary A with a certain query
complexity Q of total length S bits and time complexity T .

2.4 Related-Key PRF Security
We also require PRF security in the related-key setting [BK03]. Let Φ = {ϕ : {0, 1}k →
{0, 1}k} be a set of key derivation functions, and let RK : {0, 1}k×Φ→ {0, 1}k be defined
as RK(K, φ) = φ(K). The related-key pseudorandom function (RK-PRF) security of
C[F ] is defined by how hard it is for an adversary to distinguish C[F ]RK(K,·) with a secret
key K from a family of random oracles [BR93] (Rm′,n)(·)

$←− func(m′, n)|Φ| indexed by the
set of key deriving functions. In detail, we consider an adversary A that is given access
to either of those and aims to determine which one it communicates with, by outputting
a decision bit b ∈ {0, 1}. We define the related-key pseudorandom function (RK-PRF)
security of F against an adversary A as follows:

Advrk-prf
Φ,C[F ](A) = Pr

(
1← AC[F ]RK(K,·)

)
−Pr

(
1← A(Rm′,n)(·)

)
, (5)

where K
$←− {0, 1}k and (Rm′,n)(·)

$←− func(m′, n)|Φ|. We say that C[F ] is a secure
related-key pseudorandom function under key derivation function set Φ if Advrk-prf

Φ,C[F ](A) is
sufficiently small for any adversary A with a certain query complexity Q of total length S
bits and time complexity T .

2.5 Iterated Hashing and Merkle-Damgård Hash Function
Let m, n ∈ N. Let IV ∈ {0, 1}n be a predefined initialization value. Consider a function
F : {0, 1}n × {0, 1}m → {0, 1}n. We define the iterated hash function construction
IH : {0, 1}n × ({0, 1}m)∗ → {0, 1}n as

IH (IV , M1, . . . , Mi) =
{

IV , if i = 0 ,

F (IH (IV , M1, . . . , Mi−1), Mi) , otherwise .

The Merkle-Damgård hash function construction MD : {0, 1}∗ → {0, 1}n is simply defined
as evaluating IH on a padded message and for predefined IV ∈ {0, 1}n:

MD(M) = IH (IV , ✂10
m (M)) . (6)

4In our schemes, the key may go into F either through the data or message path.
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Figure 2: The suffix keyed Merkle-Damgård construction (sukMD) for the specific case
where |M | mod m ∈ [0, m − k − 1]. Here, the message M is split into message blocks
M1, . . . , Mℓ−1, M̄ℓ, where the Mis are all m bits long and M̄ℓ is between 0 and m− k − 1
bits. If |M | mod m ∈ [m− k, m− 1], M̄ℓ would be compressed separately from K.

3 Keying Merkle-Damgård
Let k, m, n ∈ N such that k ≤ min{m, n} (we get back to this condition in Section 5). As
mentioned in Section 1, keying the Merkle-Damgård construction by simply concatenating
K ∈ {0, 1}k and message M ∈ {0, 1}∗, as MD(K∥M), does not work. In this section, we
will explore the possibilities of keying the Merkle-Damgård construction at the end. We
first describe suffix keyed Merkle-Damgård (or, sukMD) in Section 3.1 and then suffix
blinded Merkle-Damgård (or, subMD) in Section 3.2.

3.1 Suffix Keyed Merkle-Damgård
The sukMD construction is fairly straightforward, and can be dubbed folklore in the sense
that one simply appends key to the message. The first appearance of this idea goes back
to Tsudik [Tsu92]. In its native form, the plain definition sukMD(K, M) = MD(M∥K) is
not ideal: indeed, an adversary could vary the length of the plaintext and this way slide
the key K bit-by-bit into the last padded message block, and this will not allow us to
prove security under well-established security notions such as PRF security of Section 2.3.5
Instead, we pad M internally to make sure the padding function does not split K into two
message blocks:

sukMD(K, M) = IH
(

IV , ✂m(M∥10−|M |−k−1 mod m∥K)
)

. (7)

The construction is depicted in Figure 2.

3.1.1 Security

This sukMD construction is a secure PRF under the assumption that F is collision resistant
and the overlying construction Csuk [F ] : {0, 1}k × {0, 1}n+m−k → {0, 1}n defined as

Csuk [F ](K, X) = F (X∥K) (8)

is PRF secure. The proof resembles that of Rogaway [Rog06, Theorems 3 and 4], with the
difference that (i) the same building block is used for both the keyless and the keyed part
and (ii) the last message block may be processed together with the key.6 In particular
issue (ii) makes the proof more subtle.

Theorem 1. Let k, m, n ∈ N. Let F : {0, 1}n × {0, 1}m → {0, 1}n be a compression
function. Consider the suffix keyed Merkle-Damgård construction sukMD of (7). For

5It may be possible to derive security in the random function model, using ideas of Mennink [Men18]
on how to bound key prediction in the sponge construction if the key is absorbed in multiple permutation
calls.

