
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 4, pp. 97–137. DOI:10.46586/tosc.v2024.i4.97-137

Opening the Blackbox: Collision Attacks on
Round-Reduced Tip5, Tip4, Tip4’ and Monolith

Fukang Liu1, Katharina Koschatko2, Lorenzo Grassi3,4, Hailun Yan5,
Shiyao Chen6, Subhadeep Banik7 and Willi Meier8

1 Institute of Science Tokyo, Tokyo, Japan
liu.f.ad@m.titech.ac.jp

2 Graz University of Technology, Graz, Austria
katharina.koschatko@tugraz.at

3 Ponos Technology, Zug, Switzerland
4 Ruhr University Bochum, Bochum, Germany

lorenzo.grassi@rub.de
5 University of Chinese Academy of Sciences, Beijing, China

hailun.yan@ucas.ac.cn
6 Digital Trust Centre, Nanyang Technological University, Singapore, Singapore

shiyao.chen@ntu.edu.sg
7 Universita della Svizzera Italiana, Lugano, Switzerland

subhadeep.banik@usi.ch
8 University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland

willimeier48@gmail.com

Abstract. A new design strategy for ZK-friendly hash functions has emerged since
the proposal of Reinforced Concrete at CCS 2022, which is based on the hybrid use of
two types of nonlinear transforms: the composition of some small-scale lookup tables
(e.g., 7-bit or 8-bit permutations) and simple power maps over Fp. Following such a
design strategy, some new ZK-friendly hash functions have been recently proposed,
e.g., Tip5, Tip4, Tip4’, and the Monolith family. All these hash functions have a small
number of rounds, i.e., 5 rounds for Tip5, Tip4, and Tip4’, and 6 rounds for Monolith
(recently published at ToSC 2024/3). Using the composition of some small-scale
lookup tables to build a large-scale permutation over Fp – which we call S-box – is
a main feature in such designs, which can somehow enhance the resistance against
the Gröbner basis attack because this large-scale permutation will correspond to a
complex and high-degree polynomial representation over Fp.
As the first technical contribution, we propose a novel and efficient algorithm to
study the differential property of this S-box and to find a conforming input pair for a
randomly given input and output difference. For comparison, a trivial method based
on the use of the differential distribution table (DDT) for solving this problem will
require time complexity O(p2).
For the second contribution, we also propose new frameworks to devise efficient
collision attacks on such hash functions. Based on the differential properties of these
S-boxes and the new attack frameworks, we propose the first collision attacks on
3-round Tip5, Tip4, and Tip4’, as well as 2-round Monolith-31 and Monolith-64, where
the 2-round attacks on Monolith are practical. In the semi-free-start (SFS) collision
attack setting, we achieve practical SFS collision attacks on 3-round Tip5, Tip4, and
Tip4’. Moreover, the SFS collision attacks can reach up to 4-round Tip4 and 3-round
Monolith-64. As far as we know, this is the first third-party cryptanalysis of these
hash functions, which improves the initial analysis given by the designers.
Keywords: Tip5/Tip4/Tip4’ · Monolith · (Semi-Free Start) Collisions

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-09-01 Accepted: 2024-11-01 Published: 2024-12-18

https://doi.org/10.46586/tosc.v2024.i4.97-137
mailto:liu.f.ad@m.titech.ac.jp
mailto:katharina.koschatko@tugraz.at
mailto:lorenzo.grassi@rub.de
mailto:hailun.yan@ucas.ac.cn
mailto:shiyao.chen@ntu.edu.sg
mailto:subhadeep.banik@usi.ch
mailto:willimeier48@gmail.com
http://creativecommons.org/licenses/by/4.0/

98 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

1 Introduction
Zero-knowledge (ZK) proof systems and other use cases have seen a rise in popularity in
the last couple of years. Recursive SNARKs and folding schemes (incrementally verifiable
computation, or IVC [Val08]) provide a possibility to increase the performance in this
setting and more and more programs contain hash functions as subroutines. However, in
IVC applications, arithmetization-oriented hash functions are preferred instead of standard
hash functions like SHA-3 or Blake3. This is because the size of hash functions as an
arithmetic circuit over a prime field becomes more important than the “native” software
performance (e.g., on an x86 architecture). Motivated by such a new requirement, a
dozen ZK-friendly primitives have been designed and published in recent years, including
MiMC [AGR+16], Marvellous [AD18, AAB+20], Poseidon [GKR+21], Griffin [GHR+23],
Neptune [GOPS22], Reinforced Concrete [GKL+22], Anemoi [BBC+23], Tip5 [SLS+23],
Tip4/Tip4’ [Sal23], Monolith [GKL+24], XHash8/XHash12 [ABK+23], and Arion [RST23].

Although many symmetric primitives with different new features have been proposed
for ZK proof systems, some of them do not stand the test of time and soon got broken due
to the usage of less-studied components. Concrete examples include the recent FreeLunch
attack [BBL+24] against Griffin, Anemoi, and Arion, several algebraic and statistical
attacks against Poseidon [BBLP22, KR21, GRS21, BCD+20], algebraic cryptanalysis of
the MARVELlous family member Friday [ACG+19], the so-called six worlds of Gröbner
basis cryptanalysis of Anemoi [KLR24], and resultant-based algebraic attacks [YZY+24]
on Rescue-Prime, Anemoi, and Jarvis. Moreover, there are also several other attacks against
symmetric-key primitives for advanced protocols like secure multiparty computation (MPC)
and homomorphic encryption (HE) [LAW+23, ZWY+23, LMØM23, GBJR23, GAH+23,
GKRS22, LSW+22, CHWW22, LSMI21, BBVY21, Din21, EGL+20, LKSM24]. For these
reasons, it is quite important to study the properties of the special S-box used in Tip5, Tip4
and in Monolith, considering the fact that these ciphers have a small number of rounds.

Tip5, Tip4, Tip4’ and Monolith. Among these ZK-friendly hash functions, Tip5, Tip4,
Tip4’ and the Monolith family follow a new design strategy first used in Reinforced Concrete,
which is to construct a large-scale permutation over a finite field Fp with the composition of
several small-scale lookup tables. For convenience, such a special large-scale permutation
over Fp is called S-box in this paper. Different from the common way to use simple power
maps to construct a nonlinear permutation over Fp, the polynomial representation of this
S-box over Fp will be a complex and high-degree polynomial over Fp. Hence, using this
S-box can somehow enhance the resistance against the algebraic attack, e.g., the Gröbner
basis attack. Indeed, due to the fact that the algebraic polynomial description of such
S-boxes is of extremely high degree and dense (besides being unknown in many cases), the
cost of such algebraic attacks becomes prohibitive.

Designers’ analysis. The best attacks found by designers consist of setting up a system
of equations that describes the considered schemes. In order to remove the influence of the
S-boxes (which are treated as a black box), the attacker exploits the available degrees of
freedom in order to impose the inputs – and so the outputs – of such S-boxes to be equal
to some fixed, known values. (Remember that no secret is involved since these schemes
are hash functions; hence, this strategy is always possible.) This is possible since the
number of such S-boxes per round is (much) smaller than the state size. Still, it is easy to
understand that this attack strategy can only cover a limited number of rounds, which
obviously depends on the available degrees of freedom.

Our goal. For these ZK-friendly hash functions, both preimage resistance and collision
resistance are of crucial importance. The reason for this is related to the fact that Merkle

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 99

Trees are used in blockchain systems in order to efficiently summarize all transactions in a
block. Indeed, this structure allows the users to verify whether a particular transaction is
included in a block without downloading the entire blockchain. Focusing on root collisions
in Merkle Trees, they could potentially undermine the security mechanisms of blockchain
networks [Kil92,BSBHR18], leading to vulnerabilities in data integrity and authentication
processes. As far as we know, there is no successful attack yet on these hash functions by
exploiting the details of this type of S-box. Hence, it is interesting and important to look
into this S-box, and study whether there are some properties to be exploited for efficient
attacks. This is exactly the goal of this paper for the particular case of collision attacks.

Our Contributions
A secure hash function is required to satisfy collision resistance. Therefore, in this work,
we focus on collision attacks on Tip5, Tip4, Tip4’ and the Monolith family, and hence
we will study the differential properties of the special S-box used in these ciphers. Our
contribution is briefly summarized below.

Differential property of Tip5/Monolith S-boxes. We propose a novel and efficient
algorithm to determine whether a randomly given input-output difference pair (∆w, ∆z) ∈
F2

p is valid for this special S-box z = S(w) where z, w ∈ Fp. Moreover, with this algorithm,
retrieving all possible conforming input pairs for a valid input-output difference pair is also
efficient. As already stated, the polynomial representation of this S-box over Fp is complex
and of high degree, and hence the common method to solve these problems like building
the differential distribution table (DDT) or directly solving the univariate differential
equation S(∆w + w) − S(w) = ∆z become impractical for a large finite field.

Efficient collision attack frameworks. We propose two attack frameworks to devise
efficient (SFS) collision attacks on round-reduced Tip5, Tip4, Tip4’, and Monolith, which
can take full advantage of our algorithm for the S-box. With these techniques, we
can remove the influence of the high-degree polynomial representation of the S-box by
consuming as few degrees of freedom as possible, and meanwhile, it is still possible to set
up a system of low-degree equations to generate (SFS) collisions, where the number of
variables is at least the same as the number of equations. Specifically, by means of our
algorithm for the S-box, we are able to efficiently find non-zero input-output difference
pairs of the S-box satisfying certain conditions to generate (SFS) collisions instead of
always merely forcing the input and output differences of the S-box to be 0 in order to
skip it. In this way, we significantly improve the straightforward collision attacks on these
ciphers independent of the S-box.

Our results. As the first third-party cryptanalysis, we can mount:

• collision attacks on 3-round Tip5, Tip4, and Tip4’,

• practical collision attacks on 2-round Monolith-64 and Monolith-31,

• SFS collision attacks on 4-round Tip4 (besides practical SFS collisions for 3-round
Tip5, Tip4 and Tip4’),

• SFS collision attacks on 3-round Monolith-64.

We have verified these attacks as far as we can, and the estimated time complexity of the
attacks is as expected. In particular, we provide practical SFS collisions for 3-round Tip5,
Tip4, and Tip4’, and colliding message pairs for 2-round Monolith-31 and Monolith-64. All
the source codes are available at https://github.com/IAIK/ca-tip5family-monolith.

https://github.com/IAIK/ca-tip5family-monolith

100 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

Table 1: Summary of our attacks on Tip5, Tip4, Tip4’, Monolith-31 and Monolith-64.
We recall that the Tip5 family and Monolith family are instantiated by 5 and 6 rounds,
respectively, and they target the 128-bit security (with the only exception of Monolith-31,
which targets 124-bit security). The memory complexity is always smaller than the time
complexity (we recall that the linear algebra constant ω is bounded by 2 ≤ ω ≤ 3).

Attack type Target Rounds (Estimated) Complexity ω = 2.37 Reference

Collision

Tip5 3
max{254.3ω, 2121.1} 2128.7 Sect. 3.2
2101.1 + max{231.7ω+16, 299.3} 2101.1 Sect. 6.1
max{28+38.4ω, 2107.7} 2107.7 Sect. 6.1

Tip4 3 max{247.1ω, 2104.1} 2111.5 Sect. 3.2
max{225.0ω, 266.8} 266.8 Sect. 5.3

Tip4’ 3 max{247.1ω, 2104.1} 2111.5 Sect. 3.2
max{28+25.8ω, 274.8} 274.8 Sect. 6.1

SFS Collision

Tip5
3

max{217.4ω, 241.1} (practical) 241.2

Sect. 5.4Tip4 max{213.7ω, 233.2} (practical) 232.5

Tip4’ max{213.7ω, 233.2} (practical) 232.5

Tip4 4 max{28+46.6ω, 2101.1} 2118.5 Sect. 5.5

Collision
Monolith-64 2 max{217.0ω, 237.8} (practical) 240.3 Sect. 3.2

264 264 Sect. 7.2

Monolith-31 2 max{241.6ω, 276} 298.6 Sect. 3.2
max{214.6ω, 227} (practical) 234.6 Sect. 7.2

SFS Collision Monolith-64 3 max{249.2ω, 288} 2116.7 Sect. 7.3

Our results are summarized in Table 1. As far as we know, they are the most successful
attacks against these ciphers. In particular, Tip5’s designers claim that 3 rounds are
sufficient for guaranteeing security (see [SLS+23, Table 4]), and that “the round count
N = 5 was set to provide a roughly 50% security margin” (cited from [SLS+23, Sect. 5.11]).
Similar considerations hold for Tip4, and Tip4’. Since the Tip5 family is instantiated by 5
rounds only, our attacks have significantly reduced the security margins of the Tip5 family.

2 Preliminaries
2.1 Notation
Throughout this paper, p is a prime number, and (Fp, +, ·) is the Galois field with the set
of integers modulo p.1 In addition, we use the following notation.

• For a matrix M of size n × n and a vector x = (x0, . . . , xn−1)T , (M(x))i represents
the i-th entry of M × x where 0 ≤ i < n;

• R = 264 mod 264 − 232 + 1 and R−1 = (264)−1 mod 264 − 232 + 1 are constants;

• DiagR−1,n,s denotes a diagonal matrix Diag(R−1, . . . , R−1︸ ︷︷ ︸
s

, 1, . . . , 1︸ ︷︷ ︸
n−s

), and DiagR,n,s

denotes a diagonal matrix Diag(R, . . . , R︸ ︷︷ ︸
s

, 1, . . . , 1︸ ︷︷ ︸
n−s

);

1We emphasize that, in some cases, we will also consider a different modulo for these arithmetic
operations. In such cases, we will make it clear.

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 101

m0

IV

P

r

c

m1

r

P
c

mlen−1

r

P
c

hash

d

Figure 1: Sponge construction used for the Tip5 family.

• ¬x denotes the logical complement of the binary string x;

• ≪ denotes the circular left shift operation for a binary string.

2.2 Sponge Construction
The sponge construction [BDPA08] can be used to model or implement many cryptographic
primitives, including cryptographic hashes. It works on an internal state of n field elements,
which is divided into two parts: the outer part of r field elements (r is called the rate),
and the inner part of c field elements (c = n − r is called the capacity). The sponge
construction used for the Tip5 family is illustrated in Figure 1, which is instantiated with
a permutation P : Fn

p → Fn
p and a state of n field elements.

In the absorbing phase, r field elements are read from the input and overwrite the first
r elements of the state (or added to the first r elements), interleaved with applications
of the permutation P. In the squeezing phase, the first d field elements of the state are
returned as output blocks.

The sponge constructions used in Tip5 family and Monolith family The hash function
of Tip5 family comes in two modes of operation, depending on whether the input is
fixed-length or variable-length. When the input is fixed-length, i.e., the length is always
exactly r, no padding is required, and there is only one absorption where IV is initialized
with all 1. When it is variable-length, it is padded by appending a 1 followed by the
minimal number of 0’s necessary to make the padded input length a multiple of r, and IV
is initialized to all 0. For Monolith, it uses the SAFE framework [KBM23], and we refer
the details to [KBM23] for the padding rule.

To avoid considering the details of padding, in our attacks on Monolith family, we only
consider the collision in the inner part after the permutation. Once an inner collision is
obtained, a full-state collision can be trivially generated and a collision in the hash value
is found, which is a common method to find collisions for the sponge construction. Such a
strategy will also be used in the attaks on Tip5 family.

Security claims for Tip5 and Monolith families. Preimage and collision attacks are
well-known attacks on a hash function. For both Tip5 and Monolith family, the designers
claim 128 bits of security for these 2 attacks (with only the exception of Monolith-31 that
targets 124-bit security). Although the resistance of SFS collision attack is not claimed,
finding a SFS collision should be as hard as finding a collision for a secure hash function.
Note that in the SFS collision attack, the attacker can even control the value of IV, but
the difference of IV has to be 0.

102 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

x0

y0

· · ·

· · ·

xs−1

ys−1

xs

ys

· · ·

· · ·

xn−1

yn−1

M(·) + (c0, c1, . . . , cn−1)T

· · · · · · T T· · · · · ·S

Figure 2: One round of the permutations of Tip5, Tip4 and Tip4’, where xi, yi ∈ Fp.

2.3 Permutations of the Tip5 Family
We consider an equivalent description of the permutations of Tip5 [SLS+23], Tip4 [Sal23]
and Tip4’ [Sal23] in this part. They are SPN-based permutations defined over Fn

p , where
p = 264 − 232 + 1. As illustrated in Figure 2, the i-th round function is defined as

R(i) : Fn
p → Fn

p , x 7→ c(i) + Mi(S(x))

for 1 ≤ i ≤ N , where

• c(i) = (c(i)
0 , . . . , c

(i)
n−1) ∈ Fn

p denotes the i-th round constant;

• Mi = DiagR,n,s × Mo × DiagR−1,n,s for 1 ≤ i ≤ N − 1 and MN = Mo × DiagR−1,n,s,
where Mo ∈ Fn×n

p is a circulant MDS matrix and where Mi(x) := Mi × x. For
convenience, we simply let M = Mi for 1 ≤ i ≤ N − 1 and Mf = MN ;

• S : Fn
p → Fn

p is an invertible nonlinear layer.

