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Abstract. Gröbner basis cryptanalysis of hash functions and ciphers, and their
underlying permutations, has seen renewed interest recently. Anemoi (Crypto’23) is
a permutation-based hash function that is efficient for a variety of arithmetizations
used in zero-knowledge proofs. In this paper, exploring both theoretical bounds as
well as experimental validation, we present new complexity estimates for Gröbner
basis attacks on the Anemoi permutation over prime fields.
We cast our findings in what we call the six worlds of Gröbner basis cryptanalysis.
As an example, keeping the same security arguments of the design, we conclude that
at least 41 instead of 37 rounds would need to be used for 256-bit security, whereby
our suggestion does not yet include a security margin.
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1 Introduction
The idea of solving systems of polynomial equations that stem from problems in block
cipher or hash function cryptanalysis by means of symbolic computation has a decades-long
tradition. Such means include, among others, Gröbner basis techniques or polynomial
factorization.

Symbolic computation approaches for cryptanalysis of block ciphers and hash functions
saw a major wave of attention around the time Rijndael was standardized as AES and the
years afterwards [CP02, CMR05, AC09, CL05, SKPI07], albeit with an unclear impact
on designs at that time. More recently, however, such approaches have been having
more impact on new designs, especially in the area of MPC/FHE/ZK-friendly ciphers and
hashing. Examples include Gröbner basis attacks on Friday and Jarvis [ACG+19, BSGL20],
attacks on MiMC combining higher-order differential distinguishers with polynomial
factorization [EGL+20, BCP23, LP19, RAS20], an attack on Grendel [GKRS22] leveraging
polynomial factorization, or attacks on unusual parameterizations of Poseidon [ABM24].

A recurring theme in works that propose designs in symmetric cryptography for
encryption or hashing is the choice of a secure number of rounds. Usually, all known
attack vectors are considered, and the most performant one determines a secure number of
rounds, including a certain security margin. Recent arithmetization-friendly designs often
assume Gröbner basis cryptanalysis to be the most crucial attack vector. This assertion
seems sound since often better understood statistical and other algebraic attacks cover
fewer rounds. However, estimating the complexity of Gröbner basis attacks is, in general,
difficult.

We briefly review the state-of-the-art approach for Gröbner basis cryptanalysis in
Section 1.1. In Section 1.2, we outline our contributions and discuss a concrete application
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to Anemoi [BBC+23], a permutation-based hash function that is arithmetization-friendly,
i.e., efficient for a variety of arithmetizations used in zero-knowledge proofs.

1.1 The Common Approach of Gröbner Basis Attacks
Conceptually, using Gröbner bases in cryptanalysis comprises two stages.

(I) Modeling a cryptographic primitive as a system of polynomial equations with un-
known parameters as variables. A parameter of interest might be the secret key of a
block cipher, a solution to the constrained-input constrained output (CICO) problem
[BDPV11] of a permutation used in Sponge hashing mode, or the preimage of a
given hash value. Often, it is possible to describe the same primitive using different
models.

(II) Solving the system of polynomial equations using Gröbner basis techniques. We note
that equation systems stemming from problems in symmetric cryptography often
have a finite number of solutions. Hence, we usually deal with equation systems that
generate a zero-dimensional ideal. “Solving” commonly means finding exactly one
solution, and the solving process encompasses a triad of computations, namely,

Step (1) GB: computing a degree reverse lexicographic (DRL) Gröbner basis using an
off-the-shelf Gröbner basis algorithm such as, e.g., F4 [Fau99],

Step (2) FGLM: converting the DRL Gröbner basis (of a zero-dimensional ideal) to
the (reduced) lexicographic (LEX) Gröbner basis using a conversion algorithm
such as the FGLM algorithm [FGLM93],

Step (3) FAC: factorizing the (unique) univariate polynomial in the (reduced) LEX
Gröbner basis using a polynomial factoring algorithm such as a fast version of
Cantor-Zassenhaus [KS98]. The roots of the univariate polynomial determine
partial solutions of the equation system. If needed, back-substitute any partial
solution into the other equations from the LEX Gröbner basis to obtain (a
candidate for) a full solution.

A Gröbner basis attack reduces the problem of multivariate root finding to the problem
of univariate root finding. This can be seen as follows: a (reduced) LEX Gröbner basis is in
triangular form [Bar04], much like the reduced row echelon form after Gaussian elimination
yields a matrix in triangular form. This means that a (reduced) LEX basis always contains
a univariate polynomial, which we can factor.

1.2 Our Contribution and Related Work
In the context of Gröbner basis cryptanalysis, three main approaches are used to estimate
attack complexities and derive round numbers:

(i) Using theoretical upper bounds on the complexity metrics. This method often
overestimates complexity, underestimates necessary rounds, and requires assumptions
that may not hold.

(ii) Running small-scale experiments on round-reduced ciphers to extrapolate complexity
metrics. Extrapolation techniques have been heavily used in the past: [ACG+19],
[AAB+20], [BBLP22], [BBC+23], [Sau21], [ABM24]. This approach typically pro-
vides better estimations but might introduce a heuristic gap.

(iii) Leveraging dedicated (weighted) monomial orderings with respect to which a given
polynomial system is already a Gröbner basis. Subsequently, better bounds of the
complexity metric can be derived, zero-dimensionality can be proven, and dedicated
basis conversion algorithms may be applied: [BBL+24, Ste24a, Ste24b, Bri24].
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We develop a refined methodology that combines the strengths of (i) and (ii), addressing
their respective limitations. Our “Six Worlds” offers cryptographic designers a tool for
evaluating and understanding the security implications of each step of a Gröbner basis
attack. In particular, we apply our methodology to the permutation Anemoi [BBC+23]
and identify specific instances that may be susceptible to Gröbner basis attacks.

The six worlds of Gröbner basis cryptanalysis. For the three steps of a Gröbner basis
attack, there are (E) experimental and (T) theoretical approaches to determine their
complexity in terms of computational effort. In total, these six approaches give rise to what
we call the six worlds of Gröbner basis cryptanalysis. Establishing complexity estimates for
each of these six worlds contributes to a more comprehensive understanding of Gröbner
basis cryptanalysis. See Section 3.1 for an overview of our methodology. Our contributions
extend existing and offer new methods to assess the hardness of Step (1) and Step (2).

Algebraic models. We provide a more detailed analysis of the two algebraic models of
Anemoi, called FCICO and PCICO, presented in [BBC+23]. Analyzing the evolution of the
polynomial degrees in the second model, PCICO, lies the foundation for a tighter theoretical
bound in Step (2) of a Gröbner basis attack. See Section 4.2.

Tighter theoretical bounds for Step (2). We extend results in [Wam92, BSGL20] and
leverage multihomogeneous Bézout theory to estimate the complexity of converting between
Gröbner bases in Step (2). In contrast to the ciphers studied in [BSGL20], where the
multihomogeneous Bézout bound was first applied in the context of algebraic cryptanalysis,
the algebraic structure of the model PCICO is more involved. We thus employ a search
approach for variable set partitions that minimizes the multihomogeneous Bézout bound
and inductively prove the corresponding bound by following the steps of the Row Expansion
Algorithm [Wam92]. A comprehensive introduction to the multihomogeneous Bézout bound
is given in Appendix A.2. Concrete results for Anemoi are stated in Section 4.4, proofs are
provided in Appendix B.3.

Influence of small fields and the variable ordering. We demonstrate that there are
instantiations of Anemoi over F2n for which the cost of Step (1) is negligible. Moreover, we
argue that over Fp , the field size for concrete experiments on reduced versions in [BBC+23]
has unexpected effects. In particular, varying the underlying variable ordering influences
the runtime and estimated complexity of Step (2). See Section 4.3. We provide more
consistent experimental results, leading to more reliable extrapolations. See Section 4.4. To
the best of our knowledge, this is the first time that the influence of the variable ordering
on the Gröbner basis attack, given a concrete monomial ordering such as DRL, has been
reported.

1.2.1 Concrete results for Anemoi over Fp

As a concrete application of our refined methodology, we analyze in detail the Anemoi
permutation [BBC+23] instantiated over prime fields in Section 4. Our findings indicate
that to uphold the asserted security level, it might be necessary to increase the number of
rounds in some full-round instances of Anemoi. Table 1 summarizes some of our findings in
the six worlds for the popular choice of using α = 3 as the degree of the power map in the
S-box function and gives a comparison with the round number suggestions in [BBC+23].

Table 1 shows that the strategy used in [BBC+23] – assessing Anemoi’s security in
world (E1) based on FCICO and adding a security margin of four rounds to protect, among
other things, against potential threats arising from the second model, PCICO – is generally
insufficient. Specifically, our analysis based on PCICO indicates that in this specific world,
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Table 1: The Six Worlds of Gröbner Basis Cryptanalysis to derive round numbers.
Application to Anemoi : F2

p → F2
p for the case α = 3, with ω = 2. Minimum number of

rounds derived in six worlds, for the model PCICO (FCICO).

(E) Experimental approach (T) Theoretical approach

s [BBC+23] Step (1) Step (2) Step (3) Step (1) Step (2) Step (3)
GB FGLM FAC GB FGLM FAC

128 21 21 (17) 27 (27) 31 (31) 13 (13) 23 (20) 26 (23)
256 37 41 (33) 54 (54) 61 (61) 22 (24) 45 (40) 51 (45)

41 rounds are required, instead of the proposed 37 rounds, to achieve 256-bit security.
Finally, depending on the world under investigation, additional rounds may be necessary
to reach the desired security level. Notably, our analysis does not include any security
margin. Insights into the six worlds of Gröbner basis cryptanalysis applied to Anemoi and
their implications for the security assessment are provided in Sections 4.4 and 4.5.

1.2.2 Related work

Concurrent to our work, cryptanalytic results on Anemoi : F2ℓ
q → F2ℓ

q are obtained
in [BBL+24], [YZY+24] and [Bri24] with methods different from ours. While our work
and [BBL+24, YZY+24] tackle the prominent case (ℓ, q) = (1, p), [Bri24] considers a more
general setting with ℓ ≥ 1 and q ∈ {2n, p}. In particular, after applying a linear change
of variables to FCICO, the work shows how to identify a weighted DRL ordering such that
adding a small number of S-polynomials leads to a Gröbner basis. Consequently, a general
formula for the quotient space dimension was proven. Presumably, the application of the
FGLM algorithm would yield similar results as the ones we present in the world (E2).
In contrast, [BBL+24] leverage a specially crafted weighted monomial ordering (called
FreeLunch order) such that the polynomial system is already a Gröbner basis and a
dedicated three-step solving algorithm ([BBL+24, Alg. 1]) can be applied. Notably, the
complexity of the dominating step is extrapolated from experiments on round-reduced
primitives, and subsequently, the security analysis for Anemoi considers only one step
(polyDet), whose time complexity is similar to the FGLM complexity [BBL+24, Th. 1].
Using the conjectured quotient space dimension from [BBC+23], conclusions similar to ours
in world (E2) can be drawn. Finally, [YZY+24] applies a novel attack framework based on
resultants, supplemented by dimension-reduction techniques such as meet-in-the-middle
modeling.

Table 2: Algebraic Cryptanalysis of Anemoi : F2
p → F2

p with a target security level of
s ∈ {128, 256} and respective round number N as stated in [BBC+23, Table 1].

α s (N) This work [BBL+24] [YZY+24]
ω = 2 ω = 2.37 ω = 2.81 ω = 3 ω = 2.81 ω = 2.81

3 128 (21) 101 120 141 150 118 110
256 (37) 177 208 246 262 203 -

5 128 (21) 122 144 170 181 156 -
256 (37) 212 251 297 316 270 -

7 128 (20) 131 154 182 194 174 -
256 (36) 233 275 325 347 307 -

11 128 (19) 144 170 201 215 198 -
256 (35) 264 312 369 393 358 -

In Table 2, we give a more detailed comparison to related work. In particular, we
compare our results to [BBL+24] and[YZY+24]. Both of these works present new attack
strategies against Anemoi over Fp with ℓ = 1. Table 2 shows the estimated (time)
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complexity of each attack against Anemoi with a targeted security level of 128 and 256
bits, respectively. To achieve a fair comparison, in particular, with [BBL+24], we consider
our world (E2), i.e., FGLM complexity derived from experimental conjectures, and fix the
model PCICO. For a more detailed and informed comparison, we add several data points
with ω ∈ {2, 2.37, 2.81, 3} corresponding to common (conservative) choices in the literature
from a design perspective and a range of (increasingly pessimistic) choices from an attack
perspective. We point out that the question of which concrete choice of ω is the “right”
one is related to an ongoing research effort for a better understanding of Gröbner basis
algorithms (and the involved matrices) on structured equation systems. This question
is further complicated by the fact that different methods tend to account for different
(structural properties of) matrices when choosing the value of ω for deriving complexity
estimates. Hence, a direct comparison of different methods with the same value of ω might
not be immediately informative.

In summary, while [Bri24] is tailored to the application on Anemoi, [BBL+24] and our
work present a more general framework. However, compared to [BBL+24], our approach
is less restricted in its application possibilities. [BBL+24] needs a triangular system and a
special condition (Prop. 5) to work. Moreover, due to the nature of the solving approach,
[BBL+24] can only be applied to CICO problems with a single input and output element
set to zero. This also excludes permutations with a capacity and hash value larger than
one field element in Sponge mode. Among these excluded permutations are, e.g., Jarvis,
various Poseidon instances, and, in particular, Anemoi for ℓ > 1. In contrast, our work
doesn’t need these conceptual restrictions and is, thus, applicable in a wider range of
settings.

1.2.3 Organization

In Section 2, we provide the necessary background on complexity estimations for Gröbner
basis algorithms and present the multihomogeneous Bézout theory. For those unfamiliar
with the theory of Gröbner basis attacks or interested in more details on Bézout’s theorems,
we refer to Appendix A. Section 3 gives a detailed overview of our methodology, which is
applied to Anemoi in Section 4.

We provide a comprehensive repository1 containing all our experimental results, along
with dedicated files to facilitate their interpretation and verification.

2 Background
All results in this section hold for any field F. We note, however, that the most relevant
case for equation systems stemming from problems in symmetric cryptography is the case
of finite fields Fq .

2.1 Complexity Estimates for Gröbner Basis Algorithms
For the following discussion, it is convenient to emphasize the connection between the
number of equations ne and variables nv in an equation system and the polynomial
ring over which this system lives. Thus, we presume to write F[x1, . . . , xnv

]. The ideal
I ⊆ F[x1, . . . , xnv ] is generated by the polynomials {f1, . . . , fne}. We assume I to be
zero-dimensional. In the following, ω denotes the linear algebra constant, with 2 ≤ ω ≤ 3.