6Note that, typically, m is larger than n. For example, for the SHA-2 family [Nat15a], we have
(m, n) = (512, 256) or (m, n) = (1024, 512).
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any adversary A with construction query complexity Q of total length S bits and time
complexity T ,

Advprf
sukMD(A) ≤ Advcol

F (B) + Advprf
Csuk [F ](C) ,

for some adversary B that runs in time at most T + O(TF S) and C that makes at most
Q queries and runs in time at most T + O(TF S), where TF is the time to evaluate the
function F .

Proof. Consider any adversary A that has access to either sukMDK or a random function
R∗,n. It makes Q queries of total length S bits and operates in time T .

Collision Adversary B. We construct a collision finding adversary B for F as follows.
Adversary B itself has no construction oracle, but it runs A as an oracle, and takes a
dummy key K⋆. Whenever A makes a query M (i), B computes padded message blocks

M
(i)
1 , . . . , M

(i)
ℓ(i) ←✂m(M (i)∥10−|M(i)|−k−1 mod m∥K⋆) .

It discards the last block M
(i)
ℓ(i) (the key absorption merely serves as decoration to well-define

the indices), and computes the intermediate chaining values h
(i)
1 , . . . , h

(i)
ℓ(i)−1 corresponding

to the absorptions of the first ℓ(i) − 1 blocks, exactly as in Figure 2. The final reply of
adversary B to A depends on the set

J (i) = {j < i | h(i)
ℓ(i)−1 = h

(j)
ℓ(j)−1 ∧M

(i)
ℓ(i) = M

(j)
ℓ(j)} .

In detail, it replies as follows:

• If |J (i)| = 0, B responds to A with a uniform random h
$←− {0, 1}n;

• If |J (i)| > 0, B responds to A with h = h(j) for some j ∈ J (i).

At the end of the experiment, A outputs a decision bit b ∈ {0, 1}. Adversary B, instead,
ignores the decision bit and uses its received data to output a collision, if possible. In detail,
if for all queries i = 1, . . . , Q, |J (i)| = 0, B simply fails. Otherwise, Let i be the smallest
index such that j ∈ J (i) exists (which is unique as i is the smallest index). Without loss
of generality, ℓ(i) ≥ ℓ(j). Note that M (i) ̸= M (j) but M

(i)
ℓ(i) = M

(j)
ℓ(j) . We can distinguish

two cases:

• Case M
(i)
ℓ(i)−κ

̸= M
(j)
ℓ(j)−κ

for some κ ∈ {1, . . . , ℓ(j) − 1}. Let κ be minimal such that
this condition holds. Then, B has found a compression function collision

F (h(i)
ℓ(i)−κ−1, M

(i)
ℓ(i)−κ

) = F (h(j)
ℓ(j)−κ−1, M

(j)
ℓ(j)−κ

) ,

where h0 = IV by definition;

• Case M
(i)
ℓ(i)−κ

= M
(j)
ℓ(j)−κ

for all κ ∈ {1, . . . , ℓ(j) − 1}. As M (i) ̸= M (j) but M
(i)
ℓ(i) =

M
(j)
ℓ(j) , this necessarily means that ℓ(i) > ℓ(j), and B has found a compression function

collision

F (h(i)
ℓ(i)−ℓ(j) , M

(i)
ℓ(i)−ℓ(j)+1) = F (h(j)

0 , M
(j)
1 )

if h
(i)
ℓ(i)−ℓ(j) ̸= IV , or

F (h(i)
ℓ(i)−ℓ(j)−1, M

(i)
ℓ(i)−ℓ(j)) = IV

otherwise.
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PRF Adversary C. We construct a PRF adversary C for Csuk [F ] as follows. Adversary
C has access to either Csuk [F ]K or a random function Rn+m−k,n, and it runs A as an
oracle. Whenever A makes a query M (i), C computes padded message blocks (again, the
key absorption of K⋆ merely serves as decoration to well-define the indices)

M
(i)
1 , . . . , M

(i)
ℓ(i) ←✂m(M (i)∥10−|M(i)|−k−1 mod m∥K⋆) .

It computes the intermediate chaining values h
(i)
1 , . . . , h

(i)
ℓ(i)−1 corresponding to the absorp-

tions of the first ℓ(i) − 1 blocks, exactly as in Figure 2. It queries (h(i)
ℓ(i)−1∥leftm−k(M (i)

ℓ(i)))
to its own oracle (Csuk [F ]K or Rn+m−k,n) and relays the response. At the end of the
experiment, A outputs a decision bit b ∈ {0, 1} and C relays this decision bit.

Conclusion of Proof. Note that

Advprf
sukMD(A)−Advprf

Csuk [F ](C) =
(

Pr
(
1← AsukMDK

)
−Pr

(
1← CCsuk [F ]K

) )
+

(
Pr

(
1← CRn+m−k,n

)
−Pr

(
1← AR∗,n

) )
.

(9)

By construction of C,

Pr
(
1← AsukMDK

)
= Pr

(
1← CCsuk [F ]K

)
.