In particular, the non-linear layer2 y = (y0, . . . , yn−1) = S(x0, . . . , xn−1) ∈ Fn
p is defined as

yi =
{

S(xi) if 0 ≤ i < s ,

T (xi) = x7
i if s ≤ i < n .

where S(·) is a permutation over Fp whose details will be given in Section 4. For the
concrete definition of the original MDS matrix Mo and the fixed round constants, we
refer to [SLS+23] for Tip5, and to [Sal23] for Tip4 and Tip4’. For convenience, we call
the permutations S(·) and T (·) the S-box and T-box, respectively. In addition, t = n − s
denotes the number of T-boxes in each round.

Note that the N rounds of the permutation of the Tip5 family are R(N) ◦ R(N−1) ◦ · · · ◦
R(1) ◦ DiagR,n,s, i.e., the input Fn

p will first be element-wise multiplied with the constant
vector (R, . . . , R︸ ︷︷ ︸

s

, 1, . . . , 1︸ ︷︷ ︸
n−s

), and then passed through N round functions. Further note that

the diagonal matrix DiagR,n,s has no diffusion effect on the input due to the element-wise
multiplication.

Parameters. The concrete parameters for the sponge-based hash functions Tip5, Tip4
and Tip4’ are detailed in Table 2.

2In the original description, the linear layer is simply Mo, and the first s state words (x0, . . . , xs−1)
pass through the S layer according to yi = R−1 · S(R · xi).

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 103

Table 2: Parameters for Tip5, Tip4 and Tip4’ used in sponge construction.
Parameter Symbol Tip5 Tip4 Tip4’

Field modulus p 264 − 232 + 1 264 − 232 + 1 264 − 232 + 1
Number of rounds N 5 5 5

Claimed security (bits) κ 128 128 128
State size n 16 16 12

Sponge rate & capacity (r, c) (10,6) (12,4) (8, 4)
Digest length d 5 4 4

S-box s 4 4 4
T-box t 12 12 8

2.4 Permutations of Monolith
Monolith [GKL+24] is a family of SPN-based permutations defined over Fn

p recently
published at ToSC 2024/3. In particular, Monolith-64 and Monolith-31 correspond to
(p, n) = (264 − 232 + 1, 12) and (p, n) = (231 − 1, 24). As shown in Figure 3, the i-th round
function is defined as

R(i) : Fn
p → Fn

p , x 7→ c(i) + M(F(B(x)))

for 1 ≤ i ≤ N , where

• c(i) ∈ Fn
p is a random round constant;

• M ∈ Fn×n
p is defined via an MDS matrix (called “concrete” by the designers) such

that M(x) := M × x;

• F : Fn
p → Fn

p (called “bars” by the designers) is a type-III Feistel construction
instantiated via square maps

F(x0, x1 . . . , xn−1) := (x0, x1 + x2
0, x2 + x2

1, . . . , xn−1 + x2
n−2) ,

• B : Fn
p → Fn

p is an invertible non-linear layer (called “bricks” by the designers).

Let us give more details of the nonlinear layer B. Abusing notation, we also denote the
permutation over Fp used in Monolith by S(x), but it is not the same as that used in Tip5.
In particular, the non-linear layer y = B(x) is defined as

yi =
{

S(xi) if 0 ≤ i < s ,

xi if s ≤ i < n .

The details of S(x) for Monolith-64 and Monolith-31 will be explained in Section 4. For the
concrete MDS matrix M and the fixed round constants, we refer to [GKL+24] for more
details.

Note that the N rounds of the permutation of the Monolith family is R(N) ◦ R(N−1) ◦
· · · ◦ R(1) ◦ M , i.e., the input will pass through a linear layer defined by M and then passed
through N round functions. Different from the Tip5 family, there is a mixing layer at the
beginning of the Monolith permutation.

Parameters. The concrete parameters for the sponge-based hash functions Monolith-64
and Monolith-31 are detailed in Table 3. We should note that in both Monolith-64 and
Monolith-31, there is c = d = r

2 = n
3 .

104 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

x0

y0

x1

y1

· · ·

· · ·

xn−1

yn−1

· · · · · · · · ·B

x2 x2 x2· · ·F

M(·) + (c0, c1, . . . , cn−1)T

Figure 3: One round of the Monolith permutation, where xi, yi ∈ Fp.

Table 3: Parameters for Monolith used in Sponge hashing mode.
Parameter Symbol Monolith-64 Monolith-31

Field modulus p 264 − 232 + 1 231 − 1
Number of rounds N 6 6

Claimed security (bits) κ 128 124
State size n 12 24

Sponge Rate & capacity (r, c) (8,4) (16,8)
Digest length d 4 8

S-Box s 4 8

2.5 Gröbner Basis Attacks
The presented attacks involve solving a multivariate polynomial equation system over a
finite prime field Fp. We use the following notation: Let {F1, . . . , Fne

} ⊂ Fp[x1, . . . , xnv
] be

a set of ne polynomials in nv variables. Let I := ⟨F1, . . . , Fne⟩ denote the ideal generated
by those polynomials, and let dI := dimF̄p

(Fp[x1, . . . , xnv]/I), called the degree of the
ideal, denote the dimension of the quotient ring Fp[x1, . . . , xnv

]/I as F̄p-vector space.

Multivariate system solving. A popular choice to find the common set of solutions
to a system of ne equations F1 = 0, . . . , Fne = 0 in nv is to first compute a Gröbner
basis [Buc76] of the ideal I = ⟨f1, . . . , fne⟩ with respect to the lexicographic order, which
takes a triangular form [Bar04, §1.3]. This essentially reduces the problem of multivariate
system solving to univariate root finding, as solutions can be recovered and extended
iteratively by solving (a system of) univariate equation(s) [CLO15, §3.1]. A good summary
of the procedure of univariate root finding over finite fields can be found in [BBLP22, §3.1].

In practice, directly computing the desired Gröbner basis is expensive. If the ideal I is
zero-dimensional, that is, dI < ∞, the following approach has proven advantageous:

1. Compute the Gröbner basis of I with respect to the drl (degree–reverse–lexicographic)
order, using, for example, Faugère’s F4 [Fau99] or F5 [Fau02] algorithm.

2. Apply the FGLM basis conversion algorithm [FGLM93] to convert it into a Gröbner
basis with respect to the lex (lexicographic) order.

Complexity. In the following, we assume that the system is well-defined (ne = nv), and
that I is zero-dimensional.

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 105

1. A drl Gröbner basis of I using the F4 or F5 algorithm can be computed in

O
((

nv + dreg

nv

)ω)
arithmetic operations over Fp [FBS04], where ω denotes the linear algebra constant
and dreg denotes the degree of regularity, as defined in [BSGL20, §A 2.2.1]. In general,
calculating dreg is as hard as computing the drl Gröbner basis itself. Thus, tight
bounds on dreg are essential for deriving good complexity estimates.
For regular systems (cf. [BFS15]), the degree of regularity is given by the so-called
Macaulay bound

dMAC := 1 +
nv∑
i=1

(deg(Fi) − 1). (1)

2. The basis conversion from a drl to a lex Gröbner basis using the original FGLM
algorithm can be computed in O

(
nv · d3

I
)

arithmetic operations over Fp [FGLM93].
There exist probabilistic variants with a sub-cubic complexity [FGHR14]:

O
(
nv · dω

I
)
,

where ω denotes the linear algebra constant.
An upper bound for the degree dI of the zero-dimensional ideal I, which coincides
with the number of solutions (over the algebraic closure, counted with multiplicities)
to the polynomial equation system, is given by the Bézout bound:

B :=
nv∏
i=1

deg(Fi). (2)

In particular, if the system is regular, we have dI = B.

3. Given a univariate polynomial F ∈ Fp[x] of degree d := deg(F), its roots in Fp can be
computed in O

(
d log(d)·(log(d)+log(p))·log(log(d))

)
finite field operations [BBLP22,

§3.1]. In general, if F is the unique univariate polynomial of the lex Gröbner basis,
we have deg(F) ≤ dI . Thus, in practice, computing the solutions to a lex Gröbner
basis is mostly negligible in comparison to the previous steps, given that the system
is not already in lex order.

The linear algebra constant ω ≥ 2 accounts for the complexity of multiplying two
dense matrices. From a designer’s perspective, it is common to use the smallest possible
value of ω = 2 in the security assessment to account for future developments and add
some additional security. However, we mention that in some cases, ω = 2 also holds
in practice [BFP09]. From an attacker’s perspective, estimating the accurate value of
ω in F4/F5 algorithms is not easy, though the most conservative value ω = 3 can be
used. Nevertheless, in practice, ω is always smaller than 3 for F4/F5 algorithms as the
constructed Macaulay matrix is sparse, and Gaussian elimination is only performed on
a submatrix of the Macaulay matrix. Indeed, it is common practice to use ω = 2.8 or
ω = 2.37 to claim a successful Gröbner basis attack. According to our experiments, using
ω = 2.37 does not seem to underestimate the complexity. Hence, we choose ω = 2.37 for
F4 and F5 algorithms throughout this paper. To have a safe claim, we use ω = 3 for the
FGLM algorithm as it is not optimized in Magma, though we have to emphasize that ω
might be smaller than 3 if optimized versions of the FGLM algorithms, e.g. [FGHR14],
are used.

106 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

As the hidden factors in the asymptotic O(·) notation are small (see, e.g., [ACG+19]),
it is common to directly use

(
nv+dMAC

nv

)ω to estimate the time complexity. Hence, for a
system of nv polynomials in nv variables generating a zero-dimensional ideal I, we estimate
the overall complexity of computing the set of common solutions in Fp via Gröbner basis
as

max
{(

nv + dMAC

nv

)ω

, nv · B3
}

. (3)

Experimental setup. All practical experiments are conducted on a machine with an
Intel Xeon E5-2630 v3 @ 2.40GHz (using 8 cores) and 378GB RAM under Debian
11 using Magma V2.26-2. As previously observed [BSGL20, §A] [BBLP22], when using
Magma, the basis conversion step (FGLM) is often the bottleneck of the Gröbner basis
computation, as its implementation of the FGLM algorithm seems not to take advantage
of fast linear algebra techniques.

3 Cryptanalysis of Tip5 and Monolith Independent of the
S-box

In all Tip5 and Monolith families, there exists a special large S-box S(·) over Fp for which
we have not yet given the details. However, we should keep in mind that it has a very
complex high-degree polynomial representation over Fp.

Such a special S-box S(·) was first used in Reinforced Concrete in order to prevent
algebraic attacks like the Gröbner basis attack. To analyze hash functions using such
special S-boxes, the designers of Tip5 proposed to use the available degrees of freedom
in order to impose the inputs of such S-boxes to be equal to some fixed known constants.
This strategy allows them to construct low-degree equations by skipping the influence of
such S-boxes. In this section, we revisit the proposed strategy and show how it can be
applied to straightforward collision attacks independent of S(·).

S S S S T T T T T T T T T T T T

capacity = 6

M

S S S S T T T T T T T T T T T T

M

S S S S T T T T T T T T T T T T

M

hash value

10 variables

4 equations

4 equations

5 equations

d = 5

Figure 4: The preimage attack on 3-round Tip5 independent of the S-box

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 107

3.1 Preimage Attacks Independent of the S-box
Let us briefly describe the designers’ analysis of Tip5 against the preimage attack. As
shown in Figure 4, since there is no diffusion layer at the beginning, r = 10 variables can
be introduced to denote the output words of all s = 4 S-boxes and the first t − c = 6
T-boxes at the 1st round. The remaining c = 6 output words are constants since they are
in the inner part.

Then, randomly fix the 8 inputs of all the S-boxes at the 2nd and 3rd rounds, and
compute their corresponding outputs by evaluating the S-box. Hence, the inputs of the
3rd round can be written as degree-7 polynomials in these 10 variables, and the hash value
can be expressed as degree-49 polynomials in these 10 variables. However, these are based
on the guess of the inputs of the S-boxes at the 2nd round and 3rd round. Therefore, we
have the following equations in the 10 variables:

• s = 4 linear equations to ensure the guess of the inputs of the 4 S-boxes at the 2nd
round;

• s = 4 degree-7 equations to ensure the guess of the inputs of the 4 S-boxes at the
3rd round;

• d = 5 degree-49 equations to match the hash value.

Therefore, to match the hash value with the above guess-and-determine method to
ignore the details of S(·), it is required to set up 13 equations in 10 variables, which has a
solution with an extremely low probability p−3 ≈ 2−192, letting alone the additional cost
to solve such polynomial equations with Gröbner basis. Hence, such a guess-and-determine
preimage attack cannot reach 3 rounds of Tip5 (equivalently, this attack can only reach 2
rounds of Tip5).

We recall that, without guessing the inputs of the S-boxes, the inputs of the 3rd round
will be complex polynomials of extremely high degree in these 10 variables, and we even do
not know what these polynomials are. Hence, the corresponding polynomial equations over
Fp to match the hash value in these 10 variables are unknown, which somehow prevents
the Gröbner basis attack.

The same analysis can be applied to Monolith, where we only have r = 2s free variables
representing the outer part of size r, and need to set the 2s inputs to the s S-boxes at
the 1st and 2nd rounds as fixed values in order to express the hash value as low-degree
polynomials in these 2s free variables. Hence, we have 2s + d = 3s equations in only 2s
variables. This implies that the attack cannot reach beyond 2 rounds of Monolith.

While the above conclusion that the preimage attack cannot reach 3-round Tip5 and
2-round Monolith looks sound, this may not be the case for the collision attack since the
target becomes to find two distinct inputs that collide in the hash value, rather than a
single input that leads to a given hash value. In the following, we describe how to apply a
similar idea to mount collision attacks on 3-round Tip5 and 2-round Monolith.

3.2 Collision Attacks Independent of the S-box
In the collision attack, our goal is to find two distinct inputs that collide in the hash value.

On Tip5 family. For the Tip5 family, we can introduce 2r variables to denote the output
pairs of all s S-boxes and t − c (=r − s) T-boxes at the 1st round. Then, we randomly fix
the input pairs for the s S-boxes at the 2nd round and force the input difference of the
s S-boxes at the 3rd round to be 0. In this way, the difference in the hash value can be
expressed as d polynomials in these 2r variables of degree 49. Similarly, we have in total
2s + s + d = 3s + d equations in these 2r variables:

108 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

1. 2s linear equations in these 2r variables to ensure the fixed input pairs of the s
S-boxes at the 2nd round;

2. s degree-7 equations in these 2r variables to ensure the input differences of the s
S-boxes at the 3rd round;

3. d degree-49 equations in these 2r variables to ensure the difference in the hash value
is zero.

By performing Gaussian elimination on the 2s linear equations, we only need to solve s
degree-7 and d degree-49 equations in 2r − 2s variables. If 2r − 2s ≥ s + d, we can guess
2r − 2s − (s + d) = 2r − 3s − d variables and solve s + d nonlinear equations in s + d
variables, and the complexity for the FGLM algorithm is (s + d) · 73s · 493d.

In Tip5, we have (s, d, r) = (4, 5, 10), and hence we need to solve 4 degree-7 and
5 degree-49 equations in 9 variables after guessing 3 variables. Under the regularity
assumption, the time complexity to compute the Gröbner basis is estimated as 254.3ω field
operations. With ω = 2.37, it is already larger than 2128.

In Tip4, we have (s, d, r) = (4, 4, 12), and therefore we need to solve 4 degree-7 and
4 degree-49 equations in 8 variables after guessing 8 variables. Under the regularity
assumption, the time complexity to compute the Gröbner basis is estimated as 247.1ω, and
it is 2111.5 with ω = 2.37.

In Tip4’, we have (s, d, r) = (4, 4, 8), and thus we need to solve 4 degree-7 and 4
degree-49 equations in 8 variables without guessing any variables. This time complexity is
the same as in the above attack on 3-round Tip4.

On Monolith family. The above strategy can be directly applied to the inner collision
attack on 2-round Monolith. As there is a diffusion layer at the beginning of Monolith,
we can only introduce 2r = 4s free variables to denote the input pairs of the 2-round
permutation. Then, randomly fix the s input pairs of the s S-boxes at the 1st round,
and force the input differences of all s S-boxes at the 2nd round to be 0. In this way,
the difference of the last c state words after the 2-round permutation can be expressed
as c = s polynomials in these 4s variables. Similarly, we have 2s linear equations, s
degree-2 equations and s degree-4 equations in 4s variables. After performing Gaussian
elimination on the linear equations, we get s degree-2 equations and s degree-4 equations
in 2s variables.

