
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 4, pp. 249–286. DOI:10.46586/tosc.v2024.i4.249-286

Permutation-Based Hash Chains with Application
to Password Hashing

Charlotte Lefevre and Bart Mennink

Digital Security Group, Radboud University, Nijmegen, The Netherlands
charlotte.lefevre@ru.nl, b.mennink@cs.ru.nl

Abstract. Hash chain based password systems are a useful way to guarantee au-
thentication with one-time passwords. The core idea dates back to Lamport, and is
specified in RFC 1760 as S/Key. At CCS 2017, Kogan et al. introduced T/Key, an
improved password system where one-time passwords are only valid for a limited time
period. They proved security of their construction in the random oracle model under
a basic modeling of the adversary. In this work, we make various advances in the
analysis and instantiation of hash chain based password systems. Firstly, we describe
a slight abstraction called U/Key that allows for more flexibility in the instantiation
and analysis, and we develop a security model that refines the adversarial strength
into offline and online complexity, that can be used beyond the random oracle model,
and that allows to argue multi-user security directly. Secondly, we derive a new
security proof of U/Key in the random oracle model, as well as dedicated and tighter
security proofs of U/Key instantiated with a sponge construction and a truncated per-
mutation. These dedicated security proofs, in turn, solve a problem of understanding
the preimage resistance of a cascaded evaluation of the sponge construction. When
applied to T/Key, these results improve significantly over the earlier results: whereas
the originally suggested instantiation using SHA-256 uses a compression function
that maps 768 bits into 256 bits, with a truncated permutation construction one can
generically achieve 128 bits of security already with a permutation of size 256 bits.
Keywords: one-time passwords · hash chain · T/Key · U/Key · security model ·
sponge · truncated permutation

1 Introduction
The far majority of internet services rely on passwords for authentication. However,
despite their broad usage, they introduce significant security weaknesses. For example,
major security problems have appeared in the context of static passwords over the last
years. These problems have lead the more security-sensitive services to move to two-factor
authentication, where an additional device, app, or something else is used for the user to
authenticate themselves. The FIDO Alliance has made significant efforts to standardize
and promote secure authentication [FID23].

However, in certain cases, two-factor authentication is not convenient, e.g., it takes
more time and one may have to rely on additional physical devices, and in these cases,
one-time password hash chains offer a convenient alternative solution. In a nutshell, the
core idea of a hash chain, which dates back to Lamport [Lam81] and is specified in an
RFC as S/Key [Hal95], is the following. Let h : {0, 1}n → {0, 1}n be a cryptographic
hash function. As initialization, the client generates a random password x of n bits, and
sends xK := hK(x) securely to the server, where hK is the K-fold evaluation of h. Then,
during authentication round k, for k ∈ {1, . . . , K}, the client sends xK−k := hK−k(x) to
the server, which verifies that xK−k is indeed a preimage of xK−k+1 through h. The server

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-09-01 Accepted: 2024-11-01 Published: 2024-12-18

https://doi.org/10.46586/tosc.v2024.i4.249-286
mailto:charlotte.lefevre@ru.nl
mailto:b.mennink@cs.ru.nl
http://creativecommons.org/licenses/by/4.0/

250 Permutation-Based Hash Chains with Application to Password Hashing

updates its stored value to xK−k. Although this construction is very simple, it suffers
from two main weaknesses: passwords remain valid indefinitely (at least, until the next
authentication round takes place), and the repeated iteration of the same one-way function
makes it weaker than a single iteration [BDD+17].

To address these limitations, Kogan et al. introduced a time-based one-time password
scheme named T/Key [KMB17]. T/Key solves the validity issue by including timestamps
in the iterated evaluations of h and the multi-iteration problem by using domain separation.
It is inspired by the TOTP (time-based one-time password) scheme [MMPR11], with crucial
difference that TOTP relies on a shared secret key whereas T/Key does not. In detail,
in T/Key the hash chain transition from password xK−k to xK−k+1 for k ∈ {1, . . . , K} is
computed as

xK−k+1 := h(⟨ctrK−k+1⟩t ∥ id ∥ xK−k) , (1)

where ⟨ctrk⟩t encodes injectively the timestamp, and id is a random salt used to avoid
pre-computation attacks. In other words, the initialization computes xK from a random x
as

xK := hid
K ◦ hid

K−1 ◦ · · · ◦ hid
1 (x) ,

where hid
k (·) := h(⟨ctrk⟩t ∥ id ∥ ·) for brevity. Kogan et al. proved that T/Key is a secure

hash chain based password system under the assumption that the hash function is a random
oracle [BR93]. In detail, assuming that h is a random oracle, the functions h1, . . . , hK

can be considered perfectly random and independent, and breaking the hash chain then
corresponds to inverting any point on the chain. An adversary can only succeed in this
with probability at most approximately

2q + 2K

2n
, (2)

where q is the number of random oracle queries and n the output size of the random oracle.
However, the security model in which the result (2) was obtained is rather basic, and

in particular does not accurately capture the adversarial power. Specifically, two issues
arise: (i) the model does not refactor the adversarial complexities into offline and online
time, and (ii) it does not consider the multi-user setting. The former issue is particularly
relevant in the context of T/Key where time frames are rather short — the developers
suggest time frames of 30 seconds. Short time frames mean that the adversary can only
make a limited amount of “live” authenticity attempts after it has learned the value to
target, but it has had a much larger pre-computation phase where it could have made a
retrospectively lucky hash function evaluation. The latter issue on the multi-user setting
is important as T/Key would not be used in isolation but rather by thousands of users at
the same time. In addition, dedicated multi-user analysis (as opposed to using a generic
single-user to multi-user reduction [Bih02, BBM00]) typically allows for more detailed
security bounds, and thus, potentially, a longer lifetime of hash chains.

On top of this, the result (2) only holds in the random oracle model. In order to
then use T/Key (or any other hash chain based system), one first has to instantiate
the random oracle with an actual hash function. In detail, if one would instantiate the
random oracle as a chop-Merkle-Damgård construction [Mer89, Dam89, CDMP05] (used in
SHA-384, SHA-512, SHA-512/224, and SHA-512/256) or a sponge construction [BDPV07]
(used in SHA3-{224,256,384,512}, SHAKE128, and SHAKE256), it is possible to rely on
the indifferentiability security level [MRH04, CDMP05] of said constructions [CDMP05,
CN08, BDPV08], which implies that the constructions “behave like” random oracles,1
but these analyses are not tailored towards the current use case: they do not consider

1Refer to Ristenpart et al. [RSS11] for limitations of the indifferentiability framework.

Charlotte Lefevre and Bart Mennink 251

different types of attack phases and different users at the same time. Note that Kogan
et al. instantiate T/Key with SHA-256, with the output truncated to 130 bits, de facto
making it a chop-Merkle-Damgård construction.

1.1 Universal Construction U/Key and Generalized Model
We consider a slight abstraction of T/Key, which applies to any hash chain where a
transition from one password to the next one is computed using

h(⟨ctrk⟩t ∥ id ∥ x) ,

where ⟨ctrk⟩t encodes injectively a counter or timestamp, and id is a random salt (identical
throughout the entire hash chain) used to avoid pre-computation attacks. For brevity,
we denote this slightly more universal hash chain based password system by U/Key. A
detailed formalism of the construction is given in Section 3.1.

We then introduce in Section 3.2 a new security model for hash chain based password
systems of this type. By design of U/Key, this model formalizes the release pattern unique
to hash chain based password systems, where the adversary is successively given elements
from a chain, and has a limited number of queries to invert each of them. In addition, the
model does not restrict itself to the random oracle model; to the contrary, h can be any
hash function construction based on an idealized underlying primitive. This, in particular,
makes the model directly applicable to popular hash function constructions such as chop-
Merkle-Damgård, Merkle-Damgård with a prefix-free padding [Mer89, Dam89, CDMP05],
and the sponge [BDPV07], but also any other construction which as a hash function is
not indifferentiable from a random oracle. (As a matter of fact, the construction that we
consider in Section 5.1 is, for some parameter set, differentiable, while still maintaining a
negligible adversary success probability.)

The model also allows for a security analysis in a more fine-grained modeling of the
adversary than before: the model refactors the adversarial complexity into offline queries
and online queries, a strategy previously explored in a general setting by Ghoshal and
Tessaro [GT23]. In addition, it is defined in the multi-user setting. With these refinements,
our model is a strict generalization of the model of Kogan et al. [KMB17].

1.2 Refined Analysis of U/Key
Having settled the universal construction U/Key and the novel security model, we perform
an updated analysis of hash chain based password systems fitting to the U/Key specification
in the random oracle model, thus covering more fine-grained adversaries. This involves
analyzing cascades of random oracles in a complex setting, notably accounting for the
online and offline phases and the multi-user setting. We start with U/Key in the random
oracle model in Section 4.1 and prove that it is secure up to a bound of the order

O
(

M

2s
· qoff

2n
+ max

{
M

2s
; 1
}
· qon

2n

)
, (3)

where n is the length of the passwords, M is the number of users, s the size of the salts,
and qoff and qon denote respectively the number of offline and online queries. Most notably,
this bound indicates that in the multi-user setting, security degrades (i) proportionally
to the number of users regarding the offline phase and (ii) proportionally to max

{
M
2s , 1

}
regarding the online phase. A technical difficulty in the proof is caused by the fact that a
special treatment is needed on whether an earlier offline query is “useful” later on; this
treatment differs depending on the number of users.

Next, in Section 4.3 we investigate the implication of this result in case the random
oracle is instantiated with a hash function construction that is indifferentiable from a

252 Permutation-Based Hash Chains with Application to Password Hashing

random oracle in the framework of Maurer et al. [MRH04] and Coron et al. [CDMP05]
(see Section 2.3). In these analyses, we focus on a total query complexity q = qoff + qon.

Merkle-Damgård. First, in Section 4.3.1 we compose the hash chain based password
systems with the Merkle-Damgård construction [Mer89, Dam89], remarking that in the
context of U/Key, the inputs to the Merkle-Damgård construction are prefix-free, which
gives a bound of the order [CDMP05]

O
(

q

2n
+ q2

2b

)
,

where b denotes the output size of the compression function.

Sponges. Then, in Section 4.3.2, we analyze the security of U/Key when the construction
is instantiated with a sponge [BDPV08], and we obtain a bound of the order

O
(

q

2n
+ q2

2c

)
,

where c denotes the capacity. This result is particularly interesting because SHA-3 as well
as the NIST Lightweight Cryptography winner Ascon [DEMS21a, DEMS21b] are based
on the sponge construction.

Note that this bound implies that security cannot be guaranteed beyond half of the
permutation size. However, the security game underlying the security of U/Key is in
fact a complexified variant of preimage resistance, and it is known that the preimage
resistance of the sponge can, in fact, significantly surpass c/2 bits of security [LM22].
These two observations suggest that the above bounding is lossy. Inspired by this, we
derive in Section 5 a dedicated security proof. The complexity of this proof arises from
the simultaneous presence of multiple chaining values that can be inverted. Additionally,
due to the sponge evaluating the digests in multiple rounds, accounting for the release
pattern dictated by U/Key becomes markedly difficult. As a matter of fact, the security
proof may be considered of independent interest, as internally it solves the problem of
understanding the preimage resistance of a cascaded evaluation of the sponge construction.
In the single-user setting, restricted to the simpler T/Key, we derive a bound of the order

O

(
Kℓ(qoff + qon)

2n
+ Kℓ2(qoff + qon)

2c
+ min

{
ℓqon

2n−r
,

(qoff + qon)qon

2c

})
, (4)

where r = b − c, and ℓ := ⌈n
r ⌉. Our analysis applies not only to the native sponge

construction, but also to an optimization of the sponge in the context of U/Key. In this
optimization, the state of the sponge is initialized directly with the counter and the salt,
which allows to reduce the number of permutation calls required during the absorption
phase (see Section 5.1 for more details). Moreover, our proof is modular and can be easily
extended to any keyed construction which has been proven to be indistinguishable from a
random function.

Truncated Permutation. Looking at these sponge functions in detail, it can be observed
that in the context of hash chains, they can be evaluated very efficiently. For example,
a typical instantiation of T/Key operates on counters of 32 bits, salts of 80 bits, and
a password of 130 bits [KMB17], thus requiring a hash function from 242 to 130 bits.
SHA-3 internally uses a 1600-bit permutation, and processes messages and squeezes digests
1600− 2k bits at a time, where k is the security level. This means that if SHA-3 (any of
the four instances) is used in the T/Key hash chain, a hash function evaluation simply

Charlotte Lefevre and Bart Mennink 253

consists of a truncated permutation evaluation. With this in mind, we additionally consider
the security of U/Key if the random oracle is instantiated with a truncated permutation
in Section 4.3.3. This construction is also proven to be indifferentiable from a random
oracle [CLL19], and we obtain a bound of the order

O
(

q

2n
+ q3/2

2 2b−n
2

+ q

2b−(n+t)

)
, (5)

where b denotes the permutation size and t the counter size.
However, as before, indifferentiability composition is still a bit lossy, as the indifferen-

tiability analyses of these constructions have not been tailored towards the specific use case
of hash chains: in particular, the bound is expressed in the total query complexity q only.
Therefore, in Section 6, we take a closer look at U/Key using a truncated permutation and
derive a dedicated security proof. The proof is of a high level of technicality and contains
various subtleties, but on the upside, it is much better than the results obtained with
the more general sponge in (4), or by combining (3) with the indifferentiability bound of
truncation. In detail, we derive a bound of the order

O
(

Mqoff

2n+s
+ KMqoff

2b
+ max

{
M

2s
; 1
}
· qon

2n
+ max

{
KM

2n
; 1
}
· qon

2b−n

)
.

Concretely, if we consider counters of t = 32 bits, and a setting with less than M = 1012

users, then one can use permutations as small as b = 200 bits, while still having security
guaranteed up to 2100 and 2128 queries in the online and offline phases, respectively. This
improves significantly over the bound in (5), that cannot guarantee more than 84 bits of
security (even during the offline phase) in the single-user setting. Note that the obtained
security bound is better than that of U/Key instantiated with a (more general) sponge
construction, which is essentially caused by the fact that a hash function attacker has
fewer freedom in attacking a single truncated permutation than attacking the sponge.