As discussed in Section 1.1, Gröbner basis assisted polynomial system solving involves
three steps: Step (1), Step (2), and Step (3). We denote the corresponding complexities
by CGB, CFGLM, and CFAC, respectively.

1https://github.com/IAIK/six-worlds-anemoi

https://github.com/IAIK/six-worlds-anemoi
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Complexity of Computing a Gröbner Basis. Runtime complexities for Gröbner basis
algorithms are based on the analysis of matrix-based algorithms such as Lazard [Laz79,
Laz83], F4 [Fau99], or Matrix-F5 [BFS15]. The runtime complexity is generally bounded
by [BFS15]

O
(

ne ·
(

nv + dreg
nv

)ω)
(1)

operations in F. We use a slightly tighter upper bound given by

O

dreg∑
i=0

(
nv + i − 1

i

)ω−1
·

ne∑
j=1

(
nv + i − deg (fj) − 1

i − deg (fj)

) (2)

operations in F [Spa12, Th. 1.72]. Here, dreg denotes the degree of regularity, as defined in
[BSGL20, §A 2.2.1]. Intuitively, dreg corresponds to the maximum degree reached during
a Gröbner basis computation. Thus, the overall complexity of computing a Gröbner
basis can be understood as being bounded by row-reducing (full-rank) matrices of size(

nv+i−1
i

)
×
∑ne

j=1
(nv+i−deg(fj)−1

i−deg(fj)
)
, for i = 0, 1, . . . , dreg, eventually leading to the bound in

Equation (2). In practice, the Macaulay matrices built during a Gröbner basis computation
might be sparse and have a substantial rank defect. Note that the bound in Equation (2)
does not account for this particular structure in the Macaulay matrices. Knowledge about
this structure potentially allows further improvement of this bound. In practice, it is
customary to drop any factors from the asymptotic O (·) notation, which is why we directly
use

CGB(ne, nv, dreg) =
dreg∑
i=0

(
nv + i − 1

i

)ω−1
·

ne∑
j=1

(
nv + i − deg (fj) − 1

i − deg (fj)

)
(3)

for estimating the runtime complexity of computing a Gröbner basis.

Complexity of Changing the Monomial Order. A general upper bound on the runtime
complexity of the FGLM algorithm [FGLM93] is

O
(
nv · dI

3) (4)

operations in F, where nv is the number of variables in R = F [x1, . . . , xnv
] and dI =

dimF(R/I) is the dimension of the quotient ring R/I as F-vector space. The bound in
Equation (4) can be improved using fast linear algebra techniques, leading to a runtime
complexity of

O (nv · dI
ω) (5)

operations in F [BSGL20]. Again, we drop any factors from the O (·) notation and directly
use

CFGLM(nv, dI) = nv · dI
ω. (6)

Complexity of Factoring Polynomials. Polynomial factorization is a classic problem, and
for this purpose, we may choose one of many factoring algorithms [Ber71, CZ81, KS98,
Gen07, KU11, BBLP22]. See also [Vas07, Section 6.7] for a summary of classical factor-
ization algorithms. For example, a fast version of the (probabilistic) Cantor-Zassenhaus
algorithm [CZ81] for factoring a univariate polynomial of degree duni over a finite field
with constant cardinality uses an expected number of

O
(
duni

1.815) (7)

field operations [KS98]. In Step (3), we factor the (unique) univariate polynomial f in the
(minimal) LEX Gröbner basis. The polynomial f has the last LEX variable as indeterminate.
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This means that factoring f only recovers partial solutions for the last variable. If needed,
partial solutions for this variable are back-substituted into the other equations until a
full solution is obtained, which might incur some additional costs. In general, we have
deg (f) ≤ dI .

Ideals in shape position are an important subclass of zero-dimensional ideals as they
have a particularly well-structured LEX Gröbner basis [BMMT94, FM11, BND22].
Remark 1. Let I ⊆ F[x1, . . . , xnv ] be an ideal. We say I is in shape position if the reduced
LEX Gröbner basis of I has the form

{x1 − g1(xnv ), . . . , xnv−1 − gnv−1(xnv ), gnv (xnv )} , (8)

where deg(gi) < deg(gnv ) for 1 ≤ i < nv. An immediate consequence of an ideal I in
R = F[x1, . . . , xnv ] being in shape position is the fact that [BND22]

dI = dimF(R/I) = deg(gnv
). (9)

Thus, for ideals in shape position, factoring f recovers the values for the other variables
at once. In this case, we know that deg (f) = dI . We note that our algebraic models
for Anemoi lead to ideals in shape position. Hence, in this case, the key parameter for
estimating the runtime complexity of Step (3) is dI . As above, we directly use the bound

CFAC(dI) = dI
1.815. (10)

The Value of the Linear Algebra Constant ω. In the context of algebraic cryptanalysis,
the linear algebra constant ω often (tacitly) carries a double meaning. On the one hand,
it serves as the ordinary linear algebra exponent for dense matrix multiplication with
ω ≈ 2.37. On the other hand, it is also used to account for the special structure in the
(Macaulay) matrices built during Step (1) and Step (2) [BSGL20, FM11]. This double
meaning complicates the matter of choosing a concrete value for ω, especially when arguing
about a secure number of rounds and/or the purported complexity of an attack.

In general, choosing a lower value for ω can be seen as a conservative choice for a
designer and an aggressive one for an attacker – and vice-versa. A common choice in the
literature, for both viewpoints, is ω = 2 [ACG+19, BSGL20, AAB+20, BBC+23, RST23,
GKRS22, GKR+21, ARS+15, GKL+22, GHR+23, GLR+20]. There also exists a claim for
ω = 1 [BSGL20, Appendix, Section 2.2.2.]. In the literal meaning of ω, i.e., as the linear
algebra exponent, such choices might appear unrealistic. Implicitly, however, these choices
aim to account for better-performing algorithms when dealing with structured matrices
(such as sparse matrices) and use ω as a shortcut for this aim.

In our analysis of Anemoi, we orientate ourselves by the choice ω = 2. Considering
that our algebraic model of Anemoi yields an ideal in shape position, this choice seems to
be justified. Indeed, in the literature, it is the shape position assumption that underlies
fast algorithms for, e.g., Step (2) [FGHR14, FM11]. Nonetheless, we see the topic of a
more detailed analysis of solving algorithms for Step (1) and Step (2) as an interesting
and important open problem. Possibly, this helps to make more informed choices about
the value of ω.

2.2 Multihomogeneous Bézout Bound
As seen in Section 2.1, a tight bound on the quotient space dimension dI of a zero-
dimensional ideal I is an important determinant for the complexity of Step (2) and Step
(3) in Gröbner basis cryptanalysis. Therefore, (tightly) bounding the number of solutions
of an equation system allows to establish (tight) bounds on the complexities of these steps
(cf. Theorem 10).

Bézout’s Theorem (Theorem 11) can be used to bound the quotient space dimension
dI of a zero-dimensional ideal I = ⟨f1, . . . , fn⟩ ⊂ F [x1, . . . , xn].
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Theorem 1 (Bézout bound). Let I = ⟨f1, . . . , fn⟩ ⊂ F [x1, . . . , xn] be a zero-dimensional
ideal and let di = deg (fi) denote the total degree of fi, for 1 ≤ i ≤ n. Then

dI
(T hm.10)=

∑
P ∈VF̄(I)

mP ≤
n∏

i=1
di =: b, (11)

where mP denotes the multiplicity of the solution P in the algebraic closure of F.

There exists a more general version of Bézout’s theorem for so-called multihomogeneous
equation systems [MS87, Wam92, Sha13].

Theorem 2 (Multihomogeneous Bézout bound). Let I = ⟨f1, . . . , fn⟩ be a zero-dimensional
ideal in F [x1, . . . , xn] and let Z = {X1, . . . , Xm} be a partition of the variable set with
|Xj | = nj. Denote by di,j the total degree of fi with respect to the variables in the set Xj

for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then

dI
(T hm.10)=

∑
P ∈VF̄(I)

mP ≤ [tn1
1 · · · tnm

m ]
n∏

i=1

m∑
j=1

di,jtj =: mhb, (12)

where [tn1
1 · · · tnm

m ] extracts the coefficient of the monomial tn1
1 · · · tnm

m in the product of
linear forms di,1t1 + · · · + di,mtm.

For large systems, computing the multihomogeneous Bézout bound for a given variable
set partition directly from the definition might be expensive. [Wam92] presented a recursive
formula that operates solely on the degrees without performing polynomial multiplications.
Since this recursive approach is instrumental in proving the multihomogeneous Bézout
bound of a system with respect to a particular variable set partition, it is summarized in
Appendix B.3.

Minimal Multihomogeneous Bézout Bound. The multihomogeneous Bézout bound can
yield a better bound to the number of (affine) solutions than the classical bound given
by Bézout’s theorem. In particular, the minimal multihomogeneous Bézout bound is at
least as good as the classical Bézout bound since the “trivial” partition into a single set
recovers the latter. Thus, among all partitions, we would like to find the one that yields
the smallest multihomogeneous Bézout bound. Let f1, . . . , fn ∈ F [x1, . . . , xn] and let BX

denote the set of all partitions of the variable set X = {x1, . . . , xn}. Our goal is to solve
the following minimization problem:

min
Z∈BX

 |Z|∏
j=1

t
|Xj |
j

 n∏
i=1

|Z|∑
j=1

di,jtj . (13)

In particular, if I = ⟨f1, . . . , fn⟩ is a zero-dimensional ideal in F [x1, . . . , xn] and if mhb
denotes the minimal multihomogeneous Bézout bound of the polynomial equation system
f1 = · · · = fn = 0, then

dI ≤ mhb ≤ b. (14)

Note that the search space increases exponentially with the number of variables. In
general, finding the minimal multihomogeneous Bézout number, and thus an optimal
variable set partition, is NP-hard [MM07].
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3 The Six Worlds of Gröbner Basis Cryptanalysis

3.1 Refined Methodology for Gröbner Basis Attacks
Highly algebraic, round-based primitives such as Anemoi are prone to Gröbner basis attacks.
The main goal of a Gröbner basis attack is to compute the reduced LEX Gröbner basis
for a zero-dimensional ideal generated by a polynomial equation system modeling a given
cryptographic primitive and, subsequently, factor the unique univariate polynomial in the
reduced LEX Gröbner basis. We have outlined the individual steps of a Gröbner basis
attack in Section 1.1 and discussed the respective complexities in Section 2.1.

We present a refined version of the Gröbner basis attack methodology. In particular,
we discuss and elaborate on the details of the individual steps of a Gröbner basis attack.
Our methodology suggests two perspectives for each of the steps: a theoretical and an
experimental perspective. In total, this leads to six perspectives (or ’worlds’) that a
designer, as well as an attacker, may consider.

Modeling the Primitive. Represent the round-based primitive as a system of ne poly-
nomial equations over the underlying finite field in nv variables. For permutations,
typically the so-called constrained-input constrained-output (CICO) problem is considered
[BDPV11]. To allow certain analysis strategies later on, it is advantageous to have an
algebraic model where the number of equations ne equals the number of variables nv for
every fixed round number N .

Gröbner Basis Attack on Small-Scale Variants of the Primitive. To gain insight into
the hardness of the Gröbner basis attack, experiments are performed on weakened variants
of the primitives. See also [CMR05] for a further discussion. This includes the reduction
of the round number N and the reduction of the state size by considering smaller finite
fields. However, in some cases, it might be nontrivial to properly scale down a full-scale
primitive to some small-scale variant that is tractable by practical experiments.

When conducting experiments, several factors influence the performance of solving
algorithms for Step (1), Step (2), and Step (3), besides the global choice of a particular
algebraic model. In the case of Step (1), the monomial order as well as the variable order
within this monomial order highly affect the runtime of a Gröbner basis computation. It
is known that in extreme cases, a well-chosen monomial order directly yields a Gröbner
basis (without any computation) [BPW06, AAB+20]. In essence, this means that Step
(1) can be skipped, leaving only Step (2) and Step (3) to deal with. For Step (2), a
similar perspective arises: although the quotient space dimension dI is an invariant of the
ideal, concrete experiments may help to understand the structure in the multiplication
matrices, which also depends on the monomial order from which we convert to the LEX
order. Therefore, as a step towards a more thorough analysis, we suggest exploring the
influence of the monomial/variable order on the runtime of Step (1) and Step (2). For
example, in our analysis on Anemoi in Section 4, we tested different variable orders and
chose the most performant one for our security analysis.

Following our discussion of complexity estimates in Section 2.1, important metrics
of interest during the experiments are the degree of regularity dreg, the quotient space
dimension dI , and the degree of the univariate polynomial in the reduced LEX Gröbner
basis. We record the values of these metrics for different round numbers and establish
a growth trend depending on the number of rounds. This approach provides empirical
evidence for subsequent security arguments based on extrapolation. A comparison of
concrete runtime results, moreover, allows for a first assessment of which step is the hardest
one. We also suggest performing experiments over different field sizes to ensure that the
derived results are robust and not only an artifact of a particular field choice.
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Security Analysis. For a targeted security level of s bits, the number of rounds N has to
be chosen such that N ≥ N∗, where

N∗ = min {N ∈ N : Calg(N) ≥ 2s} . (15)

Here, Calg ∈ {CGB, CFGLM, CFAC} denotes the algebraic complexity (cf. Section 2.1) of the
corresponding step in the Gröbner basis attack. The (E) experimental estimation and (T)
theoretical approximation of these determinants give rise to what we call the six worlds of
Gröbner basis cryptanalysis. Our security analysis discusses different suggestions for N∗

when based on the hardness of solving Step (1), Step (2), and Step (3), respectively.

3.2 Exploring the Six Worlds of Gröbner Basis Cryptanalysis
For the concrete instantiation of the complexities, different approaches can be taken:

(E) Experimental approach: Computing dreg and dI is, in general, as difficult as computing
the Gröbner basis. By performing Gröbner basis attacks on small-scale variants, dreg,
and dI are retrieved for round-reduced systems. Estimates can be made from these
values for dreg and dI . While in some cases, a clear structure evolves (see, for example,
Conjecture 3 for dI in Anemoi), often only bounds or approximations based on very
few data points can be given. From a designer’s perspective, it is common practice
to use lower bounds, thus potentially underestimating the respective complexities
and, in turn, overestimating N∗ as stated in Equation (15). On the other hand, an
attacker might instead work with upper bounds or tight estimates using regression.
Note that the experimental approach is highly limited by the number of available
data points, and there is no certainty in whether the retrieved formulas hold for
larger round numbers as well.