The theoretic time complexity for the FGLM algorithm is estimated as 2s · 23s · 43s.
Under the regularity assumption, the time complexity of the Gröbner basis attack is
estimated as max{220.0ω, 239} for 2-round Monolith-64, and max{241.6ω, 276} for 2-round
Monolith-31.

Experiments have confirmed that the collision attack on 2-round Monolith-64 is practical,
as shown in Table 4. It is found that the system does not behave like a regular system
(due to dreg < dMAC) and using ω = 2.37 does not underestimate the complexity. Since
dreg < dMAC, the system can be solved much faster in practice. A concrete colliding
message pair is given in the full version [LKG+24].

However, finding a practical collision for 2-round Monolith-31 with this method is still
costly. Several novel techniques will be developed in this paper to solve this challenge.

Table 4: Experimental results for the collision attack on 2-round Monolith-64. The running
time in the columns “TGB” and “TFGLM” is in seconds.

Target TGB dMAC dreg CGB (ω = 2.37) TFGLM B dI CFGLM (ω = 3) Memory (MB)

Monolith-64 3688 17 12 217.0ω (240.3) 1866 212 3011 23+11.6ω (237.8) 2194.5

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 109

4 Properties of the S-box
As stated above, there is yet no cryptanalysis exploiting the details of the special S-boxes
used in Tip5, Tip4, Tip4’ and Monolith due to their complex and unknown polynomial
representations over Fp. We take this challenge in this work, and propose an efficient
algorithm to determine whether a randomly given input-output difference pair is valid for
these S-boxes, and to find all possible input pairs for this difference transition if it is valid.

4.1 General Description of the S-box
Let us consider a general form of this S-box, i.e., z = S(w) where w, z ∈ Fp and S : Fp 7→ Fp

is a permutation over Fp. For convenience, we call (x0, . . . , xh−1) a split of x ∈ Fp with
parameters (l0, . . . , lh−1) where

∑h−1
i=0 li = ⌈log2p⌉ and

xi =
{

x ∧ (2l0 − 1) if i = 0
(x ≫

∑i−1
j=0 lj) ∧ (2li − 1) otherwise (1 ≤ i < h) ,

and we denote this by
(x0, . . . , xh−1) = σl0,...,lh−1(x).

Equivalently, x can be re-written as

x = x0+2l0 ·x1+2l0+l1 ·x2+· · ·+2l0+l1+···+lh−2 ·xh−1 mod 2⌈log2p⌉ where 0 ≤ xi < 2li ,

where
x = σ−1

l0,...,lh−1
(x0, . . . , xh−1).

If (l0, . . . , lh−1) are clear from the context, we simply use

(x0, . . . , xh−1) = σ(x), x = σ−1(x0, . . . , xh−1).

For z = S(w), we first need to compute (w0, . . . , wh−1) = σ(w). Then, compute
(z0, . . . , zh−1) with

zi = Si(wi), for 0 ≤ i < h,

where Si is a permutation. Finally, compute z = σ−1(z0, . . . , zh−1). Note that Si for
0 ≤ i < h are carefully constructed such that S is a permutation over Fp. In other words,
for ∀w < p, z < p has to hold.

In Tip5, Tip4 and Tip4’, we have

h = 8, li = 8, Si(x) = L(x) = (x + 1)3 − 1 mod 28 + 1 for 0 ≤ i < 8.

In Monolith-64, we have

h = 8, li = 8, Si(x) = χ011(x) for 0 ≤ i < 8,

where
χ011(x) = (x ⊕ (((¬x) ≪ 1) ∧ (x ≪ 2) ∧ (x ≪ 3))) ≪ 1

is computed over F8
2. In Monolith-31, we instead have

h = 4, (l0, l1, l2, l3) = (8, 8, 8, 7), S0(x) = S1(x) = S2(x) = χ011(x), S3(x) = χ01(x),

where
χ01(x) = (x ⊕ (((¬x) ≪ 1) ∧ (x ≪ 2))) ≪ 1,

is computed over F7
2.

110 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

For such a nonlinear permutation z = S(w) over Fp, we will present an efficient
algorithm to solve the differential equation ∆z = S(w + ∆w) − S(w) for any given
(∆w, ∆z). The main idea is to construct several small tables and use them to equivalently
construct the whole differential distribution table (DDT) of z = S(w), even though p > 230.
Note that the naive algorithm will require time complexity and memory complexity of
O(p2) to construct this DDT, and hence it soon becomes impractical. The motivation to
study this differential equation is to significantly improve the attacks on these ciphers, as
will be clear in our later advanced attacks.

4.2 Efficient Algorithm to Solve ∆z = S(w + ∆w) − S(w)
Given (∆w, ∆z) ∈ F2

p, how can we efficiently determine whether ∆w → ∆z is a valid
difference transition through S(·)? In other words, how to know whether there exists w
such that ∆z = S(w + ∆w) − S(w)? Although S is built with h functions S0, . . . , Sh−1, it
does not mean that we can simply use the DDT of Si to construct the DDT of S, and
solve this problem.

Let us consider an input pair (w, w′) and output pair (z, z′). Throughout this section,
we also set (w0, . . . , wn−1) = σ(w), (w′

0, . . . , w′
n−1) = σ(w′), (z0, . . . , zn−1) = σ(z), and

(z′
0, . . . , z′

n−1) = σ(z′). Let

(∆w0, . . . , ∆wh−1) = σ(∆w) = σ(w′ − w), (∆z0, . . . , ∆zh−1) = σ(∆z) = σ(z′ − z).

Even though we know ∆wi according to ∆w, we do not know the input difference between
(w′

i, wi) to each Si. The same also applies to the difference between (z′
i, zi). This is indeed

due to the influence of the carry and the modular addition operation (i.e., mod p) when
computing w′ = w + ∆w. Here we study this problem. (We limit ourselves to point out
that since S(w) is a permutation over Fp, we will only consider the case ∆w ̸= 0 and
∆z ̸= 0.)

Removing the influence of modular addition. When ∆w ̸= 0, there are 2 possible cases,
i.e., w > w′ or w < w′:

Case 1: If w > w′, we have ∆w = w′ − w + p by definition. Therefore, w = w′ + (p − ∆w)
and w′ < ∆w. Hence, when computing w′ +(p−∆w) over the ring of integers, the
result must be the same as within modulo p, i.e., no modular addition is required
when computing w = w′ + (p − ∆w).
In this case, let

∆̃w = p − ∆w, (∆̃w′
0, . . . , ∆̃w′

h−1) = σ(∆̃w).

Then, we have

wi = carryi + ∆̃wi + w′
i mod 2li , for 0 ≤ i < h,

where

carryi+1 =
{

1 if i ≥ 0 and carryi + ∆̃wi + w′
i ≥ 2li

0 otherwise
.

Obviously, carryh = 0 if and only if w > w′.

Case 2: If w < w′, we have ∆w = w′ − w. Similarly, when computing w′ = w + ∆w, no
modular addition is required. In this case, we have

w′
i = carryi + ∆wi + wi mod 2li , for 0 ≤ i < h,

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 111

where

carryi+1 =
{

1 if i ≥ 0 and carryi + ∆wi + wi ≥ 2li

0 otherwise
.

Similarly, carryh = 0 if and only if w < w′.

Similar analysis also applies to (z, z′, ∆z).
For convenience, we can pre-compute h 3-dimensional tables Tab0, . . . , Tabh−1 such

that

Tabi[j0][j1][j2] =
{

1 if j0 + j1 + j2 ≥ 2li

0 otherwise
.

Constructing small tables to capture the carry. With Tabi at hand, it is convenient
to study the difference transition ∆w → ∆z through S. Specifically, given a random pair
(∆w, ∆z), we consider in total 4 cases:

Case 0: w > w′ and z > z′;

Case 1: w > w′ and z < z′;

Case 2: w < w′ and z > z′;

Case 3: w < w′ and z < z′.

First, we compute 4h different 3-dimensional DDTs denoted by DDTi,j where 0 ≤ i < h
and 0 ≤ j ≤ 3. How to compute DDTi,j is specified in Algorithm 1. Note that each cell
of these 3-dimensional DDTs is a set of tuples reminiscent of right input pairs for a valid
difference transition.

Specifically, if w > w′, we should consider the calculation w = w′ +(p−∆w) = w′ +∆̃w.
Otherwise, we consider the calculation w′ = w + ∆w. Similarly, this applies to z and z′.
In this way, the influence of the modular addition operation (i.e., mod p) can be removed.
These correspond to the underlying ideas in Line 13, Line 16, Line 23 and Line 26 of
Algorithm 1, respectively.

Roughly speaking, DDTi,j is used to store the right input pairs as well as the correspond-
ing information of carry for the difference transitions ∆̃wi → ∆̃zi if j = 0, ∆̃wi → ∆zi if
j = 1, ∆wi → ∆̃zi if j = 2, and ∆wi → ∆zi if j = 3, through the small box Si(·).

Specifically, let us elaborate more on DDTi,0, DDTi,1, DDTi,2 and DDTi,3.

• On DDTi,0: This corresponds to the case w > w′ and z > z′. Specifically, we have

w = w′ + ∆̃w, z = z′ + ∆̃z.

Hence, by the construction of DDTi,0, for each element (carryi+1, wi, w′
i) stored in

112 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

DDTi,0[carryi][∆̃wi][∆̃zi][j3], we have

carryWi = carryi/2,

carryZi = carryi mod 2,

wi = carryWi + ∆̃wi + w′
i mod 2li ,

zi = Si(wi),
z′

i = Si(w′
i),

zi = carryZi + ∆̃zi + z′
i mod 2li ,

carryWi+1 =
{

1 if i ≥ 0 and carryWi + ∆̃wi + w′
i ≥ 2li

0 otherwise
,

carryZi+1 =
{

1 if i ≥ 0 and carryZi + ∆̃zi + z′
i ≥ 2li

0 otherwise
,

carryi+1 = 2 × carryWi+1 + carryZi+1.

In particular, w > w′ and z > z′ hold if and only if carryh = 0, i.e., carryWh = 0
and carryZh = 0.

• On DDTi,1: This corresponds to the case w > w′ and z < z′. Hence, we have

w = w′ + ∆̃w, z′ = z + ∆z.

For each element (carryi+1, wi, w′
i) stored in DDTi,2[carryi][∆̃wi][∆zi][j3], the rela-

tions in (zi, z′
i, carryZi, carryZi+1) are then updated as:

z′
i = carryZi + ∆zi + zi mod 2li ,

carryZi+1 =
{

1 if i ≥ 0 and carryZi + ∆zi + zi ≥ 2li

0 otherwise
.

The remaining relations remain the same as in DDTi,0. Similarly, w > w′ and z < z′

hold if and only if3 carryh = 0.

• On DDTi,2: This corresponds to the case w < w′ and z > z′. Hence, we have

w′ = w + ∆w, z = z′ + ∆̃z.

For each element (carryi+1, wi, w′
i) stored in DDTi,2[carryi][∆wi][∆̃zi][j3], the rela-

tions in (wi, w′
i, carryWi, carryWi+1) are update as:

w′
i = carryWi + ∆wi + wi mod 2li ,

carryWi+1 =
{

1 if i ≥ 0 and carryWi + ∆wi + wi ≥ 2li

0 otherwise
.

The remaining relations remain the same as in DDTi,0. Similarly, w < w′ and z > z′

hold if and only if carryh = 0.

3By removing the influence of modular addition, we always consider the addition a = b + c over the
ring of integers where b > 0, a > c and a, b, c ∈ Fp. In this case, if there is a nonzero carry from the most
significant bit when computing b + c, a > p and a cannot be in Fp. Hence, this carry must be 0. Similar
analysis also applies to other cases.

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 113

Algorithm 1 Constructing the 3-dimensional table DDTi,j

1: procedure CONSTRUCT-DDT(i, j, li, Tabi, DDTi,j)
2: TUPLE.id = 0
3: TUPLE.x = 0
4: TUPLE.x′ = 0
5: for id = 0 to 3 do
6: for u = 0 to 2li − 1 do
7: for u′ = 0 to 2li − 1 do
8: cx1 = id/2 // id = 2 × cx1 + cy1
9: cy1 = id mod 2

10: x = u
11: x′ = u′

12: if j = 0 or j = 1 then
13: ∆x = x − (cx1 + x′) mod 2li //x = cx1 + ∆x + x′ mod 2li

14: cx2 = Tabi[cx1][∆x][x′]
15: else if j = 2 or j = 3 then
16: ∆x = x′ − (cx1 + x) mod 2li //x′ = cx1 + ∆x + x mod 2li

17: cx2 = Tabi[cx1][∆x][x]
18: TUPLE.x = x
19: TUPLE.x′ = x′

20: y = Si(x)
21: y′ = Si(x′)
22: if j = 0 or j = 2 then
23: ∆y = y − (cy1 + y′) mod 2li //y = cy1 + ∆y + y′ mod 2li

24: cy2 = Tabi[cy1][∆y][y′]
25: else if j = 1 or j = 3 then
26: ∆y = y′ − (cy1 + y) mod 2li //y′ = cy1 + ∆y + y mod 2li

27: cy2 = Tabi[cy1][∆y][y]
28: TUPLE.id = 2 × cx2 + cy2
29: DDTi,j [id][∆x][∆y].pushback(TUPLE)

• On DDTi,3: This corresponds to the case w < w′ and z < z′. Hence, we have

w′ = w + ∆w, z′ = z + ∆z.

For each element (carryi+1, wi, w′
i) stored in DDTi,3[carryi][∆wi][∆zi][j3], the re-

lations in (wi, w′
i, carryWi, carryWi+1) and (zi, z′

i, carryZi, carryZi+1) are updated
as:

w′
i = carryWi + ∆wi + wi mod 2li ,

carryWi+1 =
{

1 if i ≥ 0 and carryWi + ∆wi + wi ≥ 2li

0 otherwise
,

z′
i = carryZi + ∆zi + zi mod 2li ,

carryZi+1 =
{

1 if i ≥ 0 and carryZi + ∆zi + zi ≥ 2li

0 otherwise
.

The remaining relations remain the same as in DDTi,0. Similarly, w < w′ and z < z′

hold if and only if carryh = 0.

With these 4h tables DDTi,j at hand, for a randomly given pair (∆w, ∆z) ∈ F2
p, we

can use Algorithm 2 to find all w ∈ Fp satisfying S(∆w + w) − S(w) = ∆z.

114 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

4.3 Explanation of Algorithm 2
Given the input-output difference pair (∆w, ∆z) ∈ F2

p of z = S(w), it is trivial to deal
with the case ∆w = 0 or ∆z = 0, and hence we omit these cases in Algorithm 2. Instead,
we only focus on the case ∆w ̸= 0 and ∆z ≠ 0. Our algorithm can also be easily modified
to determine whether a randomly given (∆w, ∆z) is valid. Specifically, once we find one w
satisfying S(w + ∆w) − S(w) = ∆z with Algorithm 2, start backtracking and exit.

On Line 10 − Line 13 of Algorithm 2. With the current Algorithm 2, the goal is to
find and store all possible w satisfying S(w + ∆w) − S(w) = ∆z. As it is unknown in
advance whether such a w will cause w > w′ or w < w′ or z = S(w) > z′ = S(w + ∆w) or
z = S(w) < z′ = S(w + ∆w), we traverse all 4 possible cases.

On Line 22 − Line 27 of Algorithm 2 . For each of the 4 cases, based on the small tables
DDT0,j , . . . , DDTh−1,j where 0 ≤ j < 4, we can efficiently retrieve possible candidate
splits of w and w′ with the depth-first search, which are stored in the arrays wArr and
wArr′, respectively.

On Line 17 − Line 20 of Algorithm 2. However, not each retrieved candidate is
necessarily valid. Note that when constructing each DDTi,j , we consider all input-output
pairs of Si(·) from {0, . . . , 2li − 1}. Hence, for a candidate (wArr[0], . . . , wArr[h − 1]), it
is possible to have

w = σ−1(wArr[0], . . . , wArr[h − 1]) ≥ p,

which is an invalid input of the function z = S(w). Similarly, it is also possible to get

w′ = σ−1(wArr′[0], . . . , wArr′[h − 1]) ≥ p.

Once w < p and w′ < p both hold, by the construction of S, i.e., S is a permutation over
Fp, there must be z = S(w) < p and z′ = S(w′) < p. In addition, according to the analysis
of each DDTi,j specified above, the additional condition id = 0 is equivalent to testing
whether the following conditions hold:

• w > w′ and S(w) > S(w′) when j = 0;

• w > w′ and S(w) < S(w′) when j = 1;

• w < w′ and S(w) > S(w′) when j = 2;

• w < w′ and S(w) < S(w′) when j = 3.