1.3 Application
The results of U/Key in the random oracle model allow to derive more fine-grained bounds
that directly apply to the instantiation suggested by the designers of T/Key. More precisely,
Kogan et al. instantiate the hash function with SHA-256, which itself is based on the
Merkle-Damgård construction. However, given their parameter sets with counters of 32
bits, salts of 80 bits, and passwords of 130 bits, the 512-bit block size of SHA-256 allows
to process all data of a chaining value in a single compression function call. Thus, the
result from (3) applies, and suggests that the password size could be lowered to 100 bits,
providing 100 and 128 bits of security in respectively.

On the other side, U/Key with a small truncated permutation can offer efficiency
advantages over U/Key based on SHA-2. For instance, U/Key based on Keccak-f[200]
operates on a state of 200 bits. In that case, setting n = 100 and s = 68 provides 100 and
128 bits of security in the online and offline phases, respectively, as long as the number of
users stays below 240.

1.4 Outline
We present preliminaries in Section 2. The generalized hash chain based password system
U/Key that we consider in this work is formalized in Section 3.1 and the novel model
is presented in Section 3.2. The security of U/Key in the new model is derived in
Section 4: first, a new random oracle model result is derived in Section 4.1, and then
this result is combined with indifferentiability security results on (prefix-free) Merkle-
Damgård, the sponge, and a truncated permutation in Section 4.3. Sections 5 and 6

254 Permutation-Based Hash Chains with Application to Password Hashing

present improved dedicated security results on U/Key with a sponge and a truncated
permutation, respectively. Finally, Section 7 concludes.

2 Preliminaries
2.1 Notation
Let n, y ∈ N. We use {0, 1}n to denote the set of n-bit strings, and {0, 1}∗ to denote the
set of all binary strings of any length. Assuming y ≤ 2n − 1, ⟨y⟩n denotes the n-bit binary
representation of y. For b ∈ N, x ∈ {0, 1}b, truncn (x) denotes the n-bit string obtained by
taking the leftmost n bits of x. In some cases, we also use the notation outern(x) to refer
to the same string, but in a different context. The notation innerc(x) is used to denote
the c-bit string obtained by taking the rightmost c bits of x. If S is a finite set, x

$←− S
means that x is sampled uniformly at random from S. Given a, b ∈ N such that a ≤ b, the
notation Ja, bK refers to the set {a, a + 1, . . . , b}. When we mention a construction based
on a primitive, Prim denotes the set of all possible primitives. Finally, we use Perm(b) to
denote the set of permutations over b bits.

2.2 A Balls-and-Bins Result
In the proof, we use a slightly improved version of a balls-and-bins result of Choi et
al. [CLL19]. This result is formally stated in Lemma 1. The proof is in Appendix A for
completeness.

Lemma 1. Let N, R, n ∈ N be such that R divides N . Consider N balls in a bin, such
that for each r ∈ J1, RK, N

R balls have label “r”. Consider the experiments of sampling n

balls in the bin with replacement. For r ∈ J1, RK, let X(r) be the number of balls drawn
with label “r”. Then

E
(

max
r

X(r)
)
≤ 2n

R
+ 3 ln (R) + 4 .

The result also holds when the sampling is performed without replacement.

2.3 Indifferentiability
Indifferentiability was introduced by Maurer at al. [MRH04], and refined in the context
of hash functions by Coron et al. [CDMP05]. Indifferentiability is a distinguishing game
where the adversary has access to a public primitive P. The adversaries considered are
information-theoretic only, meaning that their complexities are measured solely in terms
of the queries made. Moreover, throughout this work, we assume without loss of generality
that the adversary never makes a query for which it already knows the answer. The
adversary has access to two oracles, one for construction queries, the other for primitive
queries. In the so-called “real world” (or WR for short), primitive queries give access to a
random primitive P, and construction queries to the considered construction H based on
P (denoted by HP). On the other hand, in the so-called “ideal world” (or WI for short),
the construction queries give access to a random oracle RO, and the primitive queries are
implemented by a simulator SRO. The indifferentiability advantage of an adversary A is
defined as follows:

Adviff
C (A) =

∣∣Pr
(
AWR = 1

)
−Pr

(
AWI = 1

)∣∣ .

Moreover, Adviff
C (q) denotes the maximum of Adviff

C (A), over all adversaries allowed to
make at most q queries.

Charlotte Lefevre and Bart Mennink 255

2.4 Preimage Resistance
The security game underlying U/Key (of Section 3.1) is a complexified variant of everywhere
preimage resistance, defined in Definition 1 [RS04].

Definition 1. Let H be a construction relying on a primitive P ∈ Prim, producing digests
of size n. The everywhere preimage resistance of H against an adversary A is defined as
follows:

AdvePre
H (A) = max

Z∈{0,1}n
Pr
(
P $←− Prim, M ← A(Z) : H(M) = Z

)
.

Moreover, AdvePre
H (q) denotes the supremum of AdvePre

H (A), over all adversaries allowed
to make at most q primitive queries.

3 Hash Chain Based Password System
The generic construction is described in Section 3.1 and the security model in Section 3.2.

3.1 Construction
We will consider a construction that is a bit more abstract than T/Key, which in turn was
already a generalization of S/Key. For brevity, we will dub our construction U/Key, where
U stands for “universal”. After the description, we will discuss in more detail how T/Key
fits this construction.

Let K, n, s, t be integers, and h : {0, 1}n+s+t → {0, 1}n a cryptographic hash function.
We will describe a hash chain based password system based on h, U/Key[h], with a chain
length of K, a password size of n bits, salts of s bits, and a counter over t bits. It is defined
through an initialization phase, a chain computation phase, and an authentication phase:

1. Initialization: the client draws a password x0
$←− {0, 1}n and a salt id

$←− {0, 1}s;

2. Chain computation: for k = 1, . . . , K, the client evaluates xk = hk (xk−1), where hk

is defined as follows:

hk(x) = h (⟨ctrk⟩t ∥ id ∥ x) ,

where ctrk is some counter value that may be specific to the actual system. After
this computation, the client sends id and xK to the server;

3. Authentication: if the client wants to authenticate at round k, and the last authenti-
cation was at round k′ > k,2 it sends the password xk to the server. The server on
its side retrieves the latest password it has stored, xk′ , and verifies if

hk′(hk′−1(· · · (hk+1(xk)) · · ·)) = xk′

holds. It updates the stored round to k and password to xk. Note that, depending
on the concrete underlying scheme, the counter k may need to be sent along with
the password xk. In the case of T/Key, there is a resynchronization in place based
on different successful attempts. This could be used as alternative solution.

Note that, for authentication, the client does not necessarily have to store the whole chain
on its side. Instead, it can opt to store certain “checkpoints” [KMB17], or perform an
efficient pebbling method [Sch16]. These approaches offer a trade-off between memory and
computation time required to evaluate the hashes.

2Typically, k′ = k + 1, but for a time-based system such as T/Key, this is not necessarily the case.

256 Permutation-Based Hash Chains with Application to Password Hashing

T/Key. The T/Key system [KMB17], specifically, is covered by above description of
U/Key with two refinements. First, upon initialization, the client takes the current
timestamp ti and takes as counter values ctrk = ti + K − k, and the value of ti is sent to
the server along with the salt id and the last chaining value xK . The chain is processed
in a pre-described time-based manner, where any transition happens each predetermined
period. This means that upon authentication the difference between k′ and k depends on
the time the user authenticated last.

For reference, the designers of T/Key suggest using this construction with the following
typical parameters:

K = 2× 106 , n = 130 , s = 80 , t = 32 .

Furthermore, each password is valid for 30 seconds (so the chain is reversed each 30
seconds).

3.2 Security Model

Algorithm 1: Security model for U/Key based on the construction H, itself
relying on a primitive P ∈ Prim. We write HP

k,m(x) := HP(⟨ctrk⟩t ∥ idm ∥ x) for
brevity.

1 Function SecGame
(
A,H, qoff , (qon,k)k∈J1,KK, M

)
2 P $←− Prim ;
3 OfflinePhase(A,P) ;
4 OnlinePhase(A,H,P) ;
5 Function OfflinePhase(A,P)
6 A is allowed to make at most qoff queries to P ;
7 Function OnlinePhase(A,H,P)
8 for m = 1, . . . , M do

/* consider M independent initializations */
idm, (x0,m, x1,m, . . . , xK,m)← U/Key[HP] ;

9 k ← K ;
10 A is given idm for all m ∈ J1, MK ;
11 while k > 0 do
12 A is given xk,m for all m ∈ J1, MK ;
13 A is allowed to make at most qon,k queries to P ;
14 PreimageGuess(A,H,P, xk,1, . . . , xk,M) ;
15 k = k − 1 ;
16 Function PreimageGuess(A,H,P, xk,1, . . . , xk,M)
17 A is allowed to submit y ∈ {0, 1}n and wins if there exists m ∈ J1, MK such

that HP
k,m(y) = xk,m ;

We will describe security of U/Key of Section 3.1. It will not be defined for a hash
function h but rather for a hash function construction H based on idealized primitive
P ∈ Prim: we denote this by U/Key[HP]. The security game is defined in Algorithm 1.
The attack game consists of two phases. In the first one, called the offline phase, the
adversary A is allowed to make pre-computation queries, which translates to A being
able to make at most qoff queries to P. In the second phase, called the online phase, the
adversary A has additional access to M ≥ 1 parallel runs of the construction, where each
hash chain has a length K. The online phase itself is subdivided into K rounds. For
k ∈ J1, KK, m ∈ J1, MK, let xk,m be the chaining value number k of user number m, and

Charlotte Lefevre and Bart Mennink 257

let HP
k,m(x) = HP(⟨ctrk⟩t ∥ idm ∥ x). At the beginning of round number k, all xk,m’s are

released to the adversary, which is then allowed to make qon,k queries to P . At the end of
the round, A may submit x ∈ {0, 1}n, and wins if x is a preimage of one of the xk,m by
HP

k,m. Without loss of generality, we assume that the adversary proposing x as a preimage
of xk,m has made all necessary primitive queries to evaluate HP

k,m(x). The total number
of online queries is denoted by qon :=

∑K
k=1 qon,k.

For simplicity, we assume that the initializations of all sessions are performed at the
same time, and so are the traversals through the chains. Note that in reality the offline
and online phases of the different users are not necessarily synchronized, as online queries
of one user could be made during the offline phase of another user. Thus, qoff represents
the maximum, over all users, of offline queries. Therefore, we believe that enforcing that
all users start at the same time in the model does not result in a loss of generality. We
define AdvU/Key[H]

(
qoff , (qon,k)k∈J1,KK, M

)
to be the maximum success probability in

SecGame(A,H, qoff , (qon,k)k∈J1,KK, M) of Algorithm 1, maximized over all adversaries A.
Note, when the security bound is independent on the way the online queries (qon,k)k are
distributed (which is the case for our random oracle model analysis and that of the truncated
permutation construction), we rather use the notation AdvU/Key[H] (qoff , qon, M).

Adversarial Resources. The adversary is bounded by a certain offline complexity qoff and
by online complexities qon,k for k ∈ J1, KK. Note that the offline complexity may be rather
high. The adversary can do pre-computations (possibly on more powerful computers), and
we would typically aim at around 128-bit security, which is the level of generic security
guaranteed by, e.g., SHA-256 or SHA3-256. This means that qoff may get as high as 2128.
(Of course, storage may then be a problem for the adversary; refer to Section 7.2 for further
discussion regarding this.)

The fine-grained definition of the online complexities allows for analyzing the hash
chain based system U/Key of Section 3.1 in full generality, noting that if a user leaves a big
gap between two authentication phases, the adversary has more time to attack the scheme
in that round. That said, for T/Key each period is of the same length, e.g., 30 seconds as
suggested by its designers. In this case, all online complexities qon,k are (roughly) identical.
A rough bound for the online complexities in U/Key can be derived from the computations
for the Bitcoin blockchain. It is estimated [Blo23] that currently all Bitcoin miners in total
perform 400× 1018 ≈ 268 SHA-256 evaluations per second. In particular, 2100 evaluations
would require more than 100 years of computation. Although this is a very rough upper
bound, in particular if a different hash function is selected, we can use it to upper bound
qon,k.

4 Random Oracle Results with U/Key

Given the novel security model with refined treatment of adversarial power, it makes sense
to have a look at U/Key based on a random oracle and to supersede the original security
result on T/Key in the new model. We do so in Section 4.1, with the proof in Section 4.2.
In this section, we also particularly elaborate on the impact of the split of adversarial
complexity into offline and online complexity.

Then, in Section 4.3 we investigate the meaning of the result if the random oracle is
instantiated with some well-established construction. In detail, we consider the instantiation
with (prefix-free) Merkle-Damgård in Section 4.3.1, with the sponge in Section 4.3.2, and
with the truncated permutation in Section 4.3.3.

258 Permutation-Based Hash Chains with Application to Password Hashing

4.1 U/Key Security in the New Model
In Theorem 1 we state the security of U/Key in the new security model when instantiated
with a random oracle.

Theorem 1. Let RO : {0, 1}n+s+t → {0, 1}n be a random oracle, and consider the hash
function HRO : {0, 1}n+s+t → {0, 1}n as HRO(x) = RO(x). Then, we have

AdvU/Key[H] (qoff , qon, M) ≤
(

2M

2s
+ 3s + 4

)(
min

{
2M

2s
; 1
}
· 2qoff

2n
+ 2qon

2n

)
.

The proof is given in Section 4.2.

Interpretation of the Bound. Remember that the total number of queries is given by
qoff + qon. If M ≤ 2s−1, the bound is of the order

O
(

M

2s
· qoff

2n
+ qon

2n

)
.