Furthermore, denote by col the event that in the evaluation of C, there are two different
queries i, j such that (h(i)

ℓ(i)−1∥leftm−k(M (i)
ℓ(i))) = (h(j)

ℓ(j)−1∥leftm−k(M (j)
ℓ(j))). Clearly, as long

as col does not happen, also the other two probabilities of (9) are the same, and by the
fundamental lemma of game-playing [BR06],

Pr
(
1← CRn+m−k,n

)
−Pr

(
1← AR∗,n

)
≤ Pr (col) . (10)

However, note that the event that col happens is equivalent to stating that |J (i)| > 0
for any i = 1, . . . , Q. In other words, col happens if and only if B succeeds in finding a
collision:

Pr (col) = Advcol
F (B) . (11)

Combining (9)–(11), we obtain

Advprf
sukMD(A) ≤ Advcol

F (B) + Advprf
Csuk [F ](C) .

The complexities of B and C are as stated in the theorem environment.

3.1.2 Extension to Suffix Keyed Merkle-Damgård with Permutation

Given the resemblance between Merkle-Damgård and Merkle-Damgård with Permutation
(MDP) [HPY07], where a non-cryptographic permutation π is used to transform the state
prior to the last compression function call, it makes sense to also consider the extension of
sukMD to MDP. This leads to the following construction:

sukMDP(K, M) = IH
(

π
(
IH (IV , M1, . . . , Mℓ−1)

)
, Mℓ

)
, (12)

where M1, . . . , Mℓ ←✂m(M∥10−|M |−k−1 mod m∥K).
It turns out that Theorem 1 immediately carries over to this construction. This

is because the only difference between sukMD and sukMDP is the non-cryptographic
permutation π, but in the proof of sukMD of Theorem 1, collision adversary B “stops”
before the last F and thus before π whereas C computes everything offline until the last
F so until and including π. This gives a clean standard model proof of sukMDP (noting
that a random function model proof would already follow from the indifferentiability of
MDP [HPY07,Hir21]).
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IV F F · · · F F h

M1 M2 Mℓ−1 M̄ℓ∥10∗· · ·

h1 h2 hℓ−2
hℓ−1
↓

G

K

\

n

\ m

\

n

Figure 3: The suffix blinded Merkle-Damgård construction (subMD). Here, the message
M is split into message blocks M1, . . . , Mℓ−1, M̄ℓ, where the Mis are all m bits long and
M̄ℓ is between 0 and m− 1 bits.

3.2 Suffix Blinded Merkle-Damgård
Although the sukMD construction can be seen as the Merkle-Damgård equivalent of
SuKS , one may actually consider the subMD construction to be a closer resemblance.
In detail, subMD updates the inner part of the state by the key using a function G :
{0, 1}k × {0, 1}n → {0, 1}n. In detail, it is defined as follows:

subMD(K, M) = IH
(

G
(
K, IH (IV , M1, . . . , Mℓ−1)

)
, Mℓ

)
, (13)

where M1, . . . , Mℓ ←✂10
m (M). The construction is depicted in Figure 3. Note that this

function can be implemented black-box on top of an implementation of IH . Looking ahead,
the function G will be required to be uniform and universal, meaning that a simple XOR
that blinds the state with the key, i.e., G(K, h) = K∥0n−k ⊕ h, suffices.

3.2.1 Security

This subMD construction is a secure PRF under the assumption that F is collision resistant
and the overlying construction Csub[F ] : {0, 1}k × {0, 1}m → {0, 1}n defined as

Csub[F ](K, X) = F (K∥X) (14)

is related-key PRF secure under a key deriving function set based on G. To be precise, we
take key derivation function set7

Φsub[G] = {h : K 7→ G(K, h) | h ∈ {0, 1}n} . (15)

The proof resembles a bit that of Theorem 1, but significant additional complexity
appears in the fact that the keying is performed differently at the end, namely external of
the function F . If we were to analyze our constructions in the ideal function model, the
reasoning would be much simpler, but now, the PRF security of the underlying primitive
has to account for this difference through related-key security.

Theorem 2. Let k, m, n ∈ N and δ, ε ∈ [0, 1]. Let F : {0, 1}n × {0, 1}m → {0, 1}n be a
compression function and G : {0, 1}k × {0, 1}n → {0, 1}n a function that is δ-uniform and
ε-universal. Consider the suffix blinded Merkle-Damgård construction subMD of (13). For
any adversary A with construction query complexity Q of total length S bits and time
complexity T ,

Advprf
subMD(A) ≤ Advcol

F (B) + Advrk-prf
Φsub[G],Csub[F ](C) ,

7We admit that this definition is slightly abusing notation as the functions in this key derivation
function set map from k to n bits. This is not a problem for the formalization.
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for some adversary B that runs in time at most T + O(TF S) and C that makes at most
Q queries and runs in time at most T + O(TF S), where TF is the time to evaluate the
function F .

Proof. Consider any adversary A that has access to either subMDK or a random function
R∗,n. It makes Q queries of total length S bits and operates in time T .

Collision Adversary B. We construct a collision finding adversary B for F as follows.
Adversary B itself has no construction oracle, but it runs A as an oracle, and takes a
dummy key K⋆. In fact, the adversary B behaves almost identical to B of the proof of
Theorem 1: it discards (and ignores) the last message block and outputs random responses
to A whenever needed. As the only main difference between sukMD and subMD is in the
processing of this last block, the reasoning almost seamlessly carries over. To be precise,
the main difference is that, whenever A makes a query M (i), B now computes padded
message blocks

M
(i)
1 , . . . , M

(i)
ℓ(i) ←✂m(M (i)∥10−|M(i)|−1 mod m) .