(T) Theoretical approach: To overcome the limitations of the experimental approach,
theoretical bounds for dreg and dI can be used. Using theoretical upper bounds
increases confidence in the results, at the cost of potentially overestimating the true
complexity, and thus underestimating N∗. In particular, any round number N below
N∗ is proven to be insufficient to reach the targeted security level in the corresponding
step of the Gröbner basis attack, under the assumption that asymptotic constants
can be ignored.

Step (1) GB: For regular sequences, the degree of regularity dreg is bounded by the
so-called Macaulay bound [BFS15], which can be easily computed from the
degrees of the polynomials fi in the system:

dMAC = 1 +
ne∑

i=1
(deg (fi) − 1). (16)

In practice, however, the assumption of regular sequences often does not hold,
and the Macaulay bound might only serve as a rough indicator for dreg. However,
since it is one of the few available explicit bounds, recent design and attack
papers tend to use the Macaulay bound in their security arguments [ACG+19,
GKRS22, AAB+20, GKR+21].

Step (2) FGLM: For a zero-dimensional ideal I, the quotient space dimension dI is
tightly connected to the variety VF̄ (I) and thus to the number of solutions
to the polynomial equation system (cf. Theorem 10). By inserting into the
formula for CFGLM, given in Equation (6), N∗ with respect to an a priori fixed
security level of s bits can be derived using

N∗ = min {N ∈ N : nv(N) · D(N)ω ≥ 2s} , (17)
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where nv(N) denotes the number of variables and D(N) denotes the number of
solutions to the system (over the algebraic closure, counted with multiplicities).
If the considered system is square, D(N) can be approximated using the
theoretical Bézout bound. However, this bound is often loose because of many
solutions at infinity, which leads to heavily underestimating the necessary
number of rounds. Alternatively, the minimal multihomogeneous Bézout bound
can be used instead, as it “takes advantage of the structure and leads to tighter
complexity results” [BSGL20, Appendix]. Below, we outline our heuristic
appraoch to identify a variable set partition minimizing the multihomogeneous
Bézout bound.

Step (3) FAC: The degree of the univariate polynomial in the reduced LEX Gröbner
basis is bounded from above by the quotient space dimension dI . Notably, this
bound is tight if the ideal is in shape position. Thus, theoretical bounds for dI ,
such as the Bézout bounds, can be used in the security analysis.

Heuristic Approach for Multihomogeneous Bézout. To determine an “optimal” variable
set partition, we use a heuristic approach in four steps.

1. Compute the multihomogeneous Bézout bound for all different variable set partitions
for the round reduced instances and identify the optimal partition(s).

2. Find a pattern in this partition(s), that is, variable groupings that consistently
reappear when increasing the number of rounds N .

3. Extrapolate (one of) the “optimal” partition pattern(s) to the general case for
arbitrary N ≥ 1.

4. Given an “optimal” partition pattern, derive an explicit formula for the multihomo-
geneous Bézout bound dependent on the number of rounds N .

This strategy seems appropriate, as variables and equations modeling round-based primi-
tives are typically generated in a very structured way, thus likely maintaining the properties
of a particular variable set partition. While there is no proof that the selected “optimal”
partition pattern consistently yields the minimal multihomogenous Bézout bound, it still
yields a bound at least as good as the classical Bézout bound.

4 Algebraic Cryptanalysis of Anemoi
This section presents our security analysis of Anemoi [BBC+23], with a particular focus
on prime fields. Section 4.1 recaps the essentials of the Anemoi design, Sections 4.2 to 4.5
follow the attack and analysis methodology outlined in Section 3.1.

4.1 Design Description
Anemoi [BBC+23] is a family of permutations that can be used as a building block for
arithmetization-friendly hash functions. In particular, the designers suggest two modes of
operation: the sponge mode, to turn the permutation into a hash function, and a mode of
operation called Jive to turn the permutation into a compression function.

By design, Anemoi operates over F2ℓ
q , for ℓ ∈ N, and either q = p is an odd prime or

q = 2n, for n ≥ 10 odd.2 When used in a sponge construction, the designers argue that
for sufficiently large fields, choosing ℓ = 1 is enough [BBC+23, Section 5.3] to reach the
security goals. We thus restrict the discussion to this special case. In each round r of
Anemoi : F2

q → F2
q , the following steps are performed:

2To ease the notation, in this paper Fp exclusively denotes a prime field of odd characteristic.
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1. Addition of round constants: Round constants cr, dr ∈ Fq are added to the round
inputs.

2. Linear layer : The Pseudo-Hadamard transform H ∈ F2×2
q is applied, where

H : F2
q → F2

q ,

[
x
y

]
7→
[
2 1
1 1

]
·
[
x
y

]
=
[
2x + y
x + y

]
. (18)

3. Nonlinear layer (cf. Figure 1): The nonlinear layer is given by a 3-round Feistel
network H : F2

q → F2
q , called open Flystel, with round functions Qγ , E−1 and Qδ.

In particular, E : Fq → Fq is a low degree power map inducing a permutation on
Fq and

Qγ :=
{

βx2 + γ over Fp ,

βx3 + γ over F2n .
Qδ :=

{
βx2 + δ over Fp ,

βx3 + δ over F2n .
(19)

In practice, β = g, γ = 0, and δ = g−1, where g is a generator of the multiplicative
subgroup of the field Fq . Note that E−1(x) = x

1
α is of high degree, where 1

α denotes
the inverse of α modulo q − 1.
The corresponding counterpart V : F2

q → F2
q , called closed Flystel, is defined such

that verifying that (u, v) = H(x, y) is equivalent to verifying that (x, u) = V(y, v).
In particular,[

u
v

]
= H(x, y) ⇐⇒

[
x
u

]
=
[
Qγ(y) + E(y − v)
Qδ(v) + E(y − v)

]
=: V(y, v). (20)

After performing N rounds, the linear layer is again applied to the last round output.
That is, for x0, y0 ∈ Fq , the Anemoi permutation of the inputs is given by the function

Anemoiq,α(x0, y0) = H ◦ RN ◦ · · · ◦ R1(x0, y0) = (xN+1, yN+1), (21)

where for 1 ≤ r ≤ N the round function Rr is given by

Rr(xr−1, yr−1) = H ◦ H(xr−1 + cr, yr−1 + dr). (22)

x y

⊟

⊟

⊞

u v

Qγ

E−1

Qδ

(a) Evaluation (u, v) = H(x, y).

y v

⊟

⊞ ⊞

y − v

x u

Qγ E Qδ

(b) Verification (x, u) = V(y, v).

Figure 1: Nonlinear layer of the Anemoi round function: Open Flystel H : F2
q → F2

q for
evaluation (high-degree) and closed Flystel V : F2

q → F2
q for verification (low-degree).

4.2 Algebraic Models
The security of cryptographic permutations used in sponge mode is connected to the
difficulty of solving the CICO problem [BDPV11]. For ℓ = 1, that is, Anemoi : F2

q → F2
q ,

[BBC+23] suggests fixing the first input and the first output element of the permutation.
This yields the following CICO problem:
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Definition 1 (CICO problem for Anemoi, ℓ = 1). The task is to find yin, yout ∈ Fq such
that Anemoi (0, yin) = (0, yout).

[BBC+23] presents two different models for Anemoi under the above CICO constraints,
FCICO and PCICO. The security analysis of Anemoi in [BBC+23] is based on the easier
model, FCICO. In this section, we recap both models for the special case ℓ = 1 and provide
further insight into the latter. In particular, we provide a more detailed analysis of the
polynomial equations and the evolution of their degrees. For readability, variables will be
highlighted below to visually distinguish them from functions.

4.2.1 Model 1: FCICO

Let x0, y0 model the input to the Anemoi permutation and let xr, yr model the output of
the r-th round function Rr, for 1 ≤ r ≤ N . With

x = 2(xr−1 + cr) + (yr−1 + dr), u = xr,

y = (xr−1 + cr) + (yr−1 + dr), v = yr,

the verification property of the Flystel construction, given in Equation (20), yields a
straightforward model that uses two equations per round:

fr := Qγ(y) + E(y − v) − x = 0, (23)
gr := Qδ(v) + E(y − v) − u = 0. (24)

To model the final linear layer without adding more variables and equations, we set
(u, v) = H−1(xN , yN ) in the last round. Clearly, fr, gr ∈ Fq [xr−1, yr−1] with deg (fr) =
deg (gr) = α. The CICO constraints from Definition 1 can be applied directly to f1, g1, fN ,
and gN without influencing the polynomial degrees. See Table 3 for a summary of the
model details.

4.2.2 Model 2: PCICO

Let x0, y0 model the input to the Anemoi permutation and let sr model the output of
the high-degree polynomial E−1(x) = x

1
α in the open Flystel H (cf. Figure 1a) in the

r-th round function Rr, for 1 ≤ r ≤ N . We define the following functions for every round
1 ≤ r ≤ N :

1. Let xr−1, yr−1 be the inputs to Rr. The outputs of the linear layer, and thus the
inputs to H, are given by the functions fr, gr, where[

fr(xr−1, yr−1)
gr(xr−1, yr−1)

]
:=
[
2xr−1 + yr−1 + 2cr + dr

xr−1 + yr−1 + cr + dr

]
. (25)

2. Let fr, gr be the inputs to H in the r-th round. Its outputs, and thus the round
outputs, are the functions xr, yr, where[

xr

yr

]
:= H(fr, gr) =

[
fr − Qγ(gr) + Qδ (gr − sr)

gr − sr

]
. (26)

Clearly, fr, gr ∈ Fq [x0, y0, s1, . . . , sr−1] and xr, yr ∈ Fq [x0, y0, s1, . . . , sr] for
1 ≤ r ≤ N . Applying the CICO input constraint from Definition 1, that is, fixing
x0 = 0, we get fr, gr ∈ Fq [y0, s1, . . . , sr−1] and xr, yr ∈ Fq [y0, s1, . . . , sr]. Using the
definition of the variable sr, that is,

sr = E−1(fr − Qγ(gr)) ⇐⇒ E(sr) = fr − Qγ(gr), (27)
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Table 3: Algebraic models for Anemoi : F2ℓ
q → F2ℓ

q for the special case ℓ = 1, and applied
CICO constraints as in Definition 1.

Model Fq
Variables Equations

nv Name Indices ne Name Indices Degree

FCICO Fp , F2n 2N
xr 0 < r < N 2N

fr 1 ≤ r ≤ N α
yr 0 ≤ r ≤ N gr 1 ≤ r ≤ N α

PCICO

Fp N + 1 sr 1 ≤ r ≤ N
N + 1 pr 1 ≤ r ≤ N max {α, 2r}

y0 xN+1 N + 1

F2n N + 1 sr 1 ≤ r ≤ N
N + 1 pr 1 ≤ r ≤ N max {α, 3 · (2r − 1)}

y0 xN+1 2N+1 − 1

every round 1 ≤ r ≤ N can be modeled using a single equation

pr := E(sr) + Qγ(gr) − fr = 0, (28)

where pr ∈ Fq [y0, s1, . . . , sr]. After the last round, the linear layer is applied once more.
The CICO output constraint is thus modeled via

xN+1 := 2xN + yN + 2cN+1 + dN+1 = 0, (29)

where xN , yN as in Equation (26), and xN+1 ∈ Fq [y0, s1, . . . , sN ].
Finally, we inspect the polynomial degrees of the equations in PCICO. Let 1 ≤ r ≤ N .

First note that fr and gr, as defined in Equation (25), are linear functions in xr−1, yr−1.
Thus,

deg (fr) = deg (gr) = max {deg (xr−1) , deg (yr−1)} ≥ 1. (30)

Let ν := deg (Qγ) = deg (Qδ) ∈ {2, 3}. Expanding the expressions for xr in Equation (26)
yields

xr = fr − Qγ(gr) + Qδ(gr − sr) = fr − (βgν
r + γ) + (β(gr − sr)ν + δ). (31)

As the term βgν
r above cancels, and deg (yr) = deg (gr) = deg (fr) by Equations (26)

and (30), we arrive at

deg (xr) = deg
(
gν−1

r sr

)
= (ν − 1) · deg (gr) + 1 > deg (gr) = deg (yr) , (32)

with deg (x1) = ν. In particular, for r > 1, deg (gr) = deg (xr−1), and hence

deg (xr) = (ν − 1)r−1ν +
r−2∑
k=0

(ν − 1)k =
{

r + 1 if ν = 2,

2r+1 − 1 if ν = 3.
(33)

That is, for Anemoi over Fp , the degree of xr grows only linearly, whilest over F2n it
grows exponentially. Finally, we arrive at the following degrees for the equations in the
polynomial system PCICO:

deg (pr) = max {α, ν · deg (gr)} =
{

max {α, 2r} over Fp ,

max {α, 3 · (2r − 1)} over F2n .
(34)

deg (xN+1) = max {deg (xN ) , deg (yN )} =
{

N + 1 over Fp ,

2N+1 − 1 over F2n .
(35)

Table 3 summarizes the two algebraic models for Anemoi for the special case ℓ = 1.
FCICO maintains a constant degree for its polynomials independent of the underlying field,
albeit at the expense of an augmented variable and equation count. In contrast, PCICO
requires only about half the number of variables and equations, yet the polynomial degrees
exhibit linear or even exponential growth beyond a certain number of rounds.
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4.3 Gröbner Basis Attack on Small-Scale Variants
In this section, we experimentally compare Gröbner basis attacks on reduced versions
of Anemoi using the two models FCICO and PCICO. First, we shortly demonstrate the
influence of the variable ordering on the attack complexity of Step (1) of the Gröbner basis
attack. Subsequently, we compare in more detail the behavior of FCICO and PCICO over
Fp for a fixed variable ordering.

All experiments are conducted on a machine with an Intel Xeon E5-2630 v3 @
2.40 GHz (32 cores) and 378 GB RAM under Debian 11 using Magma V2.26-2. All
results can be inspected and verified using the material provided in our git repository.3

4.3.1 Influence of the Variable Ordering

We investigate the influence of the variable ordering on Step (1) of the Gröbner basis
attack. For both models, we consider three different variable orderings named o1, o2 and
o3, respectively. They are summarized in Table 4.

Table 4: Possible variable orderings for FCICO and PCICO.