Thus in the multi-user setting, the offline phase displays a security loss proportional to
M , while there is no security loss for the online phase. This is explained by the fact that
in the offline phase, the adversary is not provided with the salts and must thus correctly
guess them. Increasing the number of users increases the adversary probability to make a
query with one correct salt by a factor of M . On the other hand, if M ≥ 2s−1, then the
bound is of the order

O
(

M

2s
·
(

qoff + qon

2n

))
.

Indeed, when M ≫ 2s, for a well-chosen adversarial strategy, then (almost) all queries
of the offline phase are expected to correspond to some existing salt. Moreover in this
setting, some salts are expected to collide, thus one query from the adversary can target
several chaining values at the same time, hence the factor of M

2s > 1.
The security bound allows for many different interpretations due to its flexibility in

the number of users and the number of offline and online queries. For example, for a
typical instantiation with qoff ≪ 2128, K = 221, and qon ≪ 2100, with a salt size s = 80
and password size n = 100, one can guarantee security as long as the number of users is
at most M ≤ 252. These results support the generic security of the instantiation by the
designers of T/Key with SHA-256 [KMB17], as one iteration of the compression function
suffices to process the salt, the counter, and the chaining value.

4.2 Proof of Theorem 1
For k ∈ J1, KK, m ∈ J1, MK, let xk,m be the chaining value number k of user number m
(x0,m denotes the root passwords). Without loss of generality, we assume that the salts are
drawn before the offline phase. We define a random variable Colls that determines how the
salts are colliding together. This variable is represented as a vector with M coordinates,
each element taking values in J1, MK. When two elements at indices i and j share the
same value, it means that the salts of users i and j collide. Fixing Colls determines the
number of distinct salts, that we will denote as M̃ . Conditioning on this variable does not
provide information about the randomness of the M̃ distinct salt values, except for the
fact that they are sampled without replacement. Moreover, let NCs be a random variable
counting the maximum number of colliding salts, i.e.,

NCs = max
id

#
{

m ∈ J1, MK
∣∣ idm = id

}
.

Charlotte Lefevre and Bart Mennink 259

In particular, the value of Colls determines the one of NCs. We can apply Lemma 1 with
N = R = 2s, n = M , and obtain

E (NCs) ≤ 2M

2s
+ 3s + 4 . (6)

Assume that the salts are colliding according to a certain colls ∈ (J1, MK)M . Fixing this
random variable fixes the number of distinct salts, that we denote by M̃ ≤M . Moreover,
let k ∈ J1, KK, and m̃ ∈ J1, M̃K. Define hk,m̃ to be h (⟨ctrk⟩t ∥ idm̃ ∥ ·), where idm̃ is the
m̃th distinct salt.

The adversary’s success in winning the security game relies on finding a preimage of
one of the chaining values, which can only be obtained through hk,m̃-queries. Since h
is a random oracle, having knowledge of other outputs that are not obtained through
hk,m̃-queries does not enhance the adversary’s probability of success. Therefore, such
queries are considered “useless". In particular, during the offline phase the adversary has
no access to the salts, thus it has to guess them, and whenever M ≪ 2s, this significantly
lowers the adversarial success probability. To capture this phenomenon, we use the random
variables Q

(k,m̃)
off which counts the number of useful hk,m̃-queries during the offline phase.

Moreover, let q
(k,m̃)
on be the number of hk,m̃-queries during the online phase. Note that

this quantity is not a random variable, since the adversary is given the salts during the
online phase. Moreover, we partition the offline (resp., online) queries according to the
counter value queried, i.e., q

(k)
off (resp., q

(k)
on) counts the number of queries of the form

h(⟨ctrk⟩t ∥ · ∥ ·). Finally, let

Q(k,m̃) = Q
(k,m̃)
off + q(k,m̃)

on . (7)

Then, it holds that

K∑
k=1

M̃∑
m=1

Q
(k,m̃)
off ≤

K∑
k=1

q
(k)
off ≤ qoff ,

K∑
k=1

M̃∑
m=1

q(k,m̃)
on ≤

K∑
k=1

q(k)
on ≤ qon ,

K∑
k=1

M̃∑
m=1

Q(k,m̃) ≤ qoff + qon . (8)

Furthermore, when M ≤ 2s−1, we have

E
(

Q
(k,m̃)
off

∣∣ Colls = colls
)
≤

q
(k)
off

2s −M
≤

2q
(k)
off

2s
. (9)

The adversary A wins the game whenever there exists k ∈ J1, KK, m̃ ∈ J1, M̃K such that
A found a preimage of one of the xk,mi

, where all mi’s have the same salt equal to the
m̃th distinct salt (corresponding thus to a hk,m̃-query). Denote this event by HITk,m̃. We
have

AdvU/Key[H] (qoff , qon, M) ≤
∑
colls

Pr

∨
k,m̃

HITk,m̃ ∧ Colls = colls


≤
∑
colls

M̃∑
m̃=1

K∑
k=1

Pr
(

HITk,m̃ ∧
∧

k′<k

¬HITk′,m̃ ∧ Colls = colls

)
︸ ︷︷ ︸

(10)

. (11)

260 Permutation-Based Hash Chains with Application to Password Hashing

Here, we introduce the condition
∧

k′<k ¬HITk′,m̃, since if an adversary hits an earlier
chaining value, it can set HITk,m̃ by making cascaded evaluations. Now, we can split (10)
according to the value of Q(k,m̃). Therefore,

(10) ≤ Pr (Colls = colls)
∑

q(k,m̃)

Pr
(

Q(k,m̃) = q(k,m̃) ∣∣ Colls = colls
)
×

Pr
(

HITk,m̃

∣∣ ∧
k′<k

¬HITk′,m̃ ∧ Colls = colls ∧Q(k,m̃) = q(k,m̃)

)
.

For a given colls, let ncs be the corresponding value of the random variable NCs. There
are two possibilities for the adversary to set the conditioned HITk,m̃:

• The adversary guesses one exact preimage, or in other words, makes a hk,m̃-query
with input xk−1,mi

, where user mi has the salt number m̃. In that case, since the
functions hk,m̃ are independent random oracles, each preimage is sampled uniformly
at random, and knowledge of the values xk′′,m for k′′ > k does not help the adversary.
One hk,m̃-query can target simultaneously at most ncs different chaining values.
Therefore, the conditioned probability of this case of HITk,m̃ is upper bounded by
ncsq(k,m̃)

2n ;

• The adversary finds a preimage, which is not the exact one. Again, one hk,m̃-query
can target simultaneously at most ncs different chaining values, and each new query
results in a uniformly random output. Thus, the conditioned probability of this case
of HITk,m̃ is upper bounded by ncsq(k,m̃)

2n .

Therefore,

(11) ≤
∑
colls

Pr (Colls = colls)×
M̃∑

m̃=1

K∑
k=1

∑
q(k,m̃)

Pr
(

Q(k,m̃) = q(k,m̃) ∣∣ Colls = colls
) 2ncsq(k,m̃)

2n

≤
∑
colls

Pr (Colls = colls)
M̃∑

m̃=1

K∑
k=1

2ncs

2n
E
(

Q(k,m̃) ∣∣ Colls = colls
)

≤
∑
colls

2ncs

2n
Pr (Colls = colls) E

 M̃∑
m̃=1

K∑
k=1

Q(k,m̃) ∣∣ Colls = colls

 . (12)

We derive two different upper bounds for the expectation. Both always hold, but the best
upper bound depends on the value of M

2s .

Case 1. This case will give the best bound when M ≤ 2s−1. From (7) and (9), we obtain

E
(

Q(k,m̃) ∣∣ Colls = colls
)
≤ q(k,m̃)

on +
2q

(k)
off

2s
.

Therefore, using (8),

E

 M̃∑
m̃=1

K∑
k=1

Q(k,m̃) ∣∣ Colls = colls

 ≤ qon + 2M

2s
qoff . (13)

Charlotte Lefevre and Bart Mennink 261

Case 2. This case will give the best upper bound when M ≥ 2s−1. In this setting, the
salts are expected to cover a large portion of the space {0, 1}s, therefore trying to count
the offline queries that are useful to the adversary does not give an improved probability.
We instead use (8) to obtain

E

 M̃∑
m̃=1

K∑
k=1

Q(k,m̃) ∣∣ Colls = colls

 ≤ qon + qoff . (14)

Conclusion. Combining (13) and (14) into (12) gives

AdvU/Key[H] (qoff , qon, M) ≤
∑
colls

2ncs

2n
·Pr (Colls = colls)

(
qon + min

{
2M

2s
; 1
}
· qoff

)
≤ 2

2n
· E (NCs) ·

(
qon + min

{
2M

2s
; 1
}
· qoff

)
.

Finally, we can use the bound for E (NCs) found in (6) to obtain

AdvU/Key[H] (qoff , qon, M) ≤
(

2M

2s
+ 3s + 4

)(
min

{
2M

2s
; 1
}
· 2qoff

2n
+ 2qon

2n

)
.

4.3 Composition With Indifferentiable Hash Functions
In this section we study the security of U/Key instantiated with several indifferentiable
hash function constructions in the single-user setting, i.e., if M = 1. Bounds in the multi-
user setting can be obtained by using generic single-user to multi-user reductions [Bih02,
BBM00], which result in multiplying all bounds by a factor of M . However, since our goal
is to have a first idea of the tightness of the bounds, for simplicity we only consider the
single-user setting.

If a hash function is indifferentiable from a random oracle, this means that it behaves as
such and that it can replace a random oracle in almost any practical use case. Andreeva et
al. [AMP10] made the composition explicit. Translated to our case, their reduction means
that given a hash function construction H, the advantage of the adversary in breaking the
security game from Algorithm 1 can be upper bounded as follows:

AdvU/Key[H] (qoff , qon, 1) ≤ AdvU/Key[RO] (qoff , qon, 1) + Adviff
H (qoff + qon) , (15)

where we abuse notation and use AdvU/Key[RO] (qoff , qon, 1) to refer to the advantage of
an adversary in breaking Algorithm 1 when the hash function is a random oracle. In
other words, this term is bounded in Theorem 1, and all we need to do is to obtain the
indifferentiability bound for the hash function construction H.

Admittedly, looking ahead, this generic reduction is not tight. The reason is that the
indifferentiability term Adviff

H (q) takes as security parameter the total number of primitive
evaluations q = qoff + qon rather than its separation into offline and online queries. This
already suggests that a direct analysis will likely give a better bound (and we will do
so in Sections 5 and 6). Yet, there is still value in investigating the guaranteed security
through composition, which we will do for (prefix-free) Merkle-Damgård in Section 4.3.1,
the sponge in Section 4.3.2, and truncated permutation in Section 4.3.3. However, as in
this reasoning the indifferentiability bounds will be the dominating factors anyway, we will
simplify the result of Theorem 1 and simply use that

AdvU/Key[RO] (qoff , qon, 1) = O
(q

2n

)
. (16)

262 Permutation-Based Hash Chains with Application to Password Hashing

4.3.1 Merkle-Damgård

Let b, u, n ∈ N such that n ≤ b. The Merkle-Damgård (or MD for short) construction
operates on top of a compression function F : {0, 1}u × {0, 1}b → {0, 1}b. The input
message M ∈ {0, 1}∗ is first injectively padded into u-bit blocks as m1 ∥ · · · ∥ mℓ. Let
IV ∈ {0, 1}b be a fixed initialization vector. Then, MD computes its output as

truncn (F (mℓ,F (mℓ−1,F (· · · F (m1, IV))))) .

When n is sufficiently small, the resulting construction (commonly named chop-MD) is
indifferentiable [CDMP05, CN08]. However, in the context of U/Key, the number of
compression function calls required for each chaining value remains unchanged, so that
the inputs to the MD construction form a prefix-free set. It was proven by Coron et
al. [CDMP05] that, as long as the inputs are padded in a prefix-free manner, the obtained
construction is indifferentiable up to bound

Adviff
PF-MD (q) = O

(
q2

2b

)
,

where b is the output length of the compression function. The obtained bound is at least
as good as that of chop-MD. From (15) and (16), we obtain that U/Key instantiated with
the MD construction achieves the following level of security:

AdvU/Key[ChopMD] (qoff , qon, 1) = O
(q

2n

)
+O

(
q2

2b

)
.

4.3.2 Sponge

Let b, c, r ∈ N such that b = c+r. The sponge construction operates on top of a permutation
P : {0, 1}b → {0, 1}b. The input message M ∈ {0, 1}∗ is first injectively padded into
r-bit blocks as m1 ∥ · · · ∥ mℓ′ , under the condition that the last block is non-zero. Let
IV ∈ {0, 1}b be a fixed initialization vector. The sponge absorbs its message blocks as

S = (mℓ′ ∥ 0c)⊕ P
(

(mℓ′−1 ∥ 0c)⊕ P
(
· · · ⊕ P ((m1 ∥ 0c)⊕ IV)

))
,

and squeezes its n-bit digest r bits at a time as
truncn

(
outerr(P(S)) ∥ outerr(P2(S)) ∥ · · · ∥ outerr(Pℓ(S))

)
,

where ℓ = ⌈n
r ⌉.

The sponge has been proven to be indifferentiable from a random oracle up to
bound [BDPV08]

Adviff
Sponge (q) = O

(
q2

2c

)
.

From (15) and (16), we obtain that U/Key instantiated with the sponge construction
achieves the following level of security:

AdvU/Key[Sponge] (qoff , qon, 1) = O
(q

2n

)
+O

(
q2

2c

)
.

In particular, one cannot have a better security than half of the permutation size.
With t = 32, and a security goal of 128 bits (thus n ≥ 128), in the single-user case the

minimal permutation size is 257 bits, but this requires at least 288 primitive evaluations
to compute one element on the chain as it processes with rate r = 1. Taking a slightly
larger primitive size, such as b = 320 of Ascon-Hash [DEMS21a, DEMS21b], allows for a
rate of r = 64 bits, and one requires 5 permutation calls per hash function evaluation (3
for absorbing, and 2 for squeezing). If we extend the analysis to multiple users and to
a salt of size 80 bits, the numbers scale to 368 primitive evaluations, or 4 + 2 primitive
evaluations, respectively.