Then, it discards the last block M
(i)
ℓ(i) , and computes the intermediate chaining values

h
(i)
1 , . . . , h

(i)
ℓ(i)−1 corresponding to the absorptions of the first ℓ(i) − 1 blocks, exactly as in

Figure 3, and it proceeds identical to B of the proof of Theorem 1, using the same decision
set J (i) and the same collision derivation.

PRF Adversary C. We construct a RK-PRF adversary C for Csub[F ] under key deriving
function set Φsub[G] as follows. Adversary C has access to either Csub[F ]RK(K,·) or a family
of random functions (Rm,n)(·), and it runs A as an oracle. In fact, the adversary C behaves
very similar to C of the proof of Theorem 1: the only difference is in how it hides its own
oracle into the bigger evaluations of A. Whenever A makes a query M (i), C computes
padded message blocks

M
(i)
1 , . . . , M

(i)
ℓ(i) ←✂m(M (i)∥10−|M(i)|−1 mod m) .

It computes the intermediate chaining values h
(i)
1 , . . . , h

(i)
ℓ(i)−1 corresponding to the absorp-

tions of the first ℓ(i)− 1 blocks, exactly as in Figure 3. It queries (h(i)
ℓ(i)−1, M

(i)
ℓ(i)) to its own

oracle (Csub[F ]RK(K,·) or (Rm,n)(·)) and relays the response. At the end of the experiment,
A outputs a decision bit b ∈ {0, 1} and C relays this decision bit.

Conclusion of Proof. The conclusion is fairly identical to that of the proof of Theorem 1,
but the change towards relying on RK-PRF security is a bit subtle and we will state that
part explicitly here. Note that

Advprf
subMD(A)−Advrk-prf

Φsub[G],Csub[F ](C) =
(

Pr
(
1← AsubMDK

)
−Pr

(
1← CCsub[F ]RK(K,·)

) )
+

(
Pr

(
1← C(Rm,n)(·)

)
−Pr

(
1← AR∗,n

) )
.

(16)

By construction of C,

Pr
(
1← AsubMDK

)
= Pr

(
1← CCsub[F ]RK(K,·)

)
.

Furthermore, let the event col be as in the proof of Theorem 1. Clearly, as long as col does
not happen, also the other two probabilities are the same, and by the fundamental lemma
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of game-playing [BR06],

Pr
(

1← C(Rm,n)(·)
)
−Pr

(
1← AR∗,n

)
≤ Pr (col) . (17)

However, as before, col happening is equivalent to stating that |J (i)| > 0 for any i =
1, . . . , Q, and thus:

Pr (col) = Advcol
F (B) . (18)

Combining (16)–(18), we obtain

Advprf
subMD(A) ≤ Advcol

F (B) + Advrk-prf
Φsub[G],Csub[F ](C) .

The complexities of B and C are as stated in the theorem environment.

3.2.2 Extension to Suffix Blinded Merkle-Damgård with Permutation

As in Section 3.1, we can extend subMD to the case the underlying hash function construc-
tion is Merkle-Damgård with Permutation (MDP) [HPY07]. This leads to the following
construction:

subMDP(K, M) = IH
(

π
(
G

(
K, IH (IV , M1, . . . , Mℓ−1)

))
, Mℓ

)
, (19)

where M1, . . . , Mℓ ←✂10
m (M).

The result of Theorem 2 immediately carries over to this construction, because for
subMDP the function π can be integrated into G.

3.2.3 Impact of Related-Key PRF Security Term

The impact of the security of G, i.e., the impact of δ and ε, on the bound is implicit in the
term Advrk-prf

Φsub[G],Csub[F ](C). Similar to Bellare and Kohno showed [BK03, Theorem 1], we
can make it explicit by considering the ideal model where F is a random function and the
adversary can make T queries to it:

Advi-rk-prf
Φ,C[F ](A) = Pr

(
1← AC[F ]RK(K,·),F

)
−Pr

(
1← A(Rm′,n)(·),F

)
, (20)

where F
$←− func(n + m, n), K

$←− {0, 1}k, and (Rm′,n)(·)
$←− func(m′, n)|Φ|.

Proposition 1. Let k, m, n ∈ N and δ, ε ∈ [0, 1]. Let G : {0, 1}k × {0, 1}n → {0, 1}n be a
function that is δ-uniform and ε-universal. For any adversary C with construction query
complexity Q of total length S bits and primitive query complexity T ,

Advi-rk-prf
Φsub[G],Csub[F ](C) ≤ QTδ +

(
Q

2

)
ε .

Proof. The proof is based on [BK03, Theorem 1] but then in the language of G being a
hash function family. Consider any adversary C that has access to either Csub[F ]RK(K,·)
or a family of random functions (Rm,n)(·), and it can make a total amount of Q queries.
In addition, it has access to F and it can make T queries.