This additional condition is required because we search for a valid w based on the guess of
the relation in (w, w′ = w + ∆w) and (z, z′) = (S(w), S(w′)), respectively. Once we get a
candidate of (w, w′), it has to be consistent with the guessed relation.

On the correctness. The correctness of Algorithm 2 is ensured by the construction
of DDTi,j , whose properties have been explained in the above part. Specifically, we
retrieve wi from DDTi,j in the order of i = 0, . . . , h − 1, according to either (∆̃wi, ∆̃zi),
or (∆̃wi, ∆zi), or (∆wi, ∆̃zi) or (∆wi, ∆zi), as well as the carry. By the properties of
DDTi,j , we obtain a possible candidate of (w0, . . . , wh−1) = σ(w) and the corresponding
(w′

0, . . . , w′
h−1) = σ(w′).

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 115

On the completeness. In particular, we do not miss any valid w satisfying S(w +
∆w) − S(w) = ∆z since our algorithm can deal with all possible (∆w, ∆z), and all
possible valid solutions of (wi, w′

i, ∆̃wi, ∆̃zi), (wi, w′
i, ∆̃wi, ∆zi), (wi, w′

i, ∆wi, ∆̃zi), and
(wi, w′

i, ∆wi, ∆zi) have been taken into account when constructing each DDTi,j .
Remark 1. If the goal is to simply determine whether (∆w, ∆z) is a valid difference
transition, one may observe that our algorithm may get stuck if the input-output differences
of many small boxes are (0, 0) because we need to enumerate all possible input pairs for
these small boxes in the depth-first search. According to our observations on DDTi,j [0][0][0]
for the Tip5 and Monolith small boxes, we find that there are 2li (i.e., the maximal possible
number) tuples stored and each tuple (x, x′, id) stored satisfies id = 0. In addition,
DDTi,j [1][0][0] and DDTi,j [2][0][0] are always empty. For DDTi,j [3][0][0], there are at
most 2 tuples stored. Hence, when reaching the case where (∆wi, ∆zi) = (0, 0), instead of
directly running Line 22 − Line 27 in Algorithm 2, we can run the following code

if id = 0
wArr[i] = wArr′[i] = 0
RE(j, i + 1, 0, h, wArr, wArr′, ∆w0, . . . , ∆wh−1, ∆z0, . . . , ∆zh−1, wSol)

if id = 3
Line 22 − Line 27 of Algorithm 2

Moreover, before running the depth-first search in RE() (i.e., Line 16 - Line 27 in
Algorithm 2), one can also pre-check4 whether there exists i such that DDTi,j [id][∆wi][∆zi]
is empty for 0 ≤ id ≤ 3. If so, the input pair is invalid and we do not need to run the
search. This check takes at most 4h table lookups.

4.4 Application and Complexity Analysis
Our search algorithm is based on the depth-first search technique with early aborting, and
only uses simple table look-ups. For such an algorithm, it is difficult to give an accurate
theoretic estimation of the number of table look-ups, as well as the number of solutions for
each different input (∆w, ∆z). This is because these values will vary for different (∆w, ∆z).
Moreover, it is also important to know the probability that a randomly given (∆w, ∆z) is
a valid input-output difference pair of z = S(w).

To answer the above questions, we have implemented Algorithm 2 for Tip5, Monolith-64
and Monolith-31. We choose Ntest = 1 000 000 random (∆w, ∆z) and compute

• Nvalid: the number of valid (∆w, ∆z) such that ∃w : S(w + ∆w) − S(w) = ∆z;

• Nsol: the average number of solutions of w satisfying S(w + ∆w) − S(w) = ∆z;

• Ncost: the average number of table look-ups.

Then, the ratio γ = Nvalid
Ntest

is a good estimation of the probability that a randomly given
input-output difference is valid.

According to our experiments, we get (Nvalid, Nsol, Ncost) = (2930, 680, 32) for Tip5,
(Nvalid, Nsol, Ncost) = (803, 1752, 32) for Monolith-64, and (Nvalid, Nsol, Ncost) = (28981, 35, 15)
for Monolith-31. Based on these data, we make the following conclusions:

4Indeed, after this procedure, we can get the set of id such that DDTi,j [id][∆wi][∆zi] is non-empty for
each (i, j), and they can also be easily used to efficiently enumerate conforming input pairs or determine
whether a difference transition is valid. If it is a valid difference transition, there will be sequences of id of
length h + 1, i.e., id0 = 0, id1, . . . , idh−1, idh = 0, where DDTi,j [idi][∆wi][∆zi] is non-empty and there
exists j3 such that DDTi,j [idi][∆wi][∆zi][j3].id = idi+1 for 0 ≤ i ≤ h − 1.

116 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

Algorithm 2 Finding w satisfying S(w + ∆w) − S(w) = ∆z

1: procedure FINDW(∆w, ∆z, wSol)
2: ∆̃w = p − ∆w

3: ∆̃z = p − ∆z

4: (∆̃w0, . . . , ∆̃wh−1) = σ(∆̃w)
5: (∆̃z0, . . . , ∆̃zh−1) = σ(∆̃z)
6: (∆w0, . . . , ∆wh−1) = σ(∆w)
7: (∆z0, . . . , ∆zh−1) = σ(∆z)
8: wArr = []
9: wArr′ = []

10: RE(0, 0, 0, h, wArr, wArr′, ∆̃w0, . . . , ∆̃wh−1, ∆̃z0, . . . , ∆̃zh−1, wSol)
11: RE(1, 0, 0, h, wArr, wArr′, ∆̃w0, . . . , ∆̃wh−1, ∆z0, . . . , ∆zh−1, wSol)
12: RE(2, 0, 0, h, wArr, wArr′, ∆w0, . . . , ∆wh−1, ∆̃z0, . . . , ∆̃zh−1, wSol)
13: RE(3, 0, 0, h, wArr, wArr′, ∆w0, . . . , ∆wh−1, ∆z0, . . . , ∆zh−1, wSol)
14:
15: procedure RE(j, i, id, h, wArr, wArr′, ∆w0, . . . , ∆wh−1, ∆z0, . . . , ∆zh−1, wSol)
16: if i = h then
17: w = σ−1(wArr[0], . . . , wArr[h − 1])
18: w′ = σ−1(wArr′[0], . . . , wArr′[h − 1])
19: if w < p and w′ < p and id = 0 then
20: wSol.pushback(w)
21: else if i < h then
22: size = DDTi,j [id][∆wi][∆zi].size()
23: for j3 = 0 to size − 1 do
24: nextId = DDTi,j [id][∆wi][∆zi][j3].id
25: wArr[i] = DDTi,j [id][∆wi][∆zi][j3].x
26: wArr′[i] = DDTi,j [id][∆wi][∆zi][j3].x′

27: RE(j, i + 1, nextId, h, wArr, wArr′, ∆w0, . . . , ∆wh−1, ∆z0, . . . , ∆zh−1, wSol)

• The probability γ that a randomly given (∆w, ∆z) is valid for the S-box of Tip5,
Monolith-64 and Monolith-31 is about 2−8.5, 2−10.3 and 2−5.1, respectively;

• The cost to determine whether a random (∆w, ∆z) is valid can be viewed as negligible
since the value of Ncost is quite small, i.e., our algorithm is considerably efficient.

Note that γ is the estimate of the fraction of non-empty cells5 in the full DDT of the
S-box (also note that there are in total p2 cells for the DDT), which we do not explicitly
build. Since the total number of elements stored in all cells must be p2, each non-empty
cell stores γ−1 elements on average. Hence, we also use γ−1 to approximate Nsol in the
complexity analysis of our attacks.

4.5 Activating Partial Small Boxes
In our advanced attacks, we also exploit another property of z = S(w). Specifically, as it
is composed of h small-scale permutations S0, . . . , Sh−1 (or we call them small boxes), it is
possible to generate an input-output difference pair (∆w, ∆z) such that only ℓ boxes are
activated. We call it the partially activating technique. Specifically, we have Theorem 1 to
generate such (∆w, ∆z) and lower bound the probability of such a difference transition.

5Each cell stores the conforming inputs w satisfying S(w + ∆w) − S(w) = ∆z.

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 117

Theorem 1 (Partially Activating Technique). Let the lh−1 most significant bits of p be
all 1 and li ≥ 2 for 0 ≤ i < h. Let (∆w0, . . . , ∆wh−1) be the split of ∆w with parameters
(l0, . . . , lh−1) where

∑h−1
i=0 li = ⌈log2p⌉, and let I = {i0, . . . , iℓ−1} ⊆ {0, . . . , h − 1} be a set.

There exist
∏

i∈I(2li − 2) different input-output differences (∆w, ∆z) for z = S(w) where
0 < ∆wi ≤ 2li − 2 for i ∈ I,

∆wi = 0 for i /∈ I,

∆z = S(∆w) − S(0).
(4)

Moreover, for each such (∆w, ∆z), the probability that a random w ∈ Fp satisfies S(w +
∆w) − S(w) = ∆z is at least p−1 ·

∏
i/∈I,0≤i<h(2li − 1).

Proof. Since the lh−1 most significant bits of p are all 1, we have

∆w = σ−1(∆w0, . . . , ∆wh−1) < p

for each (∆w0, . . . , ∆wh−1) satisfying Eq. 4. Hence we have
∏

i∈I(2li − 2) such different
input-output differences (∆w, ∆z) for the S-box z = S(w).

For any w = σ−1(w0, . . . , wh−1) satisfying

wi = 0 for i ∈ I, 0 ≤ wi ≤ 2li − 2 for i /∈ I and 0 ≤ i < h,

we have w < p and there are
∏

i/∈I,0≤i<h(2li − 1) different choices of such w.
Hence, given any (∆w, ∆z) satisfying Eq. 4, for any of the above

∏
i/∈I,0≤i<h(2li − 1)

possible values of w, we always have

0 ≤ ∆wi + wi ≤ 2li − 2 for 0 ≤ i < h.

In other words, w + ∆w = σ−1(∆w0 + w0, . . . , ∆wh−1 + wh−1) < p. Let z = S(w) and
z′ = S(w + ∆w) for such (∆w, ∆z) and w. By definition, we have

z′ − z = σ−1(S0(∆w0 + w0), . . . , Sh−1(∆wh−1 + wh−1)) − σ−1(S0(w0), . . . , Sh−1(wh−1))
= σ−1(u0, . . . , uh−1)

where

ui =
{

Si(∆wi + wi) − Si(wi) = Si(∆wi) − Si(0) if i /∈ I ,

Si(0 + wi) − Si(wi) = Si(0) − Si(0) if i ∈ I .

In this way, we have σ−1(u0, . . . , uh−1) = S(∆w) − S(0) by definition. Hence, we always
have z′ − z = S(∆w) − S(0), and the probability that a random w ∈ Fp satisfies S(w +
∆w) − S(w) = ∆z for such (∆w, ∆z) is at least p−1 ·

∏
i/∈I,0≤i<h(2li − 1).

5 Two-stage Collision Attacks on Tip5, Tip4 and Tip4’
Let us focus on how to use 1-block input messages and the details of the S-box to devise
efficient collision attacks in this section. In this setting, there is no need to consider the
padding as it corresponds to the fixed-length input case.

The big picture of the two-stage attack. The big picture of the two-stage attack is to
first fix the input difference and output difference of the nonlinear layer S(·) at the 2nd
round, such that there is no difference in the inner part and that all s S-Boxes in the 3rd
round are inactive. This is called Stage 1. For Stage 2, we then compute the input of S(·)
at the 2nd round such that a collision can be generated by solving a polynomial system
with Gröbner basis.

118 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

More details. As illustrated in Figure 5, abusing notation, let

∆x = (∆x0, . . . , ∆xn−1), ∆y = (∆y0, . . . , ∆yn−1)

denote the input and output difference of S(·) at the 2nd round. Let (er, . . . , en−1) ∈ Fc
p

denoted the c state words in the inner part after applying the nonlinear layer S in the very
first round, i.e.,

(er, . . . , en−1) = (T (1), . . . , T (1)) = (1, . . . , 1)

since r ≥ s in Tip5, Tip4 and Tip4’, and we target the fixed-length input case. (Recall that
c denotes the capacity of the sponge construction.)

For the two-stage collision attack, we further assume that the first s1 ≤ s S-boxes and
the first t1 ≤ t T-boxes are active at the 2nd round. In particular, let

s0 = s − s1, t0 = t − t1

denote the number of inactive S-boxes and T-boxes at the 2nd round, respectively. In
other words, we will have

∆x = (∆x0, . . . , ∆xs1−1︸ ︷︷ ︸
s1

, 0, . . . , 0︸ ︷︷ ︸
s0

, ∆xs, . . . , ∆xs+t1−1︸ ︷︷ ︸
t1

, 0, . . . , 0︸ ︷︷ ︸
t0

)

∆y = (∆y0, . . . , ∆ys1−1, 0, . . . , 0, ∆ys, . . . , ∆ys+t1−1, 0, . . . , 0)

(x0, x0 +∆x0)S

S

· · ·

T

T

T

· · ·

T

· · ·

zero difference unknown difference

(xs−1, xs−1 +∆xs−1)

(xs, xs +∆xs)

· · ·

S

S

· · ·

T

T

T

· · ·

T

· · ·

(xn−1, xn−1 +∆xn−1)

(xr−1, xr−1 +∆xr−1)

(xr, xr +∆xr)

S

S

· · ·

T

T

T

· · ·

T

· · ·

MM Mf

(y0, y0 +∆y0)

(ys−1, ys−1 +∆ys−1)

(ys, ys +∆ys)

(yn−1, yn−1 +∆yn−1)

(yr−1, yr−1 +∆yr−1)

(yr, yr +∆yr)

fixed value

(er, er)

(en−1, en−1)

Figure 5: Collision attacks on 3-round Tip5, Tip4 and Tip4’ in the fixed-length input case,
where the inner part is initialized to 1.

The high-level description of the two-stage collision attack is outlined below:

Stage 1: Find valid input-output differences ∆x, ∆y for the second nonlinear layer such
that there is no difference in the inner part and that all s S-Boxes in the 3rd
round are inactive. Subsequently, compute inputs xi to the active S-boxes and
T-Boxes such that{

S(xi + ∆xi) − S(xi) = ∆yi for 0 ≤ i < s1,

T (xi + ∆xi) − T (xi) = ∆yi for s ≤ i < s + t1.
(5)

Stage 2: Randomly fix input values xi for s1 ≤ i < s to the inactive S-Boxes in the second
round (and thus the corresponding outputs yi = S(xi)). Find a solution for the
remaining t0 variables (xs+t1 , . . . , xn−1) such that the initial inner part value is
matched and that there is no difference in the hash value.

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 119

As can be observed from the description of Stage 2, we finally only have t0 = t − t1 ≤ t
free variables to fulfill c + d equations over Fp. (Recall that d denotes the digest length.)
Hence, to make our attack succeed with an overwhelming probability, c + d ≤ t at least
should hold. Hence, in this sense, the attacks should be applicable to Tip5, Tip4 and Tip4’.

In the following, we give a detailed description of the two stages.

5.1 Stage 1: Finding Valid (∆x, ∆y) for the 2nd Nonlinear Layer
To ensure the first condition that there is no difference in the inner part, we can construct
a system of c linear equations in s1 + t1 variables among ∆x:

Sys1:
(
M−1(∆x)

)
i

= 0 for r ≤ i < n. (6)

To ensure the second condition that all S-Boxes in the 3rd round are inactive, that is,
that the input difference of each S-box in the 3rd round is zero, we can construct a system
of s linear equations in s1 + t1 variables among ∆y:

Sys2:
(
M(∆y)

)
i

= 0 for 0 ≤ i < s. (7)

Since M is an MDS matrix, all linear equations in Sys1∪Sys2 are linearly independent. To
ensure that there is at least one non-zero solution to both systems, the following conditions
should hold:

s1 + t1 > max{c, s}. (8)

In total, there are at most (ps1+t1−c −1)× (ps1+t1−s −1) ≈ p2(s1+t1)−c−s nonzero solutions
(∆x, ∆y) ∈ Fn

p × Fn
p to the linear equation system Sys1 ∪ Sys2. However, not each such

solution is necessarily valid, and we need to consider the details of the S-box and T-box.

Probability of valid S-box transitions. With Algorithm 2 for the S-box in Tip5, each
solution of (∆x0, . . . , ∆xs1−1, ∆y0, . . . , ∆ys1−1) is valid with probability γs1 = 2−8.5s1 ,
and we can determine whether it is valid in negligible time. In particular, if it is valid, our
algorithm also outputs a set of solutions of (x0, . . . , xs1−1) such that S(xi +∆xi)−S(xi) =
∆yi holds for 0 ≤ i < s1.