Var. Models
ord. FCICO PCICO
o1 x1 > y0 > x2 > y1 > · · · > xN−1 > yN−2 > yN−1 > yN y0 > sr > · · · > s1
o2 x1 > x2 > · · · > xN−1 > y0 > y1 > · · · > yN y0 > s1 > · · · > sr

o3 x1 < x2 < · · · < xN−1 < y0 < y1 < · · · < yN sr > · · · > s1 > y0

Results over F2n . Whilst PCICO generally performs badly over F2n due to the exponential
growth of the polynomial degrees, for FCICO, the variable ordering has a huge impact on
the attack complexity of Step (1) of the Gröbner basis attack. More precisely, if α = 3,
the degree of regularity remains constant.4 See Figure 2. Notably, this statement holds for
all binary extension fields we tested, that is, F2n with n ∈ {15, 17, 31, 63, 65, 127, 255, 257}.
Thus, the overall attack complexity is governed by the complexity of the two remaining
steps. For larger values of α, we could not observe similar behavior.
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Figure 2: Step (1) of the Gröbner basis attack on Anemoi : F2
215 → F2

215 with α = 3 using
the model FCICO. Experimental complexities are derived using ω = 2.

Note that in the first version of Anemoi5, the security against Gröbner basis attacks
was assessed by the complexity of the DRL Gröbner basis computation. In later versions,

3https://github.com/IAIK/six-worlds-anemoi
4This behavior was observed over 10 rounds. For simplicity, only up to 8 rounds are shown in Figure 2.
5Received on ePrint June 24, 2022: https://eprint.iacr.org/archive/2022/840/20220624:125043.

https://github.com/IAIK/six-worlds-anemoi
https://eprint.iacr.org/archive/2022/840/20220624:125043
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the security argument over F2n is based on the FGLM complexity. Thus, we will not
further investigate this case and concentrate, for the remainder of this paper, on Fp .

Results over Fp . For p = 216 + 1, which also corresponds to the choice the designers
made for their experiments, the variable ordering influences the complexity of the Gröbner
basis attack. In particular, for PCICO using o1, the degree of regularity is constantly below
the one measured for other orderings. See Figure 3.
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Figure 3: Step (1) of the Gröbner basis attack on Anemoi : F2
p → F2

p with p = 216 + 1 and
α = 3 using the model PCICO. Experimental complexities are derived using ω = 2.

However, we found that this is an artifact of the size of the chosen prime field. For
larger primes, we observe a consistent degree of regularity. In particular, we tested
p ∈

{
232 − 209, 264 − 353, BN-254, BLS12-381

}
, where the last two denote the scalar field

of the respective elliptic curves. For the rest of this paper, we fix the variable ordering o1.

4.3.2 Comparison of FCICO and PCICO over Fp

The presented results were achieved for Anemoi : F2
p → F2

p with p ∈
{

232 − 209, 264 − 353
}

and α ∈ {3, 5}. A more complete overview is given in Appendix C. In the following, we
denote by Talg(·, α) and Calg(·, α) the concrete execution time and bit complexity of a
specific step in the Gröbner basis attack for a given model, respectively.

During the experiments, we found that both ideals ⟨FCICO⟩ and ⟨PCICO⟩ were always
in shape position (cf. Remark 1), having the same reduced LEX Gröbner basis. This means
that both algebraic models of Anemoi exhibit a strong algebraic structure which might be
further exploited with dedicated algorithms [BND22]. We also observed that the cost for
the final factoring Step (3) in a Gröbner basis attack was negligible, which might be due
to the very small number of solutions over Fp , see Appendices C.1 and C.2. Hence, our
comparison focuses on Step (1) and Step (2).

Regarding execution time, the FGLM step is the most involved part of the Gröbner
basis attack. Interestingly, in the case α = 5 (cf. Figure 5a), PCICO performs better than
FCICO. Conversely, the experimental complexity6 CGB grows in general faster than CFGLM.
Interestingly, CGB(FCICO, α) grows much faster than CGB(PCICO, α). Moreover, CGB(PCICO, α)
exhibits similar growth than CFGLM(·, α), at least for small round numbers. See Figures 4b
and 5b.

6Complexities CGB and CFGLM derived from the experimentally observed degree of regularity dreg and
quotient space dimension dI , respectively.



154 Exploring the Six Worlds of Gröbner Basis Cryptanalysis: Application to Anemoi

1 2 3 4 5 6 7 8
10−2

100

102

104

106

Number of rounds N

T
im

e
[s

]

FCICO

PCICO

GB
FGLM

(a) Execution time Talg(·, 3).

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

Number of rounds N

C
om

pl
ex

ity
[b

it
s] FCICO

PCICO

GB
FGLM

(b) Bit complexity Calg(·, 3).

Figure 4: Attack on Anemoi : F2
p → F2

p with α = 3 and p = 264 − 353.
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Figure 5: Attack on Anemoi : F2
p → F2

p with α = 5 and p = 232 − 209.

In summary, the runtime results indicate that Step (2) FGLM is more challenging
compared to Step (1) GB, contrary to the estimated complexities which suggest the opposite.
There are several possible explanations for this phenomenon:

• To the best of our knowledge, Magma implements the original FGLM basis conversion
with a runtime of O

(
nv · dI

3), whereas complexities were derived using ω = 2.
Additionally, these complexities are measured in terms of finite field operations,
whose actual execution time can vary depending on the specific operation.

• Relying on asymptotic complexity bounds for derivation may overlook factors that
vary based on the specific problem, introducing potential limitations to the analysis.

• Memory management might highly influence the concrete timing results.
Since the overall complexity of a Gröbner basis attack is determined by the dominant

step (cf. Section 2.1), we extrapolate the observed metrics to gain insight for larger round
numbers, which is of common practice in the field of Gröbner basis cryptanalysis. Note
that using conjectured metrics for the complexity estimates introduces an unclear heuristic
gap, potentially leading to over- or underestimation. Thus, we additionally investigate
theoretical (upper) bounds.

4.4 Exploring the Six Worlds
This section establishes conjectures and theoretical bounds on the metrics that govern
the three steps of a Gröber basis attack. The results will be used in Section 4.5 to derive
round numbers in all six worlds. Proofs for almost all theoretical bounds are given in
Appendix B.
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4.4.1 Step (1): Gröbner Basis Computation

The complexity of computing a (DRL) Gröbner basis depends, besides the polynomial
degrees in a given equation system and the number of equations and variables, on the
degree of regularity (cf. Section 2.1).

Theoretical Bounds. If the system was regular, its degree of regularity would be given
by the Macaulay bound. Otherwise, it might serve as an upper bound to the degree of
regularity.

Theorem 3 (Macaulay Bound for FCICO over Fp). If FCICO was regular, the Macaulay
bound (in dependence of the round number N and the exponent α) would be given by

dreg = 2(α − 1)N + 1. (36)

As the degrees of the polynomials in PCICO depend on the choice of α > 0 and the
number of rounds N , we a priori fix the following notation:

rα := min {r ∈ N : 2r ≥ α} = α + 1
2 . (37)

In other words, rα is the first round number such that 2r ≥ α. The last equality follows
from α being odd by definition.

Theorem 4 (Macaulay Bound for PCICO over Fp). If PCICO was regular, the Macaulay
bound (in dependence of the round number N and the exponent α) would be given by

dreg =
{

αN + 1 for N < rα,

N2 + N + (rα − 1)2 + 1 for N ≥ rα.
(38)

Experimental Conjectures. We derive the following conjectured formula for the degree of
regularity dreg which arises when computing the DRL Gröbner basis of ⟨FCICO⟩ and ⟨PCICO⟩,
respectively, from the results of our experiments (cf. Section 4.3 and Appendix C).

Conjecture 1 (dreg for FCICO over Fp). The degree of regularity for the DRL Gröbner basis
computation (in dependence of the round number N and the exponent α ∈ {3, 5, 7, 11}) for
I = ⟨PCICO⟩ is approximately given by

dreg ≈ α + 1
2 · (N + 1) = rα · N + rα. (39)

Conjecture 2 (dreg for PCICO over Fp). The degree of regularity for the DRL Gröbner basis
computation (in dependence of the round number N and the exponent α ∈ {3, 5, 7, 11}) for
I = ⟨PCICO⟩ is approximately given by

dreg ≈ α + 3
2 · N + α − 1

2 = (rα + 1) · N + rα − 1. (40)

Note that the conjectured dreg for FCICO and PCICO are both modeled as linear functions.
For FCICO, this choice seems intuitive since the Macaulay bound is also linear. While
for PCICO, the Macaulay bound shows quadratic growth for N ≥ rα, the experimental
data suggests that a linear model might be a better fit (cf. Figure 6 and Appendix C.3).
We mention the following caveat: even if the presented linear model is a good fit for the
observed data points, extrapolating this trend necessarily introduces a heuristic gap. An
estimate derived from a certain (small) amount of actual data points does, in general, not
guarantee a good approximation for large-scale variants.
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Figure 6: Theoretical bounds and experimental conjectures for the degree of regularity
dreg in Step (1) of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 3. Experimental

data points for p ∈
{

232 − 209, 264 − 353
}

.

4.4.2 Step (2): FGLM Basis Conversion

The complexity of the FGLM basis conversion algorithm depends on the quotient space
dimension dI of a zero-dimensional ideal I. Without proof but strong experimental
support, we assume that both ⟨FCICO⟩ and ⟨PCICO⟩ are zero-dimensional.

Theoretical Bounds. This section states the classical Bézout bound and the multihomo-
geneous Bézout bound for FCICO and PCICO, bounding the number of solutions and thus
the quotient space dimension for zero-dimensional ideals. To find a variable set partition
minimizing the multihomogeneous Bézout bound for FCICO, respectively PCICO, we ex-
trapolated the partition pattern that arose during an exhaustive search. See Section 3.2
for a description of our methodology. Proofs for PCICO are given in Appendix B.2.

Theorem 5 (Bézout Bound for FCICO). The Bézout bound for FCICO (in dependence of
the round number N and the exponent α) is given by

b =
2N∏
r=1

α = α2N . (41)

For FCICO and α ∈ {3, 5, 7, 11}, the minimal multihomogeneous Bézout bound coincides
with the classical one. In particular, the optimal variable set partition is the “trivial” one
into a single set. Without further proof, we state the following:

Theorem 6 (Multihomogeneous Bézout Bound for FCICO). The “minimal” multihomoge-
neous Bézout bound for FCICO (in dependence of the round number N and the exponent
α ∈ {3, 5, 7, 11}) is given by

mhb =
2N∏
r=1

α = α2N . (42)

The bounds for PCICO depend again on rα defined in Equation (37). Since rα for
α ∈ {3, 5, 7, 11} is relatively small, the case N < rα is not interesting for the security
analysis in Section 4.5. Thus, in the following, we focus on the case N ≥ rα.

Theorem 7 (Bézout Bound for PCICO). The Bézout bound for PCICO (in dependence of
the round number N ≥ rα and the exponent α ∈ {3, 5, 7, 11}) is given by

b = αrα−1 · 2N−rα+1 · (N + 1)!
(rα − 1)! . (43)
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Figure 7: Theoretical bounds and experimental conjectures for the quotient space dimension
dI in Step (2) of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 3. Experimental

data points for p ∈
{

232 − 209, 264 − 353
}

. For FCICO, b and mhb coincide.

Theorem 8 (Multihomogeneous Bézout Bound for PCICO). The “minimal” multihomo-
geneous Bézout bound (in dependence of the round number N ≥ rα and the exponent
α ∈ {3, 5, 7, 11}) for PCICO is given by

mhb = τα · (α + 4)N−rα , (44)

where τα = 2rα · αrα−1 · (rα + 1) for α ∈ {3, 5, 7} and τα = (α + 4)rα for α = 11.

Experimental Conjectures. We derive the following conjectured formula for the quotient
space dimension dI from the experimental data (cf. Section 4.3 and Appendix C).

Conjecture 3 (dI for FCICO and PCICO over Fp). The dimension dI of the quotient space
(in dependence of the round number N and α ∈ {3, 5, 7, 11}) for I = ⟨FCICO⟩, respectively
I = ⟨PCICO⟩, is given by

dI = (α + 2)N . (45)

We note that the formula for dI exactly matches the observed values, thus justifying
a high level of confidence in the conjecture. Additionally, the same conjecture has been
formulated in [BBC+23]. Recently, [Bri24] provided formal proof of this statement and
thus of the zero-dimensionality of the involved ideal(s). The Bézout bounds are larger and
grow much faster than the (conjectured) quotient space dimension dI . While for FCICO
using the multihomogeneous Bézout does not bring any advantage, for PCICO it yields a
tighter upper bound for the quotient space dimension dI . See Figure 7 and Appendix C.3.

4.4.3 Step (3): Univariate Solving

As described in Section 4.3, both ⟨FCICO⟩ and ⟨PCICO⟩ are in shape position. Under the
assumption that this generally holds, the degree of the univariate polynomial in the LEX
Gröbner basis, duni, equals the quotient space dimension dI . Thus, all previously discussed
bounds and conjectures can be applied.

4.5 Security Analysis
The indicators used for the security assessment in each of the Six Worlds of Gröbner Basis
Cryptanalysis of Anemoi are summarized in Table 5. Note the overlap for Step (2) and
Step (3). In the case of shape position, where the degree of the univariate polynomial
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in the LEX Gröbner basis equals the quotient space dimension dI , the FGLM complexity
typically exceeds the one for factorization (cf. Section 2.1). Thus, we deem it reasonable
to mainly concentrate, in the following, on Step (1) and Step (2).

Table 5: Summary of the indicators used in each of the Six Worlds of Gröbner Basis
Cryptanalysis to estimate the complexity and derive round numbers for Anemoi : F2

p → F2
p .

(E) Experimental approach (T) Theoretical approach
Step (1) Step (2) Step (3) Step (1) Step (2) Step (3)

GB FGLM FAC GB FGLM FAC
Indicator dreg dI duni dMAC b, mhb b, mhb

FCICO Conj. 1 Conj. 3 Conj. 3 Thm. 3 Thm. 6 Thm. 6
PCICO Conj. 2 Conj. 3 Conj. 3 Thm. 4 Thm. 8 Thm. 8

Subsequently, we provide the derivations to obtain a lower bound on the number of
rounds necessary to reach a security level of s bits in the different steps of a Gröbner basis
attack using the conjectured metrics, as well as the theoretical Bézout bounds. The results
are compared to those provided in [BBC+23].