Denote by col the event that there are two evaluations of Csub[F ]RK(K,·) for different
queries X, X ′ such that G(K, X) = G(K, X ′). In addition, denote by guess the event that
there is an evaluation of Csub[F ]RK(K,·) for a query X and an evaluation of F for a query
Y such that G(K, X) = Y . Clearly, as long as col and guess do not happen, evaluations
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of Csub[F ]RK(K,·) are perfectly indistinguishable from (Rm,n)(·), and by the fundamental
lemma of game-playing [BR06],

Advi-rk-prf
Φsub[G],Csub[F ](C) ≤ Pr (col) + Pr (guess) . (21)

As the adversary makes Q construction queries and T primitive queries, we have that
Pr (col) ≤

(
Q
2
)
ε and Pr (guess) ≤ QTδ.

A similar bound can be derived in the ideal cipher model where F is assumed to be
a blockcipher-based compression function such as Davies-Meyer [MOI90,PGV93]. This
can be done by re-performing a security proof of Davies-Meyer [BRS02,BRSS10] with as
additional bad events the events col and guess of Proposition 1. These ideal model analyses
would, however, give no guarantees in case F is instantiated using, for example, one of the
SHA-1 or SHA-2 compression functions [Nat15a]. We would like to stress, however, that
this step, i.e., the term Advrk-prf

Φsub[G],Csub[F ](C) in Theorem 2, is admittedly a weak step in
the composition. In fact, the adversary A against subMD cannot freely choose the key
relation as it is defined by the last keyless chaining value hℓ−1, whereas C against Csub[F ]
can.

4 Leakage Resilience of Constructions
We will investigate the security of sukMD and subMD in the leaky setting. Before
doing so, we remark that it is fairly straightforward to prove that the constructions
are leakage resilient, provided a strong enough model is adopted. In particular, if we
assume that the last evaluation of F is assumed to be leak-free (a concept known as
leveled implementations [PSV15]), the original security result for sukMD of Theorem 1
immediately carries over to leakage resilience, and if we additionally assume that G is
leak-free, the same observation can be made for the security result for subMD of Theorem 2.
These assumptions would not be novel. In fact, various research works [BKP+16,BPPS17,
BKP+18, GSWY19, GPPS20, BGP+20, BGP+23] prove leakage resilience of cascaded
constructions where the first and/or last cryptographic primitive enjoys stronger leakage
protection and is thus assumed to be leak-free. We would like to avoid this rather strong
restriction if not strictly necessary, and therefore, we will not impose it on F . We will make
a comparable assumption on just G, which we believe is reasonable: in our constructions
G can be a cryptographically weaker primitive than F , and this would possibly make
it cheaper to apply strong protection on. This reasoning was also used in the design of
various rekeying schemes [AB00,Bor01,MSGR10,MPR+11,DEMM14,DKM+15,Men20]
and in the leakage resilience of SuKS [DM19b].

The rest of this section is outlined as follows. First, we discuss the model of leakage
resilient PRFs that we adopt in this work in Section 4.1. We elaborate on the assumption
of leak-freeness of G in Section 4.2. Then, we investigate the leakage resilience of sukMD
in Section 4.3 and that of subMD in Section 4.4.

4.1 Leakage Resilient PRF Security
We will expand the notion of PRF security of Section 2.3 in the setting of non-adaptive
L-resilience of Dodis and Pietrzak [DP10], where the adversary receives leakage under any
leakage function L ∈ L applied on the data dealt with in the construction. In this security
model, the adversary gets access to a leak-free version of the construction that it has to
distinguish from random, just as in PRF security of Section 2.3, but it additionally gets
access to a leaky version in both worlds, and it may use this oracle to gain additional
knowledge [Pie09,YSPY10,FPS12,SPY+10,DP10,BMOS17]. The idea of this model is
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that, even with certain leakage already obtained, new evaluations of the construction are
indistinguishable from random.

We remark that the same model was also used in the analysis of the duplex construc-
tion [DM19a] and SuKS by Dobraunig and Mennink [DM19b], with a crucial difference
that their analysis was in the ideal permutation model. This model simplifies in the sense
that (i) the leakage functions are by default independent of the random primitive and (ii)
this primitive itself always generates a sufficient level of randomness so one does not have
to rely on the HILL-pseudoentropy approach [HILL99,HLR07] (see also [DM19a, Section
4.1]). These advantages would have also applied in our setting if we had opted to perform
security analysis under the assumption that F is a random function. Still, it turns out
that for our construction the non-adaptive model of Dodis and Pietrzak [DP10] works.
The reason is that, for each evaluation of subMD/sukMD, the function F is only evaluated
once per query on secret input (this was in fact the whole point of the design) and this
conceptually simplifies the leakage analysis.