Probability of valid T-box transitions. It is well-known that for a power map x 7→ xα,
where gcd(α, p − 1) = 1, the maximal differential probability is given by α−1

p [Nyb91].
Consequently, any DDT entry is upper bounded by α−1

p . Since every row in the DDT
must sum up to 1, at least a fraction of 1

α−1 of DDT entries in a row must be non-zero, i.e.,
represent a valid transition across the T-box. Since this is true for all rows, we can conclude
similarly for the entire table. This implies that a randomly given nonzero input-output
difference of this power map is valid with a probability larger than 1

α−1 . Since T (x) = x7,
we conclude that each solution of (∆xs, . . . , ∆xs+t1−1, ∆ys, . . . , ∆ys+t1−1) is valid with
probability larger than 6−t1 .

How to determine whether such a solution is valid is also trivial, as we simply need to
solve degree-6 univariate equations (xi + ∆xi)7 − x7

i = ∆yi for s ≤ i < s + t1. According
to [BBLP22], the time complexity to find the roots of these equations can be estimated as
t1 · 6 · log 26 · log 2(6p) · log 2 log 26 ≈ 1415 · t1 field operations.

On the constraint on (s1, t1, s, c). According to the above analysis, to ensure that there
is at least one valid solution, the following condition should also hold:

p2(s1+t1)−c−s > 28.5s1 · 6t1 , (9)

where we consider the worst case for the DDT of the T-box, i.e., a random input-output
difference holds with probability of 1

6 .

120 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

Practical implementation. Instead of enumerating all possible solutions to Sys1 ∪ Sys2,
it is more practical to do the following:

1. Apply Gaussian elimination to Sys1, and get s1 + t1 − c free variables.

2. Apply Gaussian elimination to Sys2, and get s1 + t1 − s free variables.

3. Pick a random value for the s1 + t1 − c free variables in ∆x, and determine the full
∆x satisfying Sys1.

4. According to ∆x, correctly guess the s1 + t1 − s free variables in ∆y such that the
difference transitions in these s1 + t1 − s boxes are valid. Specifically, we know the
input difference ∆xi of each of these s1 + t1 −s boxes (S-box or T-box), and hence we
can randomly pick an input xi and then compute the corresponding output difference
∆yi. Finally, determine the full ∆y satisfying Sys2.

5. Check if ∆x → ∆y is valid. Due to Step 4, we only need to check difference transitions
for s boxes.

It is also easy to observe that we can first determine ∆y, and then determine ∆x. In
this case, we only need to check difference transitions for c boxes. Hence, depending on
(c, s), we can adjust the above procedure. Note that in Tip5, Tip4 and Tip4’, we have
s ≤ c, and hence the above procedure is better. Also, since the valid difference transitions
for the S-box have a lower probability than the T-box, it is optimal to have as few S-Boxes
as possible to check among the min{c, s} boxes to check at the last step.

Due to the methods to check the validity of an input-output difference pair, if a solution
(∆x, ∆y) to Sys1 ∪ Sys2 is found such that the transition ∆x → ∆y holds, at the same
time, we also get the corresponding input-output pair (xi, yi) such that

S(xi + ∆xi) − S(xi) = ∆yi, yi = S(xi), for 0 ≤ i < s1,

T (xi + ∆xi) − T (xi) = ∆yi, yi = T (xi), for s ≤ i < s + t1.

Complexity of Stage 1. The cost to perform Gaussian elimination to Sys1 and Sys2 is
negligible, as there are only c and s linear equations, respectively. The main cost is caused
by finding a valid solution, i.e., checking whether ∆xi → ∆yi is valid for min{s, c} boxes.
Let the number of T-Boxes and S-Boxes to be checked be sc and tc, respectively, i.e.,

0 ≤ sc ≤ s1, 0 ≤ tc ≤ t1, sc + tc = min{s, c}. (10)

Then, we can estimate the time complexity of Stage 1 as

Tstage1 = 28.5sc · 6tc + 6tc · 1415 · tc (11)

field operations, where we treat the cost to check the difference transitions of the S-box as
negligible since it just takes a few table lookups, as stated in Section 4.4.

Experimental verification. To demonstrate the efficiency and correctness of our algorithm,
we give a concrete example of the input-output difference (∆x, ∆y) for the 2nd nonlinear
layer of Tip4 by setting (s, c, s1, t1, sc, tc) = (4, 4, 4, 1, 4, 0), such that the differences of
the inner part and the input differences of all S-boxes at the 3rd round are zero. The
expected time complexity is estimated as 28.5×4 = 234.0. By using 120 threads, we have
practically found such a solution of (∆x, ∆y) in a few minutes on one thread after testing

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 121

about 227 different input pairs (x4, x′
4) for the active T-box, as specified below (in hex).

As 120 × 227 ≈ 234, our estimation of the time complexity is reasonable.

x0 = a708181014551f68, x1 = 03a85a236b0a9435, x2 = 15420104c8678db9,

x3 = 1403ae07702a0617, x4 = 9b348004e33e78c5.

x′
0 = 39666624a6262e6b, x′

1 = 724e5e9078193528, x′
2 = 0b218d9613182324,

x′
3 = 5e893f4723a43824, x′

4 = 658096b7fa6a0246.

∆y0 = 42050ef963e37b3b, ∆y1 = 8e14e7cfa1364d79, ∆y2 = 4ba72b3574e557be,

∆y3 = 0eb6695527b8424d, ∆y4 = fb06f2832291a5d9.

5.2 Stage 2: Finding a Collision
After Stage 1, only s0 + t0 variables (xs1 , . . . , xs−1, xs+t1 , . . . , xn−1) remain unknown,
symbolizing the inputs and outputs to the nonactive S-Boxes and T-Boxes in the 2nd
round. After randomly fixing inputs xi to the s0 nonactive S-Boxes and calculating the
corresponding outputs yi = S(xi), only t0 variables remain unknown. The reason to fix the
inputs xi to the s0 nonactive S-Boxes is that we do not know the high-degree expression of
the S-box over Fp. It will be costly for the algebraic attack if they are treated as variables
because the outputs of these S-Boxes will be high-degree polynomials in the inputs.

Note that after Stage 1 we have ensured that there is no difference in the inner part and
the inputs of all S-Boxes in the 3rd round. To ensure that (er, . . . , en−1) can be matched,
we can set up c linear equations in the t0 variables (xs+t1 , . . . , xn−1):

(M−1(x − c(1)))i = ei for r ≤ i < n. (12)

To ensure a hash collision, that is, zero-difference in the digest, we can set up the
following d equations also in these t0 variables:(

Mf

(
S
(
M
(
S(x + ∆x)

)
+ c(2))− S

(
M(S(x)) + c(2)))︸ ︷︷ ︸

Output difference of the 3rd nonlinear layer

)
i

= 0 for 0 ≤ i < d, (13)

where ∆x is already fixed in the previous stage and ∆xi = 0 for s + t1 ≤ i < n. A trivial
upper bound for the degree of these d equations is 72 − 1 = 48. However, as only the
power map is used for the T-box, the input to the j-th T-box at the 3rd round for the
2nd round input x + ∆x is a polynomial of the form ∆1,j +

∑n−1
i=s+t1

αi,j · x7
i , while it is

∆2,j +
∑n−1

i=s+t1
αi,j · x7

i for the 2nd round input x, where αi,j , ∆1,j , ∆2,j ∈ Fp are some
known constants. Hence, the output difference of the j-th T-box at the 3rd round is a
polynomial in (xs+t1 , . . . , xn−1) of degree 7 × 6 = 42, rather than 48. Note that even
though we cannot actually calculate the concrete outputs of the s S-Boxes at the 3rd
round, we know that their input differences are zero, and so will their output differences.
Therefore, the degree of these d equations is 42.

Overall, there are c equations of degree 1 and d equations of degree 42. The following
conditions should hold to ensure the existence of a solution to such an equation system:

t0 = t − t1 = n − s − t1 ≥ c + d. (14)

After performing Gaussian elimination on the c linear equations, we only need to solve d
degree-42 equations in t0 −c variables. Hence, we can guess t0 −c−d variables if t0 > c+d,
and solve d degree-42 equations in d variables. Otherwise, we have t0 = c + d, and also
need to solve d degree-42 equations in d variables. Once a solution is found, we get a
3-round collision.

122 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

Complexity of Stage 2. Under the regularity assumption on the d degree-42 equations in
d variables, the Macaulay bound is given by dMAC = 1 + (42 − 1) · d. Under the assumption
that the ideal is zero-dimensional, the Bézout bound is given by B = 42d. Thus, the time
complexity (measured in operations over Fp) for stage 2 is estimated as

Tstage2 = max
{(

d + dMAC

d

)ω

, d · B3
}

= max
{(

1 + 42d

d

)ω

, d · 423d

}
. (15)

5.3 Applications to the Collision Attack on 3-Round Tip4
There are several constraints to ensure the application of the 2-stage collision attacks, i.e.,
(s1, t1, c, s, n, d) have to satisfy Eq. 8, Eq. 9 and Eq. 14. Unfortunately, since (n, c, s, d) =
(16, 6, 4, 5) in Tip5 and (n, c, s, d) = (12, 4, 4, 4) in Tip4’, these constraints cannot hold
simultaneously, i.e., we do not have enough available degrees of freedom.

On the contrast, this two-stage method is quite efficient for 3-round Tip4. For simple
implementations, i.e., without using Algorithm 2, we set (s1, t1, sc, tc) = (1, 4, 0, 4) . In this
case, we have Tstage1 ≈ 222.9. For Stage 2, we only need to solve 4 degree-42 equations in 4
variables, whose cost is estimated as Tstage2 = max{225.0ω, 4 · 4212} = max{225.0ω, 266.8}.

Hence, the time complexity of a collision attack on 3-round Tip4 is estimated as
max{225.0ω, 266.8} field operations under the regularity assumption.

Experimental verification. Due to the relatively high cost to find a real collision, we
turn to finding a near collision where only 2 rather than 4 output words collide. As
shown in Table 5, experiments have confirmed that the polynomial system behaves like a
regular system and using ω = 2.37 does not underestimate the complexity. A concrete
near collision is given in the full version [LKG+24].

Table 5: Experimental results for the near collision attack on 3-round Tip4, i.e., collision in
2 rather than 4 output state words. The running time in the columns “TGB” and “TFGLM”
is in seconds.

Target TGB dMAC dreg CGB (ω = 2.37) TFGLM B dI CFGLM (ω = 3) Memory (MB)

Tip4 1 83 83 211.9ω (228.2) 139 422 422 21+10.8ω (233.4) 597.22

5.4 Straightforward Applications to 3-Round SFS Collision Attacks
Next, we show how to adapt the previous attack in the case of a SFS attack scenario.
Compared with the collision attacks, we no more need to match (er, . . . , en−1) in the SFS
collision attacks. Hence, the above 2-stage attack can be easily adapted to the 3-round
SFS collision attack.

Specifically, at Stage 1, we perform the same procedure to find a desired input difference
∆x and output difference ∆y for the 2nd nonlinear layer. Then, at Stage 2, instead of
treating x as variables, we can treat y as variables as we do not need to match (er, . . . , en−1).
Our remaining task is to ensure that there is no difference in the hash value.

Note that after Stage 1, s1 + t1 variables in y have been fixed to ensure (∆x, ∆y). We
are still left with s0 + t0 unknown variables, i.e.,

(ys1 , . . . , ys−1, ys+t1 , . . . , yn−1).

Different from the above collision attack, we no longer need to fix the s0 outputs (i.e.,
inputs) of the nonactive S-Boxes at the 2nd round since we start from the output of the
second nonlinear layer, and there is no need to match the inner part.

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 123

Then, to ensure that there is no difference in the hash value, we only need to set up d
degree-6 equations in y, as shown below:(

Mf

(
S
(
M(y + ∆y) + c(2))− S

(
M(y) + c(2)))︸ ︷︷ ︸

Output difference of the 3rd nonlinear layer

)
i

= 0 for 0 ≤ i < d, (16)

Hence, to ensure that there is at least one solution, we have the constraint

s0 + t0 = n − s1 − t1 ≥ d. (17)

If n−s1 − t1 > d, we can guess n−s1 − t1 −d variables, and then solve d degree-6 equations
in d variables.

Complexity of Stage 1 and Stage 2. This 3-round SFS collision attack can work for Tip5,
Tip4 and Tip4’. By setting s1 = 0, we still have sufficient degrees of freedom, and only need
to solve d degree-6 equations for the SFS collision attacks on 3-round Tip5, Tip4 and Tip4’,
respectively. The time complexity for Stage 1 is then 64 × 1415 × 4 field operations, where
we only activate c + 1 T-boxes and at the 2nd round, i.e., s1 = 0 and t1 = c + 1. Hence,
the cost of Stage 1 is negligible. At Stage 2, under the regularity assumption, the cost to
solve such a polynomial system is estimated as max

{(1+6d
d

)ω
, d · 63d

}
field operations.

Experimental verification. Experiments have confirmed that these SFS collision attacks
are practical, as shown in Table 6. It is found that these systems behave like regular
systems and using ω = 2.37 does not underestimate the complexity. Concrete SFS colliding
message pairs are given in the full version [LKG+24].

Table 6: Practical results of Stage 2 of the two-stage SFS collision attacks on 3-round
Tip5, Tip4 and Tip4’. The running time in the columns “TGB” and “TFGLM” is in seconds.

Target TGB dMAC dreg CGB (ω = 2.37) TFGLM B dI CFGLM (ω = 3) Memory (MB)

Tip5 2503 26 26 217.4ω (241.2) 17355 65 65 22.4+13.0ω (241.4) 13646.72
Tip4 8 21 21 213.7ω (232.5) 92 64 64 22.0+10.4ω (233.2) 345.66
Tip4’ 7 21 21 213.7ω (232.5) 87 64 64 22.0+10.4ω (233.2) 345.66

5.5 Application to SFS Collision Attack on 4-Round Tip4
We now explain how the above 3-round SFS collision attack can be extended to 4 rounds.
However, due to the issue of available degrees of freedom, this attack only works for Tip4.
Therefore, for simplicity, we will not describe the attack in a general way, but instead
focus on the parameters of Tip4, though it is easy to adapt it to the general case.

Let us still use the same notation as in the above attacks. The 4-round SFS collision
attack also has 2 stages, as specified below:

Stage 1: Find (∆x, ∆y) such that there is no difference in the inner part, and fix them,
where there are s1 active S-boxes and t1 active T-boxes.

Stage 2: Set (ys1 , . . . , ys−1, ys+t1 , . . . , y15) as 16 − s1 − t1 unknown variables, and set up

• 4 linear equations to ensure that the inputs to the 4 S-boxes at the 3rd
round are randomly chosen constants;

• 4 degree-6 equations to ensure that the input differences of the 4 S-boxes at
the 4th round are 0;

124 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

• 4 degree-48 equations to ensure that the difference of the hash value is 0.

According to Stage 2, we need at least 12 unknown variables among y. On the other
hand, at Stage 1, to ensure that there is a nonzero solution to ∆x, at least 5 boxes have
to be active. If we fix the input and output values for all active S-boxes and T-boxes as
in previous attacks, we then only have at most 16 − 5 = 11 unknown variables among y,
i.e., 16 − s1 − t1 ≤ 11, which will make the Stage 2 succeed with a probability of p−1. To
address this issue, we propose a dedicated method for Stage 1.

Refined Stage 1 for the 4-round SFS collision attack. Specifically, we will set 4 T-boxes
and 1 S-box as active, i.e.,

s1 = 1, t1 = 4.

However, ∆x0 ̸= 0 is not randomly chosen. Instead, we use the partially activating
technique to activate only 1 small box in the S-box to find a (∆x0, ∆y0), i.e., set ℓ = 1.
Hence, there are in total 8 × (28 − 2) possible valid choices of (∆x0, ∆y0).

Randomly choose a valid (∆x0, ∆y0), and then solve 4 linear equations in (∆x4, . . . , ∆x7)
specified below: (

M−1(∆x)
)

i
= 0, for 12 ≤ i < 16.

In this way, we get a desired ∆x. Then, we randomly choose values for (x4, . . . , x7), and
compute (y4, . . . , y7) as well as (∆y4, . . . , ∆y7). In this way, (∆x, ∆y) is fully determined
and there exists x to ensure such a difference transition.

Stage 2 for the 4-round SFS collision attack. After Stage 1, (∆x, ∆y) are fully deter-
mined, and hence the input differences of the S-boxes at the 3rd round are also known.
Moreover, (y4, . . . , y7) are also fixed.