Minimum Number of Rounds. In [BBC+23], a lower bound N∗ on the number of rounds
needed to reach a certain security level s is derived from the (conjectured) algebraic
complexity of the potentially most expensive step in the Gröbner basis attack, plus some
security margin. In particular, the designers considered the easier algebraic model FCICO,
and N∗ is defined as

N∗ = max

8, min(5, 1 + ℓ)︸ ︷︷ ︸
(a) security margin

+ 2 + min
{

N ∈ N : Calg(N) ≥ 2s
}︸ ︷︷ ︸

(b) to prevent algebraic attacks

 , (46)

where Calg = CGB with a conjectured lower bound on the degree of regularity dreg derived
from experiments and a conservative choice of ω = 2 for the linear algebra constant (cf.
[BBC+23, Sections 5.2 & 6.6.2]). An additional security margin of two rounds was added
in Equation (46), part (b), to account for the second model, PCICO.

In the following, we argue that the margins in Equation (46) and, for certain instances,
the suggested round numbers (cf. [BBC+23, Table 1]) might not be sufficient. In particular,
we derive round numbers using the formula in Equation (15), restated here for simplicity:

min
{

N ∈ N : Calg(N) ≥ 2s
}

for Calg ∈ {CGB, CFGLM, CFAC} in (E) the experimental world and (T) the theoretical world,
for both models FCICO and PCICO, without adding any additional security margin. Sub-
sequently, we interpret our findings in the context of the Six Worlds of Gröbner Basis
Cryptanalysis and compare them with the suggested round numbers.

Interpretation. Under the assumption that none of the steps in the Gröbner basis attack
are trivial, the six worlds are interpreted as follows:

(T) In the theoretical world, round numbers below the given values are proven to be
insecure since they evidentially do not reach the asserted security level against a
particular step in the Gröbner basis attack. Implicitly, this also yields a lower bound
on the number of rounds.

(E) In the experimental world, results are to be understood as a lower bound on the
number of rounds to reach the targeted security level against a particular step in the
Gröbner basis attack.
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For the particular case of Anemoi, only Step (1) GB computation and Step (2) FGLM basis
conversion seem to be of practical importance in the security assessment. For example, in
the concrete case of Anemoi : F2

p → F2
p with α = 3 and a target security level of s = 128

bits using the model PCICO, the different worlds can be interpreted as follows (see Figure 8)
for ω = 2 (2.37):

Step (1) GB: A round number below 22 (19) is insufficient to reach the targeted securtiy
level. The targeted security level should be reached for N ≥ 41 (35).

Step (2) FGLM: A round number below 45 (38) is insufficient to reach the targeted securtiy
level. The targeted security level should be reached for N ≥ 54 (46).

A detailed discussion on the concrete choice of the value of ω in the context of algebraic
cryptanalysis is given in Section 2.1.
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Figure 8: The Six Worlds of Gröbner Basis Cryptanalysis: Round numbers derived for
the individual steps of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 3 used

in a Sponge construction for different values of ω. Target security level of s = 256 bits.
Theoretical bounds and (experimental) conjectures as given in Section 4.4. Colored areas
indicate round numbers proven to be insecure. Algebraic model: PCICO.

Comparison. Tables 6 and 7 state our results for a security level of s = 128 and s = 256
bits, respectively. If the derived round number is above the round number suggestion in
[BBC+23, Table 1] for Step (1) or Step (2), the respective cell is highlighted. The columns
for Step (3) are grayed out since our experiments showed that this step was completed
very quickly.

Table 6: The Six Worlds of Gröbner Basis Cryptanalysis: Round numbers derived for
the individual steps of a Gröbner basis attack on Anemoi : F2

p → F2
p used in a Sponge

construction for ω = 2. Target security level of s = 128 bits. The second column
corresponds to N∗ as given in [BBC+23], respectively Equation (46). Each cell reports
the numbers derived for the two algebraic models PCICO (FCICO).

(E) Experimental approach (T) Theoretical approach

α [BBC+23] Step (1) Step (2) Step (3) Step (1) Step (2) Step (3)
GB FGLM FAC GB FGLM FAC

3 21 (2+2+17) 21 (17) 27 (27) 31 (31) 13 (13) 23 (20) 26 (23)
5 21 (2+2+17) 19 (14) 22 (22) 26 (26) 13 (10) 20 (14) 23 (16)
7 20 (2+2+16) 17 (12) 20 (20) 23 (23) 13 (9) 18 (12) 21 (13)
11 19 (2+2+15) 15 (11) 17 (17) 20 (20) 12 (8) 16 (9) 19 (11)
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Table 7: The Six Worlds of Gröbner Basis Cryptanalysis: Round numbers derived for
the individual steps of a Gröbner basis attack on Anemoi : F2

p → F2
p used in a Sponge

construction for ω = 2. Target security level of s = 256 bits. The second column
corresponds to N∗ as given in [BBC+23], respectively Equation (46). Each cell reports
the numbers derived for the two algebraic models PCICO (FCICO).

(E) Experimental approach (T) Theoretical approach

α [BBC+23] Step (1) Step (2) Step (3) Step (1) Step (2) Step (3)
GB FGLM FAC GB FGLM FAC

3 37 (2+2+33) 41 (33) 54 (54) 61 (61) 22 (24) 45 (40) 51 (45)
5 37 (2+2+33) 37 (27) 45 (45) 51 (51) 22 (19) 40 (27) 45 (31)
7 36 (2+2+32) 34 (24) 40 (40) 45 (45) 22 (16) 37 (23) 41 (26)
11 35 (2+2+33) 30 (21) 34 (34) 39 (39) 22 (14) 33 (19) 37 (21)

First, note that a security margin of 2 rounds, as described in Equation (46), is clearly
not enough to account for the more complex model PCICO. For some instances, there is
a difference of up to 14 rounds for the round numbers derived from FCICO and PCICO.
Second, the dominance of Step (1) over Step (2), as claimed in [BBC+23], remains unclear.
As experimental runtime results indicate the opposite, considering higher round numbers
derived from CFGLM might be prudent. For many instances, the results in (T2) show that
the suggested round numbers cannot provide the targeted security level.

As expected, the highest round numbers are derived from the (E) experimental world.
Notably, there is one instance for which the round numbers in both (E1) and (E2) lie
clearly above the suggestion: PCICO for α = 3 and s = 256. Table 8 shows the estimated
attack complexity for this instance, that is, the complexities that result when inserting
the suggested 37 rounds into the different complexity formulas. Indeed, for ω = 2, the
estimated attack complexity is below the targeted 256 bits in the experimental world.
In this context, the theoretical results indicate that for the given round number, the
complexity will not be above the derived value. In particular, CFGLM ≤ 212.7

Table 8: Estimated attack complexity for round number suggestions in [BBC+23, Table
1] for Anemoi : F2

p → F2
p and a target security level of s = 256 bits. Each cell reports the

estimated attack complexity (in bits) in the given world, where ω = 2 (2.37).

(E) Experimental approach (T) Theoretical approach

α [BBC+23] Model Step (1) Step (2) Step (3) Step (1) Step (2) Step (3)
GB FGLM FAC GB FGLM FAC

3 37 PCICO 234 (277) 177 (208) 155 497 (587) 212 (250) 187

In the previous discussions, we concentrated on the case ω = 2 for the linear algebra
constant. While this choice is generally considered conservative from a designer’s perspec-
tive, it might seem rather aggressive for an attacker. Nevertheless, we think this choice
is still suitable due to the internal structures of the polynomial systems. As discussed in
Section 2.1, a very aggressive choice would be ω = 1, accounting for algorithms exploiting
structure in the polynomial equation system. In this case, the number of rounds would
need to be increased significantly. See Section 3.2.

Besides simply increasing the number of rounds, another strategy to address the newly
identified vulnerabilities is to select a larger exponent for Qδ and Qγ . Specifically, if
deg (Qδ) = deg (Qγ) > 2, the polynomial degrees in PCICO will demonstrate exponential
growth instead of solely linear growth. The practical performance influence of the two
approaches might depend on the concrete use case.

7Further results are given in Appendix C.5.
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5 Conclusion
We presented a refined methodology aimed at providing a broader understanding of
Gröbner basis cryptanalysis. Central to our approach is the introduction of the Six
Worlds of Gröbner Basis Cryptanalysis, which integrates both theoretical and experimental
dimensions applied to the classical three steps of a Gröbner basis attack.

A concrete application of our methodology is demonstrated through the analysis of
Anemoi. Detailed analyses of the FCICO and PCICO models, as described in [BBC+23],
allowed us to derive precise bounds and formulate conjectures concerning the metrics that
govern the attack complexity. In particular, by leveraging the multihomogeneous Bézout
bound for PCICO to obtain a tighter upper bound on the quotient space dimension, we
identified specific instances of Anemoi that may be susceptible to Gröbner basis attacks.

Our “Six Worlds” framework facilitates a granular assessment of the security of indi-
vidual attack steps. Specifically, it enables the identification of round number thresholds
below which a particular step may be considered insecure for a given security level (the
theoretical dimension) and provides round number recommendations (the experimental
dimension). Furthermore, it emphasizes the importance of employing more precise upper
bounds, like those provided by the multihomogeneous Bézout bound, to enhance the
quality of theoretical results.

In summary, the presented approach provides designers with a robust tool for evaluating
and understanding the security implications of each step of a Gröbner basis attack.

Open Problems. A natural question to ask is the following: Given that the new methods
lead to new results on Anemoi, could other designs that exhibit similar properties, such as
Griffin [GHR+23] or Arion [RST23], and perhaps to a lesser extent also Poseidon [GKR+21]
or Rescue [AAB+20] be affected? Also beyond the area of arithmetization-friendly hashing,
there are potential targets, e.g., big-field FHE-friendly permutation-based symmetric
encryption [DGH+23, HKC+20, HKL+22], and MPC-friendly big field designs [GLR+20,
AGR+16, DGGK21, GØSW23].

Furthermore, studying more dedicated Gröbner basis algorithms that exploit structures
within algebraic systems may prove valuable. This approach could yield tighter upper
bounds, potentially meaningful lower bounds, and provide a clearer understanding of the
actual solving complexity.
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A Detailed Background
A.1 Gröbner Basis Preliminaries
We present an outline of essential results in the context of solving equation systems
with Gröbner basis techniques. Equation systems stemming from problems in symmetric
cryptography most often have a finite number of solutions (over the algebraic closure).
Expressed in commutative algebra lingo, this means the equation system generates a
zero-dimensional ideal.8 While some of the more general results in this section are valid for
any ideal, we are primarily interested in the zero-dimensional case. One major focus point
of our outline deals with bounds on the number of solutions of (zero-dimensional) equation
systems9 and, in that capacity, discusses the classical Bézout bound. This discussion
prepares the ground for our motivation of the multihomogeneous Bézout bound.

For a more comprehensive introduction to background results, we recommend the
excellent textbooks [CLO15, KR00, KR05].

A.1.1 Notation

In the following, F denotes a field, and Fq is a finite field. In general, we use R =
F[x1, . . . , xn] to denote the polynomial ring over F in the n indeterminates x1, . . . , xn.
Sometimes, it is convenient to emphasize the connection between the number of variables
nv in an equation system and the polynomial ring over which this system lives. In this
case, we presume to write F[x1, . . . , xnv

].
From a geometric perspective, the set of solutions to an equation system defined by m

polynomials over a field in n variables

f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0, (47)

is given by the variety of the ideal generated by f1, . . . , fm.

Definition 2 (Affine variety). Let m, n ∈ N, and let I = ⟨f1, . . . , fm⟩ be an ideal in R.
The set

V (I) = V (f1, . . . , fm) := {z ∈ An (F) : fi (z) = 0 ∀ 1 ≤ i ≤ m} (48)

is called the affine variety of the ideal I, where An (F) = Fn denotes the n-dimensional
affine space over F. For any field F′ with F ⊂ F′ we denote by VF′ (I) the set of solutions
over An (F′). In particular, VF̄ (I) denotes the variety of I over the algebraic closure F̄ of
F.

The variety of an ideal is independent of the actual choice of the generating set, i.e.,
if I = ⟨f1, . . . , fm⟩ = ⟨g1, . . . , gk⟩, then V (f1, . . . , fm) = V (g1, . . . , gk). To reason about
V (I), switching to a different generating set of the ideal is often advantageous. One
important subclass of generating sets is the class of Gröbner bases.

Definition 3 (Gröbner basis). Let I = ⟨f1, . . . , fm⟩ ⊂ R be an ideal. A Gröbner basis for
I with respect to a fixed monomial ordering ≻ is a subset G = {g1, . . . , gt} ⊆ I with the
property

⟨Lm (g1) , . . . , Lm (gt)⟩ = ⟨Lm (I)⟩ , (49)

where Lm (·) denotes the largest monomial (also called leading monomial) of a polynomial
with respect to ≻.

8In particular, this is also the case for our algebraic model of Anemoi.
9If an equation system generates a zero-dimensional ideal, we also informally say the equation system

itself is zero-dimensional.
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Two of the most prominent monomial orderings in practice are the lexicographic (LEX)
and the degree reverse lexicographic (DRL) ordering, see [CLO15]. For every nonzero ideal
I ⊂ R and every fixed monomial ordering ≻ there exists a unique reduced Gröbner basis
G. Here, reduced means that every g ∈ G is monic and no monomial of g is divisible by
any of Lm (G \ {g}). An important property of Gröbner bases is that polynomial division
modulo a Gröbner basis yields unique division remainders, see [CLO15, §6, Prop. 1]. This,
in turn, allows us to uniquely represent residue classes in the quotient ring R/I by division
remainders modulo G, where G is a Gröbner basis of I. Moreover, a Gröbner basis G
allows us to compute residue classes in the quotient ring by computing division remainders
modulo G.10 In a more technical speech, a Gröbner basis G of the ideal I defines an
isomorphism of rings

R/I ∼= R mod G, (50)

where R mod G denotes the ring of all division remainders modulo G of elements in R.
The quotient ring R/I is an F-vector space, called the quotient space. A basis for this
(potentially infinite-dimensional) vector space is given by the set of monomials11

BI := {Xα : Xα /∈ ⟨Lm (I)⟩} = {Xα = xα1
1 · · · xαn

n : Xα /∈ ⟨Lm (G)⟩} . (51)

The elements of BI are called basis monomials, and BI is called the standard basis of the
quotient space.
Definition 4 (Zero-dimensional ideal). Let I be a nonzero ideal in R, let ≻ be a monomial
ordering, and let G be a Gröbner basis of I with respect to ≻. If the quotient space R/I
is finite-dimensional, that is,

dI = dimF (R/I) = |BI | < ∞, (52)

then the ideal I is called zero-dimensional.
There is an essential connection between zero-dimensional ideals, its Gröbner bases,

and the variety of the ideal.
Theorem 9 (Finiteness Theorem, [KR00, Prop. 3.7.1]). Let I be a nonzero ideal in R
and let ≻ be a fixed monomial ordering. The following statements are equivalent.