In detail, let k, m, n ∈ N such that k ≤ min{m, n}, m′ ∈ N ∪ {∗}, and let λ, λ′ ∈ N.
Let C[F ] be either the suffix keyed or suffix blinded Merkle-Damgård construction from
Section 3 that internally uses a function F : {0, 1}n × {0, 1}m → {0, 1}n and, in the case
of subMD, additionally a function G : {0, 1}k × {0, 1}n → {0, 1}n. (The usage of G is
not made explicit in “C[F ]” as we do not require cryptographic properties of G.) Let
LF = {LF : {0, 1}n×{0, 1}m×{0, 1}n → {0, 1}λ} be a fixed leakage set that consists of all
allowed leakage functions on F and LG = {LG : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}λ′} be
a fixed leakage set that consists of all allowed leakage functions on G. Write L = LF ×LG.
For any L = (LF , LG) ∈ L, we define by [C[F ]K ]L an evaluation of C[F ]K that leaks
LF (h, M, h′) for any evaluation of F and LG(K, h, h′) for any evaluation G. To make it
explicit,

• If C = sukMD, any evaluation of [C[F ]K ]L leaks LF (hℓ−1, M̄ℓ∥10∗∥K, h) of the last
evaluation of F in Figure 2 (the function G is not used and LG is simply ignored);

• If C = subMD, any evaluation of [C[F ]K ]L leaks LG(K, hℓ−1, G(K, hℓ−1)) and
LF (G(K, hℓ−1), Mℓ, h) of the last evaluations of G and F in Figure 3.

Note that these leakage functions LF and LG are deterministic, and whenever the same
input is given, the same leakage is responded.

Now, the non-adaptive leakage resilient PRF (NALR-PRF) security of C[F ] against an
adversary A is defined as

Advnalr-prf
C[F ] (A) = max

L∈L
Pr

(
1← A[C[F ]K ]L,C[F ]K

)
−Pr

(
1← A[C[F ]K ]L,Rm′,n

)
, (22)

where K
$←− {0, 1}k and Rm′,n

$←− func(m′, n). The adversary is never allowed to repeat a
leaky oracle query to its leak-free oracle and vice versa. We say that C[F ] is a secure leakage
resilient pseudorandom function if Advnalr-prf

C[F ] (A) is sufficiently small for any adversary A
with a certain query complexity Q of total length S bits and time complexity T .

Likewise, the non-adaptive leakage resilient related-key PRF (NALR-RK-PRF) security
of C[F ] against an adversary A is defined as

Advnalr-rk-prf
Φ,C[F ] (A) =

Pr
(

1← A[C[F ]RK(K,·)]L
,C[F ]RK(K,·)

)
−Pr

(
1← A[C[F ]RK(K,·)]L

,(Rm′,n)(·)
)

, (23)

where K
$←− {0, 1}k and (Rm′,n)(·)

$←− func(m′, n)|Φ|. The adversary is never allowed to
repeat a leaky oracle query to its leak-free oracle and vice versa. We say that C[F ] is a
secure leakage resilient related-key pseudorandom function under key derivation function
set Φ if Advnalr-rk-prf

Φ,C[F ] (A) is sufficiently small for any adversary A with a certain query
complexity Q of total length S bits and time complexity T .
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4.2 Leak-Free Uniform and Universal Hashing
We will assume that G is not only δ-uniform and ε-universal in the native way, but also
that it is leak-free, i.e., even under internal leakage. Stated differently, this definition
implies that for any leakage function LG ∈ LG, and any X, X ′ ∈ {0, 1}m and Y ∈ {0, 1}n,

Pr
(
G(K, X) = Y | {LG(K, Z, G(K, Z))}Z∈{0,1}m

)
≤ δ ,

Pr
(
G(K, X) = G(K, X ′) | {LG(K, Z, G(K, Z))}Z∈{0,1}m

)
≤ ε ,

where K
$←− {0, 1}k. We remark that the condition that the function must be leak-free

over any possible early evaluation of G on Z is quite generous.
However, just like in Dobraunig and Mennink [DM19b], the situation is slightly more

complex in that a surrounding function (in our case F ) may leak information about the
output data of G. Indeed, in our evaluations of subMD the secret value coming out of G is
fed into F , possibly for different values of M̄ℓ (see Figure 3) and this affects the uniformity
of G. In detail, we require that for any leakage function LG ∈ LG, and auxiliary leakage
function Laux : {0, 1}n → {0, 1}µ (for some µ), and any X, X ′ ∈ {0, 1}m and Y ∈ {0, 1}n,

Pr
(
G(K, X) = Y | {LG(K, Z, G(K, Z))}Z∈{0,1}m ∧ Laux(G(K, X))

)
≤ 2µδ ,

Pr
(
G(K, X) = G(K, X ′) | {LG(K, Z, G(K, Z))}Z∈{0,1}m

)
≤ ε ,

where K
$←− {0, 1}k. The leakage function Laux is supposed to capture external leakage

coming from F .

4.3 Leakage Resilience of Suffix Keyed Merkle-Damgård
It turns out that sukMD does not achieve leakage resilience in the security model of
Section 4.1. The core reason is that a side-channel adversary can potentially use the
message portion in the last padded block (i.e., M̄ℓ of Figure 2) to manipulate the data that
LF leaks about the secret key K. For example, even if λ = 1 we can define the evaluation

LF (hℓ−1, M̄ℓ∥10∗∥K, h)

to interpret the first log2(k) bits of M̄ℓ as an encoding of a key index ι and to reveal the
ιth bit of K. However, even if we would adapt the padding in such a way that M̄ℓ is
always of size 0, the values hℓ−1 are sufficiently different and LF can be constructed in
such a way that it leaks the entire key K in O(k) queries. We will describe this attack
against the leakage resilience in below proposition.