Charlotte Lefevre and Bart Mennink 263

4.3.3 Truncated Permutation

As the hash function is typically used for relatively small data, one might instead consider
the truncated permutation construction. As we will see now, this significantly improves
the security bound.

Let b ∈ N such that b ≥ n + s + t. The truncated permutation construction operates
on top of a permutation P : {0, 1}b → {0, 1}b. Due to the condition that b ≥ n + s + t,
we can absorb all data in one permutation call. In detail, for an arbitrary message
M ∈ {0, 1}n+s+t, the truncated permutation computes its output as

truncn

(
P(M ∥ 0b−n−s−t)

)
.

Choi et al. [CLL19] showed that the truncated permutation construction for fixed salt (i.e.,
in the single-user setting) is indifferentiable from a random oracle up to bound

Adviff
TruncP (q) = O

(
q3/2

2 2b−n
2

+ q

2b−(n+t)

)
.

(In the multi-user setting, when there are multiple random salts, one can rely on the result
of Grassi and Mennink [GM22].) From (15) and (16), we obtain that U/Key instantiated
with the truncated permutation construction achieves the following level of security:

AdvU/Key[TruncP] (qoff , qon, 1) = O
(q

2n

)
+O

(
q3/2

2 2b−n
2

+ q

2b−(n+t)

)
.

Observe that, comparing the bounds of Section 4.3.2 and 4.3.3, using a truncated permuta-
tion typically gives a better choice than the sponge whenever n + t ≤ b

2 , since this choice
allows to minimize the number of primitive calls and maximizes the security at the same
time.

With t = 32, and a security goal of 128 bits (thus n ≥ 128), the minimal permutation
size is 288 bits and a single permutation evaluation is made. In other words, for the
current use case, a truncated permutation is superior over the sponge whenever the used
permutation is at least 288 bits. If one uses a smaller permutation, one cannot achieve
128-bit security using the truncated permutation construction, while it may still be possible
using the sponge (provided b ≥ 257) at the cost of extra permutation evaluations.

5 Dedicated Security Proof of U/Key with a Sponge
From the results of Section 4.3 it is clear that indifferentiability is a too strong security
property for all of these constructions. For the case of the sponge, on the one hand its
indifferentiability bound is undeniably tight since inner collisions within the sponge states
can be found in approximately 2c/2 queries, and those inner collisions can be used among
others to find collisions and second preimages. On the other hand, it has been shown
that finding a preimage (according to Definition 1) of a value cannot be done in less than
2n−r queries [LM22]. In particular, when n − r > c/2, this gives a better bound than
indifferentiability, thus suggesting that U/Key could as well benefit from this security
bound. However, preimage resistance is not the exact security property that we are seeking.
Firstly, this is because the target value comes itself from a previous sponge call, which
does not correspond to the setting of everywhere preimage (Definition 1). Additionally, we
are not aware of results that account for the singular nature of the cascaded hash function
evaluations or the release pattern of the chaining values. Therefore, a dedicated security
proof seems unavoidable.

The remainder of this section is organized as follows. Section 5.1 describes the exact
scheme that we study and the rationale behind it. Section 5.2 recalls the concept of

264 Permutation-Based Hash Chains with Application to Password Hashing

IV l
r

Px(1)
k−1

⟨ctrk⟩t ∥
t

IV r

c − t − s

idm

s

P · · · P

Px(ℓ′)
k−1

P

x
(1)
k

P · · · P

x
(ℓ)
k

Figure 1: U/Key with a tweaked version of the sponge. The figure illustrates the
computation of xk = truncn

(
x

(1)
k ∥ · · · ∥ x

(ℓ)
k

)
from xk−1. Here, Px(1)

k−1 ∥ · · · ∥ Px(ℓ′)
k−1 =

pad(xk−1), where ℓ ≤ ℓ′, and IV := IV l ∥ IV r is fixed.

outer-keyed sponges and PRF security, and defined a security variant needed for our proof.
Finally, Section 5.3 is dedicated to the main result of this section, and Section 5.4 to the
corresponding proof.

5.1 Optimization of Sponge-Based Instantiation

According to the description of U/Key, the chaining value, the counter, as well as the salt
are seen as inputs to the hash function. In the context of a sponge (cf., Section 4.3.2), this
means that the string ⟨ctrK−k+1⟩t ∥ id ∥ xK−k is padded into blocks of r bits, and each
of these blocks is added one by one to the outer part of the state of the sponge. For a
typical instantiation of U/Key, where the counter and salt can be of total size 112 bits, this
induces a significant overhead regarding the number of required permutation evaluations if
the rate is small. On the other hand, from a security perspective, this overhead appears to
be unnecessary. Indeed, from the perspective of the security proof, there is no distinction
between absorbing the counter and the salt into the sponge by blocks of r bits or directly
initializing the state with these values. Strictly speaking, in the former case, the initial
states are randomized, but this modification does not affect the proof.

Therefore, we consider a family of sponges with initial states of the form IV k,id, where

IV k,id = IV ∥ ⟨ctrK−k+1⟩t ∥ idm ,

and IV ∈ {0, 1}b−t−s can be any value fixed in advance. Note that this is possible only if
the capacity is large enough (i.e., c ≥ t + s). However, looking forward to the main result
in this section, namely Theorem 2, for a typical use case of t = 32, s = 80, a capacity less
than 112 bits does not provide a decent level of security anyway. One round of our refined
scheme is depicted in Fig. 1. For simplicity, we consider the simple padding 10∗, which
appends to the message a 1 and as much 0’s as necessary to obtain a padded message with
a length multiple of r. Therefore, the number of rounds necessary to absorb the ℓ message
blocks is equal to ℓ or ℓ + 1.

Note that the construction that is instantiated in U/Key is similar to the sponge variant
as used in PHOTON [GPP11], where the initial absorbing rate can also be larger (in
our case, r′ = r + t + s). However, that construction keeps an indifferentiability result
comparable to the sponge as long as r′ < r + c/2− log2(c) [NO14], but we will show that
even beyond this threshold security is still achieved. We stress that the security bound
obtained in Theorem 2 holds both for this optimized version of the sponge and the plain
sponge construction. In the remainder of this section, we will abuse notation and keep
calling this optimized construction the sponge.

Charlotte Lefevre and Bart Mennink 265

5.2 Outer-Keyed Sponges, PRF-Security, and Key-Reveal PRF-Security
Before going to our main result of this section (Theorem 2 in Section 5.3), we will recall the
concept of an outer-keyed sponge from Andreeva et al. [ADMA15]. Next, we formalize the
corresponding notion of PRF security, and define the notion of key-reveal PRF security.

5.2.1 Outer-Keyed Sponge

Let P ∈ Perm(b), and m ∈ N. We denote by SpongeP
m the construction defined in

Section 4.3.2 based on the permutation P with a digest of size m. The outer-keyed sponge
based on the permutation P with key K ∈ {0, 1}κ, is denoted as OKSP

K and defined as
follows, for any (possibly empty) message M :

OKSP
K(M, m) = SpongeP

m(K ∥M) .

5.2.2 PRF Security

Let RO be a random oracle [BR93]. It takes as input a (possibly empty) message M ,
and produces a stream of arbitrary length. From RO, define RO∗ when, given as input a
message M and an index m, returns the first m bits of the stream RO(M). Additionally,
let K $←− {0, 1}κ and P $←− Perm(b). The PRF advantage of an adversary A against OKS
is defined as follows:

AdvPRF
OKS(A) =

∣∣∣∣Pr
(
AOKSP

K,P = 1
)
−Pr

(
ARO∗,P = 1

) ∣∣∣∣ .
AdvPRF

OKS(M, N) denotes the maximum of AdvPRF
OKS(A), among all adversaries allowed to

make at most N permutation queries and construction queries with a cost of M . (The
cost of construction queries is determined in terms of the total number of primitive calls
induced by construction calls with OKS.)

5.2.3 Key-Reveal PRF Security

We will use a slight variant of PRF security, namely key-reveal PRF security. The key-
reveal PRF security game is exactly as the above PRF security game, except that the
key is revealed at the end of the interaction, right before the distinguisher outputs its
decision bit (this will be a dummy key in the ideal world). Consequently, key-reveal
PRF security is strictly stronger than PRF security, as the adversary can opt to ignore
the obtained information. While introducing (yet) another security definition might
initially appear perplexing, it will later be essential for the reduction made in the proof
of Theorem 2. Moreover, a closer examination of the actual PRF security proof of the
outer-keyed sponge [ADMA15, NY16, Men18] reveals an interesting aspect: the authors
actually established key-reveal PRF security of the sponge. This phenomenon arises because,
in proofs utilizing techniques such as the H-coefficient technique [Pat08], the keys are often
assumed to be revealed at the end of the interaction for the sake of simplicity.

That said, we will require a formal definition of the notion of key-reveal PRF security.
Let RO be a random oracle, K $←− {0, 1}κ, and P $←− Perm(b) as defined in Section 5.2.2.
The adversary is given access to three oracles:

• KK: when queried, it returns K;

• CC for C ∈ {OKSP
K,RO∗}: if KK has not been queried yet, this oracle relays the

query to C, otherwise, it returns ⊥;

• PP : if KK has not been queried yet, this oracle relays the query to P, otherwise, it
returns ⊥.

266 Permutation-Based Hash Chains with Application to Password Hashing

The key-reveal PRF advantage of an adversary A against OKS is defined as follows:

AdvPRF-krev
OKS (A) =

∣∣∣∣Pr
(
AKK ,COKSP

K ,PP
= 1
)
−Pr

(
AKK,CRO∗

,PP
= 1
) ∣∣∣∣ .

AdvPRF-krev
OKS (M, N) denotes the maximum of AdvPRF-krev

OKS (A), among all adversaries
allowed to make at most N permutation queries and construction queries with a cost of M .
(The cost of construction queries is determined in terms of the total number of primitive
calls induced by construction calls with OKS.)

5.3 Security Result
Now, we state the security of U/Key instantiated with the sponge construction in Theorem 2.
At a high level, the security proof relies on several key observations. First, the random secret
password x0 remains undisclosed to the adversary throughout the process. This enables us
to treat the evaluation of the sponge on x0 as an outer-keyed sponge. Consequently, we
can replace x1 with a random value by leveraging the PRF advantage of the outer-keyed
sponge. By repeating this process K times, we find ourselves with K instances of the PRF
security of the outer-keyed sponge and K instances of a variant of the everywhere preimage
of the sponge. These variants involve a randomized target, and access to chaining values
following the release pattern of hash chain protocols. Moreover, in each of these variants,
we can use the key-reveal PRF advantage, which allows to conclude that, during most
of the attack phase, the adversary does not learn any information about the target to
invert. We consider the single-user setting. Given the proof technique that we currently
employ, it does not seem that considering a multi-user setting would improve over a generic
single-user to multi-user reduction [Bih02, BBM00].

Theorem 2. Let Sponge denote the construction from Section 5.1. Assuming that (ℓ−1)2 <
2b, and qoff + qon + (ℓ + ℓ′)K ≤ 2c/6, we have

AdvU/Key[Sponge]
(
qoff , (qon,k)k∈J1,KK, 1

)
≤

K∑
k=1

(
AdvPRF

OKS (ℓ′ + ℓ, qk) +

8ℓqk

2n
+ min

{
4ℓqon,k

2n−r
,

2qon,k · qk

2c

}
+ AdvPRF-krev

OKS (ℓ + ℓ′, 2ℓ(qk − qon,k))
)

,

where qk = (ℓ + ℓ′)(K − k) + qoff +
∑

k′≥k qon,k′ . The result also holds when considering
the plain sponge construction from Section 4.3.2.

The proof is given in Section 5.4.

Interpretation of the Bound. We focus on the setting where all online phases have the
same cost (i.e., ∀k, k′, qon,k = qon,k′). In this case, the bound simplifies to

AdvU/Key[Sponge] (qoff , qon, 1) ≤ 8ℓKq1

2n
+ min

{
4ℓqon

2n−r
,

2qonq1

2c

}
+ 2K ·AdvPRF-krev

OKS (ℓ + ℓ′, 2ℓq1) .

Moreover, from [ADMA15, NY16, Men18], we can derive

AdvPRF-krev
OKS (M, N) = O

(
M2

2c
+ NM

2c
+ N

2n
+ N

2c
+
(

2ℓ′r−b
)c
)

.

Charlotte Lefevre and Bart Mennink 267

If we additionally assume that ℓ′r < b and ℓK ≪ qoff + qon, we obtain

AdvU/Key[Sponge] (qoff , qon, 1)

= O
(

Kℓ(qoff + qon)
2n

+ Kℓ2(qoff + qon)
2c

+ min
{

ℓqon

2n−r
,

(qoff + qon)qon

2c

})
. (17)

Consider the typical parameters for T/Key, so that K ≤ 221, and suppose we aim for 100
bits of security in the online phase, and 128 bits in the offline phase. Because of the first
term in (17), this implies n ≥ 149. Consider the Spongent [BKL+11] permutation of size
b = 176. With n = 150, c = 150, we have r = 26, ℓ = ℓ′ = 6, and the security requirements
are met in the single-user setting.

We note that if the permutation is larger than 200 bits, any sponge evaluation in the
context of U/Key consists of only one permutation call. In this case, it makes more sense
to look at U/Key instantiated with a truncated permutation, and we do so in Section 6.

5.4 Proof of Theorem 2
Denote by x0, . . . , xK ∈ {0, 1}n the chaining values, and id the salt of the user. Let A be
an adversary for the security game of Algorithm 1, allowed to make at most qoff offline
queries and a total of qon queries during the online phase, where qon,k queries are allowed
after the release of xk and before the release of xk−1. For simplicity, we assume that after
each release of xk, the primitive queries that transition from xk to xk+1 are given for free
to the adversary. This gives a total number of queries equal to qon,1.