At Stage 2, we need to set up 12 equations. Different from the 4 active T-boxes,
although (∆x0, ∆y0) ̸= (0, 0) have been determined, we can still set y0 as an unknown,
and each solution of y0 can ensure S(S−1(y0) + ∆x0) − S(S−1(y0)) = ∆y0 with probability
larger than 2−8 according to Theorem 1.

Hence, we set
(y0, . . . , y3, y8, . . . , y15)

as 12 unknowns.
First, we set the inputs of the s = 4 S-boxes at the 3rd round as 4 randomly chosen

numbers (a0, . . . , a3) ∈ F4
p, and set up the following 4 linear equations:(

M(y + ∆y) + c(2))
i

= ai for 0 ≤ i < 4.

Next, we set up s = 4 degree-6 equations to ensure the input differences of the S-boxes
at the 4th round are zero:(

M

(
S
(
M(y + ∆y) + c(2))− S

(
M(y) + c(2)))︸ ︷︷ ︸

Input difference of the 4th nonlinear layer

)
i

= 0 for 0 ≤ i < 4.

Finally, we set up d = 4 degree-48 equations to ensure a collision in the hash value,
where 0 ≤ i < 4:(

Mf (S(M(S(M(y + ∆y) + c(2))) + c(3)) − S(M(S
(
M(y) + c(2))) + c(3))︸ ︷︷ ︸

Output difference of the 4th nonlinear layer

)
)

i
= 0.

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 125

By first performing Gaussian elimination on the 4 linear equations, we then only need
to solve 4 degree-6 equations, and 4 degree-48 equations in 8 variables. Hence, we can
expect one solution with probability close to 1.

However, not each solution is necessarily valid, since we further need to check whether
S(S−1(y0) + ∆x0) − S(S−1(y0)) = ∆y0 holds, whose probability is at least 2−8. If the
solution is invalid, we can choose another value for (a0, . . . , a3), and repeat the attack.

Based on the above analysis, under the regularity assumption on the 8 polynomials,
the time complexity of the 4-round SFS collision attack on Tip4 can be estimated as

28 × max
{(

1 + 5 × 4 + 47 × 4 + 8
8

)ω

, 8 · (6 · 48)12
}

= max{246.6ω+8, 2101.1}

field operations. Under ω = 2.37, the complexity of our attack is about 2118.5 field
operations.
Remark 2. We remark that there are not sufficiently many available degrees of freedom to
mount similar successful SFS collision attacks on 4-round Tip5 or Tip4’. However, if we do
not fix (∆x, ∆y) in advance, and also treat them as variables, we can devise the 4-round
SFS collision attacks on the two ciphers, but the time complexity is too high even with
ω = 2, and they are not meaningful. A quite similar attack without fixing (∆x, ∆y) can
be later found in the SFS collision attack on 3-round Monolith-64.

6 Three-stage Collision Attacks on 3-Round Tip5 and Tip4’
To address the issue of insufficient degrees of freedom in the 3-round collision attacks on
Tip5 and Tip4’, we propose the so-called three-stage collision attacks in this section, where
we consider to use multiple input blocks rather than a single input block. In particular,
we focus on the inner collision attack in order to ignore the padding rule, i.e., we consider
the collision in the last c state words rather than the first d state words. Note that the
same idea can also be directly applied to the collision attack on the first d state words
when considering padding.

6.1 Finding a Collision in the Inner Part with 2 Input Blocks
Let us focus on the problem to find a collision in the inner part rather than in the hash
value. In this case, instead of constructing equations to ensure no difference in the first d
state words after 3 rounds, we need to set up c equations to ensure no difference in the
last c state words after 3 rounds, as illustrated in Figure 6.

In the three-stage collision attack, the 1st input block pair (m0, m′
0) is absorbed, and

the corresponding pair (ei, e′
i) = (ei, ei + ∆ei) for r ≤ i < n − 1 is computed, which is

the output pair of the inner part after the 1st nonlinear layer in the next permutation to
absorb the 2nd input block (m1, m′

1).

The big picture. Let us use the same notation as in the two-stage collision attacks.
In particular, (∆x, ∆y) are the input and output difference of the 2nd nonlinear layer,
respectively, where there are s1 active S-boxes and t1 T-boxes at the 2nd round. In our
new attacks on 3-round Tip5 and Tip4, we set

s1 = s, t1 = 0.

Hence, we have s0 = s − s1 = 0 and t0 = n − s − t1 = n − s, and (∆x, ∆y) are of the
following form:

∆x = (∆x0, . . . , ∆xs−1, 0, . . . , 0︸ ︷︷ ︸
n−s

), ∆y = (∆y0, . . . , ∆ys−1, 0, . . . , 0︸ ︷︷ ︸
n−s

).

126 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

(x0, x0 +∆x0)S

S

· · ·

T

T

T

· · ·

T

zero difference unknown difference

(xs−1, xs−1 +∆xs−1)

(xs, xs +∆xs)

· · ·

S

S

· · ·

T

T

T

· · ·

T

· · ·

(xn−1, xn−1 +∆xn−1)

(xr−1, xr−1 +∆xr−1)

(xr, xr +∆xr)

S

S

· · ·

T

S

T

· · ·

T

· · ·

MM Mf

(y0, y0 +∆y0)

(ys−1, ys−1 +∆ys−1)

(ys, ys +∆ys)

(yn−1, yn−1 +∆yn−1)

(yr−1, yr−1 +∆yr−1)

(yr, yr +∆yr)

fixed value

(er, e
′

r)

(en−1, e
′

n−1
)

3-round

permutation

1st input block 2nd input block
(m0,m

′

0
) (m1,m

′

1
)

· · ·

Figure 6: The three-stage 3-round collision attacks, where padding can be ignored.

If we use the same strategy as in the two-stage attack, where all s S-boxes at the 3rd
round are inactive, we then get s linear equations in s unknowns (∆y0, . . . , ∆ys−1). In
this case, the only solution to this linear system is ∆y0 = . . . = ∆ys−1 = 0, resulting in
∆x = ∆y = (0, . . . , 0︸ ︷︷ ︸

n

) and an invalid collision attack. Hence, the previous strategy to find

such a (∆x, ∆y) has to be revised.
In the three-stage collision attack, we have 3 stages called Stage 0, Stage 1 and Stage

2. The high-level description is outlined below:

Stage 0: Collect some pairs (m0, m′
0) that can lead to some differences (∆er, . . . , ∆en−1)

satisfying certain conditions.

Stage 1: Find a proper solution of the above (∆x, ∆y) and fix the input pairs for all active
boxes at the 2nd round. Different from the previous two-stage attack, we allow
active S-boxes to appear at the 3rd round, but we activate the S-boxes with the
partially activating technique.

Stage 2: Find a solution of the input x to the 2nd round such that we can get a collision.

Pre-processing phase if s < c. Note that we have the following c linear equations in ∆x:

Sys4:
(
M−1(∆x)

)
i

= ∆ei = e′
i − ei for r ≤ i < n, (18)

This system is overdefined since there are only s unknowns (∆x0, . . . , ∆xs−1) and c > s
linear equations. For convenience, rewrite the equation system as

M ′
c×s × (∆x0, . . . , ∆xs−1)T = Ec×c × (∆er, . . . , ∆en−1)T ,

where M ′
c×s is the coefficient matrix with c rows and s columns, and Ec×c is an identity

matrix with c rows. Apply Gaussian elimination to M ′
c×s||Ec×c, and get M ′′

c×s||E′
c×c such

that the matrix M ′′
c×s is in row echelon form. Since M is an MDS matrix, the rank of

M ′′
c×s must be s, and the last c − s rows of M ′′

c×s must be all zero. Let E′′
(c−s)×c be the

submatrix of E′
c×c composed by the last c − s rows of E′

c×c. Then, if (∆er, . . . , ∆en−1)
satisfy Eq. 19:

E′′
(c−s)×c × (∆er, . . . , ∆en−1)T = (0, . . . , 0︸ ︷︷ ︸

c−s

)T , (19)

there is always a solution of ∆x to Sys4. In particular, Eq. 19 is equivalent to

E′′
(c−s)×c × (er, . . . , en−1)T = E′′

(c−s)×c × (e′
r, . . . , e′

n−1)T . (20)

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 127

Stage 0: Finding many distinct (er, . . . , en−1, e′
r, . . . , e′

n−1) satisfying Eq. 20. Let the
required number of distinct (er, . . . , en−1, e′

r, . . . , e′
n−1) satisfying Eq. 20 be pβ . Note that

(er, . . . , en−1) is uniquely determined by m0. Hence, if s < c, finding (er, . . . , en−1, e′
r, . . . , e′

n−1)
satisfying Eq. 20 is equivalent to finding (m0, m′

0) such that the corresponding

E′′
(c−s)×c × (er, . . . , en−1)T and E′′

(c−s)×c × (e′
r, . . . , e′

n−1)T

collide. With the birthday attack, finding pβ such (m0, m′
0) takes time complexity√

2pβ+c−s.
For Tip4 and Tip4’, we have s = c. Indeed, if s ≥ c, we can simply randomly choose

about
√

2pβ different m0, and form pβ distinct (er, . . . , en−1, e′
r, . . . , e′

n−1). For each such
a choice, they can always ensure that there is a solution to Eq. 18, since M is an MDS
matrix and the number of linear equations is not larger than the number of variables. The
time complexity is then simply

√
2pβ .

Stage 1: Finding (∆x, ∆y). As a main difference to the two-stage collision attack, we
allow each S-box to be active in the 3rd round, but we choose its input-output difference
with the partially activating technique stated in Section 4.5. Specifically, if there are in
total ℓ1 > 0 active small boxes among the s S-boxes at the 3rd round, there are in total
(28 − 2)ℓ1 ·

(8s
ℓ1

)
possible choices for the input-output differences for the S-boxes at the 3rd

round with the partially activating technique. For convenience, let the input difference
and output difference of the S-boxes at the 3rd round be

(∆x
(3)
0 , . . . , ∆x

(3)
s−1), (∆y

(3)
0 , . . . , ∆y

(3)
s−1),

respectively. Then, the procedure of Stage 1 is as follows:

Step 1: Pick one solution of (∆er, . . . , ∆en−1) obtained at Stage 0, and solve Sys4 to
obtain one solution of ∆x.

Step 2: Pick one solution of (∆x
(3)
0 , . . . , ∆x

(3)
s−1), (∆y

(3)
0 , . . . , ∆y

(3)
s−1) as described above,

and solve Sys5 to get a solution of ∆y.

Sys5:
(
M(∆y)

)
i

= ∆x
(3)
i for 0 ≤ i < s. (21)

Note that the number of variables and equations in Sys5 are both s. Since M is
an MDS matrix, there must exist a unique nonzero solution.

Step 3: Check the validity of ∆x → ∆y. If it is invalid, return to Step 2. If all possible
(∆x

(3)
0 , . . . , ∆x

(3)
s−1, ∆y

(3)
0 , . . . , ∆y

(3)
s−1) are used, return to Step 1. If ∆x → ∆y is

valid, exit.

As there are pβ possible choices of (∆er, . . . , ∆en−1), and (28 − 2)ℓ1 ×
(8s

ℓ1

)
possible choices

of (∆x
(3)
0 , . . . , ∆x

(3)
s−1), we can expect to have in total pβ · (28 − 2)ℓ1 ·

(8s
ℓ1

)
solutions to

Sys4 ∪ Sys5. However, each solution is valid with probability of γs = 2−8.5s, and thus we
need the following condition to ensure the existence of a valid (∆x, ∆y):

pβ · (28 − 2)ℓ1 ·
(

8s

ℓ1

)
≥ γ−s = 28.5s.

The time complexity of Stage 1 to find 1 proper (∆x, ∆y) is then estimated as 28.5s.

128 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

Stage 2: Finding a collision. After fixing (∆x, ∆y), we fix (x0, . . . , xs−1) that ensure
such a difference transition. It is expected to have 28.5s possible choices of (x0, . . . , xs−1).
Then, we set (xs, . . . , xn−1) as n − s unknowns.

Then, we set up c = n − r linear equations in these n − s unknowns to match the inner
part, and c = n − r degree-42 equations in these n − s unknowns to ensure the collision in
the inner part. These equations are as follows:

(M−1(x − c(1)))i = ei for r ≤ i < n,(
Mf

(
S
(
M
(
S(x + ∆x)

)
+ c(2))− S

(
M(S(x)) + c(2)))︸ ︷︷ ︸

Output difference of the 3rd nonlinear layer

)
i

= 0 for r ≤ i < n,

Hence, at Stage 2, we need to solve c degree-42 equations in n − s − c unknowns.
Similarly, for each solution of these n − s unknowns, it is valid with probability of

2−8ℓ1 , and we then either try another (x0, . . . , xs−1) or (∆x, ∆y) to repeat Stage 2.

6.2 Application to 3-Round Tip5 and Tip4’
Application to Tip5. In Tip5, (n, s, c) = (16, 4, 6). Hence, the pre-processing phase is
required, and the time complexity of Stage 0 is

√
2pβ+2. The time complexity of Stage

1 is 28.5s = 234.0. Since n − s − c = c = 6, at Stage 2, we will need to solve 6 degree-42
equations in 6 variables. Let 8ℓ1 ≤ 8.5s = 34.0 → ℓ1 ≤ 4. The time complexity is then√

2pβ+2+234.0+28ℓ1 ·max
{(

1 + 42 × 6
6

)ω

, 6·4218
}

≈
√

pβ ·264.5+28ℓ1 ·max{238.4ω, 299.7},

where
1 ≤ ℓ1 ≤ 4, pβ · (28 − 2)ℓ1 ·

(
32
ℓ1

)
≥ 234.0.

Under ω = 2.37, the optimal choice is (pβ , ℓ1) = (221.1, 1), and the complexity is
max{28+38.4ω, 2107.7} = 2107.7.

Application to Tip4’. While the effect for Tip5 is limited, the new strategy is quite
suitable for Tip4’. In Tip4’, (n, s, c) = (12, 4, 8). Hence, s = c and there is no need to do the
pre-processing phase, and the time complexity of Stage 0 is

√
2pβ . The time complexity

of Stage 2 is also 28.5s = 234.0. At Stage 2, we need to solve c = 4 degree-42 equations in
n − s − c = 4 unknowns. Hence, the time complexity of the attack on 3-round Tip4’ is√

2pβ +234.0 +28ℓ1 ·max
{(

1 + 42 × 4
4

)ω

, 4 ·4212
}

≈
√

pβ ·20.5 +28ℓ1 ·max{225.0ω, 266.8},

where 1 ≤ ℓ1 ≤ 4, pβ · (28 − 2)ℓ1 ·
(32

ℓ1

)
≥ 234.0. Under ω = 2.37, the optimal choice is

(pβ , ℓ1) = (221.1, 1), and the complexity is max{28+25.0ω, 274.8} = 274.8.

Application to Tip5 considering padding. Since d = 5 < c = 6 in Tip5, to reduce the
number of nonlinear equations to solve at Stage 2, we can also consider a direct two-block
collision attack on 3-round Tip5 with a similar idea by setting the length of second message
block as r − 1 = 11. In this case, at the pre-processing phase, we need to solve c + 1 = 7
rather than c = 6 linear equations in s = 4 variables, and hence the time complexity of
Stage 0 is

√
2pβ+3 if we want to find pβ pairs of (m0, m′

0) such that such an overdefined
linear equation system is solvable. To procedure to find (∆x, ∆y) at Stage 1 is almost the
same. At Stage 2, instead of considering collisions in the last c = 6 state words, we consider

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 129

the collision in the first d = 5 state words, i.e., we solve c + 1 = 7 linear equations and
d = 5 degree-42 equations instead of c = 6 linear equations and c = 6 degree-42 equations.
Hence, if 8ℓ1 ≤ 34.0 → ℓ1 ≤ 4, the time complexity becomes√

2pβ+3+234.0+28ℓ1 ·max
{(

1 + 42 × 5
5

)ω

, 5·4215
}

≈
√

pβ ·296.5+28ℓ1 ·max{231.7ω, 283.3}.

where pβ · (28 − 2)ℓ1 ·
(32

ℓ1

)
≥ 234.0. Under ω = 2.37, the optimal choice is (pβ , ℓ) = (29.1, 2),

and the complexity is 2101.1 + max{231.7ω+16, 299.3} ≈ 2101.1.

7 Application to Round-reduced Monolith
In this section, we describe a similar collision attack on 2-round Monolith. In addition, we
also present a SFS collision attack on 3-round Monolith.

7.1 On the Composition y = F(B(x))
Our nontrivial 2-round collision attacks on Monolith are highly related to the differential
property of the special nonlinear linear y = F(B(x)). Hence, we first study such a nonlinear
layer.