Proposition 2. Let k, m, n ∈ N, and let λ = 1. Let F : {0, 1}n × {0, 1}m → {0, 1}n be a
compression function. Consider the suffix keyed Merkle-Damgård construction sukMD of
(7). There exists an adversary A with construction query complexity Q = αk(ln(k) + 1) + 1
of total length S ≤ mn bits and time complexity T = O(TF ), where TF is the time to
evaluate the function F , such that

Advnalr-prf
sukMD (A) ≥ (1− 1/α) · (1− 1/2n) .

Proof. Define the following leakage function:

LF (hℓ−1, 0m−k∥K, h)

(explicitly described in the context of sukMD with zero-length last message portion M̄ℓ)
to interpret the first log2(k) bits of hℓ−1 as an encoding of a key index ι and to reveal the
ιth bit of K. The adversary now has to make different evaluations of [FK ]L for different
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messages to obtain hash values hℓ−1 to cover all possible encodings. This is the coupon
collector problem with k coupons. Denoting by A the required number of attempts, we have
that Ex(A) = k ·H(k) [ER61], where H(k) is the kth harmonic number. Due to Markov’s
bound, αEx(A) attempts are sufficient except with probability at most 1/α. Then, after
having obtained key candidate K⋆, a single evaluation of the challenge oracle (sukMDK

or R∗,n) for a new message M⋆ can be made and matched with an offline evaluation of
sukMDK⋆(M⋆). If the evaluations match, the adversary outputs 1, otherwise it outputs 0.
In fact, in the ideal world they only match with probability 1/2n and this yields the result.
To finally bound the number of queries that A makes, we use that H(k) ≤ ln(k) + 1.

The crucial design aspect of sukMD that makes the attack work is that the last
evaluation of F is on input of a state value hℓ−1 concatenated with key. The adversary
can know the state value hℓ−1 as it can compute it offline, but strictly seen this is not a
necessary requirement for the attack. From this observation, we can conclude that the
exact same attack would also work against the envelope construction that both prepends
and appends the key to the message [Tsu92] and its related HMAC (see Section 1).

4.4 Leakage Resilience of Suffix Blinded Merkle-Damgård
Similar to the case of sukMD, in subMD the adversary can choose a leakage function LF

in a sufficiently smart way so that variance in Mℓ eventually leaks all information about
G(K, hℓ−1) in O(n) queries. We will describe this attack against the leakage resilience in
below proposition.

Proposition 3. Let k, m, n ∈ N and δ, ε ∈ [0, 1], and let λ, λ′ = 1. Let F : {0, 1}n ×
{0, 1}m → {0, 1}n be a compression function and G : {0, 1}k×{0, 1}n → {0, 1}n a function
that is δ-uniform and ε-universal. Consider the suffix blinded Merkle-Damgård construction
subMD of (13). There exists an adversary A with construction query complexity Q = n + 1
of total length S ≤ 2mn bits and time complexity T = O(TF ), where TF is the time to
evaluate the function F , such that

Advnalr-prf
subMD (A) ≥ 1− 1/2n .

Proof. Define the following leakage function:

LF (G(K, hℓ−1), Mℓ, h)

to interpret the first log2(k) bits of Mℓ as an encoding of a secret state index ι and to reveal
the ιth bit of G(K, hℓ−1). After n evaluations of [subMDK ]L for messages consisting of the
first ℓ− 1 blocks but a differing Mℓ, the adversary obtains G(K, hℓ−1). Then, after having
obtained state candidate h⋆ = G(K, hℓ−1), a single evaluation of the challenge oracle
(subMDK or R∗,n) for a new message with the identical first ℓ− 1 blocks but yet another
last padded block Mℓ can be made and matched with an offline evaluation of F (h⋆, Mℓ).
If the evaluations match, the adversary outputs 1, otherwise it outputs 0. In fact, in the
ideal world they only match with probability 1/2n and this yields the result.

On the upside, by adapting the padding such that Mℓ is a constant (e.g., the zero-
string), the attack of Proposition 3 is mitigated and we can actually prove that subMD is
leakage resilient under the assumption that G is leak-free (cf., Section 4.2). As a matter of
fact, this change simplifies the description of (13) to the simpler

zsubMD(K, M) = IH
(

G
(
K, IH (IV , ✂10

m (M))
)
, 0m

)
, (24)

where the prefix z refers to the zero-padding of the last block. This is the construction we
consider in below leakage resilience result.
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Theorem 3. Let k, m, n ∈ N and δ, ε ∈ [0, 1], and let λ, λ′ ∈ N. Let F : {0, 1}n×{0, 1}m →
{0, 1}n be a compression function and G : {0, 1}k × {0, 1}n → {0, 1}n a leak-free function
that is δ-uniform and ε-universal. Consider the zero-padded suffix blinded Merkle-Damgård
construction zsubMD of (24). For any adversary A with construction query complexity Q
of total length S bits and time complexity T ,

Advnalr-prf
zsubMD(A) ≤ Advcol

F (B) + Advnalr-rk-prf
Φsub[G],Csub[F ](C) ,

for some adversary B that runs in time at most T + O(TF S) and C that makes at most Q
queries, all for the same data block 0m, and runs in time at most T + O(TF S), where TF

is the time to evaluate the function F .