1. The F-vector space R/I is finite-dimensional.

2. The variety VF̄ (I) is a finite set.

3. For each 1 ≤ i ≤ n there is some mi ≥ 0 such that xmi
i ∈ ⟨Lm (I)⟩.

4. Let G be a Gröbner basis for I. Then for each 1 ≤ i ≤ n there exists some mi ∈ N
such that xmi

i = Lm (g) for some g ∈ G.
For zero-dimensional ideals, the number of solutions to a polynomial equation system

equals the dimension of the quotient space, if counted appropriately.
Theorem 10. Let I ⊂ R be a zero-dimensional ideal. Then there exist well-defined
multiplicities12 mP at each point P ∈ VF̄ (I) such that

dI =
∑

P ∈VF̄(I)

mP . (53)

That is, the number of solutions over the algebraic closure counted with multiplicities equals
the dimension of the quotient space.

10This does, e.g., not hold for an arbitrary ideal basis that is not a Gröbner basis.
11Technically speaking, the corresponding set of residue classes {Xα + I : Xα /∈ ⟨Lm (I)⟩} generates the

quotient space.
12We do not elaborate on the intrinsics here. For a definition and discussion of (intersection) multiplicities,

see [Sha13, Chapter 2 & 3].
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A.2 Bézout und Multihomogeneous Bézout
Bounding the number of solutions of an equation system allows to establish bounds on the
quotient space dimension dI . In this context, it is beneficial to resort to projective space
(and, thus, to homogeneous polynomials) since this opens up a fruitful theory of counting
the solutions of zero-dimensional equation systems.

Definition 5 (Projective space). The n-dimensional projective space over a field F, denoted
by Pn (F), is the set of equivalence classes of Fn+1 \ {0} under the equivalence relation

(x′
0, . . . , x′

n) ∼ (x0, . . . , xn) (54)
⇐⇒ ∃ λ ∈ F \ {0} : (x′

0, . . . , x′
n) = λ · (x0, . . . , xn) .

Given an (n + 1)-tuple (x0, . . . , xn) ∈ Fn+1 \ {0}, we call its equivalence class

p = [(x0, . . . , xn)]∼ = {λ · (x0, . . . , xn) : λ ∈ F \ {0}} ∈ Pn (F) (55)

a projective point and denote it by [x0 : · · · : xn]. The coordinates of such a projective
point p are also called homogeneous coordinates.

Definition 6 (Homogeneous polynomial). A polynomial f ∈ F [x0, x1, . . . , xn] is called
homogeneous of degree d if every term in f has total degree d. We denote the set of all
homogeneous polynomials in x0, x1, . . . , xn with coefficients in F by Fh [x0, x1, . . . , xn].

Theorem 11 (Bézout’s Theorem). Let F be algebraically closed and let
f1, . . . , fn ∈ Fh [x0, x1, . . . , xn] be homogeneous polynomials of respective total degrees
d1, . . . , dn. If the number of solutions in Pn (F) is finite, then the number of solutions
(counted with multiplicities) of f1 = · · · = fm = 0 is given by

b :=
n∏

i=1
di. (56)

We present an outline of the proof of Theorem 1 since we deem it insightful for our
later motivation of the multihomogeneous Bézout bound.

Proof Sketch. Denote by fh
i the homogenization of fi for every 1 ≤ i ≤ n, i.e.,

fh
i (x0, . . . , xn) := xdi

0 · fi

(
x1

x0
, . . . ,

xn

x0

)
∈ Fh [x0, . . . , xn] .

Given fh
i , the original polynomial fi can be recovered by setting x0 = 1:

fh
i (1, x1, . . . , xn) = fi(x1, . . . , xn).

Thus, every affine solution a = (a1, . . . , an) ∈ VF̄ (I) corresponds to a projective solu-
tion [1 : a1 : · · · : an] ∈ Pn

(
F̄
)

to the system defined by the homogeneous polynomials
fh

1 , . . . , fh
n ∈ Fh [x0, x1, . . . , xn]. Conversely, every projective solution in Pn

(
F̄
)

to the
homogeneous polynomial equation system fh

1 = · · · = fh
n = 0 with x0 = 1 recovers an

affine solution of the original system. Naturally, projective solutions with x0 ̸= 0 are called
affine or finite, while those with x0 = 0 are called solutions at infinity.

It can be shown that if the number of solutions in F̄ is finite, that is, if I is zero-
dimensional, then the Bézout bound is valid even if the number of additional solutions at
infinity over Pn

(
F̄
)

might be infinite [MW83]. This statement is also known under the
name Affine Bézout bound. The bound is sharp if and only if the number of solutions at
infinity is zero.



170 Exploring the Six Worlds of Gröbner Basis Cryptanalysis: Application to Anemoi

Example 1 (Bézout Bound). Consider f1, f2, f3 ∈ Q [x1, x2, x3], where

f1 = x1x2
2 + x1x2

3 − x2, f2 = x2 + 1, f3 = x1x2
2 + 2x2x2

3 − 2x3 + 1.

I = ⟨f1, f2, f3⟩ is a zero-dimensional ideal in Q [x1, x2, x3], where the quotient space
dimension is given by

dI = dimQ̄(Q [x1, x2, x3] /I) = dimC(Q [x1, x2, x3] /I) = 4.

By Theorem 10, the number of solutions to the polynomial equation system f1 = f2 =
f3 = 0, over the algebraic closure of Q and counted with multiplicities, is thus four. Indeed,
there is one solution in Q3, one additional in R3 and two additional in C3. The Bézout
bound (cf. Theorem 1) is given by

b = deg (f1) · deg (f2) · deg (f3) = 3 · 1 · 3 = 9.

Thus, there exist 9 − 4 = 5 solutions at infinity.

Definition 7 (Multihomogeneous polynomial). A polynomial f in n+m variables is called
m-homogeneous of multidegree mdeg (f) = (d1, . . . , dm) ∈ Zm

≥0 if there exists a partition of
the variable set X into m sets

Xj =
{

xj,0, xj,1, . . . , xj,nj

}
with |Xj | = nj + 1,

m∑
j=1

nj = n (57)

such that f is homogeneous of degree dj with respect to the variables in the set Xj for all
1 ≤ j ≤ m. In particular, f can be written in the form

f =
∑

αj∈Z
nj +1
≥0 s.t.

|αj |=dj , j=1,...,m

aα1,...,αm
· Xα1

1 · · · · · Xαm
m ∈ F [X1, . . . , Xm] , (58)

where we use the simplified notation X
αj

j for the monomial x
αj,0
j,0 · x

αj,1
j,1 · . . . · x

αj,nj

j,nj
,

|αj | = αj,0 + · · · + αj,nj
for the total degree of X

αj

j , and F [X1, . . . , Xm] for the polynomial
ring in all n + m variables X1 ⊎ . . . ⊎ Xm.

Theorem 12 (Multihomogeneous Bézout’s Theorem). Let F be
algebraically closed and let f1, . . . , fn ∈ F [X1, . . . , Xm] be m-homogeneous polynomials in
n + m variables of multidegrees mdeg (fi) = (di,1, . . . , di,m) ∈ Zm

≥0, where |Xj | = nj + 1.
If the number of solutions in the multiprojective product space Pn1 (F) × · · · × Pnm (F) is
finite, then the number of solutions (counted with multiplicities) is given by the coefficient
of the monomial tn1

1 · · · tnm
1 in the product of linear forms di,1t1 + · · · + di,mtm, that is,

mhb := [tn1
1 · · · tnm

m ]
n∏

i=1

m∑
j=1

di,jtj . (59)

Similar to the classical Bézout bound (cf. Theorem 1), the multihomogeneous version of
Bézout’s theorem can be used to bound the number of solutions to a polynomial equation
system. This is achieved by fixing a partition of the variable set and homogenizing with
respect to each set in the partition. To see this, let f ∈ F [x1, . . . , xn]. Partition the n
variables into m groups, where |Xj | = nj for 1 ≤ j ≤ m. Let dj be the total degree of
f ∈ F [Xj ] for all 1 ≤ j ≤ m. For every group j, we introduce a homogenization variable
xj,0. The multihomogenization fmh of f , i.e.,

fmh :=

 m∏
j=1

x
dj

j,0

 · f

(
X1

xn1
1,0

, . . . ,
Xm

xnm
m,0

)
, (60)
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is an m-homogeneous polynomial in n + m variables of multidegree (d1, . . . , dm), where
the variable set is partitioned into distinct sets Xj ∪ {xj,0} of size nj + 1 for 1 ≤ j ≤ m.
Here, we used the notation

Xj

x
nj

j,0
=
{

xj,1

xj,0
, . . . ,

xj,nj

xj,0

}
(61)

to abbreviate the replacement of every x ∈ Xj by x
xj,0

. Setting xj,0 = 1 for every 1 ≤ j ≤ m

recovers f .
In this context, a multiprojective point [x1 ; . . . ; xm] ∈ Pn1 (F)×· · ·×Pnm (F) is called

finite if xj,0 ̸= 0 for all 1 ≤ j ≤ m. Otherwise, it is called a point at infinity.

B Proofs and Illustrative Examples

B.1 Macaulay Bound

Recall Theorem 3 (Macaulay Bound for FCICO).

dreg = 2(α − 1)N + 1. (36)

Proof. Let di = deg (hi) for hi ∈ FCICO. We have already seen that di = 3 for 1 ≤ i ≤ 2N
(cf. Table 3). Thus the Macaulay bound is given by

dreg = 1 +
ne∑

i=1
(di − 1) = 1 +

[ 2N∑
i=1

α − 1
]

= 2(α − 1)N + 1.

Recall Theorem 4 (Macaulay Bound for PCICO).

dreg =
{

αN + 1 for N < rα,

N2 + N + (rα − 1)2 + 1 for N ≥ rα.
(38)

Proof.

dreg = 1 +
ne∑

i=1
(di − 1) = 1 +

[
N+1∑
i=1

di

]
− (N + 1) = 1 +

N∑
i=1

max {2i, α} .

If N < rα, this yields dreg = 1 + Nα. Otherwise, we have

dreg = 1 +
rα−1∑
i=1

α +
N∑

i=rα

2i = 1 + (rα − 1)α + 2 ·

(
N∑

i=1
i −

rα−1∑
i=1

i

)

= 1 + (rα − 1)α + 2 ·
(

N(N + 1)
2 − (rα − 1)rα

2

)
= N(N + 1) + (rα − 1)(α − rα) + 1.

Using rα = α+1
2 and rα − 1 = α−1

2 , the statement follows.
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B.2 Bézout Bound
Recall Theorem 7 (Bézout Bound for PCICO). Let N ≥ rα. The Bézout bound for
PCICO is given by

b = αrα−1 · 2N−rα+1 · (N + 1)!
(rα − 1)! . (43)

Proof. Let N ≥ rα. PCICO is a polynomial equation system in nv = N + 1 variables and
ne = N + 1 equations, thereof 1 of degree max {2r, α} for each 1 ≤ r ≤ N , and 1 of degree
N + 1. By Theorem 1, the number of solutions to the polynomial equation system is
bounded from above by

b = (N + 1) ·
N∏

r=1
max {2r, α} = (N + 1) ·

rα−1∏
r=1

α ·
N∏

r=rα

2r

= (N + 1) · αrα−1 · 2N−rα+1
N∏

r=rα

r = αrα−1 · 2N−rα+1 · (N + 1)!
(rα − 1)! .

B.3 Multihomogeneous Bézout Bound
Recall Theorem 2 (Multihomogeneous Bézout Bound). Let I = ⟨f1, . . . , fn⟩ be a
zero-dimensional ideal in F [x1, . . . , xn] and let Z = {X1, . . . , Xm} be a partition of the
variable set with |Xj | = nj . Denote by di,j the total degree of fi with respect to the
variables in the set Xj for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then

dI
(T hm.10)=

∑
P ∈VF̄(I)

mP ≤ mhb. (12)

The following example of a polynomial equation system in three variables shows that
the multihomogeneous Bézout bound can be smaller or larger than the classical13 Bézout
bound, depending on the variable set partition.
Example 2 (Multihomogeneous Bézout Bound). Consider f1, f2, f3 from Example 1 with
I = ⟨f1, f2, f3⟩ ⊂ Q [x1, x2, x3] zero-dimensional (dI = 4), where

f1 = x1x2
2 + x1x2

3 − x2, f2 = x2 + 1, f3 = x1x2
2 + 2x2x2

3 − 2x3 + 1.

Depending on the chosen variable set partition, the corresponding multihomogeneous Bézout
bound might be smaller, equal, or greater than the classical one b = 9 (cf. Example 1).
The results for the five different partitions of {x1, x2, x3} are summarized in Table 9. We
see that for the partition Z = {{x1}, {x2}, {x3}}, the multihomogeneous Bézout bound
corresponds exactly to the quotient space dimension dI . For Z = {{x1, x2}, {x3}}, the
resulting multihomogeneous Bézout bound is above the classical one. Finally, note that
partitioning the variable set into only m = 1 set always recovers the classical Bézout bound
from Theorem 1.

To enhance comprehension of the definition of multihomogeneity, we illustratively
show the multihomogenization with respect to Z = {{x1, x2}, {x3}}. Introducing the
m = |Z| = 2 homogeneous coordinates x1,0 and x2,0 yields

fmh
1 = x1

1x2
2 · x2

2,0 + x1
1x2

1,0 · x2
3 − x1

2x2
1,0 · x2

2,0, fmh
2 = x1

2 + x1
1,0,

fmh
3 = x1

1x2
2 · x2

2,0 + 2 · x1
2x2

1,0 · x2
3 − 2 · x3

1,0 · x1
2x2,0

1 + x3
1,0 · x2

2,0,

where multideg (fmh
1 ) = multideg (fmh

3 ) = (3, 2) and multideg (fmh
2 ) = (1, 0).

13Here we refer to the Bézout bound from Theorem 1 as classical in order to clearly distinguish it from
the multihomogeneous one.
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Table 9: Variable set partitions for a set of three variables and resulting multihomogeneous
Bézout bound for the polynomial equation system in Example 2.