We will use a hybrid argument with K distinct security games. For each k ∈ J0, KK,
we define Sk to be the following sampling procedure:

• ∀k′ ≤ k, xk′
$←− {0, 1}n,

• ∀k′ > k, xk′ ← SpongeP
m(IV ctrk′ ,id, xk′−1),

where by abuse of notation SpongeP
m(IV , ·) denotes the sponge with its state initialized

with IV . Note that S0 corresponds to the original sampling procedure used in the security
game. For k ∈ J1, KK, we define G(k) to be the security game described in Algorithm 1, but
it is aborted when the counter equals k in line 15. In other words, G(k) stops right before
xk−1 is given to the adversary. In particular, in G(k), the adversary has no opportunities
to provide a preimage for xk′ for any k′ < k. Note that, according to this formalism, G(1)
corresponds to the full security game.

In the proof, we will transition through these different security games, but the chaining
values may not necessarily follow the sampling procedure S0. The specific sampling
procedure will be indicated as a subscript in the probabilities.

Initial Step. We start with the first step of our reasoning:

AdvU/Key[Sponge] (A) = PrS0 (A wins G(1))
≤ |PrS0 (A wins G(1))−PrS1 (A wins G(1))|+ PrS1 (A wins G(1)) . (18)

The only difference between S0 and S1 is in the way in which x1 is sampled: either
randomly or via an evaluation of the sponge. From A, we build a distinguisher A′

1 which
returns 1 whenever A wins the game G(1). Since x0 is never revealed to the adversary, it
can be seen as a secret key. Therefore, A′

1 is a distinguisher in the PRF security game of
the outer-keyed sponge initialized with the state IV 1,id. Its resources are upper bounded
by ℓ′ + ℓ construction queries and q1 primitive queries. Therefore, we obtain from (18):

AdvU/Key[Sponge] (A) ≤ AdvPRF
OKS(ℓ′ + ℓ, q1) + PrS1 (A wins G(1)) . (19)

268 Permutation-Based Hash Chains with Application to Password Hashing

Inductive Reasoning. We proceed with the inductive step to upper bound the term
PrSk

(A wins G(k)) for any k ∈ J1, K − 1K. Recall that in Sk, the values x1, . . . , xk are
sampled uniformly at random, and the remaining chaining values are derived from the
hash chain protocol with the root xk. In particular, in G(k), the adversary is not able to
see any inconsistency in the fact that xk is not the image of xk−1 by a sponge call, and
finding a preimage of any of these earlier xk′ ’s does not trigger a win.

This means that there are two possibilities for the adversary to win G(k): either A
finds a preimage for xk by the sponge with the initial state fixed to IV k,id, which we
abbreviate as “A solves pre(xk)”, or A wins G(k + 1). Indeed, if the adversary wins G(k)
without discovering a preimage for xk, it indicates that it was already successful in the
game before xk was revealed, thus during G(k + 1). We thus have:

PrSk
(A wins G(k)) ≤ PrSk

(A solves pre(xk) in G(k)) + PrSk
(A wins G(k + 1))

≤ PrSk
(A solves pre(xk) in G(k))

+
∣∣PrSk

(A wins G(k + 1))−PrSk+1 (A wins G(k + 1))
∣∣

+ PrSk+1 (A wins G(k + 1)) .

Then, from A we can build a distinguisher A′
k+1 returning 1 if and only if A wins G(k + 1).

Because Sk and Sk+1 only differ in the sampling of xk+1, and xk is never given to the
adversary in G(k + 1), we can again use the PRF advantage of the sponge. The resources
of A′

k+1 are upper bounded by ℓ′ + ℓ construction queries and qk+1 primitive queries. Thus

PrSk
(A wins G(k)) ≤ PrSk

(A solves pre(xk) in G(k))
+ AdvPRF

OKS
(
A′

k+1
)

+ PrSk+1 (A wins G(k + 1)) . (20)

We upper bound the quantity PrSk
(A solves pre(xk) in G(k)) for any k ∈ J1, KK in

Lemma 2.

Lemma 2. If (ℓ− 1)2 < 2b, and qk ≤ 2c/6, we have

PrSk
(A solves pre(xk) in G(k)) ≤ 8ℓqk

2n
+ min

{
4ℓqon,k

2n−r
,

2qon,k · qk

2c

}
+ AdvPRF-krev

OKS (ℓ + ℓ′, 2ℓ(qk − qon,k)) .

Sketch. The full proof follows the approach presented in [LM22]. We therefore only
provide the intuition, and give the full proof in Supplementary Material B. In the context
of everywhere preimage resistance (Definition 1), where there are no online or offline phases,
we assume that the adversary always knows xk. The proof of [LM22] closely follows the
best-known attack for the preimage resistance of the sponge [BDPV07], which can be
summarized as follows:

1. If n ≤ c/2: the adversary selects an arbitrary x ∈ {0, 1}n, evaluates the sponge with
input x. With probability around 1

2n , one iteration of this step will successfully
output a digest equal to xk;

2. If n > c/2, the attack consists of two phases:

2.1. The adversary samples y
$←− {0, 1}c, obtains S = x

(1)
k ∥ y, and computes P l(S)

for l = 1, . . . , ℓ− 1. To succeed this step, the condition is that outerr(P l(S)) =
x

(l+1)
k for any ∈ J1, ℓ− 2K, and outern−ℓr(Pℓ−1(S)) = x

(ℓ)
k . One iteration of this

step succeeds with probability around 1
2n−r ;3

3Here, it is assumed that ℓ > 1; if ℓ = 1, this step is trivial.

Charlotte Lefevre and Bart Mennink 269

2.2. Once the adversary has found a good state S, it needs to connect this state
to the IV of the sponge through finding inner collisions. The ith query of the
adversary succeeds with probability around i

2c .

For the steps 1., 2.1., and 2.2., [LM22] define three bad events, named BADFWD, BADINV,
and INNER, respectively. Their analysis can be applied to our setting too, yielding

PrSk
(A solves pre(xk) in G(k)) ≤ Pr (BADFWD) + min {Pr (BADINV) ; Pr (INNER)}

≤ 4qk

2n
+ min

{
4ℓqk

2n−r
; qk(qk + 1)

2c

}
.

However, this upper bound is too coarse for our setting. Indeed, during the offline phase, no
information about the uniformly sampled value xk is available to the adversary. Therefore,
one iteration of step 2.1. does not succeed with probability 1

2n−r , but 1
2n during the offline

phase. During the online stage before xk is revealed, the situation is slightly different, since
the chaining values computed from xk might leak information. Our situation is comparable
to the case studied by Chen et al. [CLMP21]: the subsequent chaining values xk+X being
revealed correspond to the leakage of intermediate states. However, the leakage of these
states should not compromise earlier computed intermediate states. To show this, we
use the key-reveal PRF advantage of the construction, which allows to replace xk+1 by a
random value completely independent from xk, and this boils down to the same situation
as during the offline phase.

Moreover, observing that step 2.2. must be done after completing step 2.1., we note
that, if BADFWD is triggered during the online phase, this gives the adversary less power
to set INNER, as only inner collisions found during the online phase matter. Taking these
two considerations into account, we need to split the events BADFWD, BADINV, INNER in
a more fine-grained way, which is done in the full version of the proof in Appendix B.

Now, we can plug the bound derived from Lemma 2 into (20) and obtain

PrSk
(A wins G(k)) ≤ 8ℓqk

2n
+ min

{
4ℓqon,k

2n−r
,

2qon,k · qk

2c

}
+ AdvPRF

OKS(A′
k+1)

+ AdvPRF-krev
OKS (ℓ + ℓ′, 2ℓ(qk − qon,k)) + PrSk+1 (A wins G(k + 1)) . (21)

Conclusion. We remark that, eventually, PrSK
(A wins G(K)) is equal to

PrSK
(A solves pre(xK) in G(K)). Therefore, by applying the steps taken in (20) and

(21) inductively, we obtain from (19):

AdvU/Key[Sponge] (A) ≤
K∑

k=1
PrSk

(A solves pre(xk) in G(k)) +
K∑

k=1
AdvPRF

OKS (ℓ′ + ℓ, qk)

≤
K∑

k=1

(
8ℓqk

2n
+ min

{
4ℓqon,k

2n−r
,

2qon,k · qk

2c

}
+ AdvPRF-krev

OKS (ℓ + ℓ′, 2ℓ(qk − qon,k))

+ AdvPRF
OKS (ℓ′ + ℓ, qk)

)
.

6 Improved Multi-User Security Proof of U/Key with a
Truncated Permutation

For most use cases, U/Key instantiated with a sponge can be evaluated in one permutation
call per sponge, making the underlying construction a truncated permutation. Also in this

270 Permutation-Based Hash Chains with Application to Password Hashing

x0
n

⟨ctr1⟩t
t

idm

s

IV
c− s− t

P

x1

⟨ctr2⟩t

idm

IV

P

x2

⟨ctr3⟩t

idm

IV

P · · ·
⟨ctrK⟩t

idm

IV

P

xK

Figure 2: U/Key with a truncated permutation of size b = n + c for user number m.

case, the indifferentiability result studied in Section 4.3.3 remains a too strong security
property. Indeed, the hash function is required to take n + s + t bits as input, but not all
of these inputs can be manipulated freely by the adversary. In the case of a truncated
permutation, fixing the salt and the counter fixes the user and thus the elements on the
chains that are targeted. Therefore, fixing xk determines the counters and the users that
are targeted. Moreover, the separation between the offline and online phase is not taken
into account when using a generic result.

Relying on the simplicity of the construction and its one-pass feature, we obtain in
Theorem 3 below a tight bound using a dedicated multi-user proof that additionally
accurately captures offline and online time. Section 6.1 describes the construction in more
detail, as well as some additional notation used. Section 6.2 is dedicated to the security
bound and Section 6.3 to the proof.

6.1 Description of Scheme
We describe the construction that we consider in this section in more detail. The scheme
is used simultaneously by M users, and the user number m runs the hash chain with a
random salt idm. The chaining value number k of user number m is denoted by xk,m.
In particular, x0,m denote the root passwords. Moreover, let b > c ≥ s + t, and let
IV ∈ {0, 1}c−s−t be any fixed initialization vector. (The initialization vector does not play
a role in the security.) The state of the permutation is split as b = n + c, where n bits
are used for the password, and c plays a role similar to the capacity of the sponge. In
particular, c includes the counter and the salt. The construction then traverses through
the hash chain as

xk = truncn (P(xk−1 ∥ ⟨ctrk⟩t ∥ idm ∥ IV)) ,

for k ∈ J1, KK and m ∈ J1, MK. The sequence (⟨ctrk⟩t ∥ idm ∥ IV)k,m can be seen as a
family of fixed prefixes. The scheme is illustrated in Fig. 2.

6.2 Security Result
In Theorem 3 we state the multi-user security of U/Key on top of the truncated permutation
construction.

Theorem 3. Let TruncP denote the construction from Section 6.1. Assuming that
KM + qoff + qon ≤ 2b−1, we have

AdvU/Key[TruncP] (qoff , qon, M) ≤
(

2M

2s
+ 3s + 4

)(
min

{
2M

2s
; 1
}

4qoff

2n
+ 4qon

2n

)
+
(

2KM

2n
+ 3n + 4

)(
min

{
2KM

2n
; 1
}

4qoff

2c
+ 4qon

2c

)
.

Charlotte Lefevre and Bart Mennink 271

Interpretation of the Bound. The bound includes multiple terms, and we will provide
key points that can help to interpret it. The bound is a sum of two main terms. The first
(resp., second) one corresponds to a strategy where the adversary only makes forward (resp.,
inverse) queries. Now, regarding offline queries, whenever M < 2s (resp., KM < 2n), the
number of forward (resp., inverse) offline queries that are “useful” is multiplied by M

2s

(resp., KM
2n). If we then denote by q the (expected) number of useful queries, the bound of

Theorem 3 simplifies to

O
(

q

2n
+ q

2c
+ qM

2s+n
+ qKM

2b

)
.

Moreover, as long as M = O (2s), this bound is of the order

O
(

q

2n
+ q

2c
+ qKM

2b

)
.

Just like for the interpretation of Theorem 1, the security bound allows for many different
interpretations. For example, if we take s = 80 and t = 32, and target a security goal
of 128 bits, we must take n ≥ 128 and c ≥ 128, and thus require a permutation of size
at least 256 bits. For more specific settings, we can make use of the separation between
offline and online queries. For example, if we assume M ≤ 1012, s = 68, keep t the same,
and assume qon ≪ 2100, then we can take n = c = 100, thus having a permutation of size
200 bits, while still achieving 128-bit offline security.

6.3 Proof of Theorem 3
The proof shares similarities with the proof of Theorem 1, particularly in the way that
forward queries to P are treated. A difference is in the fact that, in current setting, the
adversary can also make inverse evaluations of P−1.

Setup. We split qon as qfwd,on + qinv,on, depending on the direction of the queries, and
similarly split qoff := qfwd,off + qinv,off . We first define useful notation for the treatment of
forward queries. As in the proof of Theorem 1, let Colls be a random variable with sample
space (J1, MK)M that determines how are the salts colliding together. More precisely, when
two elements at position i and j share the same value, it means that the salts of users i
and j collide. Fixing Colls determines the number of distinct salts, that we will denote as
M̃ .

Moreover, let NCs be a random variable defined as follows:

NCs = max
id

#
{

m
∣∣ idm = id

}
.