Proof. The proof is identical to that of Theorem 2, as the leakage is encapsulated within
the underlying component Advnalr-rk-prf

Φsub[G],Csub[F ](C).

We remark that the same reduction applies to zsubMDP, which would be defined as
subMDP of (19) but with zero-padding of the last block.

Just like in the black-box setting in Section 3.2, we can derive a bound in the ideal
function model to more precisely describe the impact of δ, ε, and µ. The leakage resilience
security model likewise carries over to the ideal model where F is a random function and
the adversary can make T queries to it:

Advi-nalr-rk-prf
Φ,C[F ] (A) =

Pr
(

1← A[C[F ]RK(K,·)]L
,C[F ]RK(K,·),F

)
−Pr

(
1← A[C[F ]RK(K,·)]L

,(Rm′,n)(·),F
)

, (25)

where F
$←− func(n + m, n), K

$←− {0, 1}k, and (Rm′,n)(·)
$←− func(m′, n)|Φ|.

Proposition 4. Let k, m, n ∈ N and δ, ε ∈ [0, 1], and let λ, λ′ ∈ N. Let G : {0, 1}k ×
{0, 1}n → {0, 1}n a leak-free function that is δ-uniform and ε-universal. For any adversary
C with construction query complexity Q, all for the same data block 0m, and primitive
query complexity T ,

Advi-nalr-rk-prf
Φsub[G],Csub[F ](C) ≤ 2λQTδ +

(
Q

2

)
ε .

Proof. The proof is identical to that of Proposition 1, with the difference that leakage
coming from F may influence the event guess. In fact, for any evaluation G(K, X) in a
construction query, the adversary learns at most λ bits of the resulting value through
leakage from F , because C is restricted to a single data block 0m, and this scales Pr (guess)
by a factor 2λ.

The comments after Proposition 1 regarding the meaning of this result for actual
instantiations applies here as well.

5 Conclusion
In this work, we provided a – to the best of our knowledge – first in-depth analysis of
how to key the Merkle-Damgård construction at the suffix, by introducing and analyzing
two constructions: suffix keyed Merkle-Damgård and suffix blinded Merkle-Damgård. In
detail, we proved that both constructions are PRF secure if the underlying compression
function is collision resistant and (RK-)PRF secure. We also demonstrated how these
results generalize to suffix keying or suffix blinding the Merkle-Damgård with Permutation
construction. We admit, though, that the constructions are vulnerable to the offline
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collision attack [PvO95], something that would not apply to (also) prepending the key, as
done in the envelope construction or HMAC .

Having said that, we did demonstrate that there is some benefit in simply suffix keying
over enveloping or HMAC . In particular, inspired by earlier findings in permutation-based
authentication [DM19b,BM24], we also investigated the resistance of these constructions
against side-channel adversaries, and concluded that with an appropriate padding, suffix
blinded Merkle-Damgård achieves leakage resilience, similarly to how SuKS did [DM19b]
and unlike to suffix keyed Merkle-Damgård, enveloping, or HMAC . However, this result
on adapted suffix blinded Merkle-Damgård requires the key blinding function G to be leak-
free. In their leakage resilience analysis of SuKS , the authors suggested [DM19b, Section
6.2] to instantiate the function G with a leakage resilient duplex construction [DM19a],
an approach that was also adopted by the NIST lightweight competition finalist ISAP
v2 [DEM+17,DEM+20,DEM+21]. This would be an illogical choice for G in the context
of the suffix blinded Merkle-Damgård construction, because one could then better resort
to sponge-based message authentication at once. A more logical choice for G in suffix
blinded Merkle-Damgård would be to base it on 2PRG [YSPY10], though schemes with
weaker security may work as well. Recall that, if leakage resilience is no concern, G can be
a simple XOR (cf., Section 2.1).

We remark that our constructions are defined for the case that k ≤ min{m, n} only.
Note that the assumption k ≤ n is reasonable as we typically get birthday bound security
in n anyway. Furthermore, for typical hash functions such as the SHA-2 family [Nat15a],
n ≤ m (see footnote 6). That said, in the theoretical case that the key would be absorbed
in multiple rounds (i.e., m < k), the subtleties as outlined in the first paragraph of
Section 3.1 may apply: a straightforward bounding would result in a PRF security term of
the underlying compression function with m-bit key, and one can only get k-bit security
by grouping adjacent PRFs or by performing an ideal model proof as described in footnote
5. A comparable issue was seen in the analysis of HMAC as a dual-PRF [BBGS23], where
they key is cut into pieces and the subsequent PRFs are treated separately.

We finally conclude by stressing that we would not advocate for the use of plain
Merkle-Damgård-based designs for message authentication: instead, it is more advisable
to use a hash function whose mode is indifferentiable from a random oracle, such as the
Merkle-Damgård with permutation (MDP) construction [HPY07, Hir21] or the sponge
construction [BDPV07,BDPV11a].
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