Partition Z Multihomogeneous Bézout bound (cf. Theorem 2)
{{x1, x2, x3}} 9 = [t3

1] (3t1)(1t1)(3t1)
{{x1}, {x2, x3}} 5 = [t1

1 · t2
2] (1t1 + 2t2)(0t1 + 1t2)(1t1 + 3t2)

{{x1, x2}, {x3}} 12 = [t2
1 · t1

2] (3t1 + 2t2)(1t1 + 0t2) · (3t1 + 2t2)
{{x1, x3}, {x2}} 6 = [t2

1 · t1
2] (3t1 + 2t2)(0t1 + 1t2)(2t1 + 2t2)

{{x1}, {x2}, {x3}} 4 = [t1
1 · t1

2 · t1
3] (t1 + 2t2 + 2t3)(0t1 + 1t2 + 0t3)(1t1 + 2t2 + 2t3)

Row Expansion Algorithm. The Row Expansion Algorithm, presented by Wampler in
1992 [Wam92], is an algorithm to compute the multihomogeneous Bézout bound of a
polynomial equation system defined by f1, . . . , fn ∈ F [x1, . . . , xn] for a particular variable
set partition Z = {X1, . . . , Xm} with |Xj | = nj solely from the total degrees di,j of fi

with respect to the variables in Xj , for 1 ≤ i ≤ n, 1 ≤ j ≤ m. For simplicity, those degrees
are summarized in a degree matrix D = (di,j) ∈ Zn×m

≥0 . Note that D remains the same for
the multihomogenized system in n + m variables with the multihomogenization variables
added to the according variable sets in Z, that is, |Xj | = nj + 1.

Theorem 13 (Row expansion algorithm). Given the degree matrix D ∈ Zn×m
≥0 of a system

of n multihomogeneous polynomials f1, . . . , fn in n + m variables with respect to some
variable set partition Z = {X1, . . . , Xm} with |Xj | = nj + 1. Let K = [n1, . . . , nm] and
define

b(D, K, i) :=
m∑

j=1
nj ̸=0

di,j · b(D, M(K, j), i + 1), (62)

where M(K, j) is constructed by decrementing the j-th entry of K by 1. Then the multiho-
mogeneous Bézout number with respect to Z is given by b(D, K, 1).

As the proof for the multihomogeneous Bézout bounds for Anemoi below follows the
idea of this algorithm, we briefly sketch its correctness proof below. A concrete example,
elaborating on Example 2, is given afterward.

Proof Sketch. The multihomogeneous Bézout bound is given by the coefficient of tn1
1 ·

· · · · tnm
m in the product of linear forms, that is,

[tn1
1 · · · · · tnm

m ]
n∏

i=1

m∑
j=1

di,jtj .

In other words, given the degree matrix D, an element in the i-th row and j-th column
may additively contribute to [tn1

1 · · · · · tnm
m ] with di,j , if selected.

We start with the first row and have m possibilities to choose any of the m columns.
Assume we picked the j1-th column, that is, we picked the value d1,j1 . Now, in the second
row, we have to pick another column. Since we already picked column j1 in the first step,
the remaining number of selections for the j1-th column is nj − 1. This is equivalent to
solving the original problem on the minor corresponding to d1,j1 . That is, we operate on
the degree matrix D̃ ∈ Z(n−1)×m

≥0 , where D̃ is obtained by deleting the first row of D, and
K̃, where K̃ is obtained by decrementing the j1-th entry of K by one.

Now assume that for some row i, we are given the matrices D and K as inputs and
that we obtained the solutions to all minor problems, denoted by b(D, M(K, j), i + 1) for
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1 ≤ j ≤ m where nj ̸= 0 in this step, and K̃ = M(K, j) was constructed by decrementing
the j-th entry of K by 1. Then

b(D, K, i) =
m∑

j=1
nj ̸=0

di,j · b(D, M(K, j), i + 1).

The process is repeated until D has no unseen rows left, or equivalently, after reaching a
recursion depth of n + 1. In this case, b(D, M(K, j), n + 1) shall return the empty product,
that is, 1, to the previous minor.

Example 3 (Multihomogeneous Bézout Bound with Row Expansion Algorithm). Consider
f1, f2, f3 ∈ Q [x1, x2, x3] as in Example 2, that is,

f1 = x1x2
2 + x1x2

3 − x2, f2 = x2 + 1, f3 = x1x2
2 + 2x2x2

3 − 2x3 + 1.

Table 10 states the degree matrices arising from the five different variable set partitions of
{x1, x2, x3}. Figure 9 visualizes the steps of the row expansion algorithm for the partitions
yielding the maximal and the minimal multihomogeneous Bézout bound.

Table 10: Variable set partitions for a set of three variables and resulting multihomogeneous
Bézout bound, partiton set size vector K and degree matrix D for the polynomial equation
system in Example 3.

Z {{x1, x2, x3}} {{x1}, {x2, x3}} {{x1, x2}, {x3}} {{x1, x3}, {x2}} {{x1}, {x2}, {x3}}
mhb 9 5 12 6 4
K

[
3
] [

1 2
] [

2 1
] [

2 1
] [

1 1 1
]

D

3
1
3

 1 2
0 1
1 3

 3 2
1 0
3 2

 3 2
0 1
2 2

 1 2 2
0 1 0
1 2 2



b(2, 1) = 12

b(1, 1) = 2 b(2, 0) = 3

b(0, 1) = 2 b(1, 0) = 3

b(0, 0) = 1

d11

3

d
122

d21

1

d
220 d21

1

d
322 d31

3

(a) Z = {{x1, x2} , {x3}}

b(1, 1, 1) = 4

b(0, 1, 1) = 2 b(1, 0, 1) = 0 b(1, 1, 0) = 1

b(0, 0, 1) = 2 b(0, 1, 0) = 2 b(1, 0, 0) = 1

b(0, 0, 0) = 1

d11

1 d12 2

d13
2

d22

1

d23

0

d21

0

d23

0

d21

0

d22

1

d33
2

d32 2
d31

1

(b) Z = {{x1} , {x2} , {x3}}

Figure 9: Visualization of the steps of the row expansion algorithm.

Recall Theorem 8 (Multihomogeneous Bézout Bound for PCICO). Let N ≥ rα. For
α ∈ {3, 5, 7, 11}, the minimal multihomogeneous Bézout bound for PCICO is given by

mhb = τα · (α + 4)N−rα , (44)

where τα = 2rα · αrα−1 · (rα + 1) for α ∈ {3, 5, 7} and τα = (α + 4)rα for α = 11.
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Table 11: “Optimal” variable set partition for PCICO minimizing the multihomogeneous
Bézout bound. Derived using the heuristic approach described in Section 3.2. The
exhaustive search was performed for up to 8 rounds.

α rα Optimal partition for 1 ≤ N < rα Optimal partition for N ≥ rα

3 2 {{y0, s1}} {{y0, s1, . . . , srα } , {srα+1} , . . . , {sN }}
5 3 {{y0} , {s1}}, but {{y0, s1, s2}} {{y0, s1, . . . , srα } , {srα+1} , . . . , {sN }}
7 4 {{y0} , {s1} , . . . , {sN }} {{y0, s1, . . . , srα } , {srα+1} , . . . , {sN }}
11 6 {{y0} , {s1} , . . . , {sN }} {{y0} , {s1} , . . . , {sN }}

Proof. We prove Theorem 8 for α ∈ {3, 5, 7} by induction using the idea of the Row
Expansion Algorithm. Concrete degree matrices for a small number of rounds for α = 11
are given in Table 12, which demonstrate that the proof, in this case, follows immediately.

Let α ∈ {3, 5, 7} and N ≥ rα. We consider the partition of the variable set X =
{y0, s1, . . . , sN } into m = nv − rα = N + 1 − rα sets. In particular, we group the input
variables y0 and the first rα state variables s1, . . . , srα . The remaining variables form
individual groups of size one each:

Z = {{y0, s1, . . . , srα
} , {srα+1} , . . . , {sN }} = {X1, . . . , Xm} .

See also Table 11. The degree matrix D
(N)
α ∈ Z(N+1)×(N+1−rα)

≥0 is given by

D(N)
α =



X1 X2 Xm

p1 α

α
prα 2rα

prα+1 2(rα + 1)

pN 2(rα + 1)
xN+1 rα + 1 2 2

0

A
(N)
α


, A(N)

α =


α 0 0
4

0
4 4 α



with A
(N)
α ∈ Z(N−rα)×(N−rα)

≥0 . By Theorem 2, the multihomogeneous Bézout bound with
respect to the variable partition Z is given by the coefficient of trα+1

1 · t2 · · · tm in the
product of linear forms L(D(N)

α ), where for simplicity we defined

L(D) :=
n∏

i=1

m∑
j=1

di,jtj . (63)

As the first rα rows of D
(N)
α each only contains one nonzero entry in the column associated

to X1, t1 will contribute to L(D(N)
α ) via these rows with exponent rα and coefficient

αrα−1 · 2rα. Removing these rows from D
(N)
α , the exponent of t1 in L(D(N)

α ) has to be
lowered by rα. Let D̃

(N)
α ∈ Z(N−rα+1)×(N−rα+1)

≥0 = Zm×m
≥0 denote the modified degree

matrix, where the first rα rows of D
(N)
α were removed, that is,

D̃(N)
α =


X1 X2 Xm

2(rα + 1)

2(rα + 1)
rα + 1 2 2

A
(N)
α

 =



X1 X2 Xm−1 Xm

2(rα + 1) α 0 0 0
4

0
2(rα + 1) 4 4 α 0
2(rα + 1) 4 4 4 α

rα + 1 2 2 2 2

.
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Then [
trα+1
1 · t2 · · · tm

]
L(D(N)

α ) = 2rα · αrα−1 · [t1 · t2 · · · tm] L(D̃(N)
α ). (64)

For N = rα, that is, m = 1, L(D̃(N)
α ) = (rα + 1) · t1, and thus[

trα+1
1 · t2 · · · tm

]
L(D(N)

α ) = 2rα · αrα−1 · (rα + 1). (65)

Let N > rα. There are only two ways in which tm can enter the product L(D̃(N)
α ). Either

via the second last row (with coefficient α) or the last row (with coefficient 2). It is easy
to see that

[t1 · t2 · · · tm] L(D̃(N)
α ) = α · [t1 · t2 · · · tm−1] L(D̃(N−1)

α ) +
2 · [t1 · t2 · · · tm−1] L(B(N)

α ), (66)

where B
(N)
α ∈ Z(N−rα)×(N−rα)

≥0 = Z(m−1)×(m−1)
≥0 always takes a form similar to a lower

triangular matrix, where the first diagonal (the one above the main diagonal) is filled with
α. That is,

B(N)
α =



X1 X2 Xm−1

2(rα + 1) α 0 0
2(rα + 1) 4

0
α

2(rα + 1) 4 4

 =


X1 X2 Xm−1

2(rα + 1)

2(rα + 1)
2(rα + 1) 4 4

A
(N−1)
α

.

We will prove by induction over N (and thus implicitly m) that for N > rα

(A) [t1 · t2 · · · tm−1] L(B(N)
α ) = 2(rα + 1) · (α + 4)N−rα−1, and

(B) [t1 · t2 · · · tm] L(D̃(N)
α ) = (rα + 1) · (α + 4)N−rα .

Inserting these results into (64) concludes the proof:

mhb =
[
trα+1
1 · t2 · · · tm

]
L(D(N)

α ) = 2rα · αrα−1 · [t1 · t2 · · · tm] L(D̃(N)
α )

= 2rα · αrα−1 · (rα + 1) · (α + 4)N−rα .

In particular, τα = 2rα · αrα−1 · (rα + 1).

Induction proofs:

(A) To show: [t1 · t2 · · · tm−1] L(B(N)
α ) = 2(rα + 1) · (α + 4)N−rα−1, for N > rα.

• Base case:
– For N = rα + 1 (m = 2):

[t1] L(B(N)
α ) = [t1] (2(rα + 1)t1 + αt2) = 2(rα + 1)

= 2(rα + 1) · (α + 4)0 = 2(rα + 1) · (α + 4)N−rα−1.

– For N = rα + 2 (m = 3):

[t1 · t2] L(B(N)
α ) = [t1 · t2] (2(rα + 1)t1 + αt2) · (2(rα + 1)t1 + 4t2)

= 2(rα + 1) · (α + 4)1 = 2(rα + 1) · (α + 4)N−rα−1.



Katharina Koschatko, Reinhard Lüftenegger and Christian Rechberger 177

• Induction hypothesis: Assume that

[t1 · · · tm−2] L(B(N−1)
α ) = 2(rα + 1) · (α + 4)(N−1)−rα−1.

• Induction step: (N − 1 → N). Given B
(N)
α , the last column, associated with

Xm−1, contains only two nonzero entries in the last two rows. Removing one of
those rows and the last column from B

(N)
α results in B

(N−1)
α . Thus:

[t1 · · · tm−1] L(B(N)
α )

= α · [t1 · · · tm−2] L(B(N−1)
α ) + 4 · [t1 · · · tm−2] L(B(N−1)

α )
= (α + 4) · [t1 · · · tm−2] L(B(N−1)

α ) = 2(rα + 1) · (α + 4)N−rα−1.

(B) To show: [t1 · t2 · · · tm] L(D̃(N)
α ) = (rα + 1) · (α + 4)N−rα , for N > rα.

• Base case: For N = rα + 1 (m = 2):

[t1 · t2] L(D̃(N)
α ) = [t1 · t2] (2(rα + 1)t1 + αt2) · ((rα + 1)t1 + 2t2)

= (rα + 1) · (α + 4)1 = (rα + 1) · (α + 4)N−rα .

• Induction hypothesis: Assume that

[t1 · t2 · · · tm−1] L(D̃(N−1)
α ) = (rα + 1) · (α + 4)N−rα−1.

• Induction step: (N − 1 → N). Combining (66) and the previous result for
[t1 · · · tm−1] L(B(N)

α ) yields:

[t1 · t2 · · · tm] L(D̃(N)
α )

= α · [t1 · t2 · · · tm−1] L(D̃(N−1)
α ) + 2 · [t1 · t2 · · · tm−1] L(B(N)

α )
= α · (rα + 1) · (α + 4)N−rα−1 + 2 · 2(rα + 1) · (α + 4)N−rα−1

= (rα + 1) · (α + 4)N−rα .

Table 12: Degree matrices D
(N)
α for N ≥ 1 and α = 11 with respect to the variable set

partition {{y0} , {s1} , . . . , {sN }}.

D
(1)
11 =

[ 2 11
1 2

]
D

(2)
11 =

[
2 11 0
2 4 11
1 2 2

]
D

(3)
11 =

 2 11 0 0
2 4 11 0
2 4 4 11
1 2 2 2
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C Experimental Results over Fp

C.1 Concrete Results for p = 232 − 209

Table 13: Gröbner basis attack on Anemoi : F2
p → F2

p for p = 232 − 209 and variable
ordering o1. CGB, CFGLM, and CFAC are derived using dreg, dI , and duni from the experiments,
for ω = 2. Timing results are reported in seconds, and complexities are given in bits. The
number of solutions in V (I) is counted with multiplicities over Fp .