Abusing notation, let x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) be be the input and
output of composition F ◦ B, respectively. Let the input and output difference of F ◦ B be
∆x = (∆x0, . . . , ∆xn−1) and ∆y = (∆y0, . . . , ∆yn−1), respectively. Then, we have

∆yi =

S(xi + ∆xi) − S(xi) for i = 0,(
S(xi−1 + ∆xi−1)2 − S(xi−1)2)+

(
S(xi + ∆xi) − S(xi)

)
for 0 < i < s,(

S(xi−1 + ∆xi−1)2 − S(xi−1)2)+ ∆xi for i = s,(
(xi−1 + ∆xi−1)2 − x2

i−1
)

+ ∆xi for s < i < n.

(22)

(x0, x0 +∆x0) S

(x1, x1 +∆x1) S

(x2, x2 +∆x2) S

(x3, x3 +∆x3) S

S(xs−1, xs−1 +∆xs−1)

(y0, y0 +∆y0)

x2 (y1, y1 +∆y1)

x2

x2

x2

(y2, y2 +∆y2)

(y3, y3 +∆y3)

x2

· · · · · ·

(ys−1, ys−1 +∆ys−1)

(ys, ys +∆ys)(xs, xs +∆xs)

Figure 7: The composition y = F(B(x))

As shown in Figure 7, let us only focus on the first s + 1 state words. In particular, we
are interested in the following problem:

• If ∆x0 → ∆y0 is a valid difference transition through the S-box, for a randomly
given (∆x1, . . . , ∆xs) and (∆y1, . . . , ∆ys), how to efficiently determine whether
(∆x0, . . . , ∆xs) → (∆y0, . . . , ∆ys) is a valid difference transition through y =
F(B(x)), and get the conforming input (x0, . . . , xs−1) satisfying the first s + 1
equations in Eq. 22?

130 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

Due to the special S-box used in Monolith, we propose the following algorithmic
procedure to solve the above problem:

Step 1: With Algorithm 2, get all valid x0 ensuring S(x0 + ∆x0) − S(x0) = ∆y0.

Step 2: Run recursively for 0 < i < s. For each valid xi−1, compute x′
i−1 = xi−1 + ∆xi−1

and

∆yi −
(
(S(x′

i−1))2 − (S(xi−1))2). (23)

Check whether ∆xi → ∆yi −
(
(S(x′

i−1))2 − (S(xi−1))2) is a valid difference
transition through the S-box with Algorithm 2. If not, try another valid xi−1,
and if all possible valid xi−1 are used up, start backtracking. Otherwise, store all
possible xi ensuring S(xi + ∆xi) − S(xi) = ∆yi −

(
(S(x′

i−1))2 − (S(xi−1))2).
Step 3: For each valid xs−1, compute x′

s−1 = xs−1 + ∆xs−1 and check whether

(S(x′
s−1))2 − (S(xs−1))2 + ∆xs = ∆ys (24)

holds. If it holds, (∆x0, . . . , ∆xs) and (∆y0, . . . , ∆ys) correspond to a valid
difference transition, and we also get the inputs (x0, . . . , xs−1) ensuring this
difference transition.

Analysis of the above algorithmic procedure. Abusing notation, let γ be the probability
that a randomly given value of the input-output difference of the S-box is valid. As
∆x0 → ∆y0 is a valid difference transition, we expect to get on average γ−1 solutions
of x0 ensuring this difference transition, and can traverse them to check ∆x1 → ∆y1 −(
(S(x′

0))2 − (S(x0))2). Recursively for 1 ≤ i < s, we get γ−1 solutions of xi−1, and then
traverse them to check ∆xi → ∆yi −

(
(S(x′

i−1))2 − (S(xi−1))2), which corresponds to
checking γ−1 different input-output differences for the (i + 1)-th S-box, and we expect to
get one valid difference transition since each random input-output difference of the S-box
holds with probability γ, as well as the corresponding γ−1 solutions of xi satisfying this
valid difference transition. Hence, if ∆x0 → ∆y0 is valid, we expect to have one solution
of (x0, . . . , xs−2) and γ−1 solutions of xs−1 satisfying the first s equations in Eq 22.

Then, for each solution of xs−1, we need to check Eq. 24, which holds with probability
p−1. In other words, after trying all xs−1, Eq. 24 holds with probability γ−1p−1.

Hence, for a valid (∆x0, ∆y0), the probability that (∆x0, . . . , ∆xs) → (∆y0, . . . , ∆ys) is
a valid difference transition for a randomly given (∆x1, . . . , ∆xs, ∆y1, . . . , ∆ys) is estimated
as γ−1p−1. The time complexity to determine its validity is O(γ−1), i.e., at each layer, we
perform on average O(γ−1) tests.

The above analysis indicates that after trying γ ·p random (∆x0, . . . , ∆xs, ∆y0, . . . , ∆y0)
with the above algorithmic procedure where (∆x0, ∆y0) is always set as valid, we expect
to obtain one valid difference transition (∆x0, . . . , ∆xs) → (∆y0, . . . , ∆ys) as well as a
solution of (x0, . . . , xs−1) satisfying the first s+1 equations in Eq. 22. The time complexity
is then O(γ−1 · γ · p) = O(p).

7.2 Application to 2-Round Collision Attacks
Abusing notation, for the 2-round Monolith permutation, let the input and output of F ◦ B
at the first round be x ∈ Fn

p and y ∈ Fn
p , respectively. Let the difference be ∆x ∈ Fn

p and
∆y ∈ Fn

p , respectively.
In our 2-round collision attacks, we consider the following input and output difference

of the first nonlinear layer:

∆x = (∆x0, . . . , ∆xs−1, 0, . . . , 0, ∆xn−1), ∆y = (∆y0, . . . , ∆ys−1, ∆ys, 0, . . . , 0, ∆yn−1).

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 131

In this case, by definition of F ◦ B, we have ∆yn−1 = ∆xn−1.

We use a similar two-stage method to construct a collision for 2-round Monolith.
Specifically, we first aim to find the above (∆x, ∆y) such that there is no difference in the
inner part and that the input differences of all s S-boxes at the 2nd round are zero.

Stage 1: In both Monolith-64 and Monolith-31, we observe that n − r = c = s. To ensure
no difference in the inner part at the beginning, we can therefore set up s linear equations
in s + 1 variables (∆x0, . . . , ∆xs−1, ∆xn−1), i.e., (M−1(∆x))i = 0 for r ≤ i < n.

To ensure zero input difference for each S-box at the 2nd round, we similarly set up s
linear equations in s + 2 variables (∆y0, . . . , ∆ys, ∆yn−1), i.e., (M(∆y))i = 0 for 0 ≤ i < s.

Our goal is to find a valid solution of these variables as well as (x0, . . . , xs−1) to ensure
this difference transition.

For this purpose, we can randomly pick (x0, ∆x0), and compute the corresponding
∆y0 = S(x0+∆x0)−S(x0). As ∆x0 is fixed, we are left with s linear equations in s variables
(∆x1, . . . , ∆xs−1, ∆xn−1). Hence, we obtain one solution of (∆x1, . . . , ∆xs−1, ∆xn−1).
As (∆y0, ∆yn−1 = ∆xn−1) are fixed, we are left with s linear equations in s variables
(∆y1, . . . , ∆ys−1, ∆ys). Hence, we obtain one solution of (∆y1, . . . , ∆ys−1, ∆ys). Then, we
determine whether (∆x0, . . . , ∆xs−1, 0) → (∆y0, . . . , ∆ys) correspond to a valid difference
transition with the algorithmic procedure stated above.

As (∆x0, ∆y0) is always valid by construction, according to the above analysis, we
expect to find such a solution of (∆x, ∆y) as well as the conforming inputs (x0, . . . , xs−1)
with time complexity O(p).

Experimental verification. To demonstrate the correctness of our algorithm and the
estimation of the time complexity, we have run practical experiments using 120 threads
to find such a valid (∆x, ∆y) for Monolith-31, as shown below (in hex). In less than 2
minutes, we could find a solution. In particular, we have counted the number of tests at
each layer (totally 8 layers) in such a depth-first search. It is found that about 222 tests
have been performed at each layer, and this shows that the estimated time complexity
O(p) is reasonable since 120 × 222 ≈ 229.

x0 = 69737ce4, x1 = 1c495c53, x2 = 7ded143b, x3 = 4b7d0d09,

x4 = 584797fd, x5 = 4366d3ea, x6 = 5ed23b19, x7 = 4993e839.

x′
0 = 4a9f18c5, x′

1 = 19e1eaeb, x′
2 = 69557eae, x′

3 = 1da62a4d,

x′
4 = 6d308da5, x′

5 = 73fd2ecd, x′
6 = 5393fed7, x′

7 = 19299394.

∆y0 = 25cab5b6, ∆y1 = 3695939b, ∆y2 = 797a8566, ∆y3 = 2b2c2278,

∆y4 = 66187ae6, ∆y5 = 0bcd5cf2, ∆y6 = 74bd3f39, ∆y7 = 68d8749a,

∆y8 = 774096b5, ∆y23 = 267acfcc, ∆x23 = 267acfcc.

Stage 2: (∆x, ∆y) have been fixed, where ∆xi = 0 for s ≤ i < n − 1 and ∆xn−1 is now
a constant. In addition, as (x0, . . . , xs−1) are also fixed to ensure ∆x → ∆y, we can set
(xs, . . . , xn−1) as n − s free variables. With these variables, we can first set up s linear
equations to match the inner part. In addition, we can set up c quadratic equations in
these variables to ensure there is no difference in the last c state words after the 2-round
permutation. Note that these c equations are of degree 2 rather 3. The reason is similar
as in the attacks on Tip5. Specifically, the input difference of F(·) at the 2nd round is
fixed according to ∆y and F(·) is quadratic, and hence the output difference of F(·) at
the 2nd round becomes linear in its input, which is quadratic in x.

In both Monolith-31 and Monolith-64, we have d = c = s and n = 3s. Hence, we set up
s linear equations, and s quadratic equations in n − s = 2s variables. Solving this equation

132 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

system is equivalent to solving s quadratic equations in s variables, and we can expect one
solution.

Complexity evaluation. As stated above, the time complexity of Stage 1 is O(p). For Stage
2, we need to solve s quadratic equations in s variables. Under the regularity assumption,
the time complexity is estimated as max

{(1+2s
s

)ω
, s · 23s

}
field operations. Hence, for

Monolith-31 where s = 8, the overall complexity is estimated as 231 + max{214.6ω, 227}.
For Monolith-64 where s = 4, the overall complexity is estimated as 264 + max{27.0ω, 214},
which indicates that our new attack on 2-round Monolith-64 cannot outperform the collision
attack independent of the S-box.

Experimental verification. Experiments have confirmed that the collision attack on
2-round Monolith-31 is practical, as shown in Table 7. It is found that the system behaves
like a regular system and using ω = 2.37 does not underestimate the complexity. A concrete
colliding message pair is given in the full version [LKG+24].

Table 7: Experimental results for the collision attack on 2-round Monolith-31. The running
time in the columns “TGB” and “TFGLM” is in seconds.

Target TGB dMAC dreg CGB (ω = 2.37) TFGLM B dI CFGLM (ω = 3) Memory (MB)

Monolith-31 2 9 9 214.6ω (234.6) 2 28 28 23.0+8.0ω (227.0) 32.09

7.3 Application to 3-Round SFS Collision Attack
We also briefly describe a SFS collision attack on 3-round Monolith-64. We use the same
notation as in the above 2-round collision attacks. In the 3-round SFS collision attack, we
set (S(x0), . . . , S(xs−1), xs, . . . , xn−1) and (∆xs, . . . , ∆xn−1) as 2n − s unknowns, while
(∆x0, . . . , ∆xs−1) are fixed as all 0. The attack is specified below:

Step 1: Set ∆xi = 0 for 0 ≤ i < s.

Step 2: Randomly choose values for the input pairs of all the s S-boxes at the 2nd round,
and denote them by (x(2)

i , x
′(2)
i) where 0 ≤ i < s.

Step 3: Set (S(x0), . . . , S(xs−1), xs, . . . , xn−1) and (∆xs, . . . , ∆xn−1) as 2n − s = 5s un-
knowns.

Step 4: Set up c = s linear equations in (∆xs, . . . , ∆xn−1) to ensure no difference in the
inner part in the beginning of the permutation.

Step 5: Set up s + s degree-2 equations in the 5s unknowns to ensure the pre-fixed input
pairs (x(2)

i , x
′(2)
i) of the S-boxes at the 2nd round can be matched.

Step 6: Set up s degree-4 equations in the 5s unknowns to ensure no difference in the s
S-boxes at the 3rd round;

Step 7: Set up c = s degree-8 equations in the 5s unknowns to ensure no difference in the
inner part after 3-round permutation.

Step 8: Solve the 5s equations in 5s variables, and get a solution. If there is no solution,
move to Step 2, and repeat.

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 133

Complexity analysis. Among the 5s equations, there are s linear equations. Hence, it is
equivalent to solving 2s degree-2 equations, s degree-4 equations and s degree-8 equations
in 4s variables. Under the regularity assumption, the time complexity of the SFS collision
attack on 3-round Monolith-64 (where s = 4) then becomes

max
{(

1 + 2s + 3s + 7s + 4s

4s

)ω

, 4s · (22s · 4s · 8s)3
}

= max{249.2ω, 288}.

Under ω = 2.37, the time complexity of the attack is 2116.7.

Acknowledgments
This work was initiated during the group sessions of the 10th Asian Workshop on Symmetric
Cryptography (ASK 2023) held in Guangzhou, China. We thank the reviewers of ToSC
2024 Issue 4 for insightful comments to improve the quality of this paper. In addition, we
also thank Mohammad Mahzoun for some advice on MAGMA.

Fukang Liu has been supported by JSPS KAKENHI Grant Numbers JP22K21282,
JP24K20733, as well as the commissioned research (No. JPJ012368C05801) by National
Institute of Information and Communications Technology (NICT). Lorenzo Grassi has
been supported by the Ethereum Foundation via the Academic Grant Program 2024,
and by the German Research foundation (DFG) within the framework of the Excellence
Strategy of the Federal Government and the States – EXC 2092 CaSa. Hailun Yan
has been supported by the National Key Research and Development Program of China
(2022YFB2701900) and the National Natural Science Foundation of China (62202444).
This research is supported by the National Research Foundation, Singapore and Infocomm
Media Development Authority under its Trust Tech Funding Initiative. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not reflect the views of National Research Foundation, Singapore and
Infocomm Media Development Authority. Finally, this work is partly supported by the
European Union under the project Confidential6G with Grant agreement ID: 101096435.

References
[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan

Szepieniec. Design of symmetric-key primitives for advanced cryptographic
protocols. IACR Trans. Symm. Cryptol., 2020(3):1–45, 2020. doi:10.13154/
TOSC.V2020.I3.1-45.

[ABK+23] Tomer Ashur, Amit Singh Bhati, Al Kindi, Mohammad Mahzoun, and Léo
Perrin. XHash: Efficient STARK-friendly hash function. Cryptology ePrint
Archive, Paper 2023/1045, 2023. URL: https://ia.cr/2023/1045.

[ACG+19] Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich, Rein-
hard Lüftenegger, Christian Rechberger, and Markus Schofnegger. Algebraic
cryptanalysis of STARK-friendly designs: Application to MARVELlous and
MiMC. In ASIACRYPT 2019, volume 11923 of LNCS, pages 371–397. Springer,
2019. doi:10.1007/978-3-030-34618-8_13.

[AD18] Tomer Ashur and Siemen Dhooghe. MARVELlous: a STARK-friendly family
of cryptographic primitives. Cryptology ePrint Archive, Paper 2018/1098,
2018. URL: https://ia.cr/2018/1098.

https://doi.org/10.13154/TOSC.V2020.I3.1-45
https://doi.org/10.13154/TOSC.V2020.I3.1-45
https://ia.cr/2023/1045
https://doi.org/10.1007/978-3-030-34618-8_13
https://ia.cr/2018/1098

134 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. MiMC: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In ASIACRYPT 2016, volume 10031 of
LNCS, pages 191–219, 2016. doi:10.1007/978-3-662-53887-6_7.

[Bar04] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications
aux codes correcteurs et à la cryptographie. PhD thesis, Pierre and Marie
Curie University, Paris, France, 2004. URL: https://theses.hal.science/
tel-00449609.

[BBC+23] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen,
Vesselin Velichkov, and Danny Willems. New design techniques for efficient
arithmetization-oriented hash functions: Anemoi permutations and Jive com-
pression mode. In CRYPTO 2023, volume 14083 of LNCS, pages 507–539.
Springer, 2023. doi:10.1007/978-3-031-38548-3_17.