NCs counts the maximal number of jointly colliding salts. The value of Colls determines
the one of NCs. We saw in (6) that

E (NCs) ≤ 2M

2s
+ 3s + 4 . (22)

Assume that Colls is fixed to a certain colls, which gives M̃ ≤M distinct salts, and fixes
NCs to ncs. Let k ∈ J1, KK, and m̃ ∈ J1, M̃K. Note that we can partition the forward
queries according to the associated values of (m̃, k). In particular, a forward permutation
query with the unique salt number m̃ and counter k is called a Pk,m̃-query. During the
offline phase, whenever M ≪ 2s, then with high probability a large portion of the queries
do not correspond to Pk,m̃-queries. Let Q

(k,m̃)
fwd,off be a random variable counting the number

272 Permutation-Based Hash Chains with Application to Password Hashing

of useful Pk,m̃-queries during the offline phase, and let q
(k,m̃)
fwd,on be the number of useful

Pk,m̃ queries during the online phase. Let

Qfwd :=
K∑

k=1

M̃∑
m̃=1

Q
(k,m̃)
fwd,off + q

(k,m̃)
fwd,on ,

so that Qfwd counts the total number of useful forward queries. Similarly to (13) and (14),
we have

E
(
Qfwd

∣∣ Colls = colls
)
≤ min

{
2M

2s
; 1
}
· qfwd,off + qfwd,on . (23)

Now, we introduce terminology for the treatment of inverse queries. We define CollCV
and NCCV respectively, that play a role similar to Colls and NCs, respectively. CollCV
determines how the chaining values xk,m from distinct permutation calls are colliding,
and is a pair of random variables with sampling space (J1, MK)M × (J1, KMK)KM . The
first component of CollCV corresponds to the random variable Colls, and the second one
can be represented as a matrix with K rows and M columns, each element taking values
in J1, KMK. If the element at row k and column m equals the element at row k′ and
column m′, it means that xk,m collides with xk′,m′ . This random variable needs to keep
track of Colls, as there might be cases where two different salts idm and idm′ collide, and
xk,m = xk,m′ due to a lucky collision. In that case (and only in that case), the permutation
calls to compute xk+1,m and xk+1,m′ will be the same. However, we want to avoid counting
these cases as collisions between chaining values. We define the random variable NCCV
as the maximum number of jointly chaining values that come from distinct permutation
evaluations. Note that fixing the value of CollCV also fixes the value of NCCV. Then,
each chaining value (without counting repeated permutation evaluations) is the result of a
sampling in {0, 1}b without replacement. Therefore, from Lemma 1, we know that

E (NCCV) ≤ 2KM

2n
+ 3n + 4 . (24)

Now, assume that CollCV is set to a certain value collCV. Given this fixed instance,
we can infer the number of distinct chaining values that we denote by distCV. Given
u ∈ J1, distCVK, let Q

(u)
inv,off (resp., Q

(u)
inv,on) be a random variable which counts the number

of inverse queries during the offline (resp., online) phase that have their n leftmost bits
fixed to the uth distinct chaining value. Note that this quantity is also a random variable
for the online phase, since the adversary might make lucky inverse queries with xk,m before
the value is revealed. Moreover, let

Qinv =
∑

u

Q
(u)
inv,off + Q

(u)
inv,on .

We now derive an upper bound for E (Qinv | CollCV = collCV). We first consider the
case where KM ≤ 2n−1. Let z ∈ {0, 1}n. Conditioning on the random variable CollCV
introduces a supplementary bias in the sampling of the values xk,m. Indeed, if the first
u distinct chaining values have already been sampled, the (u + 1)th distinct chaining
value cannot have its n leftmost bits equal to any of the u previous chaining values.
Consequently, the uth distinct chaining value is the result of a sampling from a set of size
at least 2b − u2c ≥ 2b −KM · 2c, among which at most 2c values have their n leftmost
bits equal to z. Hence, the probability that one of the distCV chaining values equals to z
can be upper bounded by

distCV · 2c

2b −KM · 2c
≤ 2KM

2n
,

Charlotte Lefevre and Bart Mennink 273

where we used KM ≤ 2n−1.
In the case where KM ≥ 2n−1, we upper bound E (Qinv | CollCV = collCV) simply by

qinv,off + qinv,on. Therefore,

E (Qinv | CollCV = collCV) = E
(∑

u

Q
(u)
inv,off + Q

(u)
inv,on

∣∣∣ CollCV = collCV

)

≤ min
{

2KM

2n
; 1
}
· qinv,off + qinv,on . (25)

Bad Event and Probability Splitting. Let Qk be the query history of the adversary
before the xk,m’s are revealed. The adversary winning the security game implies that the
following bad event happened:

BAD : ∃m ∈ J1, MK, k ∈ J1, KK, d ∈ {fwd, inv} , y ∈ {0, 1}n, z ∈ {0, 1}c

such that
(

(y ∥ ctrk ∥ idm ∥ IV) , (xk,m ∥ z) , d
)
∈ Qk−1 .

In other words, the adversary must make a query which collides with one of the M chains.
Now, we split BAD as BADFWD ∨ BADINV, depending on the direction of the query
triggering BAD. Without loss of generality, we can stop the security game whenever the
adversary has set BAD. Therefore, the bad events BADFWD and BADINV are disjoint, so
that

Pr (BAD) ≤ Pr (BADFWD ∧ ¬BADINV) + Pr (BADINV ∧ ¬BADFWD) . (26)

Probability of BADFWD. This probability can be upper bounded in a similar way to
what has been done in Theorem 1. We have

Pr (BADFWD ∧ ¬BADINV)

≤
∑
colls

∑
qfwd

Pr
(
BADFWD

∣∣ Colls = colls ∧Qfwd = qfwd ∧ ¬BADINV
)
×

Pr
(
Qfwd = qfwd

∣∣ Colls = colls
)
×Pr (Colls = colls) . (27)

The conditioned event BADFWD can be decomposed in a query-wise fashion. Indeed, due
to the condition Qfwd = qfwd , the total number of queries likely to trigger BADFWD with
a non-zero probability is equal to qfwd . Now, assuming that BADFWD was not set before
the useful query number i, then BADFWD can be set in two different ways during the
query number i:

• The adversary guesses one exact preimage. In that case each of the chaining values
are random, with a small bias due to the permutation.4 More precisely, for each
k ∈ J0, KK, m ∈ J1, MK, and z ∈ {0, 1}n,

Pr (xk,m = z) ≤ 2c

2b −KM
≤ 2

2n
,

where we used KM ≤ 2b−1. Moreover, one attempt of the adversary targets at most
ncs preimages at the same time, thus its success probability is upper bounded by
2ncs

2n ;

4Actually, the root passwords x0,m are uniformly random, but this does not change the upper bounding.

274 Permutation-Based Hash Chains with Application to Password Hashing

• The adversary guesses a preimage which is not the exact one. In that case, we can
use directly the randomness of the permutation at the time of the query. For a given
forward query, the answer is drawn from a set of size at least 2b −KM − q, and
among them at most ncs · 2c values hit the targeted chaining values. Therefore, one
attempt of the adversary has a success probability of at most 2ncs

2n , where we used
KM + q ≤ 2b−1.

Therefore,

Pr
(
BADFWD

∣∣ Colls = colls ∧Qfwd = qfwd ∧ ¬BADINV
)
≤ 4ncs · qfwd

2n
.

Now plugging this upper bound into (27) gives

Pr (BADFWD ∧ ¬BADINV)

≤
∑
colls

∑
qfwd

4ncs · qfwd

2n
Pr
(
Qfwd = qfwd

∣∣ Colls = colls
)
·Pr (Colls = colls)

= 4
2n

∑
colls

E
(
Qfwd

∣∣ Colls = colls
)
· ncs ·Pr (Colls = colls) .

Plugging (23) into the equation above gives

Pr (BADFWD ∧ ¬BADINV)

≤ 4
2n

(
min

{
2M

2s
; 1
}
· qfwd,off + qfwd,on

)
·
∑
colls

ncs ·Pr (Colls = colls)

= 4
2n

(
min

{
2M

2s
; 1
}
· qfwd,off + qfwd,on

)
E (NCs) .

Finally, plugging (22) into the equation above allows us to conclude that

Pr (BADFWD ∧ ¬BADINV)

≤
(

2M

2s
+ 3s + 4

)(
min

{
2M

2s
; 1
}
· 4qfwd,off

2n
+ 4qfwd,on

2n

)
. (28)

Probability of BADINV. It remains to upper bound the second term of (26). We have

Pr (BADINV ∧ ¬BADFWD)

≤
∑

collCV

∑
qinv

Pr (BADINV | CollCV = collCV ∧Qinv = qinv ∧ ¬BADFWD)×

Pr (Qinv = qinv | CollCV = collCV)×Pr (CollCV = collCV) . (29)

Now, regarding the conditioned BADINV, we can reason in a query-wise fashion. The only
queries that can trigger BADINV with a non-zero probability are inverse queries with their
leftmost bits fixed to one of the distCV chaining values. For a useful query to succeed,
there are two possibilities:

• The adversary guesses the exact state. In particular, it should guess the full inner
part of c bits. These c bits are random, so that for any y ∈ {0, 1}c, m ∈ J1, MK,
k ∈ J1, KK,

Pr (innerc(P(xk−1,m ∥ ctrk ∥ idm ∥ IV)) = y) ≤ 2n

2b −KM
≤ 2

2c
.

Moreover, among the chaining values, there are at most ncCV different c-bit states
which are attached to the same chaining value xk,m. Therefore, one attempt succeeds
with probability at most 2ncCV

2c ;

Charlotte Lefevre and Bart Mennink 275

• The adversary guesses a preimage which does not correspond to the exact state. In
that case we can use directly the randomness of the permutation. The inverse query
answer is drawn from a set of size at least 2b −KM − qon − qoff ≥ 2b−1, and among
them at most ncCV × 2n elements set BADINV. Therefore, one attempt to set this
event happens with probability at most 2ncCV

2c .
Plugging these bounds into (29) gives

Pr (BADINV ∧ ¬BADFWD)

≤
∑

collCV

∑
qinv

4qinv · ncCV

2c
Pr (Qinv = qinv | CollCV = collCV) ·Pr (CollCV = collCV)

= 4
2c

∑
collCV

E
(
Qinv

∣∣ CollCV = collCV
)
· ncCV ·Pr (CollCV = collCV) .

We can use the inequality from (25) to obtain
Pr (BADINV ∧ ¬BADFWD)

≤ 4
2c

∑
collCV

(
min

{
2KM

2n
; 1
}

qinv,off + qinv,on

)
· ncCV ·Pr (CollCV = collCV)

= E (NCCV)
(

min
{

2KM

2n
; 1
}
· 4qinv,off

2c
+ 4qinv,on

2c

)
.

Finally, we use (24), and conclude that

Pr (BADINV ∧ ¬BADFWD)

≤
(

2KM

2n
+ 3n + 4

)(
min

{
2KM

2n
; 1
}
· 4qinv,off

2c
+ 4qinv,on

2c

)
. (30)

Conclusion. We conclude by plugging (28) and (30) into (26).

7 Concluding Remarks
One-time passwords using hash chains are a viable option if two-factor authentication
is not suitable. With their introduction of T/Key, Kogan et al. [KMB17] made a great
effort to improve its state of the art. However, their analysis was in a relatively basic
model, and with our novel model we have shown that it is possible to argue security in
a more fine-grained treatment of the adversarial resources. In particular, we split the
adversarial capacity into offline and online computation, and allow for analysis in the
multi-user setting. We demonstrated the relevance of our model on our slightly more
abstract construction U/Key.

7.1 Impact of Online Query Complexity
The separation of offline and online queries allows to more accurately determine the
adversarial success probability in terms of the parameters of the scheme. For example,
taking shorter timeframes implies that qon,k will be lower, though on the other hand K
may need to be higher. For a T/Key construction where the timeframes are all of the
same size, this does not make a difference as the bound is determined by qon = Kqon,k,
but a difference may be present for more general constructions as covered by our new
U/Key. More noticeable is the role of the number of users, as we also already showed in
the interpretation of the bounds of Theorem 1 and Theorem 3. For example, depending
on whether M exceeds 2s, the bound differs and one can even achieve higher security than
the password size n provided M ≪ 2s.

276 Permutation-Based Hash Chains with Application to Password Hashing

7.2 Memory Storage
In our current security model, we assume that the adversary can store all queries made
during the offline phase. However, in real life, there is a tradeoff between memory and
computational power, which can result in suboptimal bounds. To address this, we can
adopt an approach similar to the one of Kogan et al. [KMB17], i.e., split the adversary
A of Algorithm 1 into two: A1 runs the offline phase and passes an advice string S to
A2, which runs the online phase. The adversary A1 is typically unrestricted, but the
advice string S has an upper bound on its size. This approach, however, has a downside:
indifferentiability composition does not apply since the adversary is two-stage [RSS11].
Therefore, a dedicated proof is needed for any security bound at the construction level, and
memory-bounded proofs in this context are particularly challenging [TT18, JT19, Din20].

Acknowledgments
We would like to thank the anonymous reviewers for their valuable comments. Charlotte
Lefevre is supported by the Netherlands Organisation for Scientific Research (NWO) under
grant OCENW.KLEIN.435. Bart Mennink is supported by the Netherlands Organisation
for Scientific Research (NWO) under grant VI.Vidi.203.099.

References
[ADMA15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security

of Keyed Sponge Constructions Using a Modular Proof Approach. In Gregor
Leander, editor, Fast Software Encryption - 22nd International Workshop,
FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected Papers,
volume 9054 of Lecture Notes in Computer Science, pages 364–384. Springer,
2015.

[AMP10] Elena Andreeva, Bart Mennink, and Bart Preneel. Security Reductions of the
Second Round SHA-3 Candidates. In Mike Burmester, Gene Tsudik, Spyros S.
Magliveras, and Ivana Ilic, editors, Information Security - 13th International
Conference, ISC 2010, Boca Raton, FL, USA, October 25-28, 2010, Revised
Selected Papers, volume 6531 of Lecture Notes in Computer Science, pages
39–53. Springer, 2010.

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-Key Encryption
in a Multi-user Setting: Security Proofs and Improvements. In Bart Preneel,
editor, Advances in Cryptology - EUROCRYPT 2000, International Confer-
ence on the Theory and Application of Cryptographic Techniques, Bruges,
Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in
Computer Science, pages 259–274. Springer, 2000.

[BDD+17] Ritam Bhaumik, Nilanjan Datta, Avijit Dutta, Nicky Mouha, and Mridul
Nandi. The Iterated Random Function Problem. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part II, volume 10625 of Lecture Notes in Computer Science, pages 667–697.
Springer, 2017.

[BDPV07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. Ecrypt Hash Workshop 2007, May 2007.