Gröbner Basis Basis Conversion Factorization
α N dmax TGB dreg CGB TFGLM dI CFGLM TFAC duni CFAC #V (I)
3 1 3 0.01 4 4 0.0 5 5 0.0 5 4 0

2 3 0.0 7 14 0.01 25 11 0.0 25 8 1
3 3 0.02 8 21 0.39 125 16 0.01 125 12 0
4 3 0.44 10 29 63.23 625 21 0.11 625 16 0
5 3 6.05 12 37

5 1 5 0.0 6 5 0.0 7 6 0.0 7 5 1
2 5 0.01 10 16 0.02 49 13 0.0 49 10 1
3 5 1.16 12 25 5.08 343 19 0.05 343 15 0
4 5 642.9 15 35 4133.44 2401 25 0.86 2401 20 1
5 5 177302.95 17 43

7 1 7 0.0 8 5 0.0 9 7 0.0 9 5 1
2 7 0.02 14 19 0.03 81 14 0.01 81 11 2
3 7 11.73 16 28 52.73 729 21 0.17 729 17 1
4 7 21744.06 21 40

11 1 11 0.0 12 6 0.0 13 8 0.0 13 6 0
2 11 0.26 21 22 0.54 169 16 0.02 169 13 0
3 11 1259.68 25 34 1548.67 2197 24 0.66 2197 20 1

(a) FCICO.

Gröbner Basis Basis Conversion Factorization
α N dmax TGB dreg CGB TFGLM dI CFGLM TFAC duni CFAC #V (I)
3 1 3 0.0 4 5 0.01 5 5 0.0 5 4 0

2 4 0.0 7 11 0.01 25 10 0.0 25 8 1
3 6 0.01 10 17 0.3 125 15 0.01 125 12 0
4 8 0.16 12 22 50.29 625 20 0.11 625 16 0
5 10 3.58 16 29

5 1 5 0.0 6 6 0.0 7 6 0.0 7 5 1
2 5 0.0 10 13 0.02 49 12 0.01 49 10 1
3 6 0.16 13 19 6.71 343 18 0.05 343 15 0
4 8 13.07 17 26 7921.89 2401 24 0.8 2401 20 1
5 10 1699.0 22 34
6 12 76321.32 27 42

7 1 7 0.0 8 7 0.0 9 7 0.0 9 5 1
2 7 0.01 13 15 0.06 81 14 0.0 81 11 2
3 7 3.04 17 22 53.64 729 21 0.14 729 17 1
4 8 3608.92 24 30

11 1 11 0.0 12 9 0.0 13 8 0.01 13 6 0
2 11 0.1 21 18 0.44 169 16 0.02 169 13 0
3 11 223.86 24 25 1313.71 2197 24 0.63 2197 20 1

(b) PCICO.
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C.2 Concrete Results for p = 264 − 353

Table 14: Gröbner basis attack on Anemoi : F2
p → F2

p for p = 264 − 353 and variable
ordering o1. CGB, CFGLM, and CFAC are derived using dreg, dI , and duni from the experiments,
for ω = 2. Timing results are reported in seconds, and complexities are given in bits. The
number of solutions in V (I) is counted with multiplicities over Fp .

Gröbner Basis Basis Conversion Factorization
α N dmax TDRL dreg CGB TFGLM dI CFGLM TFAC duni CFAC #V (I)
3 1 3 0.0 4 4 0.0 5 5 0.0 5 4 2

2 3 0.0 7 14 0.0 25 11 0.01 25 8 1
3 3 0.02 8 21 0.2 125 16 0.02 125 12 0
4 3 0.28 10 29 67.77 625 21 0.26 625 16 1
5 3 9.32 12 37 22057.09 3125 26 2.36 3125 21 1
6 3 132.52 14 45
7 3 1623.26 16 53
8 3 18215.16 18 61

5 1 5 0.0 6 5 0.0 7 6 0.0 7 5 2
2 5 0.0 10 16 0.01 49 13 0.02 49 10 2
3 5 1.37 12 25 6.5 343 19 0.12 343 15 2
4 5 756.48 15 35 3770.7 2401 25 1.81 2401 20 1
5 5 185056.75 17 43

7 1 7 0.0 8 5 0.0 9 7 0.0 9 5 1
2 7 0.02 14 19 0.05 81 14 0.0 81 11 1
3 7 19.59 16 28 52.32 729 21 0.34 729 17 2
4 7 21902.11 21 40

11 1 11 0.0 12 6 0.0 13 8 0.0 13 6 2
2 11 0.3 21 22 0.65 169 16 0.04 169 13 1
3 11 1451.42 25 34 1389.87 2197 24 1.53 2197 20 1

(a) FCICO.

Gröbner Basis Basis Conversion Factorization
α N dmax TDRL dreg CGB TFGLM dI CFGLM TFAC duni CFAC #V (I)
3 1 3 0.0 4 5 0.0 5 5 0.0 5 4 2

2 4 0.0 7 11 0.0 25 10 0.01 25 8 1
3 6 0.01 10 17 0.32 125 15 0.02 125 12 0
4 8 0.2 12 22 56.44 625 20 0.27 625 16 1
5 10 5.7 16 29 15569.55 3125 25 2.55 3125 21 1
6 12 372.2 18 35
7 14 26402.41 20 40

5 1 5 0.0 6 6 0.0 7 6 0.0 7 5 2
2 5 0.0 10 13 0.02 49 12 0.02 49 10 2
3 6 0.19 13 19 8.79 343 18 0.12 343 15 2
4 8 23.35 17 26 8090.86 2401 24 1.71 2401 20 1
5 10 1847.36 22 34
6 12 81979.26 27 42

7 1 7 0.0 8 7 0.0 9 7 0.0 9 5 1
2 7 0.01 13 15 0.07 81 14 0.01 81 11 1
3 7 4.21 17 22 56.64 729 21 0.35 729 17 2
4 8 3809.62 24 30

11 1 11 0.0 12 9 0.0 13 8 0.0 13 6 2
2 11 0.12 21 18 0.52 169 16 0.04 169 13 1
3 11 261.38 24 25 1168.74 2197 24 1.58 2197 20 1

(b) PCICO.
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C.3 The Six Worlds of Gröbner Basis Cryptanalysis
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Figure 10: Theoretical bounds and experimental conjectures for the degree of regularity
dreg in Step (1) of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 5. Experimental

data points for p ∈
{

232 − 209, 264 − 353, BLS12-381, BN-254
}
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Figure 11: Theoretical bounds and experimental conjectures for the degree of regularity
dreg in Step (1) of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 7. Experimental

data points for p ∈
{

232 − 209, 264 − 353, BLS12-381, BN-254
}

.
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Figure 12: Theoretical bounds and experimental conjectures for the degree of regularity
dreg in Step (1) of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 11. Experimental

data points for p ∈
{

232 − 209, 264 − 353, BN-254
}

.
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Figure 13: Theoretical bounds and experimental conjectures for the quotient space
dimension dI in Step (2) of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 5.

Experimental data points for p ∈
{

232 − 209, 264 − 353, BLS12-381, BN-254
}
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Figure 14: Theoretical bounds and experimental conjectures for the quotient space
dimension dI in Step (2) of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 7.

Experimental data points for p ∈
{

232 − 209, 264 − 353, BLS12-381, BN-254
}

.
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Figure 15: Theoretical bounds and experimental conjectures for the quotient space
dimension dI in Step (2) of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 11.

Experimental data points for p ∈
{

232 − 209, 264 − 353, BN-254
}

.



182 Exploring the Six Worlds of Gröbner Basis Cryptanalysis: Application to Anemoi

C.4 Security Analysis - Minimum Number of Rounds
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Figure 16: The Six Worlds of Gröbner Basis Cryptanalysis: Round numbers derived for
the individual steps of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 3 used

in a Sponge construction for different values of ω. Target security level of s = 128 bits.
Theoretical bounds and (experimental) conjectures as given in Section 4.4. Colored areas
indicate round numbers proven to be insecure.
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Figure 17: The Six Worlds of Gröbner Basis Cryptanalysis: Round numbers derived for
the individual steps of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 3 used

in a Sponge construction for different values of ω. Target security level of s = 256 bits.
Theoretical bounds and (experimental) conjectures as given in Section 4.4. Colored areas
indicate round numbers proven to be insecure.



184 Exploring the Six Worlds of Gröbner Basis Cryptanalysis: Application to Anemoi

1 2 2.37 3
0

10

20

30

40

50

14
12

10
8

N∗ for CGB = 2128

Approx.
Macaulay

1 2 2.37 3
0

10

20

30

40

50

22
19

14
12

N∗ for CFGLM = 2128

Approx.
MHB
B

1 2 2.37 3
0

10

20

30

40

50

26 26

16 16

N∗ for CFAC = 2128

Approx.
MHB
B

(a) FCICO.

1 2 2.37 3
0

10

20

30

40

50

19
16

13
11

N∗ for CGB = 2128

Approx.
Macaulay

1 2 2.37 3
0

10

20

30

40

50

22
19

20
17

N∗ for CFGLM = 2128

Approx.
MHB
B

1 2 2.37 3
0

10

20

30

40

50

26 26

23 23

N∗ for CFAC = 2128

Approx.
MHB
B

(b) PCICO.

Figure 18: The Six Worlds of Gröbner Basis Cryptanalysis: Round numbers derived for
the individual steps of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 5 used

in a Sponge construction for different values of ω. Target security level of s = 128 bits.
Theoretical bounds and (experimental) conjectures as given in Section 4.4. Colored areas
indicate round numbers proven to be insecure.
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Figure 19: The Six Worlds of Gröbner Basis Cryptanalysis: Round numbers derived for
the individual steps of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 5 used

in a Sponge construction for different values of ω. Target security level of s = 256 bits.
Theoretical bounds and (experimental) conjectures as given in Section 4.4. Colored areas
indicate round numbers proven to be insecure.
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Figure 20: The Six Worlds of Gröbner Basis Cryptanalysis: Round numbers derived for
the individual steps of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 7 used

in a Sponge construction for different values of ω. Target security level of s = 128 bits.
Theoretical bounds and (experimental) conjectures as given in Section 4.4. Colored areas
indicate round numbers proven to be insecure.



Katharina Koschatko, Reinhard Lüftenegger and Christian Rechberger 187

1 2 2.37 3
0

20

40

60

80

24
20

16 14

N∗ for CGB = 2256

Approx.
Macaulay

1 2 2.37 3
0

20

40

60

80

40
34

23
19

N∗ for CFGLM = 2256

Approx.
MHB
B

1 2 2.37 3
0

20

40

60

80

45 45

26 26

N∗ for CFAC = 2256

Approx.
MHB
B

(a) FCICO.

1 2 2.37 3
0

20

40

60

80

34
29

22 19

N∗ for CGB = 2256

Approx.
Macaulay

1 2 2.37 3
0

20

40

60

80

40
34

37
31

N∗ for CFGLM = 2256

Approx.
MHB
B

1 2 2.37 3
0

20

40

60

80

45 45

41 41

N∗ for CFAC = 2256

Approx.
MHB
B

(b) PCICO.

Figure 21: The Six Worlds of Gröbner Basis Cryptanalysis: Round numbers derived for
the individual steps of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 7 used

in a Sponge construction for different values of ω. Target security level of s = 256 bits.
Theoretical bounds and (experimental) conjectures as given in Section 4.4. Colored areas
indicate round numbers proven to be insecure.
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Figure 22: The Six Worlds of Gröbner Basis Cryptanalysis: Round numbers derived for
the individual steps of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 11 used

in a Sponge construction for different values of ω. Target security level of s = 128 bits.
Theoretical bounds and (experimental) conjectures as given in Section 4.4. Colored areas
indicate round numbers proven to be insecure.
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Figure 23: The Six Worlds of Gröbner Basis Cryptanalysis: Round numbers derived for
the individual steps of a Gröbner basis attack on Anemoi : F2

p → F2
p with α = 11 used

in a Sponge construction for different values of ω. Target security level of s = 256 bits.
Theoretical bounds and (experimental) conjectures as given in Section 4.4. Colored areas
indicate round numbers proven to be insecure.



190 Exploring the Six Worlds of Gröbner Basis Cryptanalysis: Application to Anemoi

C.5 Estimated Attack Complexities

Table 15: Estimated attack complexity for round number suggestions in [BBC+23, Table
1] for Anemoi : F2

p → F2
p and a target security level of s = 128 bits. Each cell reports the

estimated attack complexity (in bits) in the given world, where ω = 2 (2.37).

(E) Experimental approach (T) Theoretical approach

α [BBC+23] Model Step (1) Step (2) Step (3) Step (1) Step (2) Step (3)
GB FGLM FAC GB FGLM FAC

3 21 FCICO 165 (195) 102 (120) 88 226 (267) 138 (163) 120
PCICO 131 (155) 101 (120) 88 249 (293) 121 (143) 106

5 21 FCICO 200 (237) 123 (145) 107 296 (350) 200 (236) 177
PCICO 147 (174) 122 (144) 107 249 (294) 137 (161) 120

7 20 FCICO 216 (256) 132 (155) 115 324 (382) 229 (271) 203
PCICO 153 (180) 131 (154) 115 235 (277) 142 (168) 125

11 19 FCICO 241 (286) 145 (171) 127 359 (424) 268 (316) 238
PCICO 163 (192) 144 (170) 127 223 (263) 152 (180) 134

Table 16: Estimated attack complexity for round number suggestions in [BBC+23, Table
1] for Anemoi : F2

p → F2
p and a target security level of s = 256 bits. Each cell reports the

estimated attack complexity (in bits) in the given world, where ω = 2 (2.37).

(E) Experimental approach (T) Theoretical approach

α [BBC+23] Model Step (1) Step (2) Step (3) Step (1) Step (2) Step (3)
GB FGLM FAC GB FGLM FAC

FCICO 293 (347) 178 (209) 155 402 (476) 240 (284) 2123 37 PCICO 234 (277) 177 (208) 155 497 (587) 212 (250) 187

5 37 FCICO 356 (421) 213 (252) 188 527 (624) 349 (413) 311
PCICO 262 (310) 212 (251) 188 497 (587) 239 (282) 212

7 36 FCICO 392 (464) 234 (276) 207 589 (696) 410 (485) 366
PCICO 277 (327) 233 (275) 207 481 (568) 254 (300) 225

11 35 FCICO 449 (532) 265 (313) 235 668 (790) 490 (580) 439
PCICO 301 (356) 264 (312) 235 466 (551) 278 (329) 248
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