[BBL+24] Augustin Bariant, Aurélien Boeuf, Axel Lemoine, Irati Manterola Ayala,
Morten Øygarden, Léo Perrin, and Håvard Raddum. The algebraic FreeLunch:
Efficient Gröbner basis attacks against arithmetization-oriented primitives.
In CRYPTO 2024, volume 14923 of LNCS, pages 139–173. Springer, 2024.
doi:10.1007/978-3-031-68385-5_5.

[BBLP22] Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, and Léo Perrin. Al-
gebraic attacks against some arithmetization-oriented primitives. IACR
Trans. Symm. Cryptol., 2022(3):73–101, 2022. doi:10.46586/TOSC.V2022.
I3.73-101.

[BBVY21] Subhadeep Banik, Khashayar Barooti, Serge Vaudenay, and Hailun Yan.
New attacks on LowMC instances with a single plaintext/ciphertext pair.
In ASIACRYPT 2021, volume 13090 of LNCS, pages 303–331, 2021. doi:
10.1007/978-3-030-92062-3_11.

[BCD+20] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander,
Gaëtan Leurent, María Naya-Plasencia, Léo Perrin, Yu Sasaki, Yosuke Todo,
and Friedrich Wiemer. Out of oddity - new cryptanalytic techniques against
symmetric primitives optimized for integrity proof systems. In CRYPTO
2020, volume 12172 of LNCS, pages 299–328. Springer, 2020. doi:10.1007/
978-3-030-56877-1_11.

[BDPA08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
On the indifferentiability of the Sponge construction. In EUROCRYPT
2008, volume 4965 of LNCS, pages 181–197. Springer, 2008. doi:10.1007/
978-3-540-78967-3_11.

[BFP09] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach for
solving multivariate systems over finite fields. J. Math. Cryptol., 3(3):177–197,
2009. doi:10.1515/JMC.2009.009.

[BFS15] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity
of the F5 Gröbner basis algorithm. J. Symb. Comput., 70:49–70, 2015.
doi:10.1016/J.JSC.2014.09.025.

[BSBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint Archive, Paper 2018/046, 2018. URL: https://ia.cr/2018/046.

https://doi.org/10.1007/978-3-662-53887-6_7
https://theses.hal.science/tel-00449609
https://theses.hal.science/tel-00449609
https://doi.org/10.1007/978-3-031-38548-3_17
https://doi.org/10.1007/978-3-031-68385-5_5
https://doi.org/10.46586/TOSC.V2022.I3.73-101
https://doi.org/10.46586/TOSC.V2022.I3.73-101
https://doi.org/10.1007/978-3-030-92062-3_11
https://doi.org/10.1007/978-3-030-92062-3_11
https://doi.org/10.1007/978-3-030-56877-1_11
https://doi.org/10.1007/978-3-030-56877-1_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1515/JMC.2009.009
https://doi.org/10.1016/J.JSC.2014.09.025
https://ia.cr/2018/046

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 135

[BSGL20] Eli Ben-Sasson, Lior Goldberg, and David Levit. STARK friendly hash –
survey and recommendation. Cryptology ePrint Archive, Paper 2020/948,
2020. URL: https://ia.cr/2020/948.

[Buc76] Bruno Buchberger. A theoretical basis for the reduction of polynomials to
canonical forms. SIGSAM Bull., 10(3):19–29, 1976. doi:10.1145/1088216.
1088219.

[CHWW22] Jiamin Cui, Kai Hu, Meiqin Wang, and Puwen Wei. On the field-based
division property: Applications to MiMC, Feistel MiMC and GMiMC. In
ASIACRYPT 2022, volume 13793 of LNCS, pages 241–270. Springer, 2022.
doi:10.1007/978-3-031-22969-5_9.

[CLO15] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algo-
rithms. Springer, 4 edition, 2015. doi:10.1007/978-3-319-16721-3.

[Din21] Itai Dinur. Cryptanalytic applications of the polynomial method for solving
multivariate equation systems over GF(2). In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, volume 12696 of LNCS, pages
374–403. Springer, 2021. doi:10.1007/978-3-030-77870-5_14.

[EGL+20] Maria Eichlseder, Lorenzo Grassi, Reinhard Lüftenegger, Morten Øygarden,
Christian Rechberger, Markus Schofnegger, and Qingju Wang. An algebraic
attack on ciphers with low-degree round functions: Application to full MiMC.
In ASIACRYPT 2020, volume 12491 of LNCS, pages 477–506. Springer, 2020.
doi:10.1007/978-3-030-64837-4_16.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner
bases (F4). Journal of Pure and Applied Algebra, 139(1):61–88, 1999. doi:
10.1016/S0022-4049(99)00005-5.

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5). In ISSAC 2002, page 75–83. ACM, 2002.
doi:10.1145/780506.780516.

[FBS04] Jean-Charles Faugère, Magali Bardet, and Bruno Salvy. On the complexity of
Gröbner basis computation of semi-regular overdetermined algebraic equations.
In PICPSS 2004, page 71–74, 2004.

[FGHR14] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault.
Sub-cubic change of ordering for Gröbner basis: a probabilistic approach. In
ISSAC 2014, pages 170–177. ACM, 2014. doi:10.1145/2608628.2608669.

[FGLM93] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora.
Efficient computation of zero-dimensional Gröbner bases by change of ordering.
J. Symb. Comput., 16(4):329–344, 1993. doi:10.1006/JSCO.1993.1051.

[GAH+23] Lorenzo Grassi, Irati Manterola Ayala, Martha Norberg Hovd, Morten
Øygarden, Håvard Raddum, and Qingju Wang. Cryptanalysis of sym-
metric primitives over rings and a key recovery attack on Rubato. In
CRYPTO 2023, volume 14083 of LNCS, pages 305–339. Springer, 2023.
doi:10.1007/978-3-031-38548-3_11.

[GBJR23] Henri Gilbert, Rachelle Heim Boissier, Jérémy Jean, and Jean-René Reinhard.
Cryptanalysis of Elisabeth-4. In ASIACRYPT 2023, volume 14440 of LNCS,
pages 256–284. Springer, 2023. doi:10.1007/978-981-99-8727-6_9.

https://ia.cr/2020/948
https://doi.org/10.1145/1088216.1088219
https://doi.org/10.1145/1088216.1088219
https://doi.org/10.1007/978-3-031-22969-5_9
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-030-77870-5_14
https://doi.org/10.1007/978-3-030-64837-4_16
https://doi.org/10.1016/S0022-4049(99)00005-5
https://doi.org/10.1016/S0022-4049(99)00005-5
https://doi.org/10.1145/780506.780516
https://doi.org/10.1145/2608628.2608669
https://doi.org/10.1006/JSCO.1993.1051
https://doi.org/10.1007/978-3-031-38548-3_11
https://doi.org/10.1007/978-981-99-8727-6_9

136 Collision Attacks on Round-Reduced Tip5, Tip4, Tip4’ and Monolith

[GHR+23] Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger,
Roman Walch, and Qingju Wang. Horst meets Fluid-SPN: Griffin for zero-
knowledge applications. In CRYPTO 2023, volume 14083 of LNCS, pages
573–606. Springer, 2023. doi:10.1007/978-3-031-38548-3_19.

[GKL+22] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rech-
berger, Markus Schofnegger, and Roman Walch. Reinforced Concrete: A
fast hash function for verifiable computation. In CCS 2022, pages 1323–1335.
ACM, 2022. doi:10.1145/3548606.3560686.

[GKL+24] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian
Rechberger, Markus Schofnegger, and Roman Walch. Monolith: Circuit-
friendly hash functions with new nonlinear layers for fast and constant-
time implementations. IACR Trans. Symm. Cryptol., 2024(3):44–83, 2024.
doi:10.46586/TOSC.V2024.I3.44-83.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. Poseidon: A new hash function for zero-
knowledge proof systems. In USENIX Security Symposium, pages 519–535.
USENIX Association, 2021. URL: https://www.usenix.org/conference/
usenixsecurity21/presentation/grassi.

[GKRS22] Lorenzo Grassi, Dmitry Khovratovich, Sondre Rønjom, and Markus Schofneg-
ger. The Legendre symbol and the Modulo-2 operator in symmetric schemes
over Fn

p : Preimage attack on full Grendel. IACR Trans. Symm. Cryptol.,
2022(1):5–37, 2022. doi:10.46586/TOSC.V2022.I1.5-37.

[GOPS22] Lorenzo Grassi, Silvia Onofri, Marco Pedicini, and Luca Sozzi. Invertible
quadratic non-linear layers for MPC-/FHE-/ZK-friendly schemes over Fn

p –
Application to Poseidon. IACR Trans. Symm. Cryptol., 2022(3):20–72, 2022.
doi:10.46586/TOSC.V2022.I3.20-72.

[GRS21] Lorenzo Grassi, Christian Rechberger, and Markus Schofnegger. Proving
resistance against infinitely long subspace trails: How to choose the linear
layer. IACR Trans. Symm. Cryptol., 2021(2):314–352, 2021. doi:10.46586/
TOSC.V2021.I2.314-352.

[KBM23] Dmitry Khovratovich, Mario Marhuenda Beltrán, and Bart Mennink. Generic
security of the SAFE API and its applications. In ASIACRYPT 2023,
volume 14445 of LNCS, pages 301–327. Springer, 2023. doi:10.1007/
978-981-99-8742-9_10.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In STOC 1992, pages 723–732. ACM, 1992. doi:10.1145/129712.
129782.

[KLR24] Katharina Koschatko, Reinhard Lüftenegger, and Christian Rechberger.
Exploring the six worlds of Gröbner basis cryptanalysis: Application to
Anemoi. IACR Trans. Symm. Cryptol., 2024(4), 2024. URL: https:
//ia.cr/2024/250.

[KR21] Nathan Keller and Asaf Rosemarin. Mind the middle layer: The HADES
design strategy revisited. In EUROCRYPT 2021, volume 12697 of LNCS,
pages 35–63. Springer, 2021. doi:10.1007/978-3-030-77886-6_2.

https://doi.org/10.1007/978-3-031-38548-3_19
https://doi.org/10.1145/3548606.3560686
https://doi.org/10.46586/TOSC.V2024.I3.44-83
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://doi.org/10.46586/TOSC.V2022.I1.5-37
https://doi.org/10.46586/TOSC.V2022.I3.20-72
https://doi.org/10.46586/TOSC.V2021.I2.314-352
https://doi.org/10.46586/TOSC.V2021.I2.314-352
https://doi.org/10.1007/978-981-99-8742-9_10
https://doi.org/10.1007/978-981-99-8742-9_10
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://ia.cr/2024/250
https://ia.cr/2024/250
https://doi.org/10.1007/978-3-030-77886-6_2

F. Liu, K. Koschatko, L. Grassi, H. Yan, S. Chen, S. Banik, and W. Meier 137

[LAW+23] Fukang Liu, Ravi Anand, Libo Wang, Willi Meier, and Takanori Isobe. Co-
efficient grouping: Breaking Chaghri and more. In EUROCRYPT 2023,
volume 14007 of LNCS, pages 287–317. Springer, 2023. doi:10.1007/
978-3-031-30634-1_10.

[LKG+24] Fukang Liu, Katharina Koschatko, Lorenzo Grassi, Hailun Yan, Shiyao Chen,
Subhadeep Banik, and Willi Meier. Opening the blackbox: Collision attacks
on round-reduced Tip5, Tip4, Tip4’ and Monolith. Cryptology ePrint Archive,
Paper 2024/1900, 2024. URL: https://ia.cr/2024/1900.

[LKSM24] Fukang Liu, Abul Kalam, Santanu Sarkar, and Willi Meier. Algebraic attack
on FHE-friendly cipher HERA using multiple collisions. IACR Trans. Symm.
Cryptol., 2024(1):214–233, 2024. doi:10.46586/TOSC.V2024.I1.214-233.

[LMØM23] Fukang Liu, Mohammad Mahzoun, Morten Øygarden, and Willi Meier. Al-
gebraic attacks on RAIN and AIM using equivalent representations. IACR
Trans. Symm. Cryptol., 2023(4):166–186, 2023. doi:10.46586/TOSC.V2023.
I4.166-186.

[LSMI21] Fukang Liu, Santanu Sarkar, Willi Meier, and Takanori Isobe. Algebraic
attacks on Rasta and Dasta using low-degree equations. In ASIACRYPT
2021, volume 13090 of LNCS, pages 214–240. Springer, 2021. doi:10.1007/
978-3-030-92062-3_8.

[LSW+22] Fukang Liu, Santanu Sarkar, Gaoli Wang, Willi Meier, and Takanori Isobe.
Algebraic meet-in-the-middle attack on LowMC. In ASIACRYPT 2022,
volume 13791 of LNCS, pages 225–255. Springer, 2022. doi:10.1007/
978-3-031-22963-3_8.

[Nyb91] Kaisa Nyberg. Perfect nonlinear S-boxes. In Donald W. Davies, editor,
EUROCRYPT 1991, volume 547 of LNCS, pages 378–386. Springer, 1991.
doi:10.1007/3-540-46416-6_32.

[RST23] Arnab Roy, Matthias Johann Steiner, and Stefano Trevisani. Arion:
Arithmetization-oriented permutation and hashing from generalized triangu-
lar dynamical systems. CoRR, abs/2303.04639, 2023. doi:10.48550/ARXIV.
2303.04639.

[Sal23] Robin Salen. Two additional instantiations from the Tip5 hash function
construction, 2023. URL: https://toposware.com/paper_tip5.pdf.

[SLS+23] Alan Szepieniec, Alexander Lemmens, Jan Ferdinand Sauer, Bobbin Thread-
bare, and Al-Kindi. The tip5 hash function for recursive STARKs. Cryptology
ePrint Archive, Paper 2023/107, 2023. URL: https://ia.cr/2023/107.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In TCC 2008, volume 4948 of LNCS, pages 1–18.
Springer, 2008. doi:10.1007/978-3-540-78524-8_1.

[YZY+24] Hongsen Yang, Qun-Xiong Zheng, Jing Yang, Quanfeng Liu, and Deng
Tang. A new security evaluation method based on resultant for arithmetic-
oriented algorithms. In ASIACRYPT 2024, LNCS. Springer, 2024. URL:
https://ia.cr/2024/886.

[ZWY+23] Kaiyi Zhang, Qingju Wang, Yu Yu, Chun Guo, and Hongrui Cui. Alge-
braic attacks on round-reduced Rain and full AIM-III. In ASIACRYPT
2023, volume 14440 of LNCS, pages 285–310. Springer, 2023. doi:10.1007/
978-981-99-8727-6_10.

https://doi.org/10.1007/978-3-031-30634-1_10
https://doi.org/10.1007/978-3-031-30634-1_10
https://ia.cr/2024/1900
https://doi.org/10.46586/TOSC.V2024.I1.214-233
https://doi.org/10.46586/TOSC.V2023.I4.166-186
https://doi.org/10.46586/TOSC.V2023.I4.166-186
https://doi.org/10.1007/978-3-030-92062-3_8
https://doi.org/10.1007/978-3-030-92062-3_8
https://doi.org/10.1007/978-3-031-22963-3_8
https://doi.org/10.1007/978-3-031-22963-3_8
https://doi.org/10.1007/3-540-46416-6_32
https://doi.org/10.48550/ARXIV.2303.04639
https://doi.org/10.48550/ARXIV.2303.04639
https://toposware.com/paper_tip5.pdf
https://ia.cr/2023/107
https://doi.org/10.1007/978-3-540-78524-8_1
https://ia.cr/2024/886
https://doi.org/10.1007/978-981-99-8727-6_10
https://doi.org/10.1007/978-981-99-8727-6_10

	Introduction
	Preliminaries
	Notation
	Sponge Construction
	Permutations of the Tip5 Family
	Permutations of Monolith
	Gröbner Basis Attacks

	Cryptanalysis of Tip5 and Monolith Independent of the S-box
	Preimage Attacks Independent of the S-box
	Collision Attacks Independent of the S-box

	Properties of the S-box
	General Description of the S-box
	Efficient Algorithm to Solve z= S(w+w)-S(w)
	Explanation of Algorithm 2
	Application and Complexity Analysis
	Activating Partial Small Boxes

	Two-stage Collision Attacks on Tip5, Tip4 and Tip4'
	Stage 1: Finding Valid (x,y) for the 2nd Nonlinear Layer
	Stage 2: Finding a Collision
	Applications to the Collision Attack on 3-Round Tip4
	Straightforward Applications to 3-Round SFS Collision Attacks
	Application to SFS Collision Attack on 4-Round Tip4

	Three-stage Collision Attacks on 3-Round Tip5 and Tip4'
	Finding a Collision in the Inner Part with 2 Input Blocks
	Application to 3-Round Tip5 and Tip4'

	Application to Round-reduced Monolith
	On the Composition y=F(B(x))
	Application to 2-Round Collision Attacks
	Application to 3-Round SFS Collision Attack