Charlotte Lefevre and Bart Mennink 277

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the Indifferentiability of the Sponge Construction. In Nigel P. Smart, editor,
Advances in Cryptology - EUROCRYPT 2008, 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture
Notes in Computer Science, pages 181–197. Springer, 2008.

[Bih02] Eli Biham. How to decrypt or even substitute DES-encrypted messages in
228 steps. Inf. Process. Lett., 84(3):117–124, 2002.

[BKL+11] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem
Varici, and Ingrid Verbauwhede. spongent: A Lightweight Hash Function.
In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and
Embedded Systems - CHES 2011 - 13th International Workshop, Nara, Japan,
September 28 - October 1, 2011. Proceedings, volume 6917 of Lecture Notes
in Computer Science, pages 312–325. Springer, 2011.

[Blo23] Blockchain website, total hash rate. https://www.blockchain.com/
explorer/charts/hash-rate, 2023. Accessed: 2023-07-11.

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, CCS ’93, Proceedings
of the 1st ACM Conference on Computer and Communications Security,
Fairfax, Virginia, USA, November 3-5, 1993, pages 62–73. ACM, 1993.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damgård Revisited: How to Construct a Hash Function. In Victor
Shoup, editor, Advances in Cryptology - CRYPTO 2005: 25th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August
14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science,
pages 430–448. Springer, 2005.

[CLL19] Wonseok Choi, ByeongHak Lee, and Jooyoung Lee. Indifferentiability of
Truncated Random Permutations. In Steven D. Galbraith and Shiho Moriai,
editors, Advances in Cryptology - ASIACRYPT 2019 - 25th International
Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I, volume
11921 of Lecture Notes in Computer Science, pages 175–195. Springer, 2019.

[CLMP21] Yu Long Chen, Atul Luykx, Bart Mennink, and Bart Preneel. Systematic
Security Analysis of Stream Encryption With Key Erasure. IEEE Trans. Inf.
Theory, 67(11):7518–7534, 2021.

[CN08] Donghoon Chang and Mridul Nandi. Improved Indifferentiability Security
Analysis of chopMD Hash Function. In Kaisa Nyberg, editor, Fast Software
Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland,
February 10-13, 2008, Revised Selected Papers, volume 5086 of Lecture Notes
in Computer Science, pages 429–443. Springer, 2008.

[Dam89] Ivan Damgård. A Design Principle for Hash Functions. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, volume 435 of Lecture Notes in Computer Science, pages 416–427.
Springer, 1989.

https://www.blockchain.com/explorer/charts/hash-rate
https://www.blockchain.com/explorer/charts/hash-rate

278 Permutation-Based Hash Chains with Application to Password Hashing

[DEMS21a] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Winning Submission to NIST Lightweight Cryptography, 2021.

[DEMS21b] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight Authenticated Encryption and Hashing. J. Cryptol.,
34(3):33, 2021.

[Din20] Itai Dinur. Tight Time-Space Lower Bounds for Finding Multiple Collision
Pairs and Their Applications. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of
Lecture Notes in Computer Science, pages 405–434. Springer, 2020.

[FID23] FIDO Alliance – Open Authentication Standards More Secure than Passwords.
https://fidoalliance.org, 2023. Accessed: 2023-04-22.

[GM22] Lorenzo Grassi and Bart Mennink. Security of Truncated Permutation Without
Initial Value. In Shweta Agrawal and Dongdai Lin, editors, Advances in
Cryptology - ASIACRYPT 2022 - 28th International Conference on the Theory
and Application of Cryptology and Information Security, Taipei, Taiwan,
December 5-9, 2022, Proceedings, Part II, volume 13792 of Lecture Notes in
Computer Science, pages 620–650. Springer, 2022.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family
of Lightweight Hash Functions. In Phillip Rogaway, editor, Advances in
Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture
Notes in Computer Science, pages 222–239. Springer, 2011.

[GT23] Ashrujit Ghoshal and Stefano Tessaro. The Query-Complexity of Preprocess-
ing Attacks. In Helena Handschuh and Anna Lysyanskaya, editors, Advances
in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Con-
ference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023,
Proceedings, Part II, volume 14082 of Lecture Notes in Computer Science,
pages 482–513. Springer, 2023.

[Hal95] Neil Haller. The S/KEY One-Time Password System. Request for Comments
(RFC) 1760, February 1995.

[Hoe94] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. In The collected works of Wassily Hoeffding, pages 409–426. Springer,
1994.

[JT19] Joseph Jaeger and Stefano Tessaro. Tight Time-Memory Trade-Offs for
Symmetric Encryption. In Yuval Ishai and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part I, volume 11476 of Lecture
Notes in Computer Science, pages 467–497. Springer, 2019.

[KMB17] Dmitry Kogan, Nathan Manohar, and Dan Boneh. T/Key: Second-Factor
Authentication From Secure Hash Chains. In Bhavani Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, pages 983–999. ACM,
2017.

https://fidoalliance.org

Charlotte Lefevre and Bart Mennink 279

[Lam81] Leslie Lamport. Password Authentification with Insecure Communication.
Commun. ACM, 24(11):770–772, 1981.

[LM22] Charlotte Lefevre and Bart Mennink. Tight Preimage Resistance of the
Sponge Construction. In Yevgeniy Dodis and Thomas Shrimpton, editors, Ad-
vances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology
Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022,
Proceedings, Part IV, volume 13510 of Lecture Notes in Computer Science,
pages 185–204. Springer, 2022.

[Men18] Bart Mennink. Key Prediction Security of Keyed Sponges. IACR Trans.
Symmetric Cryptol., 2018(4):128–149, 2018.

[Mer89] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, volume 435 of Lecture Notes in Computer Science, pages 428–446.
Springer, 1989.

[MMPR11] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. TOTP: Time-Based One-Time
Password Algorithm. Request for Comments (RFC) 6238, May 2011.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
Impossibility Results on Reductions, and Applications to the Random Oracle
Methodology. In Moni Naor, editor, Theory of Cryptography, First Theory of
Cryptography Conference, TCC 2004, Cambridge, MA, USA, February 19-21,
2004, Proceedings, volume 2951 of Lecture Notes in Computer Science, pages
21–39. Springer, 2004.

[NO14] Yusuke Naito and Kazuo Ohta. Improved Indifferentiable Security Analysis
of PHOTON. In Michel Abdalla and Roberto De Prisco, editors, Security
and Cryptography for Networks - 9th International Conference, SCN 2014,
Amalfi, Italy, September 3-5, 2014. Proceedings, volume 8642 of Lecture Notes
in Computer Science, pages 340–357. Springer, 2014.

[NY16] Yusuke Naito and Kan Yasuda. New Bounds for Keyed Sponges with Ex-
tendable Output: Independence Between Capacity and Message Length. In
Thomas Peyrin, editor, Fast Software Encryption - 23rd International Con-
ference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected
Papers, volume 9783 of Lecture Notes in Computer Science, pages 3–22.
Springer, 2016.

[Pat08] Jacques Patarin. The "Coefficients H" Technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography,
15th International Workshop, SAC 2008, Sackville, New Brunswick, Canada,
August 14-15, Revised Selected Papers, volume 5381 of Lecture Notes in
Computer Science, pages 328–345. Springer, 2008.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function
Basics: Definitions, Implications, and Separations for Preimage Resistance,
Second-Preimage Resistance, and Collision Resistance. In Bimal K. Roy and
Willi Meier, editors, Fast Software Encryption, 11th International Workshop,
FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers, volume 3017 of
Lecture Notes in Computer Science, pages 371–388. Springer, 2004.

280 Permutation-Based Hash Chains with Application to Password Hashing

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with
Composition: Limitations of the Indifferentiability Framework. In Kenneth G.
Paterson, editor, Advances in Cryptology - EUROCRYPT 2011 - 30th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of
Lecture Notes in Computer Science, pages 487–506. Springer, 2011.

[Sch16] Berry Schoenmakers. Explicit Optimal Binary Pebbling for One-Way Hash
Chain Reversal. In Jens Grossklags and Bart Preneel, editors, Financial
Cryptography and Data Security - 20th International Conference, FC 2016,
Christ Church, Barbados, February 22-26, 2016, Revised Selected Papers,
volume 9603 of Lecture Notes in Computer Science, pages 299–320. Springer,
2016.

[TT18] Stefano Tessaro and Aishwarya Thiruvengadam. Provable Time-Memory
Trade-Offs: Symmetric Cryptography Against Memory-Bounded Adversaries.
In Amos Beimel and Stefan Dziembowski, editors, Theory of Cryptography -
16th International Conference, TCC 2018, Panaji, India, November 11-14,
2018, Proceedings, Part I, volume 11239 of Lecture Notes in Computer Science,
pages 3–32. Springer, 2018.

A Proof of Lemma 1
Let p = 1

R and r ∈ J1, RK. It is clear that X(r) follows a binomial law with parameters p
and n. Therefore, we can use the Chernoff bound, so that for any j ≥ 2pn,

Pr
(

X(r) ≥ j
)
≤ e− j−pn

3 .

Finally,

E
(

max
r

X(r)
)

=
∑
j≥1

Pr
(

max
r

Xr ≥ j
)

≤ 2pn + 3 ln (R) +
n∑

j=2pn+3 ln(R)

Pr
(∨

r

Xr ≥ j

)

≤ 2pn + 3 ln (R) +
R∑

r=1

n∑
j=2pn+3 ln(R)

e− j−pn
3

≤ 2pn + 3 ln (R) + R · e
pn
3 · e− 2pn+3 ln(R)

3 − e
−n−1

3

1− e− 1
3

≤ 2pn + 3 ln (R) + 4R · e− pn
3 e− ln(R)

≤ 2n

R
+ 3 ln (R) + 4 .

Now, when the sampling is performed without replacement, we can use [Hoe94, Theorem
4], which states that for any continuous and convex function,

E
(

f
(

X(r)
))
≤ E

(
f
(

Y (r)
))

,

where Y (r)∼Binomial(p, n). In particular, this holds when f(x) = et·x for any t > 0.
Because the Chernoff bound is obtained by upper bounding E

(
et·X(r)

)
, the proof also

carries over to this case.

Charlotte Lefevre and Bart Mennink 281

B Proof of Lemma 2
In this section, we provide a self-contained proof of Lemma 2. The proof closely fol-
lows [LM22].

Lemma 2 aims to bound the probability that an adversary finds a preimage for
xk in G(k). Remember that, for k′ < K, when xk′ is given to the adversary, the
permutation evaluations that allow to compute xk′+1 from xk′ are given for free to the
adversary. Therefore, in the game G(k), the adversary was granted a total of q(k) =
(ℓ + ℓ′)(K − k) + qoff +

∑
k′≥k q

(k′)
on queries. We remark that the phase before the release

of xk is basically the offline phase for the particular security game G(k). We can therefore
distinguish between three different stages for the game G(k):

• The offline phase, during which the adversary can make qoff queries;

• The online phase up to the release of xk (free queries included). During that phase,
the adversary can make (ℓ + ℓ′)(K − k) +

∑
k′>k q

(k′)
on queries;

• The online phase after the release of xk and before the release of xk+1 during which
the adversary can make qon,k queries.

We refer to the two first stages as the k-offline phase, and the last as the k-online phase.

Setup. We start by establishing the notation used in this proof. In the probabilities,
when no subscript is mentioned, the distribution Sk is implicitly used. Let 0 < s ≤ r be
such that n = (ℓ − 1) × r + s, or in words, s is the length of xℓ

k. The adversarial query
history is denoted as Q. It contains tuples of the form (X, Y, d), indicating that P(X) = Y
and that the query was made in the direction d ∈ {fwd, inv}. Given two indices a ≤ b,
Q[a : b] refers to the sub-query history encompassing only the tuples in Q that were added
between query number a and query number b (both indices included). Moreover, Q[a]
denotes Q[a : a]. Given a bad event BAD, for any i ∈ J1, qkK, BAD[i] denotes that BAD
is triggered after the first i queries. If E is an event, 1E is the Bernoulli variable equal
to 1 if and only if E occurs. Finally, for x ∈ N, n ≤ x, we use [x]n to denote the falling
factorial of degree n of x, i.e.,

[x]n =
n−1∏
i=0

(x− i) .

In order to find a preimage, the adversary must complete two steps: i) Find a well-
formed state such that its cascade of ℓ− 1 consecutive permutation evaluations produces
the outer parts that match exactly the components x

(l)
k ; ii) Connect this state to IV k,id

with message blocks. Let S be the following set:

S =
{

y ∈ {0, 1}b
∣∣ ∀l ∈ J1, ℓK, outerr(P l(y)) = x

(l)
k

}
.

Moreover, define S[l] to be P l(S). In words, S captures all the states right before the
squeezing phase which cascade successively to produce the desired ℓ outer parts, and S[l]
specifically captures the states associated with squeezing x

(l)
k . Since P is a permutation,

these sets all have the same size. Moreover, given 0 ≤ a ≤ b ≤ ℓ, S[a : b] is the multi-set
equal to

⋃b
l=a S[l].

Event Splitting. If the adversary manages to find a preimage for xk, this implies that
there exist a1, . . . , aℓ′ ∈ {0, 1}r, N0, . . . Nℓ′ ,∈ {0, 1}b, and d1, . . . , dℓ′ ∈ {fwd, inv} such
that

282 Permutation-Based Hash Chains with Application to Password Hashing

• N0 = IV k,id;

• ∀i ∈ J1, ℓ′K, (Ni−1 ⊕ (ai ∥ 0c), Ni, di) ∈ Q;

• Nℓ′ ∈ S[1].

We denote this bad event by PRE. At this stage, we dropped the requirement on the
message blocks to correspond to a valid padding. In order to avoid the complexity of
reasoning about the entire graph, we can focus on specific trigger points. The pivot taken
here is the direction of the query (Nℓ′−1 ⊕ (aℓ′ ∥ 0c), Nℓ′ , dℓ′).

Let BADFWD and, for l ∈ J1, ℓK, BADINVl be defined as follows:

BADFWD : ∃(X, Y, fwd) ∈ Q such that X ∈ S[0] ,

BADINVl : ∃(Sfwd , Sinv, d) ∈ Q such that Sd ∈ S[l] .

Moreover, let BADINV :=
∨ℓ

l=1 BADINVl. BADFWD (resp., BADINV) corresponds to the
pivot query made in the forward (resp., inverse) direction. Intuitively, with BADFWD, the
adversary cannot freely choose the outer parts of the states it queries. On the other hand,
if BADINV is set during the k-online phase, the adversary can freely choose the outer parts
of the query it makes, allowing it to set this event with higher probability. However, in
the k-offline phase, the adversary additionally needs to guess the outer parts.

Now, if the adversary finds a well-formed state through BADINV, it must further
connect this state to the initial state of the sponge IV k,id after having triggered BADINV.
To capture that, we will consider a slightly more complicated version of bad event INNER
from [LM22]. More precisely, we parametrize INNER by a query index i. This enforces that
a fresh inner collision should have been found starting from the query i, and previously
found inner collisions do not play a role. This parametrization proves to be valuable, as
triggering BADINV during the k-online phase has a lower success probability than during
the k-offline phase. INNER(i) is defined as follows:

INNER(i) : ∃(X, Y, fwd) ∈ Q, (X ′, Y ′, inv) ∈ Q[i : q]
such that innerc(Y) = innerc(X ′) .

In [LM22], Lefevre and Mennink argued the following splitting:

PRE =⇒ BADFWD ∨ (BADINV ∧ INNER(1)) ,

which led to the following bound:

Pr (PRE) ≤ Pr (BADFWD) + min {Pr (INNER(1)) , Pr (BADINV)} .

However, this approach is too coarse for our setting, and we need to further split the events
to take into account the different phases. More precisely, in order to trigger PRE, there
are three possibilities:

• The adversary triggers BADFWD at some point;

• The adversary triggers BADINV during the k-offline phase, and INNER(1) at some
point;

• The adversary triggers BADINV and finds inner collisions, both during the k-online
phase.

Therefore,

Pr (PRE) ≤ Pr (BADFWD) + min
{

Pr (BADINV[qk − qon,k]) , Pr (INNER(1))
}

+ min {Pr (BADINV ∧ ¬BADINV[qk − qon,k]) , Pr (INNER(qk − qon,k))} ,

Charlotte Lefevre and Bart Mennink 283

where we remind that BAD[i] denotes that BAD is triggered after the first i queries; while
INNER(i) denotes that a new inner collision has been found starting from the ith query.
Looking ahead, Pr (BADINV[qk − qon,k]) will have a bound similar to Pr (BADFWD). This
allows us to eliminate the term involving INNER(1), resulting in the following expression:

Pr (PRE) ≤ Pr (BADFWD) + Pr (BADINV[qk − qon,k])
+ min {Pr (BADINV ∧ ¬BADINV[qk − qon,k]) , Pr (INNER(qk − qon,k))} . (31)

Now, we can evaluate the probabilities individually. Intuitively, for the events BADFWD
and BADINV, we adopt the same approach as [LM22], which involves conditioning on |S|.
The main novelty in our approach consists of showing that setting BADINV during the
k-offline phase is (almost) as hard as setting BADFWD.

Probability of BADFWD. We have

Pr (BADFWD) ≤
qk∑

i=1

2c∑
y=1

Pr (BADFWD[i] ∧ ¬BADFWD[i− 1] ∧ |S[0]| = y)

≤
qk∑

i=1

2c∑
y=1

Pr
(
BADFWD[i]

∣∣ ¬BADFWD[i− 1] ∧ |S[0]| = y
)
×

Pr (|S[0]| = y) .

Triggering BADFWD is similar to a guessing game. The adversary must make a query
such that the answer lies in the set S[1]. As explained in more detail in [LM22], the values
in S[0] are defined via inverse P-calls, thus random. Moreover, one failed attempt with
the query (X, Y, fwd) from the adversary only removes X from the set of possibilities.
Therefore,

Pr (BADFWD) ≤
qk∑

i=1

2c∑
y=1

y

2b − (i− 1)Pr (|S[0]| = y)

≤ 2qk

2b
E (|S[0]|) , (32)

where we used that qk ≤ 2b−1.

Probability of BADINV ∧ ¬BADINV[qk − qon,k]. Note that we can assume that ℓ > 1,
otherwise this event can be set with probability 1 and the probability will not dominate
the “min”. Again, by basic probability, we have

Pr (BADINV ∧ ¬BADINV[qk − qon,k])

≤
qk∑

i=qk−qon,k+1

2c∑
y=1

ℓ∑
l=1

Pr
(

BADINVl[i]
∣∣ ¬BADINV[i− 1] ∧ |S[1 : ℓ]| = ℓy

)
×

Pr (|S[1 : ℓ]| = ℓy) .

The idea used in [LM22] for the conditioned BADINV involves a close examination of the
paths induced by the elements in S[1 : ℓ]. Here, we only focus on one fixed outer part
at a time for the individual bad events BADINVl. For simplicity, when the adversary
makes a query with input Z, both P(Z) and P−1(Z) are assumed to be given to the
adversary. Therefore, the adversary wins if P−1(Z)→ Z → P(Z) coincides with a path
Yl−1 → Yl → Yl+1 with Yl ∈ S[l] and Yl±1 ∈ P±1(S[l]). S[l] is a set of size y, and is a

284 Permutation-Based Hash Chains with Application to Password Hashing

subset of a set of size at least 2c (note that this statement is also valid when l = ℓ, since
2b−s ≥ 2c). At a high level, either a query sets BADINV, or it fails, and in the latter case,
the only information that the adversary learns is that neither Z, P(Z), nor P−1(Z) are in
S[1 : ℓ]. Therefore, for any i, y, and l,

Pr
(

BADINVl[i]
∣∣ ¬BADINV[i− 1] ∧ |S[1 : ℓ]| = ℓy

)
≤ y

2c − 3(i− 1) ≤
2y

2c
,

where we used that qk ≤ 2c/6. Therefore,

Pr (BADINV ∧ ¬BADINV[qk − qon,k]) ≤
qk∑

i=qk−qon,k+1

2c∑
y=1

2ℓy

2c
Pr (|S[1 : ℓ]| = ℓy)

≤ 2qon,k

2c
E (|S[1 : ℓ]|) . (33)

Probability of BADINV[qk − qon,k]. Setting this event implies among others that the
adversary wins before xk is released. As a first step, from A, we want to build a distinguisher
D that returns 1 if and only if A sets BADINV at the end of the k-offline phase. For D to
verify the aforementioned event, we need to provide it additional information at the end
of the k-offline phase. As the first piece of additional information, we provide xk, which
can be seen as a key for the outer-keyed sponge during the k-offline phase. Moreover, for
every existing (X, Y, d) ∈ Q[1 : qk − qon,k], we give to D the queries (P l(Y),P l+1(Y)),
and (P−l−1(X),P−l(X)) for all l ∈ J0, ℓ− 2K. Now, D is a distinguisher in the key-reveal
PRF security game of the sponge. The resources of D can be upper bounded by ℓ + ℓ′

construction queries, and 2ℓ(qk − qon,k) primitive queries. Therefore,

PrSk
(BADINV[qk − qon,k])

≤
∣∣PrSk

(BADINV[qk − qon,k])−PrSk+1 (BADINV[qk − qon,k])
∣∣

+ PrSk+1 (BADINV[qk − qon,k])
≤ AdvPRF-krev

OKS (ℓ + ℓ′, 2ℓ(qk − qon,k)) + PrSk+1 (BADINV[qk − qon,k]) . (34)

Now, we can upper bound the term PrSk+1 (BADINV[qk − qon,k]). We have

PrSk+1 (BADINV[qk − qon,k])

≤
2c∑

y=1

qk−qon,k∑
i=1

ℓ∑
l=1

PrSk+1

(
BADINVl[i]

∣∣ ¬BADINV[i− 1] ∧ S[1 : ℓ] = ℓy
)
×

Pr (S[1 : ℓ] = ℓy) .

Remember that the values x
(l)
k are sampled at random, but are not given to the adversary.

Therefore, the difficulty of guessing an element in S[l] is augmented by the fact that the
adversary must guess x

(l)
k . Given i ∈ J1, qkK and l ∈ J1, ℓK, we define the bad events GUESSl

i

as follows:

GUESSl
i : ∃(Sfwd , Sinv, d) ∈ Q[i] such that x

(l)
k =

{
outerr(Sd) if l < ℓ ,

outers(Sd) if l = ℓ .

Moreover, define the random variables Gl as follows:

Gl =
∣∣∣{i ∈ J1, qk − qon,kK

∣∣ GUESSl
i holds

}∣∣∣ .

Charlotte Lefevre and Bart Mennink 285

In other words, for each l, Gl counts the number of queries during the k-offline phase that
have their outer part equal to x

(l)
k . Note that contrary to the case of BADINV during the

k-online phase, we do have to consider the last chaining value separately. Indeed, when
s < r, guessing x

(ℓ)
k becomes easier due to the smaller size of the last message block, but

given this correct guess, guessing an element in S[ℓ] becomes harder, since S[ℓ] is a set of
size y, and is a subset of a set of size at least 2b−s. We have

ESk+1

(
Gl
)
≤

{
(qk−qon,k)

2r if l < ℓ ,
(qk−qon,k)

2s if l = ℓ .

Note that this bounding is independent of the events ¬BADINV[i− 1] and |S[1 : ℓ]| = y.
Now, for the probability that the ith query lies in S[l], conditioned on GUESSl

i, the
reasoning used for the analysis of BADINV during the k-online phase still applies. However,
we need to use a more accurate bounding for the size of the superset of S[ℓ]. We have

PrSk+1 (BADINV[qk − qon,k])

≤
2c∑

y=1

qk−qon,k∑
i=1

Pr (S[1 : ℓ] = ℓy)×

[ℓ−1∑
l=1

Pr
(

GUESSl
i

) y

2c − 3(i− 1) + Pr
(

GUESSℓ
i

) y

2b−s − 3(i− 1)

]

≤
2c∑

y=1
Pr (S[1 : ℓ] = ℓy)

[
ℓ−1∑
l=1

(
E
(
Gl
) 2y

2c

)
+ E

(
Gℓ
) 2y

2b−s

]

≤ 2(qk − qon,k)
2b

E (|S[1 : ℓ]|) , (35)

where we used that qk ≤ 2c/6 ≤ 2b−s/6. Therefore, combining (34) and (35), we obtain

Pr (BADINV[qk − qon,k]) ≤ AdvPRF-krev
OKS (ℓ + ℓ′, 2ℓ(qk − qon,k))

+ 2(qk − qon,k)
2b

E (|S[1 : ℓ]|) . (36)

Probability of INNER(qk − qon,k). For i ∈ Jqk − qon,k, qkK, conditioned on the fact that
INNER(qk − qon,k) has not been set beforehand, the probability that the ith query triggers
INNER(qk − qon,k) is upper bounded by i2r

2b−i
. Therefore, using that qk ≤ 2b−1,

Pr (INNER(qk − qon,k)) ≤
qk∑

i=qk−qon,k+1

2i

2c
≤ 2qkqon,k

2c
. (37)

Conclusion. Plugging (32), (33), (36), and (37) into (31), we obtain

Pr (PRE) ≤ 2qk

2b
E (|S[0]|) + 2(qk − qon,k)

2b
E (|S[1 : ℓ]|)

+ AdvPRF-krev
OKS (ℓ + ℓ′, 2ℓ(qk − qon,k))

+ min
{

2qon,k

2c
E (|S[1 : ℓ]|) ,

2qon,k · qk

2c

}
. (38)

286 Permutation-Based Hash Chains with Application to Password Hashing

Now, it remains to compute the expectation of the sets S[0] ans S[1 : ℓ]. Again, we use
the same approach as [LM22], and use the linearity of the expectation. We have

E (S[1]) =
∑

y∈{0,1}b

E
(
1Y ∈S[1]

)
≤

∑
y∈{0,1}b s.t.,
outerr(y)=x

(1)
k

Pr (Y ∈ S[1])

≤
∑

y∈{0,1}b s.t.,
outerr(y)=x

(1)
k

2c

2b

2c

2b − 1 · · ·
2b−s

2b − (ℓ− 2)

= 2c(2c)ℓ−2 · 2c−s

[2b]ℓ−1

≤ 2 2b

2n
,

where we used that 2[2b]ℓ−1 ≥ (2b)ℓ−1 if (ℓ− 1)2 ≤ 2b (see [LM22, Section 2.1]). Because
P is a permutation, we have for any l ∈ J0, ℓK, S[l] = S[1], therefore S[1 : ℓ] = ℓ × S[1].
Thus,

E (S[0]) ≤ 2 2b

2n
,

E (S[1 : ℓ]) ≤ 2ℓ
2b

2n
.

Plugging these bounds into (38) gives

PrSk
(A solves pre(xk) in G(k)) ≤ 8ℓqk

2n
+ min

{
4ℓqon,k

2n−r
,

2qon,k · qk

2c

}
+ AdvPRF-krev

OKS (ℓ + ℓ′, 2ℓ(qk − qon,k)) .

	Introduction
	Universal Construction U/Key and Generalized Model
	Refined Analysis of U/Key
	Application
	Outline

	Preliminaries
	Notation
	A Balls-and-Bins Result
	Indifferentiability
	Preimage Resistance

	Hash Chain Based Password System
	Construction
	Security Model

	Random Oracle Results with U/Key
	U/Key Security in the New Model
	Proof of thm:TKEY-RO in new model
	Composition With Indifferentiable Hash Functions

	Dedicated Security Proof of U/Key with a Sponge
	Optimization of Sponge-Based Instantiation
	Outer-Keyed Sponges, PRF-Security, and Key-Reveal PRF-Security
	Security Result
	Proof of theorem:sponge

	Improved Multi-User Security Proof of U/Key with a Truncated Permutation
	Description of Scheme
	Security Result
	Proof of theorem:truncP

	Concluding Remarks
	Impact of Online Query Complexity
	Memory Storage

	Proof of thm: max expectation
	Proof of lem:probaPreim

